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Abstract
Background: One important preprocessing step in the analysis of microarray data is background
subtraction. In high-density oligonucleotide arrays this is recognized as a crucial step for the global
performance of the data analysis from raw intensities to expression values.

Results: We propose here an algorithm for background estimation based on a model in which the
cost function is quadratic in a set of fitting parameters such that minimization can be performed
through linear algebra. The model incorporates two effects: 1) Correlated intensities between
neighboring features in the chip and 2) sequence-dependent affinities for non-specific hybridization
fitted by an extended nearest-neighbor model.

Conclusion: The algorithm has been tested on 360 GeneChips from publicly available data of
recent expression experiments. The algorithm is fast and accurate. Strong correlations between
the fitted values for different experiments as well as between the free-energy parameters and their
counterparts in aqueous solution indicate that the model captures a significant part of the
underlying physical chemistry.

Background
The analysis of microarray data has attracted continuous
interest over the past years in the Bioinformatics commu-
nity (see e.g. [1]). The problem consists in obtaining the
gene expression level from the experimental measure-
ments, which are the emitted fluorescence intensities
from different sites in the array. On general grounds one
expects that the experimental signal can be decomposed
into two contributions:

where ISP(c) is the specific signal due to the hybridization
of the surface-bound probe sequence with a complemen-
tary target sequence. This quantity depends on the con-
centration c of the complementary strand in solution
(target). The non-specific term Ibg has different origins. It
arises due to spurious effects such as incomplete hybridi-
zation where probe sequences bind to only partially com-
plementary targets or due to other optical effects.

Models based upon the physical chemistry of hybridiza-
tion (see e.g. [2]) predict a linear increase of the specific
signal until saturation is approached. In case of highly
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expressed genes the specific part of the signal ISP(c) domi-
nates the total signal intensity I and hence one can safely
make the approximation I ≈ ISP(c). For lowly expressed
genes, as well as for sequences with a low binding affinity,
the specific and the non-specific contribution to the total
intensity can be of comparable magnitude. In this case an
accurate estimate of Ibg is crucial to draw reliable conclu-
sions concerning the expression level; estimates based on
the intensity distribution over the whole chip suggest that
this is the case for roughly a quarter or half of the probes
[3]. Once the background is calculated the gene expres-
sion level is then computed from background subtracted
data I - Ibg.

In this paper we present an algorithm for the calculation
of the background level for Affymetrix expression arrays,
also known as GeneChips. In these arrays the probe
sequences come in pairs: for each perfect match (PM)
probe, which is exactly complementary to the transcript
sequence in solution, there is a second probe with a single
non-complementary nucleotide with respect to the spe-
cific target. The latter is called mismatch (MM) probe.

Several algorithms for background analysis of Affymetrix
chips are available. Some of these use the MM intensities
as corrections for non-specific hybridization, while others
rely on PM intensities only. For instance, the Affymetrix
MAS 5.0 software (Microarray Analysis Suite version 5.0)
uses the difference (IPM - IMM) as estimator of the specific
signal; an adjusted MM intensity (ideal MM) is used in the
case the MM intensity exceeds the PM signal [4]. The
Robust Multiarray Algorithm (RMA) [5] uses a different
type of subtraction scheme which does not involve the
MM intensities. The more recent version of this algorithm
GCRMA performs background subtraction using informa-
tion on the probe sequence composition through the cal-
culation of binding affinities [6]. The position-dependent
nearest-neighbor model (PDNN) [7] fits the background
intensity using weight factors which depend on the posi-
tion along the probe. The free energy parameters then
enter in a nonlinear function. In the VSN algorithm [8] a
generalized log transform is used to background correct
the data. A study dedicated to the performance of different
algorithms showed that the type of background subtrac-
tion used has a large effect on the global performance of
the algorithms [9]. It is therefore not surprising that the
background issue has attracted a lot of interest by the sci-
entific community.

In this paper we present an algorithm for background esti-
mation which combines information from the sequence
composition and physical neighbors on the chip. This
algorithm relies on previous work by the authors [10].
While the previous algorithm performed well with respect
to the accuracy of the background estimation, the compu-

tational effort (per probe) involved was a severe limiting
factor concerning its practical usability. The main cause of
this significant computational effort was the iterative min-
imization of a cost function with nonlinear terms. The
algorithm presented in this work involves a different cost
function which is quadratic in the parameters. Its minimi-
zation can be performed via standard matrix computa-
tions of linear algebra. The algorithm is fast and accurate
and is therefore suited for large scale analysis.

This paper is organized as follows. In Methods we discuss
the optimization step from singular value decomposition
and we provide the details of the selected cost function. In
Results a test of the algorithm on about 360 Genechips
from recent (2006 onwards) experiments from the Gene
Expression Omnibus (GEO) is presented. Finally, the
advantages of this scheme and its overall performance as
background subtraction method is highlighted.

Methods
Approach

The general assumption is that the (natural) logarithm of
the background intensity can be approximated by a func-

tion linear in some fitting parameters ωα. Once these

parameters are set to their optimal values α an estimate

of the background intensity for the i-th (i = 1, 2, ..., Ndim)

PM probe can be obtained as

where Nf is the number of fitting parameters. Ωiα is a
sequence- and position-dependent element of the Ndim ×
Nf -dimensional matrix Ω, which will be defined below.

The optimized values for the model parameters α are

obtained by minimizing the difference (of the logarithms)
of the observed and estimated intensities

i.e. solving a linear least square problem. The sum extends
over the training set  which is a subset (with K ele-
ments) of the intensities of all annotated features. The
choice of the elements of  will be discussed later (see
Data Set - Parameter Optimization). The minimum is
found by imposing vanishing partial derivatives of S w.r.t.

ωα. This yields the following Nf linear equations
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which can be rewritten as

Here, we have introduced the matrix

and the vector Γα

(Note that M = ΩTΩ is symmetric and dim(M) = Nf × Nf).

The solution of Eq. (5) is given by the vector

of the optimal parameter values. If the matrix M is singu-
lar, M-1 has to be replaced by its pseudoinverse M+which
can be obtained by means of Singular value decomposi-
tion (SVD). In this work a standard SVD algorithm based
on Golub and Reinsch is used (see e.g. [11,12]).

Due to the symmetry of M only half of the off-diagonal
elements need to be generated, hence reducing the com-
putational effort. For the chips tested in this paper with
dimensions up to 1164 × 1164 features, the computa-
tional time on a standard PC (×86_64 Intel Core 2 Duo
with 3 GHz, 3 GB RAM) required to estimate the back-
ground intensities is 8 to 10 seconds for the larger chips,
and faster for the smaller ones.

This makes our algorithm an order of magnitude faster
than our previous version [10], 3 to 5 times faster than
GC-RMA, PDNN and MAS5, and about twice as slow as
RMA and DFCM (Bioconductor packages were used for
the testing). Note that for our algorithm, the time estimate
includes both reading in the CEL-file and the background
calculation, as it is done in one step.

This computation involves the generation of the matrix M
and vector Γ (from Eqs. (6) and (7)), the SVD of M to
solve Eq. (5) and the estimation of the background inten-
sity for all PM probes through Eq. (2). Differently from
other approaches in which the cost function is minimized
by means of Monte Carlo methods [13] or other dynami-

cal algorithms [10], the solution of SVD provides the exact
minimum of the cost function Eq. (3). Hence, there is no
risk in getting stuck in local minima different from the
global one.

Data Set - Parameter Optimization

As mentioned above, probes in Affymetrix form PM/MM
pairs. Consider now a target sequence at a concentration c
in solution. The analysis of Affymetrix spike-in data (see
e.g. [14]) shows that not only the PM signal increases with
increased target concentration c but also the MM inten-
sity. This is an indication that a single MM nucleotide only
partially prevents probe-target hybridization. Therefore
the intensity of MM probes can also be decomposed in a
non-specific and specific part as in Eq. (1). Supported by
Affymetrix spike-in data analysis, our assumption is that
the non-specific part of the hybridization is about equal

for PM and MM probes: . The specific part of

the signal is different in those two cases; equilibrium ther-
modynamics suggests a constant ratio

, independent of the target

concentration, as observed in experiments [3].

These insights are useful for the selection of probes for the
optimization set  in Eq. (3):  includes all MM probes
whose intensities are below a certain threshold I0 and

whose corresponding PM intensities also fulfill  <I0 (a

similar selection criterion was recently used by Chen et al.
[15]). The threshold I0 is chosen on the basis of the total

distribution of the intensities.  contains a significant
fraction of the mismatch probes: typically 35%. Since the
specific signal of MM intensities is lower than that of their
corresponding PM's, they provide more reliable informa-
tion on the background. The coordinates and sequences
of the probes in  are then fitted to the intensities of

these probes yielding the parameters ω. With those newly

acquired parameters ω the background signal of all MM
probes is estimated based upon the assumption

.

The matrix Ω
The choice of the matrix elements of Ω is dictated by input
from physical chemistry as well as by the architecture of
the microarray. Different schemes involving different
choices for Ω with a varying number of parameters Nf
were tested. Given a choice of Ω and in particular the
number Nf of fitting parameters, the accuracy of the back-
ground estimation is reflected by the value of S from the
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minimization of Eq. (3). While the addition of fitting
parameters always yields lower values of S, a too large set
of fitting parameters runs the risk of "overfitting". The
final choice of Ω is a compromise between a minimiza-
tion of S and the use of the smallest possible set of param-
eters.

In the present model the number of parameters is Nf = 50.
Similarly to the previous work [10] these parameters can
be split into two groups: a first group describes the corre-
lation of the background intensities with features which
are physical neighbors on the chip; the second group are
nearest-neighbor parameters which describe affinities for
non-specific hybridization to the chip.

Physical Neighbors on the Chip
The first 18 parameters ωα describe the correlation of the
background intensity with physical neighboring
sequences in the array. Let (xi, yi) be the coordinate of the
i-th MM sequence s(i). Then, its eight neighbors are
located at (xi ± 1, yi), (xi ± 1, yi ± 1), and (xi, yi ± 1). As there
is evidence that base-specific interactions (purine/pyrimi-
dine asymmetry) might influence the hybridization proc-
ess in general [16], we furthermore distinguish between
probes whose central nucleotide is either A/G (purine) or
C/T (pyrimidine). Then, the corresponding matrix ele-
ments in case of purines can be written as

with

and

so that the intensities of the neighboring features explic-
itly enter the calculation of the background intensity of
(xi, yi) as matrix elements Ωiα (2 ≤ α ≤ 9). In analogy to
Eqs. (9,10) we define Ωiα with 10 ≤ α ≤ 18 corresponding
to the sequences with a central pyrimidine.

Nearest-Neighbor Free Energy Parameters
The second contribution to the background model arises
from the sequence composition. Let us first label the 16

dinucleotides according to the order {CC, GC, AC, TC,
CG, GG, AG... TT}. We then define the next 16 matrix ele-
ments as

where

according to the order given above. The sum runs over all
the 24 dinucleotides along a probe sequence.

The matrix element Ωαi is equal to the number of dinucle-
otides of a given type in the sequence s(i). For instance, if
the sequence s(i) contains 4 dinucleotides of type CC and
2 of type GC, then Ωi,19 = 4 and Ωi,20 = 2. Hybridization
thermodynamics predicts log I ∝ ΔG where ΔG is the
hybridization free energy.

In the nearest-neighbor model [17] the free energy is writ-
ten as a sum of dinucleotide terms. Therefore, the param-
eters ωα (19 ≤ α ≤ 35) are the analogues of the free energy
parameters of the nearest-neighbor model.

Position-Dependent Nearest-Neighbors
Finally, we consider the possibility that the hybridization
strength is "modulated" along the sequence by a parabolic
weight as

where lm = 12.5, i.e. each dinucleotide is given a parabolic
weight according to its position relative to the center at lm
of the sequence. Thus, possible "unzipping" effects of the
DNA-RNA duplex are approximately accounted for by Eq.
(14).

The introduction of a position-dependence effect is in
analogy with work done by other groups [7,16,18,19].
However, we do not introduce a position-dependent
weight for each position along the 25-mer sequences.
Instead, we limit ourselves to a parabolic modulation of
the parameters along the chain, which drastically reduces
the number of parameters involved in the model.

Invariances

Given the definition of Ω above it can be shown that Eq.
(5) permits multiple solutions. Therefore, the optimal
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parameters α are not unique. Consider a set of optimal

parameters α which minimizes the cost function S (Eq.

(3)). Let us then add a constant λ to the 16 nearest-neigh-
bor parameters

From Eq. (12) we obtain

because Ωiα counts the frequency of the dinucleotide α in
the sequence corresponding to feature i and because there
are 24 dinucleotides in a 25-mer probe sequence. Now,
also consider

while  = α for all other α. We conclude that the

reparametrization of Eqs. (15) and (17) yields

since the shifting of Eq. (17) compensates the one intro-
duced by Eq. (16). This reparametrization, valid for any
real λ, leaves S invariant, and produces a zero eigenvalue
of the matrix M of Eq. (6).

Similarly, one can verify that there is at least a second zero
eigenvalue: a shift of the position-dependent nearest-

neighbor parameters  = α + λ (for 35 ≤ α ≤ 50) as

well as of ,  leaves S

invariant. To obtain the latter equations Eq. (14) and

 have to be applied.

Having zero eigenvalues, the matrix M is therefore not
invertible; the SVD thus provides the appropriate pseudo-
inverse as discussed above. Accidental degeneracies or
quasi-degeneracies of M could also occur, yielding eigen-
values close to zero in machine precision. These are, how-
ever, rare, and were actually never found in the
calculations presented here.

Results
We analyzed a total of 366 CEL-files which are publicly
available from the GEO server http://
www.ncbi.nlm.nih.gov/geo. Table 1 gives an overview of
the distribution of CEL-files over the twelve different
organisms considered in this study. The array size for an

organism might vary depending on the GSE accession
number, since the most recent Affymetrix chips tend to
use smaller features, thus more probes can be accommo-
dated on the same surface area. For instance the Human
HGU-133A contains 7122 features, while the Human
Genome U133 Plus 2.0 Array goes to 11642 features. The
last column of Table 1 lists the attained minimum value

min, which ranges from 0.017 for Escheria Coli to 0.11

for Oryza Sativa. min estimates the mean squared devia-

tion of the logarithm of the estimated background inten-

sity from the actual background value. For instance min

= 0.01 corresponds to a 10% deviation, while min = 0.1

corresponds to a 37% deviation. Table 2 provides a sum-
mary of the optimal parameters as calculated from the
Singular Value Decomposition for the minimization of
the cost function of Eq. (3). The parameters 1 and 10

are associated to constant intensities for purines and pyri-
midines. Their magnitudes are not unique due to the
reparametrization as discussed in Eqs. (15) to (18). If
information on neighboring probes is disregarded, the
value of S typically increases by 45%; if the sequence
information is not directly used, then it will increase by
52%. In the following we analyze the parameters associ-
ated to the local physical neighbors and to the nearest-
neighbor free energy.

Parameters of physical neighbors in the Chip

The parameters 2 to 9 and 11 to 18 describe the

coupling of the background intensities to the physically
neighboring features on the chip. As already mentioned,
our estimate of the PM background is based on the non-
specific intensity of the MM sequence. An Affymetrix chip
is designed such that MM and PM are found in rows at
equal y-coordinates. In addition, given a PM at (x, y), the
corresponding MM feature is at (x, y + 1).

Figure 1 schematically represents the influence of the
neighboring intensities on the background value. The
strength of the correlation of the eight neighboring spots
(i.e. the magnitude and sign of the corresponding α)

with the central MM feature is indicated by the color. The
numbers in the figure identify the associated parameters

α. For example 6 and 15 are associated to the inten-

sity at (x, y - 1) with respect to the reference MM intensity
with coordinates (x, y). There does not seem to be any evi-
dence that the middle-nucleotide classification in purines
and pyrimidines reveals any insight concerning the back-
ground. Instead, our results show that the absolute values
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of two "corresponding" (purine-pyrimidine pair) α 's

are generally of the same order of magnitude. Across all
species, we find typical average outputs of

Since 6, 15 respectively, reflects the correlation of the 

MM signal with its corresponding PM, as expected its mag-
nitude is greatest among all parameter values. Next, the 
MM intensity shows strong correlations with its direct 

nearest neighbors positioned at (x ± 1, y), i.e. 2/11 and 

3/12. Hence, the stronger the MM-neighboring intensi-

ties, the stronger their influence on the background signal 

of MM. However, in order to somehow compensate for 
strong MM-neighboring signals which might be caused by 
the presence of complementary target sequences, parame-
ters 4/13 and 5/14 have negative sign. The remaining 

three parameters, i.e. the top three neighbors limit their 
influence to a basically negligible minimum which 

appears to indicate the weak sequence correlation in y-
direction as previously found. The results indicate that the 
influence of neighboring intensities on the background 

noise is significant. In fact, our analysis shows that ≈ 30% 

of log  are constituted by neighboring probes in terms 

of absolute intensities (see Table 3). It appears that for a 

ω
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Table 1: Overview over organisms and number of CEL-files analyzed

Organism GEO # Chiptype (dimension) # files
min

A. Thaliana GSE4847 ATH1-121501 (712 × 712) 18 0.0259
GSE7642 ATH1-121501 (712 × 712) 12 0.0544
GSE9311 ATH1-121501 (712 × 712) 8 0.0546

C. Elegans GSE6547 Celegans (712 × 712) 25 0.0361
GSE8159 Celegans (712 × 712) 7 0.0396

D. Melanogaster GSE3990 Drosophila_2 (732 × 732) 6 0.0620
GSE6558 DrosGenome1 (640 × 640) 24 0.0605

D. Rerio GSE4859 Zebrafish (712 × 712) 8 0.0357

E. Coli GSE11779 E_coli_2 (478 × 478) 3 0.0869
GSE2928 Ecoli (544 × 544) 12 0.0172
GSE6195 E_coli_2 (478 × 478) 4 0.0664

H. Sapiens GSE10433 HG-U133A_2 (732 × 732) 12 0.0757
GSE5054 HG-U133A (712 × 712) 20 0.0392

HG-U133A_2 (732 × 732)

M. Musculus GSE7148 HG-U133A (712 × 712) 14 0.0296
GSE8514 HG-U133_Plus_2 (1164 × 1164) 15 0.0738
GSE11897 MOE430A (712 × 712) 11 0.0640

MOE430B (712 × 712)
Mouse430_2 (1002 × 1002)

GSE6210 Mouse430_2 12 0.0594
GSE6297 Mouse430_2 24 0.0325

O. Sativa GSE15071 Rice (1164 × 1164) 20 0.1157

R. Norvegicus GSE4494 RG_U34A (534 × 534) 59 0.0488
GSE7493 Rat230_2 (834 × 834) 9 0.0497
GSE8238 Rat230_2 (834 × 834) 4 0.0640

S. Aureus GSE7944 S_aureus (602 × 602) 6 0.0746

S. Cerevisiae GSE6073 YG_S98 (534 × 534) 12 0.0283
GSE8379 YG_S98 (534 × 534) 8 0.0180

X. Laevis GSE3368 Xenopus_laevis (712 × 712) 20 0.0514

S
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A. Thaliana C. Elegans

GEO no GSE4847 GSE7642 GSE9311 GSE6547 GSE8159 G

1

0.178 0.196 0.261 0.379 0.520

2

0.050 0.056 0.042 0.047 0.050

3

0.051 0.056 0.041 0.034 0.042

4

-0.013 -0.012 -0.013 -0.012 -0.016

5

-0.013 -0.011 -0.012 -0.010 -0.012

6

0.186 0.198 0.224 0.168 0.271

7

0.004 0.005 0.003 0.003 0.005

8

0.002 0.009 0.003 0.002 0.005

9

0.013 0.027 0.010 0.008 0.008

10

-0.174 -0.192 -0.258 -0.375 -0.517

11

0.063 0.060 0.059 0.058 0.062

12

0.069 0.064 0.064 0.052 0.059

13

-0.017 -0.015 -0.016 -0.011 -0.012

14

-0.018 -0.016 -0.019 -0.010 -0.009

15

0.258 0.299 0.328 0.301 0.459

16

0.004 0.006 0.005 0.005 0.009

17

0.002 0.007 0.003 0.003 0.006

18

0.013 0.025 0.012 0.012 0.015

19

0.068 0.138 0.143 0.149 0.155

20

0.052 0.191 0.169 0.090 0.157

21

-0.021 -0.038 0.006 -0.033 0.030

22

-0.021 0.051 0.056 -0.025 0.072

23

-0.032 -0.162 -0.147 -0.038 -0.121

24

0.041 0.075 0.072 0.024 0.015

25

-0.063 -0.221 -0.162 -0.122 -0.140

26

-0.060 -0.130 -0.119 -0.118 -0.109
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27

0.000 -0.008 -0.047 0.035 -0.041 0.052

28

0.036 0.148 0.076 0.062 0.063 0.105

29

-0.026 -0.058 -0.069 -0.046 -0.044 -0.065

30

-0.050 -0.032 -0.093 -0.065 -0.052 -0.106

31

0.057 0.037 0.056 0.082 0.012 0.133

32

0.093 0.180 0.173 0.125 0.112 0.211

33

0.011 -0.074 -0.021 -0.008 -0.026 0.015

34

-0.009 -0.017 -0.016 -0.023 -0.014 -0.035

Corr. Coeff 0.775 0.686 0.738 0.814 0.700 0.754

35

0.020 0.016 0.016 0.019 0.013 0.016

36

0.020 0.010 0.012 0.021 0.011 0.016

37

0.025 0.025 0.022 0.029 0.019 0.028

38

0.024 0.019 0.019 0.028 0.016 0.028

39

0.026 0.036 0.034 0.030 0.030 0.027

40

0.021 0.021 0.020 0.026 0.021 0.022

41

0.028 0.039 0.035 0.036 0.031 0.035

42

0.027 0.032 0.031 0.035 0.028 0.033

43

0.023 0.024 0.026 0.024 0.023 0.019

44

0.020 0.013 0.017 0.022 0.015 0.015

45

0.024 0.028 0.028 0.030 0.024 0.027

46

0.025 0.025 0.029 0.030 0.024 0.028

47

0.020 0.022 0.020 0.022 0.021 0.015

48

0.017 0.012 0.012 0.019 0.013 0.010

49

0.023 0.029 0.026 0.028 0.023 0.023

50

0.023 0.023 0.023 0.028 0.021 0.024

Corr coeff -0.679 -0.618 -0.679 -0.759 18 -0.631 -0.683

Magnitudes and signs of the parameters are approximately constant across different experiments. The correlation coefficients are the Pearson correlations between the nearest-neighbor paramete
experiments in aqueous solution [20].

Table 2: Optimized parameter values as obtained from the minimization of Eq. (3).  (Continued)
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few probes, the latter might even play a crucial role. It is 
unlikely that the correlations summarized in Fig 1 could 
be explained only as simple optical effects, as light from 
bright probes spilling into their neighborhood. Indeed, 
optical effects should produce an isotropic correlation 

pattern in the x and y directions which is not seen in our 
analysis. Another cause for this correlation might be that 
neighboring probes share common sequences, as is the 

case in Affymetrix chips [10].

Nearest-Neighbor Parameters

The parameters α (19 ≤ α ≤ 34) are the analogues of the

nearest-neighbor free energy parameters. The nearest-
neighbor model is commonly used to study the thermo-
dynamics of hybridization of nucleic acids in solution
(see e.g. [17]). In this model it is assumed that the stability

and thus the hybridization free energy ΔG of a dinucle-
otide depends on the orientation and identity of the
neighboring base pairs. For RNA/DNA duplexes there are
16 hybridization free energy parameters which were meas-
ured in aqueous solution by Sugimoto et al. [20].

Recent experiments [21] focusing on specific hybridiza-
tion show a good degree of correlation between the
hybridization free energies in solution and those directly
determined from microarray data. Concerning back-
ground data, we also expect a certain degree of correlation

between the parameters α (19 ≤ α ≤ 34) and their corre-

sponding Sugimoto free energy parameters.

In order to test the relationship between the experimen-
tally determined so-called Sugimoto parameters and our
results, we calculate the correlation coefficient between
these two sets. The results are reported in Table 2. In gen-
eral, the correlation coefficients vary between 0.53 and
0.83 with a median value of 0.71. Figure 2 shows two typ-
ical results for C. Elegans and D. Melanogaster. Both plots

indicate that the relationship between α (19 ≤ α ≤ 34)

and the nearest-neighbor free energy parameters of [20] is
approximately linear.

Position-dependent nearest neighbor parameters

Figure 3 shows a plot of position-dependent nearest-
neighbor parameters 35 to 50 as obtained from the

minimization of the cost function of Eq. (3) for four dif-
ferent sets of experiments. The data are plotted as function
of the corresponding nearest neighbor free energy param-
eters of [20]. We note that in all experiments shown there
is a negative correlation between the two data sets. The
parameters 35 to 50 reflect the difference in effective

free energy between the ends and the middle of the probe
sequence. Since weakly binding probes suffer more from
end-effects (unzipping, etc.), 35 to 50 and their corre-

sponding nearest-neighbor free energy parameters are
negatively correlated. Hence, the negative correlation in
Fig. 3 and those observed in all other cases (see correlation
coefficients reported in Table 2) indicates that the domi-
nant contribution to the background intensity comes
from the middle nucleotides. This conclusion complies
with other types of analysis which use position-dependent
free energy parameters (see e.g. [7,16]).

ω

ω

ω

ω ω

ω ω

ω ω

Correlations with neighboring featuresFigure 1
Correlations with neighboring features. Schematic rep-
resentation of the neighboring parameters on the array. The 
inset numbers indicate the corresponding parameter(s) α, 
e.g. 3/12 represents 3, 12 respectively. 2 through 9 

are related to purines, 11 to 18 to pyrimidines. The bar 
to the right gives the intensity scale of the parameters. The 
dashed pattern indicates negative values. Box on the left indi-
cates the rows of corresponding PM and MM pairs. The cen-
tral feature (position (x, y)) is a MM; its corresponding PM is 
located just below it (x, y - 1), its intensity has the strongest 
correlation with the central MM feature. The features in (x ± 
1, y - 1)

ω
ω ω ω ω
ω ω

Table 3: Influence of neighboring spot on background intensity in 
% of eight (randomly chosen) CEL-files of different organisms.

X. Laevis 74500.CEL 35% 76190.CEL 37%

C. Celegans 201989.CEL 43% 201994.CEL 52%

H. Sapiens 263931.CEL 41% 263930.CEL 39%

S. Cerevisiae 207569.CEL 29% 207570.CEL 29%
Page 9 of 15
(page number not for citation purposes)
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Fitted vs. solution hybridization free energiesFigure 2
Fitted vs. solution hybridization free energies. Pair Parameters α (19 ≤ α ≤ 34), as obtained from the minimization of 

Eq. (4) as function of ΔGα, the nearest-neighbor stacking free energy obtained from DNA/RNA hybridization in solution [20]. 
Plots refer to two GSE training data sets of a) C. Elegans and b) Drosophila Melanogaster. Each point on the y-axis is the aver-
aged value over all CEL-files representing its GSE-set. The error bars are the standard deviation. Notation of DNA pairs are 
from 5' to 3' end. The straight lines are linear fits; correlation coefficients of each GSE set in legend.
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Fitted vs. solution hybridization (position dependent) free energiesFigure 3
Fitted vs. solution hybridization (position dependent) free energies. Same as in Fig. 2 for parabolic pair parameters, 
i.e. ΔGα vs. α (35 ≤ α ≤ 50) for a) C. Elegans and b) D. Melanogaster.
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Computed vs. true background (spike-in experiments)Figure 4
Computed vs. true background (spike-in experiments). Experimental results (I0P M) and theoretical predictions of the 
algorithms discussed here for a) probeset 37777_at (HGU95A, 1521a99 hpp_av06.CEL) and b) 209606_at 
(HGU133A,12_13_02_U133A_Mer_Latin_Square_Expt10_R1.CEL) spiked-in at concentration c = 0, i.e. absent from the 
hybridizing solution. All comparison were performed using freely available packages from the Bioconductor project.
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Computed background vs. low expressed genes dataFigure 5
Computed background vs. low expressed genes data. Experimental results (solid black line) and theoretical prediction 
(dashed red line) of probeset a) 256610_at (A. Thaliana, GSE4847, GSM109107.CEL) and b) 175270_at (C. Elegans, GSE8159, 
GSM201995.CEL).
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Comparing estimated vs. measured background
In this section we compare the estimated background sig-
nal (as given in Eq. (2)) with the intensities of given probe
sets corresponding to non-expressed genes in the samples
analyzed. We start with publicly available data taken from
spike-in experiments on HGU95A chips http://
www.affymetrix.com where genes have been spiked-in at
known concentrations, ranging from 0 to 1024 pM (pico-
Molar). The data at 0 pM correspond to the absence of
transcript in solution. Figure 4a compares the measured
and predicted background for probeset 37777_at. Except
for probes 2 and 15 for which the measured signal is
higher than the predicted background, there is a nice
agreement between our prediction and the experimental
background intensity: the standard deviation of the abso-
lute difference between the intensity of the PM and Iest is
28 in Affymetrix intensity units. Also shown are the back-
ground estimations as obtained with other algorithms
(the data for PDNN is missing in Fig. 4a due to the una-
vailability of one of the supporting files from Bioconduc-
tor packages). Figure 4b presents the same information for
probeset 209606_at. Here, the standard deviation is 7 in
Affymetrix intensity units.

Next, we go beyond the spike-in experiments. To select
non-expressed genes we considered probe sets with very
low expression values as obtained from the RMA algo-
rithm. In Figure 5 the PM intensities as well as the calcu-
lated background signal of two probesets from A.
Thaliana and C. Elegans experiments are shown. The
absolute intensities of both probesets are very low. As a
consequence, we can safely assume these genes are not
expressed and hence any measured signal can be attrib-
uted to the background. Figures 4 and 5 both show that
the present model captures the essentials of and correctly
predicts background intensities. Both Figures are repre-
sentative for the CEL-files analyzed in this work.

Discussion
We have presented a background subtraction scheme for
Affymetrix GeneExpression arrays which is both, accurate
and usable on a standard ×86_64 Intel Core 2 PC. The
algorithm centers around a cost function which is quad-
ratic in its fitting parameters. This allows for a rapid min-
imization, through linear algebra, in particular through
singular value decomposition. The accuracy of the present
algorithm is very similar to that of a background algo-
rithm previously presented by the authors [10]. The latter
had been tested on Affymetrix spike-in data and its per-
formance was compared to background schemes such as
MAS5, RMA and GCRMA. Regarding spike-in data, the
analysis had shown that the proposed algorithm is defi-
nitely more accurate than background computations done
with MAS5 and RMA, but also improves on GCRMA [10].

The proposed algorithm has two categories of fitting
parameters. The first category exploits correlations
between features which are neighbors on the chip. The
second category is based on the strong similarity between
probe-target hybridization and duplex stability in solu-
tion, and involves stacking free energies in analogy to
those in the nearest-neighbor model. Existing algorithms
are either of the first [4] or the second [6,7,9] category, but
not both.

The background subtraction scheme has been tested on
360 GeneChips from publicly available data of recent
expression experiments. Since the fitted values for the
same parameters in different experiments do not show
much variation, the algorithm is robust and can be easily
transferred to other experiments. Due to its speed and
accuracy the present method is suited for large scale com-
putations. An R-package integrating the background anal-
ysis scheme with the computation of expression values
from background subtracted data will be made freely
available to the community (a preliminary version of this
package can be found in http://itf.fys.kuleuven.ac.be/
~enrico/ilm.html). The performance of this approach is
discussed in [22].
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