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Abstract

Background: Supertree methods combine the phylogenetic information from multiple partially-overlapping trees
into a larger phylogenetic tree called a supertree. Several supertree construction methods have been proposed to
date, but most of these are not designed with any specific properties in mind. Recently, Cotton and Wilkinson

proposed extensions of the majority-rule consensus tree method to the supertree setting that inherit many of the

appealing properties of the former.

Results: We study a variant of one of Cotton and Wilkinson's methods, called majority-rule (+) supertrees. After
proving that a key underlying problem for constructing majority-rule (+) supertrees is NP-hard, we develop a
polynomial-size exact integer linear programming formulation of the problem. We then present a data reduction
heuristic that identifies smaller subproblems that can be solved independently. While this technique is not
guaranteed to produce optimal solutions, it can achieve substantial problem-size reduction. Finally, we report on a
computational study of our approach on various real data sets, including the 121-taxon, 7-tree Seabirds data set of

Kennedy and Page.

Conclusions: The results indicate that our exact method is computationally feasible for moderately large inputs.
For larger inputs, our data reduction heuristic makes it feasible to tackle problems that are well beyond the range
of the basic integer programming approach. Comparisons between the results obtained by our heuristic and exact
solutions indicate that the heuristic produces good answers. Our results also suggest that the majority-rule (+)
approach, in both its basic form and with data reduction, yields biologically meaningful phylogenies.

Background

Introduction

A supertree method begins with a collection of phyloge-
netic trees with possibly different leaf (taxon) sets, and
assembles them into a larger phylogenetic tree, a super-
tree, whose taxon set is the union of the taxon sets of
the input trees. Interest in supertrees was sparked by
Gordon’s paper [1]. Since then, particularly during the
past decade, there has been a flurry of activity with
many supertree methods proposed and studied from the
algorithmic, theoretical, and biological points of view.
The appeal of supertree synthesis is that it can combine
disparate data to provide a high-level perspective that is
harder to attain from individual trees. A recent example
of the use of this approach is the species-level phylogeny
of nearly all extant Mammalia constructed by Bininda-
Emonds [2] from over 2,500 partial estimates. Several of
the known supertree methods are reviewed in the book
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edited by Bininda-Emonds [3] — more recent papers
with good bibliographies include [4,5]. There is still
much debate about what specific properties should
(can), or should not (cannot), be satisfied by supertree
methods. Indeed, it is often a challenging problem to
rigorously determine the properties of a supertree
method that gives seemingly good results on data, but is
heuristic.

The well-studied consensus tree problem can be
viewed as the special case of the supertree problem
where the input trees have identical leaf sets. Consensus
methods in systematics date back to [6]; since then,
many consensus methods have been designed. A good
survey of these methods, their properties, and their
interrelationships is given by Bryant [7], while the axio-
matic approach and the motivation from the social
sciences is found in Day and McMorris’ book [8]. One
of the most widely used methods is the majority-rule
consensus tree [9,10], which is the tree that contains the
splits displayed by the majority of the input trees. Not
only does this tree always exist, but it is also unique,
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can be efficiently constructed [11], and has the property
of being a median tree relative to the symmetric-differ-
ence distance (also known as the Robinson-Foulds dis-
tance [12,13]). That is, the majority-rule consensus tree
is a tree whose total Robinson-Foulds distance to the
input trees is minimum.

The appealing qualities of the majority-rule consensus
method have made it attractive to try to extend the
method to the supertree setting, while retaining as many
of its good characteristics as possible. Cotton and Wilk-
inson [14] were able to define two such extensions
(despite some doubts about whether such an extension
was possible [15]) and at least two additional ones have
been studied since [16]. Here we study one of the latter
variants, called graft-refine majority-rule (+) supertrees
in [16], and here simply referred to as majority-rule (+)
supertrees. These supertrees satisfy certain desirable
properties with respect to what information from the
input trees, in the form of splits, is displayed by them
(see the Preliminaries). The key idea in this method is
to expand the input trees by grafting leaves onto them
to produce trees over the same leaf set. The expansion
is done so as to minimize the distance from the
expanded trees to their median relative to the Robin-
son-Foulds distance. The supertree returned is the strict
consensus of the median trees with minimum distance
to the expanded input trees; these median trees are
called optimal candidate supertrees.

After showing that computing an optimal candidate
supertree is NP-hard, we develop a characterization of
these supertrees that allows us to formulate the problem
as a polynomial-size integer linear program (ILP). We
then describe an implementation that enables us to
solve moderately large problems exactly. We show that,
in practice, the majority-rule (+) supertree can be con-
structed quickly once an optimal candidate supertree
has been identified. Furthermore, we observe that the
supertrees produced are similar to biologically reason-
able trees, adding further justification to the majority-
rule (+) approach.

In addition to the exact ILP formulation, we also
introduce a data reduction heuristic that identifies
“reducible” sets of taxa. Informally, these are taxa that
are clustered in the same way by all the input trees. By
restricting the original profile to the taxa in any such
set, we get a “satellite profile” that can be much smaller
than the original one. At the same time, the original
profile can be reduced by representing all the taxa in
the set by a single supertaxon. A supertree for the origi-
nal profile is obtained by solving each of these supertree
problems independently and combining the answers.
This approach allows us to tackle supertree problems
that are well beyond the limits of the basic ILP method.
Thus, whereas the latter allowed us to solve instances at
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most 40 taxa, the former enabled us to handle the Sea-
birds data set of Kennedy and Page [17], which as 121
taxa. While the data reduction technique is not guaran-
teed to produce the same answers as the exact method,
we present empirical evidence that it produces good
results. Moreover, reducible sets often correspond to
meaningful biological classification units that likely
should be respected by any supertree.

We should mention that the supertree method most
commonly used in practice is matrix representation with
parsimony (MRP) [18,19]. MRP first encodes the input
trees as incomplete binary characters, and then builds a
maximum-parsimony tree for this data. The popularity of
MREP is perhaps due to the widespread acceptance of the
philosophy underlying parsimony approaches and the
availability of excellent parsimony software (e.g., [20]).
However, while parsimony is relatively easy to justify in
the original tree-building problem (in which homoplasy
represents additional assumptions of evolutionary
changes) a justification for its use as a supertree construc-
tion method is not quite as obvious. Perhaps the main cri-
ticism of MRP, as well as other tree construction methods,
is that it can produce unsupported groups [21,22]. The
provable properties of majority-rule (+) supertrees [14,16]
prevent such anomalies. There has been previous work on
ILP in phylogenetics, much of it dealing with parsimony
or its relative, compatibility [23-27]. Our work uses some
of these ideas (especially those of [26]), but the context
and the objective function are quite different. In particular,
the need to handle all possible expansions of the input
trees necessitates the introduction of new techniques.
Preliminaries
Basic definitions and notation
Our terminology largely follows [28]. A phylogenetic tree
is an unrooted leaf-labeled tree where every internal
node has degree at least three. We will use “tree” and
“phylogenetic tree” interchangeably. The leaf set of a
tree T is denoted by L(T).

A profile is a tuple of trees P = (¢y,..., &). Each ¢; in P is
called an input tree. Let L(P) = U;L(t;), where K
denotes the set {1,.., k}. An input tree ¢; is plenary if L(¢;)
= L(P). Tree T is a supertree for profile P if L(T) = L(P).

A split is a bipartition of a set. We write A|B to
denote the split whose parts are A and B. The order
here does not matter, so A|B is the same as B|A. Split
A|B is nontrivial if each of A and B has at least two ele-
ments; otherwise it is trivial. Split A|B extends another
split CIDif A2 Cand B2 D,or A2 D and B2 C.

Phylogenetic tree T displays split A|B if there is an edge
in T whose removal gives trees T} and T, such that A €
L(Ty) and B € L(T5,). A split A|B is full with respect to a
tree T'if AU B = L(T); A|B is partial with respect to T if
A U B c L(T). Split A|B is plenary with respect to a pro-
file P if A U B = L(P). The set of all nontrivial full splits
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displayed by T is denoted Spl(T). It is well known that
the full splits of T uniquely identify T [[28], p. 44]. Let S
€ L(T). The restriction of T to S, denoted TS, is the phy-
logenetic tree with leaf set S such that

SpIT|S)={ANS|BNS:A|BeSpl(T)and |ANS||BNS|>1}.

Let T’ be a phylogenetic tree such that S = L(T") € L
(7). Then, T displays T" if Spl(T”) € Spl(T]S).

A set of splits is compatible if there is a tree T that
displays them all. Tree T is compatible with a set of
splits X if there is a tree T” that displays 7" and X .

Let T7 and T, be two phylogenetic trees over the same
leaf set. The symmetric-difference distance, also known
as Robinson-Foulds distance [13], between T; and T5,
denoted d(Ty, Ts), is defined as

d(Ty, T,) = SpI(Ty) \ SpI(T3)) w (SpI(T,) \ SpI(T3)) | . (1)

The majority splits in a profile P = (ty,..., £;) are the
splits displayed by more than % of the input trees. A
majority plenary split is a plenary split that is also a
majority split. Similarly, a majority partial split is a par-
tial split that is also a majority split.

Rooted phylogenetic trees can be viewed as a special
case of unrooted trees. That is, we can view a profile of
rooted trees as unrooted trees, all of which have a com-
mon taxon called the root. Thus, in a split in a rooted
tree, one of the two parts must contain the root; the
part that does not contain the root is called a cluster (or
clade, or monophyletic group). All of the above concepts
(eg., compatibility and distance), as well as those intro-
duced in the rest of this paper, directly apply to rooted
trees. However, we shall not elaborate on this here.

To close this section, we examine the consensus pro-
blem, the special case of the supertree problem where
the profile P = (T1,..., Ti) consists of trees that have the
same leaf set. The strict consensus of P is the tree that
displays exactly the plenary splits present in every tree
in the profile. The majority-rule consensus tree of P,
denoted Maj(P), is the tree that displays all the majority
plenary splits in P [10]. For any phylogeny T with £(7)
= L(P), define the distance from T to P as dist(T, P) =
%xd(T, T;), where d denotes the symmetric-difference
distance. Any T with leaf set £(P) that minimizes dist(7,
P) is called a median tree for P. It is known that Maj(P)
is a median tree for P; indeed, it follows from [9] that
Maj(P) is the strict consensus of the median trees for P.
The (median) score of P is defined as s(P) = ming. s(7)-,
) dist(T, P). Thus, s(P) = dist(Maj(P), P).

Majority-rule (+) supertrees

Here we describe a variant (suggested by Bill Day) of
one of Cotton and Wilkinson’s [14] extensions of major-
ity-rule consensus to the supertree setting.
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The span of an input tree ¢, denoted by (¢), is the set
of all trees on L(P) that display ¢. The span of a profile
P = (ty,..., t;), denoted (P), is the set of all k-tuples R =
(Th,..., Ty), where T; € (t;) for each i ¢ K. Each R € (P) is
called a representative selection for P and Maj(R) is
called a candidate supertree.

An optimal representative selection is a representative
selection R with minimum score s(R) over all R € (P).
We refer to Maj(R) as the optimal candidate supertree
associated with R. The majority-rule (+) supertree of
profile P, denoted by Maj"(P), is the strict consensus of
all the optimal candidate supertrees. We have shown
elsewhere [16] that Maj"(P) satisfies the following
appealing properties (originally conjectured by Cotton
and Wilkinson).

(CW1) Maj*(P) displays all of the majority plenary
splits in P.

(CW2) Maj*(P) is compatible with each majority par-
tial split in P.

(CW3) Each split in Maj"(P) is compatible with a
majority of the trees in P.

(CW4) Every plenary split in Maj*(P) extends at least
one input tree full split.

We should note that majority-rule (+) supertrees, as
defined above, do not generalize majority-rule consen-
sus. That is, when used in the consensus setting, Maj
*(P) is not, in general, the same as Maj(P). Nevertheless,
majority-rule (+) consensus trees have a simple charac-
terization that yields an efficient algorithm for comput-
ing them (see Theorem 1 of the Methods).

The majority-rule (+) supertrees we study differ from
other variants in the way the span of an input tree is
defined. Cotton and Wilkinson originally defined the
span of a tree ¢ as the set of all plenary binary trees that
display ¢ [14]. This version does not generalize majority-
rule consensus and does not satisfy (CW4) [16]. In a
more recent version, suggested by Wilkinson (personal
communication), the span of ¢ is the set of all plenary
trees T such that T|L(¢) = t. This definition of span pro-
hibits refinement of any original polytomies (nodes of
degree at least four) in t. It can be shown that the
supertree method that results from using this definition
generalizes majority-rule consensus, and that it satisfies
properties (CW1)-(CW4) [16]. Nonetheless, we have
preferred Day’s variant for two reasons. First, we have
found it computationally easier to deal with than the
others. More importantly, it can be argued that a strict
generalization of majority-rule consensus might not be
the ideal approach for supertree construction: In prac-
tice, one often encounters profiles where different trees
“specialize” in different groups of taxa, leaving other
groups largely unresolved or unrepresented. In a com-
bined analysis, each input tree should contribute its own
specialized information so that, jointly, the trees lead to
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a well-resolved supertree. A strict generalization of
majority rule would disallow this, since the method dis-
cards minority information. In contrast, the majority-
rule (+) supertrees presented here preserve this fine-
grained information, unless it were substantially contra-
dicted by the remaining trees (the sense in which this is
true can be gleaned from Theorem 1 of the Methods).

Methods

Constructing optimal candidate supertrees

We first consider the consensus version of the problem.
Let P = (T4,..., Tx) be a profile of trees over the same
leaf set. Given a plenary split X = A|B, define

Kx(P)={ie K : X is displayed by T;}

and
K5(P)={ie K: X is not compatiable with T;}.

The theorem below, proved elsewhere (Dong, Ferndn-
dez-Baca, McMorris, and Powers: Majority-rule (+) con-
sensus trees, unpublished), characterizes the majority-
rule (+) consensus tree of a profile and implies that this
tree can be computed in polynomial time.

Theorem 1. For any profile P, Maj*(P) is precisely the
tree that displays every split X such that
| K% (P) |»| Kx(P)|. Furthermore, Maj*(P) is an optimal
candidate tree for P, as well as the strict consensus of all
optimal candidate trees for P.

On the other hand, the next result suggests that find-
ing the majority-rule (+) supertree for a profile of trees
with partially overlapping leaf sets may be hard.

Theorem 2. There is no polynomial-time algorithm to
construct an optimal candidate supertree unless P = NP.

Proof. We show that if there is a polynomial time
algorithm to compute an optimal candidate supertree,
then there exists a polynomial-time algorithm for the
quartet compatibility problem, which is known to be
NP-complete [29]. The quartet compatibility problem
asks whether, given a collection Q of trees on four
leaves, there exists a single tree that displays them all. If
the answer is “yes”, we say that Q is compatible. Let Q
be an instance of quartet compatibility. Construct a pro-
file P that simply consists of the trees in Q in some arbi-
trary order. We claim that Q is compatible if and only if
P has an optimal candidate supertree with a score of
zero. Suppose first that Q is compatible and that T is
any tree that displays each element of Q. Then, for each
tree ¢t in P, T € (t), because all the splits in T must be
compatible with ¢, so any split in T that is not in ¢ can
be added to t. Hence, T is a candidate tree for P with a
score of zero, and thus T is also an optimal candidate
supertree. Conversely, if P has an optimal candidate
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supertree with zero score, it can be seen that 7" displays
all the quartets in Q; i.e., Q is compatible.

In the next sections, we show that despite the above
result, moderately large majority-rule (+) supertree pro-
blems can be solved using integer linear programming.
For this, we need to address a potential complication:
Since the definition of (£) allows refinement of multifur-
cations in ¢, a tree T € (t) can contain many more non-
trivial splits than ¢; indeed, we cannot predetermine the
number of nontrivial splits 7" will contain. We circum-
vent this potential problem by defining a restricted ver-
sion of the span.

Given an input tree ¢ in a profile P, the restricted span
of ¢, denoted (¢), is the set of all plenary trees T such
that every nontrivial split in T extends a distinct nontri-
vial split in . Thus, |Spl(T)| = |Spl(¢)|.- Note that T is
obtained from ¢ by filling in each of ¢’s splits, by adding
zero or more taxa to each part, to make them plenary
splits in such a way that the resulting splits are compati-
ble. Note also that (t), € (¢). The restricted span of a
profile P = (ty,..., tx), denoted (P), is the set of all R =
(Th,..., Tp) for P such that T; € {t), for each i ¢ K. Each R
€ (P), is called a restricted representative selection for P.
Since (P), € (P), the restricted span represents an inter-
mediate level between the input profile and the original
definition of span. The restricted span is more manage-
able than the original span because it does not allow
any refinement of input trees. In the rest of this section,
we will show how to obtain majority-rule (+) supertrees
directly from the restricted span.

Before presenting the first of the two main results of
this section, we need to introduce some new concepts.
An optimal candidate supertree T for a profile P is
minimal if contracting any edge in T yields a tree that is
not an optimal candidate supertree. Let R = (T4,..., T})
and R =(Tj,..., T;) be two representative selections for
a profile P. We say that R displays R’ if T; displays T;
for every i € K. Theorem 1 motivates the next definition.
The completion of a representative selection R = (T7,...,
T,) for a profile P is the representative selection
R= (f ,.,_,i“k) obtained as follows: For every i € K, Ti
is the tree constructed by inserting into T; each plenary
split X = A|B compatible with T; such that
| Ky (R) > K3 (R)|-

Theorem 3. Let T be a minimal optimal candidate
supertree for a profile P and let R € (P) be such that T =
Maj(R). Consider any G € (P), such that G is displayed
by R. Then, R is the completion of G and T = Maj*(G).

Proof. We begin by proving that T is an optimal can-
didate supertree for G. Assume the contrary. Then,
there exists another candidate tree T” for G such that (i)
T’ = Maj(R’) for some R’ € (G) and (ii) s(R’) <s(R). But
then, since (G) € (P), we have R’ ¢ (P), and thus (ii) con-
tradicts the optimality of T for P.
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Next, we argue that T is a minimal optimal candidate
supertree for profile G. Suppose this is not true. Then,
T displays an optimal candidate supertree 7" for G such
that T = T”. Consider any R’ € (G) such that 7” = Maj
(R). Since T and T’ are both optimal for G, s(R) = s(R’).
Since R’ displays P, we have R’ € (P). Hence, T” is also
an optimal candidate supertree for P. This, however,
contradicts the assumption that T is a minimal optimal
candidate tree for P.

By Theorem 1, Maj*(G) is an optimal candidate super-
tree for G, as well as the strict consensus of all optimal
candidate supertrees for G. Therefore, Maj*(G) is the
only minimal optimal candidate supertree for G. Hence
T = Maj*(G).

Suppose R = (T4,.., Tj) and let R = (f ,.,_,i“k) be the
completion of G. We claim that R = R. Assume, on the

contrary, that there is some i € K such that T, = T,

That is, X UY # J, where ¥ = Spl(fi)\Spl(Ti) and
Yy = Spl(Ti)\Spl(fi). Set X consists of splits X such
that | K,(G) > K5(G)| and Y consists of splits Y such
that | K, (G) [>| K. (G) |. By Theorem 1, T = Maj*(G)
displays all splits X such that | K (G) | K(G)|. Thus,
da(T, f’i) <d(T, T;). As we are assuming that there is at

least one such i € K, we have X, xd(T, fi) < Zixd(T, Ty),

contradicting the fact that T is a minimal optimal candi-
date supertree for G.

Motivated by Theorem 3, we define the adjusted score
of a representative selection R for a profile P, denoted
5 (R), to be the score of the completion R of R; i.e.,
§(R) = s(R) - Recall that s(R) = dist(Maj(R), R) -

Theorem 4. Let P be a profile. Define G = {G € (P),: §
(G) is minimum} and S = {T = Maj"(G) : G ¢ G}. Then,
Maj*(P) is the strict consensus of S .

Proof. Let ® be the set of all optimal candidate super-
trees for P and let M be the set of all minimal optimal
candidate supertrees of P. In what follows, we show that
M c 8 cO. This immediately implies the theorem,
because not only is (by definition) Maj*(P) the strict con-
sensus of (», but it must also be the strict consensus of M.

Suppose T ¢ M. We claim that T ¢ S and, therefore,
that M cC S. Let R be a representative selection for P
such that T = Maj(R). Let G be any restricted represen-
tative selection for P displayed by R. By Theorem 3, T =
Maj*(G) and R is the completion of G. We claim that G
€ G; ie, §(G) is minimum. Assume, by way of contra-
diction, that there is another G’ ¢ (P), such that
5(G) < 5(G). Let R’ be the completion of G’ Then,
s(R)=5(G) <s(G)=s(R), which contradicts the
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assumption that 7 is optimal. Therefore, §(G) is mini-
mumand Te S.

Suppose T ¢ S . We claim that T ¢ ¢ and, therefore,
that S ¢ O. Let G € (P), be such that T = Maj+(G) and
the adjusted score §(G) is minimum. Let R be the com-
pletion of G. Assume, by way of contradiction, that T ¢
© . Then there is a T” ¢ M such that, if R’ is a representa-
tive selection for P where 7° = Maj(R’), then s(R’) <s(R).
By Theorem 3, there is a G’ € (P), such that 7" = Maj* (G
and § (@) = s(R). Then §(G’) = s(R)) <s(R) = § (G). This
contradicts the assumption that § (G) is minimum.

ILP formulation

In this section we first describe an ILP formulation of
the optimal candidate supertree problem based on The-
orem 4. The optimum solution to this ILP is a G € (P),
with minimum adjusted score. For ease of exposition,
we divide the variables of our ILP into three categories:
fill-in variables, which represent the way taxa are added
to the input trees to create G; objective function vari-
ables, which are used to express 5 (G); and auxiliary
variables, which are used to establish a connection
between the fill-in and objective function variables. All
variables are binary. After presenting our ILP model, we
discuss how to use it to generate Maj"(P).

Fill-in variables

At the core of our ILP formulation is a matrix represen-
tation of the input trees similar to that used in MRP
[18,19]. Let P = (¢y,..., &) be a profile where | L(P)| = n.
Assume input tree £; has m; nontrivial splits, which are
assumed to be ordered in some fixed but arbitrary way.
A matrix representation of t; is a n x m; matrix M(t;)
whose columns are in one to one correspondence with
the nontrivial splits of ;.

Suppose column i of M(t;) corresponds to split A|B in
t; and let x be a taxon in L(P). Then, M, (t) = 1ifx ¢
A, M, (t) = 0if x € B, and M, ,(t;) =? otherwise. We
note that for unrooted trees the assignment of 1 to the
A side of the split and of 0 to the B side is arbitrary. For
rooted trees, all taxa in the side of a split that contains
the root are assigned a 1.

Let m = X m;. A matrix representation of P, denoted
M (P), is a n x m matrix M (P) obtained by concatenat-
ing matrices M(t;), M(¢,),..., M(tz).

A fill-in of matrix M(P) is a matrix representation for a
restricted representative selection G for P. Note that M
(G) has no question marks and that, for every taxon x
and split i such that M,,(P) € {0, 1}, we have M,,(G) = M,;
(P). To represent fill-ins of M(P), the ILP associates a fill-
in variable F,; with each x and i. If M,;(P) € {0, 1}, then
F,; = M,;(P); i.e., F,; is fixed. If M,;(P) =?, F,; will be
assigned a value of 0 or 1, representing an assignment of
taxon x to one of the two sides of split i. Our ILP has
constraints (described below) to ensure that each value
assignment to the F-variables corresponds to a restricted
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representative selection for P. That is, there must exist a
G € (P), such that M, G) = F,; for every x and i.

Objective function variables

The objective is to minimize §(G) over all G € (P),,
where each G is represented by a fill-in of M(P). By defi-
nition, § (G) = dist(Maj*(G), R), where R =(T},..., T,) is
the completion of G = (T4,..., Tx). We do not, however,
construct Maj"(G) and R explicitly. Instead, we proceed
indirectly, using the fact that, by Theorems 1 and 3, all
splits in Maj*(G) and R are already in G. Indeed, those
theorems and the definition of Robinson-Foulds distance
(Equation 1) imply that

dist(Maj*(G), R) = )" | Spl(Maj*(G)) \ SPI(T})

- )
+ 3" SPI(T)) \ SpI(Maj*(G)) |

jekK

The next result, which follows Theorems 1 and 3,
allows us to count directly from G the contribution of
each split X € Spl(Maj*(G)) U Sp(T;) to d(Maj*(G), T;).

Lemma 1. Let P be a profile and suppose G € (P),.
Then, for each j € K,

(i) X e Spl(Maj*(G)\SpW(T;) if and only if
| Ki(G) M Kg(G) |and j e Kg(G).

(ii) X e Spl( f’j)\SpI(Maf(G)) if and only if
| Kx(G) €| K£(G) | and j € Kx(G).

Suppose we have a fill-in for M(P) that corresponds to
some G = (T4,..., Ty) € {P),. Our ILP has two kinds of
objective function variables. The first group of variables
are denoted wy,..., w,,, where w; corresponds to the ith
column of M(G). Suppose this column corresponds to
split X in tree Tj; thus, j € Kx(G). Our ILP has
constraints such that w; = 1 if and only if

|K(G)H Kg(G)|. Thus, w; = that
| Kx(G) [<] K£(G) |, which, together with Lemma 1 (ii),

0 means

implies that Y (1-w;)= ZH\ SpI(T;) \ Spi(Maj*(G))|.

The second group of variables are denoted z;;, 1 < i <
m, 1 <j < k. Suppose column i of M(P) corresponds to
split X. Our ILP has constraints such that z; = 1 if and

only if w; = 1 (ie. | K,(G) P K5(G)]), ] ¢ K5(G), and
j = min{t : £ ¢ Kg(G)}. Thus, by Lemma 1 (i),
k .
Zzl 2]-:1 Zjj = 2j5K| Spl(Maj™(G)) \ SpY(T;) |-
The objective function can now be expressed as

k m
Zzl—]— + 2(1 - w;).

j=1 i=1

m
minimize
=1

1
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Auxiliary variables and constraints

As mentioned earlier, all variables, including the auxili-
ary ones, are Boolean. We take advantage of this,
expressing the constraints relating the variables as Boo-
lean expressions in terms of the “and’, “or,” “exclusive
or,” and “if and only if” operators (denoted by the usual
symbols, and, A, V, @, and <, respectively). We then
convert these expressions into equivalent linear inequal-
ities on zero-one variables using standard techniques
([30], pp. 231-244].

We first describe the variables and constraints that are
used to ensure that the settings of the fill-in variables
(the F variables) correspond to a restricted representative
selection. That is, the assignments to the F variables
must be such that, for each input tree ¢, the resulting
plenary splits associated with the tree are pairwise com-
patible, so that they yield a plenary tree T; € (¢;),. For this
purpose, we define variables C,;, 1 < p, g < m and add
constraints linking these variables and the F variables
such that C,, = 1 if and only if columns p and g are com-
patible under the fill-in represented by the F variables. To
guarantee that the assignment to the F variables corre-
sponds to a restricted representative selection, we require
that C,, = 1 for every two column indices p, g that corre-
spond to splits in the same input tree. We note that the
constraints relating the fill-in variables F and the C-vari-
ables closely resemble the ones used by Gusfield et al.
[26]. One difference is that for our problem we need “if
and only if” relationships, whereas Gusfield et al. require
only one direction of the implication.

The constraints on the C-variables use the fact that
splits p and g are incompatible if and only if 00, 01, 10,
and 11 all appear in some rows of columns p and g (the
“four gametes condition”). The presence or absence of
these patterns for columns p and g is indicated by the set-
tings of variables B;‘f?b) , a, b €{0, 1}, where Bt(,f;b) =1if
and only if there is a taxon r such that F,,, = 2 and F,, = b.
The Bg’f]b) are determined from the settings of variables
r@ “where r ranges over the taxa (i.e., the rows of M

Tbq

(P)). The T variables satisfy I's) < ((F,, = a) A (F,; = b).

This condition is expressed by the following constraints.

(-1)“Fyy + (-1)"F,, +TW) > 1-a-b,

(-1)“F,y + (-1)"F, + 2% <2 —a -

3)

We have that Bt(,f;b) o\, T (,ZS), which is expressed by
the inequalities below.

_N plab) 4 plab)
Y ri 4 Bl <o,
-

Y rih - gl <o

r

(4)
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(00) , g(o1n) | p(10) . p(i1)
Observe that —C,, < By, ABy, ' ABp” ABy~ .
Equivalently we have the constraints below.

(00) (01) (10) (11)
qu + qu + qu + qu + 4Cpq >4, 5)

<
P‘i_4'

BYO + BV + BLY + BV + C

We now consider the variables and constraints that

enable us to express the objective function variables.
There are three main sets of variables:

+ For 1 < p < m, D, equals 1 if and only if column p
represents the same split as some column with smaller
index.

eForl<i<sm 1<j<k Sl(jl), equals 1 if and only if
split i is in tree j.

eForl<ism 1<j<k Sl(jz) equals 1 if and only if
split i is compatible with tree j.

As we shall see, the values of the w and the z variables in
the objective function are determined, respectively from the
S and S variables, and from the w, S?, and D variables.

The D and S variables depend on variables E,»1<
p» q < m, where E,;, = 1 if and only if columns p and g
of the filled-in matrix represent the same split. Here we
have to make a distinction between rooted and unrooted
trees. In the rooted case, there exists a root taxon r such
that M,,(P) = 1 for every column i. The same is not true
for unrooted trees.

The value of E,,; depends on the patterns that appear
in columns p and ¢, which can be deduced from the
values of Bl(,‘[’,b) for different choices of a and b as
follows.

+ For rooted trees, E,, < —|Bl(,21) /\—|Bl(,}10). This is
expressed as follows.

BOY + B(Y + 2E,, <2,
BOY + BGY) +E,, 2 1.

(6)

« For unrooted trees, we introduce two auxiliary vari-
(1) (2)
ables 61)4 and Spq such that
(1) (01) (10) (2) (00) (11)
6])[{ (=1 —|qu A ﬂqu and 5}7!] (=1 —|qu /\—|qu .

Then,

(1) (2)
E, © 65 6,5

These logical constraints are expressed by the follow-
ing inequalities.

BOY + BLY + 251 <2,
BOY + B + 500 >1,
BGY +BGY + 250 <2, 7)
(00) 4 g1 4 5(2)
Bpg '+ Byl +055" 21,

s _g0) _
EP‘J 6P‘7 5/’4 =0.
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We are now ready to give the constraints for the D, §
and $ variables. Observe that D; = 0 and that, for 1 <p
<m, D, < \/!7 E;,. Equivalently we have

p-1

ZEiP—p~DpSO.

i=1

In describing the constraints for the S* and $® vari-
ables, we adopt the convention that the splits of the jth
tree correspond to columns jy,..., j; of M(P). Then,
Sl(jl) & E; ©---@Ej . This translates into the equality
constraint

d
s - 2 E; =0. )
r=1

On the other hand, 81(]_2) S Ci]-1 Al /\C-»i. This is
equivalent to the two constraints below.

d
d-sP - ZCﬁT <0,
=1
d
1-d- s +ZCI-].T <o.
r=1

Finally, we describe how the objective function vari-
ables relate to the auxiliary variables. For each i, w; = 1

. . k k L
if and only if Zj.zlSl(jl) >k - Ej;lsl(jZ) . This is
expressed by the following two constraints.
k k
ke +1- Y s =Y s <o,
= = (11)

k k
Y s+ 8P —k—kew; <o.
= 1

It follows from the definition of the z variables that,
for every i, j, z;; & w; A = Sl(]?) A -D;. Equivalently we
have the following.

~2-w;+S{) +D; +3-2; <0,

(12)
w; — Sl(jz) -D;-z;<0.

Table 1 summarizes the number of variables of each

kind in our integer programming formulation. Here, as

usual, # is the total number of taxa and m is the total

number of splits in the input trees. As can be seen,
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there are a total of O(nm?) variables; this number is
dominated by the I' variables. The total number of con-
straints for the unrooted case, broken down by con-
straint type, is given by the following expression.

4nm(m —1)+4m(m —1) + m(m —1) + 5m(m —1) / 2
N e i i S i s
(3) (4) (5) (7)
+2(m —1) + mk + 2mk + 2m + 2mk = O(nm?).
) o (@) @y 02

The number of constraints for the rooted case is
slightly smaller, but of the same order of magnitude. It
should be noted that the expressions given in Table 1
assume that all the variables listed are indeed variables.
In reality, the values of many of the F variables are fixed
because they correspond to non-question-mark entries
in M(P). This in turn fixes the values for several I vari-
ables, as well as those of other variables. As a conse-
quence, the number of true variables in the ILP
formulation is typically much smaller than the worst
case estimates in Table 1. In general, the larger the
number of question marks in matrix M(P), the closer
the problem size will be to the worst case estimates.
Building Maj*(P)

The ILP model just outlined allows us to find a G € (P),
corresponding to some optimal candidate supertree T+
To build Maj"(P) we need, in principle, the set of all
such G. While there are ways to enumerate this set [31],
we have found that an alternative approach works much
better in practice. The key observation is that, since Maj
*(P) is the strict consensus of all optimal candidate
supertrees, each split in Maj*(P) must also be in T*
Thus, once we have T* we simply need to verify which
splits in T* are in Maj*(P) and which are not. To do
this, for each split A|B in T*, we put additional con-
straints on the original ILP requiring that the optimal
tree achieve an objective value equal or smaller than
that of T* and not display split A|B. The resulting ILP
has only O(mn) more variables and constraints than the
original one. If the new ILP is feasible, then A|B ¢ Spl
(Maj*(P)); otherwise, A|B ¢ Spl(Maj*(P)). We have found
that detecting infeasibility is generally much faster than
finding an optimal solution.

A data reduction heuristic

The ILP formulation described in the previous section
allows us to solve supertree problems of moderate size.
Here we describe a data reduction heuristic that allows

Table 1 Variables in the ILP formulation
F r B o7 E C D

mn 2m(m-1)n 2m(m-1) m(m-1)/2 2m(m-1) 2m(m-1)

s(i) w z

m  mk m mk

The number of variables of each kind is expressed in terms of n, m, and k, the
total number of taxa, the total number of splits in the input trees, and the
number of input trees, respectively.
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us to extend the range of our method significantly in
practice, by exploiting the structure that is present in
certain supertree problems. Our data reduction heuristic
applies when the input profile P = (£y,..., fx) contains a
subset of taxa S that can be treated as a single super-
taxon. Roughly stated, we are looking for a set S such
that every tree in P respects the split implied by S. We
now define this concept more precisely.

Let Splo(7) denote the set of all full splits displayed by
T. That is, Sply(7) includes the non-trivial and the trivial
splits displayed by T; in particular, L(T)|J € Sply(T). We
say that S © L(P) with 1 < |S| < |L(P)| -1 is a reducible
set if, for each j € K, there is a split A|B € Splo(¢) such
that AnS=Aand Bn S = . Ideally, a reducible set
should correspond to a widely-acknowledged biological
classification unit. For example, some of the trees in a
collection of phylogenies may contain subtrees corre-
sponding to different (possibly empty) subsets of the pri-
mates. While these subsets may not be identical, and the
subtrees may disagree somewhat in their topologies, the
input phylogenies are likely to separate primates from
non-primates. In settings like this, it makes intuitive
sense to restrict our attention to supertrees where redu-
cible sets appear as clusters.

Given a reducible set S for P, we can define two smal-
ler subproblems.

+ The reduced profile associated with a reducible set S
is the profile pRed = ((Red  (Redy where, for k each j €
K, tfed is the tree obtained from ¢; by contracting the
minimal subtree of ¢ containing S N £L(#) to a single leaf
node fis. If S n L(t) = &, then t?ed = t. We refer to g
as the supertaxon associated with S.

« The satellite profile associated with S is the profile
pSat — (tls‘”,,,.,tsat) where t?‘” is obtained from ¢; by
contracting the minimal subtree of ¢; containing (L(P)
\S) n L(t;) to a single leaf node ps. Note that some of
the trees in the satellite profile associated with S may
contain only ps. The compressed satellite profile asso-
ciated with S is the satellite profile associated with S
with all of the latter trees removed.

An S-restricted representative selection for P is a
selection R = (T74,..., Tx) € (P) such that S|(L(P)\S) € Spl
(T;) for all i € K. An optimal S-restricted candidate
representative selection is an S-restricted representative
selection R with minimum score, and Maj(R) an optimal
S-restricted candidate supertree. The S-restricted major-
ity-rule (+) supertree is the strict consensus of all the
optimal S-restricted candidate supertrees.

It should be noted that, given an arbitrary reducible
set S, it is not true in general that an optimal S-
restricted candidate supertree will be an optimal candi-
date supertree, nor that an S-restricted majority-rule (+)
supertree will also be a majority-rule (+) supertree. This
is illustrated in Figure 1, which shows a profile P = (¢,
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t,, t3) where both {b, e} and {b, d} are reducible sets, but
where neither optimal candidate tree contains the clus-
ter {b, dj}, although they both contain {b, e}.

On the other hand, a reducible set may represent use-
ful biological knowledge that should be incorporated
into a supertree analysis. There are also computational
benefits. With the right choice of S (one where || is far
from the extreme values of 2 and |L(P)| -2), the
reduced and satellite profiles can be considerably smal-
ler than the original profile, and the corresponding inte-
ger programs will have fewer unknown variables. As the
following theorem indicates, an optimal S-restricted can-
didate supertree can be found by solving the associated
subproblems separately and combining their answers.

Theorem 5. Let P be a profile and S be a reducible set
in P. Let TR and T5* be optimal candidate trees for
the reduced profile associated with S and the compressed
satellite profile associated with S. Let T be the tree
obtained by identifying the node Bs in T and node ps
in T and then suppressing the resulting degree-two
vertex. Then, T is an optimal S-restricted candidate
supertree for P. Further, if R, is the optimal S-restricted
representative selection corresponding to T and R and
R are the optimal representative selections correspond-
ing to T4 and TS, respectively, then s(R) = s(R%Y) + s
(RS‘”).

The straightforward proof of this result is omitted. A
direct consequence is that the S-restricted majority-rule
(+) supertree can be obtained by piecing together the
majority-rule (+) supertrees for the reduced and satellite
profiles. Observe that if multiple pairwise disjoint redu-
cible sets are known, then each of the corresponding
compressed satellite profiles can be solved indepen-
dently, and the original profile can be reduced by repla-
cing each reducible set to a distinct supertaxon. In fact,
the idea can be used recursively, so that a satellite pro-
file can itself be decomposed to a reduced profile and
(sub) satellites. As we shall see later, this can result in
dramatic problem size reductions.

Results and discussion
Here we report on computational tests with the exact
ILP method and the data reduction heuristic. All our
experiments were conducted on real data sets, rather
than simulated data. We did this because we were inter-
ested in seeing if the groupings of taxa generated by
majority-rule (+) supertrees would coincide with those
commonly accepted by biologists. Another goal of our
experiments was to compare the performance of the ILP
formulation without data reduction, which we refer to
as the basic method, against that of ILP plus data reduc-
tion. All trees considered in our tests were rooted.

To conduct our tests of the basic method, we wrote a
program to generate the ILPs from the input profiles.
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For our tests of the data reduction heuristic, we used
different methods to find reducible sets in a profile;
these are outlined later. Given the reducible sets, the
corresponding reduced and satellite profiles, as well as
the associated ILPs, were generated automatically. All
ILPs were then solved using CPLEX (CPLEX is a trade-
mark of ILOG, Inc.) on an Intel Core 2 64 bit quad-
core processor (2.83 GHz) with 8 GB of main memory
and a 12 MB L2 cache per processor.
Experiments with the basic ILP formulation
We tested the basic ILP formulation on five published
data sets. The Drosophila A data set is the example stu-
died in [14], which was extracted from a larger Droso-
phila data set considered by Cotton and Page [32].
Primates is the smaller of the data sets from [5]. Droso-
phila B is a larger subset of the data studied in [32]
than that considered in [14]. Chordata A and B are two
extracts from a data set used in a widely-cited study by
Delsuc et al. [33]. Chordata A consists of the first 6
trees with at least 35 taxa (out of 38). Chordata B con-
sists of the first 12 trees with at least 37 taxa (out of 38).
The results are summarized in Table 2. Here n, m,
and k are the number of taxa, total number of splits,
and number of trees, respectively. U denotes the num-
ber of question marks in M(P), the matrix representa-
tion of the input; N is the size of the CPLEX-generated
reduced ILP. Table 2 shows the time to solve the ILP
and produce an optimal candidate supertree 7™ and the
time to verify all the splits of T* to produce Maj"(P).

Experiments with the data reduction heuristic
As a preliminary test, we compared the results obtained
via the reduction heuristic with the exact solutions,
obtained using the basic ILP method, for two of the
data sets listed in Table 2. For simplicity, only clusters
from the input trees were used as reducible sets. (Note
that unions of input clusters could have also been used
as reducible sets.) We wrote a program that chooses
clusters greedily. At every step, it selects the largest
non-trivial cluster present in some input tree that does
not overlap with any of the previously chosen clusters.
For the Primates data set, the optimal objective value
(i.e., the score of an optimal candidate supertree) for the
original profile is 9. We found six pairwise disjoint redu-
cible sets, and built the corresponding reduced and
satellite profiles. The optimal objective values of the
reduced profile, first, second and third satellite profiles
are 0, 4, 3, and 2, respectively. The other satellite pro-
files have an optimal objective value of 0. Thus, the
total score of the reduced and satellite profiles matches
the optimal score for the original profile, and the super-
tree obtained using the heuristic is also optimal. The
reduction method also gives a correct optimal candidate
supertree for Drosophila B. Here the original profile has
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Figure 1 Optimal candidate trees do not always display reducible sets. Top row: An input profile P = (t;, t,, t3) where {b, d} and {b, e} are
reducible sets. Second and third rows: Two optimal representative selections. Fourth row: Optimal candidate trees corresponding to the
representative selections in rows two and three. Neither candidate tree contains the cluster {b, d}, although they both contain {b, e}.
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Table 2 Summary of experimental results with the basic ILP method

Data set n m k U %U N Sol. (sec) Verif. (sec)
Drosophila A 9 17 5 60 39.2 9.8 e5 0.83 16
Primates 33 48 3 590 373 78 e7 15.83 2.86
Drosophila B 40 55 4 1133 515 125 e9 362 19
Chordata A 38 290 6 330 3 140 e8 120 258
Chordata B 38 411 12 306 2 1.05 e8 986 1784

Size and solution times for the ILP formulations of the various data sets. Here U denotes the number of question marks in M(P), the matrix representation of the
input; N is the size of the CPLEX-generated reduced ILP; n, m, and k are as in Table 1. Shown are the time to solve the ILP and produce an optimal candidate

supertree T* and the time to verify all the splits of T* to produce Maj*(P).

an objective value of 8. We found nine pairwise disjoint
reducible sets, and built the corresponding reduced and
satellite profiles. The reduced profile has an optimal
objective value of 8 and all satellite profiles have an
optimal objective value of 0.

It should be pointed out that the reducible sets used
for Primates and Drosophila B do not necessarily corre-
spond to clusters in the majority-rule (+) supertree,
although they are displayed by some optimal candidate
trees. Thus, one will not obtain a majority-rule (+)
supertree by simply composing the solutions to the
reduced problems and the satellites. This indicates the
importance of choosing relatively few large and well-
supported reducible sets. Biological knowledge can serve
as a good guide. For example using the clade Haplor-
rhini as a reducible set for Primates data set, solving the
corresponding reduced and satellite profiles and com-
bining the respective majority-rule (+) supertrees one
gets exactly the same supertree as through the basic
(and exact) method. Similarly, using the subgenus
Sophophora as a reducible set for Drosophila B, we,
obtained precisely the majority-rule (+) supertree for the
data set.

Next, we considered some data sets that are well
beyond the reach of our basic ILP method. The Dro-
sphila C data set is the full 6-tree Drosophila data set of
Cotton and Page [32] from which the Drosophila A and
B data sets were extracted. The Seabirds data set con-
sists of the 7 trees in the seabirds study by Kennedy and
Page [17]; which encompasses 122 taxa (note that one
of these taxa is an outgroup, so we do not count it in
our study). We also examined the full Chordata set of
Delsuc et al. [33], which has 38 taxa and 146 trees.
Chordata
We looked for reducible sets in the full Chordata data
set by considering increasingly larger subprofiles, start-
ing with one input tree and then including one more
input tree at every step. For each subprofile, we con-
ducted an exhaustive search for reducible sets. The
number of reducible sets increased at first, then fluctu-
ated, and finally declined. After the 20th tree, there
were no reducible sets. Thus, the data reduction heuris-
tic proved to be ineffective for this data set.

Drosophila C

We identified seven reducible sets for Drosophila C. Six
of these were found by the greedy approach; the seventh
corresponded to the subgenus Sophophora (the latter
was selected manually, after some of the subproblems
identified by our program proved impossible to solve).
Four of the associated satellites were trivially solvable,
since each contained only two taxa. We then solved
ILPs for the reduced and the nontrivial satellites. The
running time statistics are summarized in Table 3,
which shows the same kind of data shown in Table 2,
except that this time it reports these statistics for the
original, reduced and satellite problems. Notably, even
though the original ILP was too large to be solved, the
reduced profile was solved in less than 10 minutes and
the satellite profiles were solved almost instantly.

Seabirds

To handle the Seabirds data set, we identified three
reducible sets, which yielded a reduced profile and three
satellite profiles, numbered 1, 2, and 3. Satellite profile 3
was too big to be solved by the basic ILP method, so it
was further reduced by identifying three reducible sets
within it, which resulted in three (sub-) satellite profiles,
numbered 3.1, 3.2, and 3.3. The various reducible sets
correspond to biologically meaningful classification
units, as we explain next. In what follows, we refer to

Table 3 Results of Drosophila C analysis using data
reduction

Data set n m U %U N Sol.  Verif.

(sec) (sec)
Original 46 70 1998  62.1 94e9  N/A N/A
Reduced 17 33 264 4706  1.7e7 54316 504
Satellite 1 17 17 146 5052  23e6 0.23 0.28
Satellite 2 6 4 0 0 0 0.00 0.00
Satellite 3 5 3 0 0 0 0.00 0.02

Size and solution times for all six trees in trees in Cotton and Page’s
Drosophila data set [32] without and with data reduction. The notation is the
same as in Tables 1 and 2. Shown are the time to solve the ILP and produce
an optimal candidate supertree, and the values of the objective function for
the reduced and satellite profiles. The latter two values are not available (N/A)
for the original profile, since the model was too big to be solved. Not listed in
the table are four other trivially solvable two-taxon satellite profiles.
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the 7 input trees of Kennedy and Page’s seabirds data
set by the same letters A-G that those authors used in
[17].

Satellite 1 comprises the family Spheniscidae (Pen-
guins, 10 taxa), which agrees with widely-accepted clas-
sifications for seabirds [34]. Members of this family
appear in input trees E, F, and G of [17], and clearly
form clusters of their own. Satellites 2 and 3 correspond
to Diomedeinae (Albatrosses, 22 taxa), and Procellarii-
nae (gadfly petrels, shearwaters, fulmars and diving pet-
rels, 73 taxa). This agrees with the Sibley-Ahlquist
classification [35] (represented by tree G). The resulting
reduced profile has 19 taxa (16 original taxa and three
supertaxa).

Satellite 3 (Procellariinae) has three subsatellites.
Satellite profile 3.1 comprises the genus Pterodroma (30
taxa). Satellite 3.2 is for genus Pelecanoides (four taxa).
Satellite 3.2 is a combination of Puffinus and Calonectris
(10 taxa), which is supported by [36] (tree E). With
these three sub-satellites, the reduced Procellariinae
profile has 23 taxa (20 original taxa and three
supertaxa).

Table 4 summarizes the results on the Seabirds data
set. The majority-rule (+) supertree is shown in Figure
2, along with the MRP strict consensus tree of [32].
While the original problem was too big for CPLEX to
solve on our machine, the reduced model was solved in
6.5 seconds. Most subproblems were solved and verified
in a negligible amount of time. A notable exception was
the reduced version of satellite 3, which required almost
a minute to solve and nearly one hour and 45 minutes
to verify.

Discussion

Our results using the basic ILP formulation compare
well with the published ones. For Drosophila A we
obtained exactly the same tree reported in [14]. For Pri-
mates, the output is exactly the same as [5], which was
produced by PhySIC method. The coincidence with
PhySIC is noteworthy, since this supertree is less

Table 4 Results of Seabirds analysis using data reduction

Page 12 of 16

controversial than the MRP, Mincut, and PhySICpc
supertrees reported in [5]. The reason for the coinci-
dence may lie in the fact that, while heuristic, PhySIC
requires that all topological information contained in
the supertree be present in an input tree or collectively
implied by the input trees, which bears some similarity
with properties (CW1)-(CW4) of majority (+)
supertrees.

For Drosphila B, Cotton and Page [32] show four
supertrees: strict consensus of gene tree parsimony
(GTP), Adams consensus of GTP, strict consensus of
MRP, Adams consensus of MRP. Among the 10 clusters
found by our ILP, two are in all four of these supertrees,
three are found in the Adams consensus of GTP and
Adams consensus of MRP, one is in the strict and
Adams consensus of GTP, and one is found in the strict
and Adams consensus of MRP. Thus, with only four
input trees we were able to generate a tree that is quite
similar to the published results. For Chordata A, the 12
splits found matched published results [33] exactly. For
Chordata B, the 14 splits found matched [33].

We have not mapped out the precise boundary within
which it is feasible to use the basic ILP method. How-
ever, it appears that it may not extend much beyond the
dimensions of the problems listed in Table 2. For exam-
ple, Drosophila B contains four out of 6 of the trees stu-
died in [32]. Adding a fifth tree to the data set yields a
problem that could not be solved by the basic ILP
method. A major factor here is that the size of our ILP
grows as the square of the total number of splits in all
trees, and the solution time is exponential in the worst
case. Incorporating a new tree to Drosophila B could
easily add enough splits to the problem to put it well
beyond the reach of our technique. We should add that
model size does not appear to be the sole factor that
makes instances hard — sparsity also seems to play a
role.

Drosophila C
The majority-rule (+) supertree for Drosphila C con-
structed by our method (available upon request) has 15

Data set n m u %U N Sol. (sec) Verif. (sec)
Original 121 188 12620 554 2.63e12 N/A N/A
Reduced 19 24 188 41.2 7.1e6 6.51 156.2
Sat. 1 10 8 42 525 1.1e5 0.05 0.07
Sat. 2 22 29 129 20.2 1.2e6 0.09 1.06
Satellite 3 (reduced) 23 39 370 413 5.1e7 523 6110
Subsatellite 3.1 30 42 196 15.6 6.8e5 0.06 0.04
Subsatellite 3.2 4 2 0 0 0 0.00 0.00
Subsatellite 3.3 19 20 113 29.7 9.5e5 0.17 0.06

Size and solution times for all seven trees in Kennedy and Page’s seabirds data set [17] without and with data reduction. The notation is the same as in Table 3.
The solution and verification times for the original profile are not available (N/A), since the model was too big to be solved.
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MRP strict consensus

MRP outgroup
Puffinus puffinus
Puffinus yelkouan
Puffinus mauretanicus
Puffinus therminieri
Puffinus assimilis
Puffinus opisthomelas
Puffinus auricularis
Puffinus huttoni
Puffinus gavia
Puffinus nativitatis
o o i

Calonectris leucomelas
Puffinus pacificus
Puffinus bulleri
Puffinus tenuirostris
Puffinus griseus
Puffinus gravis
Puffinus carneipes
Puffinus crestopus

ia aterrima

ia rostrata
Bulweria bulwerii

Majority-rule (+)

-+
iy
-+

ia cinerea

Halobaena caerulea
Pachyptila vittata
Pachyptila salvini

Pachyptila desolata
Pachyptila turtur

Lugensa
Fulmarus glacialis
Fulmarus glacialoides
Macranectes giganteus
Macronectes halli
Daption capense

Pagodroma nivea
Pterodroma nigripennis

mﬁfﬁ%ﬁ ‘ AlIThAA AT

Pterodroma axillaris
Pterodroma baraui
Pterodroma arminjoniana
Pterodroma externa
Pterodroma neglecta
Pterodroma phaeopygia
Pterodroma sandwichensis
Pterodroma heraldica
Pterodroma alba

Pterodroma feae
Pterodroma madeira
Pterodroma mollis
Pterodroma cahow
Pterodroma hasitata
Pterodroma incerta
Pterodroma lessonii
Pterodroma magentas
Pterodroma macroptera
Pterodroma solandri
Pferodroma ultima
Pterodroma pycrofti
Pterodroma longirostris
Pterodroma brevipes
Pterodroma leucoptera
Pterodroma cookii
Pterodroma defilippiana

Pelecanoides urinatrix
Pelecanoides georgicus

Peiecanoides garnotii
Diomedea exulans
Diomedea amsterdamensis
Diomedea gibsoni
Diomedea antipodensis
Diomedea dabbenena
Diomedea epomophora
Diomedea sanfordi
Phoebastria albatrus

Phoebastria nigripes
Phoabastria irrorata
Thalassarche bulleri
Thalassarche cauta

Thalassarche eremita
Thalassarche salvini

Thalassarche chrysostoma
— Thafassarche melanophris
Thalassarche impavida
—
— Thalassarche bassi

Phoebetria fusca
Phoebetria paipebrata
o

O tristrami

O furcata
o

castro

tethys

P
O melania
o

droma hornbyi

marina
Garrodia nereis
Fregetta tropica

Fregetta grallaria

-

Gavia immer
Gavia stellata
Aptenodytes patagonicus
Eudyptes chrysocome
Eudyptes chrysolophus
Pygoscelis papua
Pygoscelis antactica
Megadyptes antipodes
Eudyptes pachyrhynchus
Eudyptula minor
Sphenicus demersus
Pygoscelis adeliae

Figure 2 Comparing the MRP strict consensus with the majority-rule (+) supertree. Left: The strict consensus of the most parsimonious
trees obtained by Kennedy and Page for their seabirds data set [17]. Right: The majority-rule (+) supertree obtained by using the data reduction
heuristic; the reducible sets used to construct it are indicated by heavy lines. Clusters that appear in one tree but not the other are numbered;

the differences are explained in the text.
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nontrivial clusters, while the MRP strict consensus tree
of Cotton and Page [32] has 11. Of these only three
appear in both trees. This rather surprising result moti-
vated us to try to assess how well the input trees are
represented by the supertree. To this end, we relied on
the notions of support and conflict, along the lines pro-
posed by Wilkinson et al. [37].

Let ¢ be an input tree for a profile P, T be a supertree
for P, and S be a non-trivial cluster in T (i.e., S does not
contain the root of T and S|(L(P)\S) € Spl(T)). Let S’ =
S n L(¢). We say that tree ¢ supports S if S’ is a non-tri-
vial cluster in t. Tree t is in conflict with S if S’ is incom-
patible with ¢; i.e., there is no tree ¢’ with £(¢)) = L(¢)
such that Spl(£) U {S’[(L(§)\S")} & Splo(¢). If ¢ neither
supports nor is in conflict with S, we say that ¢ is irrele-
vant to S.

Theorem 1 hints that each cluster S in the majority-
rule (+) supertree should have more input trees support-
ing it than contradicting it, even when most trees are
irrelevant to S. This indeed holds for the Drosophila C
majority-rule (+) supertree: Every one of its non-trivial
clusters is supported by at least one input tree and does
not conflict with any input tree. In contrast, of the five
clusters in the MRP strict consensus supertree for which
support outweighs conflict, only three have no conflict
with any input tree. Of the remaining clusters, three
have the same amount of conflict as support, and for
three others the amount of support is outweighed by
the amount of conflict. In fact, among the latter, there is
a cluster that is in conflict with five out of six of the
input trees; the remaining tree is irrelevant to that clus-
ter. We refrain from claiming the superiority of one
supertree over the other, since the biological relevance
of both trees needs to be studied in more detail.
Seabirds
Figure 2 compares the majority-rule (+) supertree for
the seabirds data set, constructed using the data reduc-
tion heuristic, with the MRP strict consensus supertree
that Kennedy and Page presented for the same data set
[17]. The latter is the strict consensus of 10,000 equally
parsimonious trees obtained using MRP. There are 66
nontrivial clusters in the majority-rule (+) supertree,
compared with 75 nontrivial clusters in the MRP strict
consensus tree (ignoring the outgroup). Among these
clusters, 63 are present in both trees (95% of 66 and
84% of 75). The reducible sets used to construct the
majority-rule (+) supertree are indicated by heavy lines.
Note that these sets are also clusters in the MRP
supertree.

Three clusters, numbered 1-3 in Figure 2, are in the
majority-rule (+) supertree but not in the MRP tree; 12
clusters, numbered 4-15 in Figure 2, appear in the MRP
tree but not in the majority-rule (+) tree. For each of
the seven input trees (labeled A-G in [17]) and each of
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Table 5 Support and conflict for the Seabirds data set

Cluster Input Tree

A B C D E F G
1 i S i i i i i
2 S S S i S S S
3 S S S i C S S
4 S S S i S c c
5 i S S i S i c
6 i S S i S c c
7 i i i S C i i
8 i i i S c i i
9 i i i S C i i
10 i i i S C i i
11 i i i C S i i
12 i i i S C i i
13 i i i i S i ¢
14 i i S i S i C
15 i i S i S i c

For each of the 15 clusters that is present in only the majority-rule (+)
supertree or only the MRP strict consensus supertree of the Seabirds data set,
we indicate whether each of input trees A through G supports (s), is in
conflict with (c), or is irrelevant to (i) the cluster. The numbering of the
clusters follows Figure 2.

these 15 clusters, Table 5 indicates whether the tree
supports, is in conflict with, or is irrelevant to the clus-
ter. As Theorem 1 would lead us to expect, each of
clusters 1-3 (from the majority-rule (+) tree) has more
input trees supporting it than in conflict with it. Of the
12 clusters (4-15) that are present only in the MRP
strict consensus tree, seven have as many trees in sup-
port as in conflict. The others have more support than
conflict.

In general, it appears that MRP may have a bias
toward preserving clusters that are present in trees that
contain many members of the families represented in
those clusters. This is noticeable for Pterodroma, where
the disagreement between trees D and E is resolved in
favor of the former five times to one, in clusters 7, 8, 9,
10, and 12 versus cluster 11. This may be related to the
“size bias” that previous researchers have observed in
MRP [38]: Here, even though E is the larger tree (90
taxa versus 30), D has more taxa in the Pterodroma
genus (30 versus 16). Majority-rule (+) trees seem not
to have such a bias, because the expansion process used
to construct representative selections tends to put all
input trees, regardless of their size, on equal footing.
These are, of course, only preliminary observations; this
issue clearly deserves further analysis.

Conclusions

Our results indicate that the majority-rule (+) method
produces biologically reasonable phylogenies (i.e., phylo-
genies with no unsupported groups), and that the
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method is practical for medium-scale problems. Unfor-
tunately, while polynomial, the size of our ILP is quad-
ratic in the total number of splits in the input trees.
This, together with the fact that solving the ILP takes
exponential time in the worst case limits the range of
applicability of the basic ILP formulation. It also
explains in part why the addition of a single tree to a
data set can convert a tractable problem into an intract-
able one. More extensive tests are needed to assess the
limitations of the basic ILP approach accurately. In any
event, our computational experience shows that the
technique does handle some real, biologically significant,
problems nicely. Moreover, our results suggest that the
ILP approach, in combination with our data reduction
heuristic is a promising way to tackle larger problems.
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