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Abstract

Background: The availability of many gene alignments with overlapping taxon sets raises the question of which
strategy is the best to infer species phylogenies from multiple gene information. Methods and programs abound
that use the gene alignment in different ways to reconstruct the species tree. In particular, different methods
combine the original data at different points along the way from the underlying sequences to the final tree.
Accordingly, they are classified into superalignment, supertree and medium-level approaches. Here, we present a
simulation study to compare different methods from each of these three approaches.

Results: We observe that superalignment methods usually outperform the other approaches over a wide range of
parameters including sparse data and gene-specific evolutionary parameters. In the presence of high incongruency
among gene trees, however, other combination methods show better performance than the superalignment
approach. Surprisingly, some supertree and medium-level methods exhibit, on average, worse results than a single
gene phylogeny with complete taxon information.

Conclusions: For some methods, using the reconstructed gene tree as an estimation of the species tree is superior
to the combination of incomplete information. Superalignment usually performs best since it is less susceptible to

stochastic error. Supertree methods can outperform superalignment in the presence of gene-tree conflict.

Background

The phylogenetic information inherent in sequence data
from different genes can be combined to yield a species
phylogeny rather than gene trees. The gene data for
these phylogenies are mainly collected following two
strategies: (a) using only genes that provide full informa-
tion, i.e., cover all taxa of interest (e.g. [1]) or (b) using
all available genes that are present in some taxa and ful-
fill special overlap conditions (e.g. [2-4]). The latter
approach is able to use many more genes and taxa,
since it allows for missing data. It can also be applied
for phylogeny reconstruction from expressed sequence
tags (ESTs, e.g. [5]). Before the gene alignments are
obtained, two important steps can influence the phylo-
geny result: First, orthologs must be assigned correctly
(see e.g. [6,7] for method comparisons). Second, these
orthologs need to be aligned with sufficient accuracy
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(see e.g. [8] for a review and [9] for an example of
the impact of alignment accuracy on phylogeny
reconstruction).

After reliable alignments are obtained, different meth-
ods are available to combine the original data at differ-
ent points along the way from the underlying sequences
to the final tree [4,10]: First, superalignment methods
combine the data at an early level by directly concate-
nating the gene alignments without any intermediate
computations (early-level combination; also called
“supermatrix”, “concatenation” or “total evidence”
[11,12]). Superalignment methods have been used to
infer phylogenies for eukaryotes [13], Metazoa and
green plants [2], legumes [3] or species from all three
domains of life [1].

Second, medium level combination methods first
compute intermediate results from the gene alignments,
e.g. pairwise distances [14,15] or quartets [4], and subse-
quently reconstruct a phylogeny by combining this
information.

Third, supertree methods combine the data at the late
level of gene trees (late-level combination; e.g. [16]).
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Gordon [17] first suggested supertree methods to
combine overlapping trees. The so-called source trees
are first computed for each gene, or are obtained from
the literature, and are subsequently combined into a
supertree. The prevalent method for reconstructing
supertrees is matrix representation with parsimony
(MRP) [18,19], especially when only published trees but
not the original data are available or when data of differ-
ent kind are combined. MRP has been applied to many
different kinds of species data, for instance to Mammalia
[20] or Bacteria [21].

Each of these approaches has general advantages and
disadvantages. The superalignment method uses all char-
acter information but assumes the same underlying
topology and often the same parameters for all genes.
Supertree approaches account for differing topologies
and parameters between genes. On the other hand, they
are more susceptible to stochastic errors since estimating
substitution parameters and a topology for each gene
independently may lead to overfitting. Furthermore, they
try to minimize the amount of missing data when con-
structing the gene trees. Medium-level approaches also
allow for gene-specific parameters, but they use quartet
likelihoods or distances, not gene trees, when building
the final tree. In the consensus setting, i.e., where all data
sets contain the same taxa, the differences between con-
catenated alignments and tree combination have been
extensively discussed (e.g. [22-27]).

Practical investigations using real data sets or simulated
data are of interest to compare different methods. Various
authors used real data sets to compare superalignment
and supertree approaches [7,28-31]. Those real data sets
have the advantage of a realistic setting, however, the true
tree is usually unknown. Then it is only possible to use
well-established clades for assessing the performance (e.g.
[7]) or to compare methods to one another (e.g. [31]). In
simulations, on the other hand, the results can be com-
pared to a model tree. Then the performance of the meth-
ods can be measured at an absolute scale. Several studies
investigating supertree methods using simulations were
carried out [32-35]. They employed the following general
scheme: (1) Generation of a model tree assuming a Yule
process, (2) generation of alignments along that tree, (3)
random deletion of a proportion of taxa, (4) reconstruc-
tion of gene trees by maximum parsimony, (5) construc-
tion of the supertree from the inferred gene trees, and (6)
comparison of the supertree to the model tree. Bininda-
Emonds and Sanderson [32] compared superalignment and
MREP for different degrees of divergence and observed that,
with increasing divergence, the distance of the MRP trees
to the superalignment tree increased. Levasseur and
Lapointe [35] compared average consensus, superalignment
with distances and MRP for gene trees with complete taxon
sets. They found average consensus to perform nearly as
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well as superalignment, whereas MRP was substantially
worse since it ignores gene tree branch lengths.

Simulations can also be used to evaluate the impact of
undesired properties for a particular supertree method.
For instance, one of these properties is the emergence
of “novel clades”, i.e., clades contradicted by all gene
trees. Bininda-Emonds [33] found such clades to be very
rare. However, note that due to missing taxa and multi-
furcating trees, it is not straightforward to measure sup-
porting and conflicting relationships between a
supertree and the gene trees (an alternative definition is
presented in [36]).

Each of the above simulation studies focused on a spe-
cial subset of methods for supertree construction.
A general performance assessment, however, has not yet
been carried out, and the strengths and weaknesses of
the different methods are unknown. Here, we present
an extensive simulation study about combining gene
alignments. Thus, we take the orthology relationships
and the alignment as correctly given. We compare dif-
ferent data combination methods, including supertree,
superalignment and medium-level methods, to assess
their accuracy in biologically reasonable situations. This
leads to suggestions of applicable methods in the case of
overlapping data sets. Moreover, we discuss the issue of
complete versus incomplete data.

Methods

Phylogenetic Reconstruction from Multiple Data Sets

We evaluate a list of methods spanning the range from
early- to latel-level combination. All methods investi-
gated, together with the abbreviations used, are listed in
Table 1.

Early-level combination

A superalignment is generated from single gene align-
ments by concatenating the different alignments and add-
ing gaps where no sequence information is present for a
specific taxon. The superalignment method (SA) refers to
reconstructing the superalignment tree. Here, we use max-
imum likelihood (ML) or maximum parsimony (MP),
depending on the size of the data set. ML phylogenies are
computed with IQPNNI version 3.1 [37], assuming the
substitution model HKY for DNA sequences [38] and JTT
for protein sequences [39]. In both cases, site heterogene-
ity is modeled with four -distributed rate categories. MP
phylogenies are computed with PAUP* 4.0b10 [40] and
the following parameters: heuristic search with TBR
branch swapping, random addition of sequences, and a
maximum of 10,000 trees in memory.

Late-level combination

Phylogenetic reconstruction of gene trees The first step
of any late-level combination method is the reconstruc-
tion of the gene phylogenies (Figure 1), which serve
as source trees for the supertree reconstruction.
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Table 1 Overview of reconstruction methods and corresponding abbreviations

Abbreviation Description Reference
Late-level combination:

Consensus Majority-rule consensus [83]
MRP_BR Matrix representation with parsimony and Baum/Ragan coding [18,19]
MRP_PU Matrix representation with parsimony and Purvis coding [43]
MRP_I Matrix representation with irreversible parsimony and Baum/Ragan coding [46]
MRF_BR Matrix representation with flipping and Baum/Ragan coding [47,48]
MRF_PU Matrix representation with flipping and Purvis coding -

MRC Matrix representation with compatibility and Baum/Ragan coding [50,51]
MinCut Minimal cut [54]
ModMinCut Modified minimal cut [55]
MaxCut Maximal cut [57]
QlLl Quartet inference and local inconsistency [58]
Medium-level combination:

SuperQP Super quartet puzzling [4]
AvCon Average consensus [14,63]
SDM Super distance matrix [15]

Early-level combination:

SA Superalignment

We compute ML gene trees with IQPNNI using the same
reconstruction parameters as for the early-level combina-
tion. In some simulations, the gene trees are obtained via
bootstrapping. In this case, we generate 100 bootstrap
replicates of each gene alignment with segboot, com-
pute phylogenies with IQPNNI and subsequently build a
majority-rule consensus tree of the bootstrapped trees
for each gene with consense. Both segboot and con-
sense are part of PHYLIP version 3.6 [41].

Consensus For complete data, where each gene is pre-
sent in each taxon, we also apply the majority-rule con-
sensus as implementated in consense.

Methods Using Matrix Representation Three methods
based on matrix representation (MR) coding schemes
are available: MR with parsimony (MRP), MR with

flipping (MRF), and MR with compatibility (MRC). All
three aim to optimize an objective function. If more
than one optimal tree is found, we take the strict con-
sensus tree as the reconstructed tree.

Different coding schemes have been suggested to
decompose the gene trees into an MR: In the Baum-
Ragan (BR) coding scheme, every gene tree topology is
coded as follows [18,19,42]: An interior edge in a tree
divides the taxa into two disjoint sets. For each interior
edge, a column is added to the MR, where ‘0" and ‘1’
indicate the taxa on either side of the edge and missing
taxa are coded as ‘?". For rooted trees, the root-side is
always coded as ‘0. The Purvis (PU) coding scheme can
only be applied to rooted trees. Then, sister groups are
coded binarily, and the remaining taxa are coded as ‘¥
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Figure 1 Diagram of the simulation setting with supertree reconstruction. The simulation proceeds in several steps: First, gene trees are
generated from the given species tree. Alignments are simulated along these gene trees. From these alignments gene trees are inferred. The
inferred gene trees are the source trees for supertree reconstruction. With the supertree methods species trees are inferred.
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(see Table 2 for an example). This aims at removing
some redundant information [43]. We generate both
matrix representations from the list of gene trees using
r8s version 1.71 [44].

MRP trees are reconstructed by searching the most
parsimonious tree for the matrix representation
[18,19,42]. We apply two kinds of parsimony: (1) rever-
sible Fitch parsimony [45], which assumes the character
changes to be undirected, and (2) irreversible Camin-
Sokal parsimony, which only allows changes from 0 to 1
and thus uses the root information in the trees [46].
The most parsimonious tree with the respective criter-
ion is determined by PAUP* 4.0b10 (heuristic search
with TBR branch swapping and random addition of
sequences, and a maximum of 10,000 trees in memory).
Overall, we consider three MRP variants: MRP_BR
(reversible parsimony and BR coding), MRP_I (irreversi-
ble parsimony and BR coding) and MRP_PU (reversible
parsimony and PU coding).

The objective function of MRF is to minimize the
number of binary flips (changes from ‘0’ to ‘1’ and vice
versa) necessary to convert the original MR into an MR
compatible with a tree [47,48]. Here, we apply MRF to
both coding schemes, BR and PU. So far, MRF has only
been applied to matrices with Baum/Ragan-coding.
Since MRF, like MRP, is an NP-complete problem, we
use the heuristic implemented in HeuristicMRF2
(http://genome.cs.iastate.edu/CBL/ [49]).

The objective of MRC is to maximize the number of

columns in the MR congruent with a tree [50,51]. We
use Clann version 3.0.2 as a heuristic to find the MRC
tree for a BR coded matrix representation (the sfit
criterion with default parameters [52]).
Variants of the “Build” algorithm The “Build” algo-
rithm [53] is only able to construct a supertree for a set
of compatible and rooted gene trees. In case of compati-
ble gene trees, each gene tree is a subtree of the super-
tree. “Build” and its variants are graph-based rooted
triplet methods, thus, rooted trees are required. To
combine incompatible gene trees, different cut methods
have been developed.

Table 2 Example of coding a gene tree as a matrix
representation

Tree Baum/Ragan coding Purvis coding
R R 00
A1ll All
B 00 B 07
c10 c10
B C D A D11 D11

The Baum/Ragan coding codes every internal split independently. We use the
unrooted version of the BR coding, i.e., without coding the root explicitly. The
Purvis coding codes only sister groups of rooted trees.
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MinCut (minimal cut) is an extension of the “Build”
algorithm [54]. In case of a conflict, MinCut introduces
an edge in the supertree that conflicts with the fewest
possible number of triplets.

ModMinCut (modified MinCut) improves MinCut by
not only considering the contradicting triplets for an
edge but, additionally, by trying to keep subtrees that
are uncontradicted by the gene trees [55]. Both MinCut
and ModMinCut are polynomial-time algorithms imple-
mented in supertree by Rod Page. We use a precom-
piled version of this program taken from Rainbow
1.2 beta [56].

MaxCut [57] considers two types of triplet topologies:
bad ones which occur in a gene tree, and good ones for
which another possible topology occurs in a gene tree.
In case of a conflict, the ratio of these counts is maxi-
mized, which is an NP-hard problem. Snir and Rao [57]
suggested a heuristic based on semidefinite program-
ming. We compute the MaxCut tree from a set of
triplets with a program provided by Sagi Snir. To apply
it, we first extract triples from the gene trees using a
program provided by Gregory Ewing.

Quartet-based methods QILI (Quartet Inference and
Local Inconsistency) [58] is based on quartet topologies
extracted from unrooted gene trees. First, a set of
weighted quartets is computed, where the weights for
each quartet are smaller if they occur in more trees.
Missing quartets are inferred by a rectifying process
using quintet information. From this collection of quar-
tets, a tree is estimated by minimizing the weighted sum
of the quartets represented in a tree using Willson’s
local inconsistency method [59]. QILI is available in the
QuartetSuite 1.0 package.

Medium-level combination methods

Quartet-based methods SuperQP combines the
sequence data based on the quartet likelihoods [4]. For
each gene, TREE-PUZZLE [60] computes all quartet
tree likelihoods. These likelihoods are combined for
every possible quartet topology across all genes contain-
ing the respective quartet. The likelihoods are used to
combine the data into so-called superquartets, the build-
ing blocks for SuperQuartetPuzzling (SuperQP).
SuperQP is related to the QP algorithm [61], but it
takes also missing data into account, using an overlap-
graph guided insertion scheme and a voting procedure
that is aware of missing quartets. We compute the
SuperQP tree with an upcoming version of the TREE-
PUZZLE package.

Distance-based methods The medium-level information
for distance-based methods are pairwise distance
matrices computed separately for each gene. Here, we
estimate pairwise ML distances with IQPNNI. The dis-
tances are combined into one distance matrix for all
taxa, which is subsequently fitted to a tree with the
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least-squares method of Fitch-Margoliash [62]. We use
the fitch implementation in the PHYLIP package with
the Subreplicates option, thus allowing for missing data
by considering only available entries. Two distance-
based medium-level methods, differing only in the com-
bination of the matrices, have been devised so far:

With average consensus (AvCon) each entry of the
combined distance matrix is computed by averaging
over all distances available for the corresponding pair of
taxa [14,63].

Super Distance Matrix (SDM) [15] inserts two types
of parameters: (1) weighting factors for each distance
matrix, which correspond to a branch lengths scaling
for each gene tree, and (2) additive constants for each
taxon in each matrix, which correspond to an elongation
of terminal branches. Utilizing several contraints, the
variance of the scaled and shifted gene distance matrices
to the combined distance matrix is minimized. Both
methods are impemented in the SDM program [15].

Simulation Setting
Parameters
Figure 1 gives an overview of the simulation setting and
notations. We study different parameters involving the
underlying data set, the coverage of the sequence data,
the topology and parameters of the true gene trees and
the sequence lengths (Table 3). The last three para-
meters will be described in detail along with the results.
Like Salamin et al. [64] and Gadagkar et al. [27], we
simulate according to biologically reasonable assump-
tions by taking simulation parameters from real data.
We use two data sets:

Table 3 Parameters varied in the simulations

Parameter Options
Data set S: small
L. large
Taxa ¢ complete
coverage
m: missing
E:  subtrees of species tree
R, rate of evolution assigned randomly from a
T-distribution with parameter « (i.e, mean 1 and
variance 1/a)
True gene P:  substitution parameters and branch lengths gene-

trees specific

G trees gene-specific

Ty trees random by coalescent process with
parameter 6

Reconstructed e:  equal to true gene trees

gene trees n: normal sequence length and ML estimation

The setting in each simulation is abbreviated by one of the bold letters given
in each of the four categories.

Note that not all combinations were tested.
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The small data set is given by the parameters of the
crocodile data of Gatesy et al. [29]. This data consists of
10 DNA alignments, morphological traits, two RFLP
matrices, two allozyme data sets, chromosomal morphol-
ogy and nest type information for a total of 86 recent and
extinct crocodile taxa. Here, we only use the DNA data,
which reduces the taxon set to 25 recent taxa and a super-
alignment of 6,681 sites. Our reconstruction of two super-
alignment ML trees, one with HKY + I' and one with
GTR + I, results in the same tree topology but different
branch lengths (HKY tree in Figure 2b). This topology is
more resolved than the one by Gatesy et al. [29], and in
addition, there is one resolution conflicting with the super-
alignment tree computed by Gatesy et al. [29]: in our ana-
lysis, C. palustris and C. siamensis form a clade instead of
C. porosus and C. palustris. We use the HKY tree
(Figure 2b) as the species tree for subsequent simulations.
For methods requiring rooted gene trees, we root each
tree artificially with a taxon in which all genes are present
(O. tetraspis, taxon 23). Such a procedure was suggested
by Baum [18]. Thus the small data set contains of 25 taxa
and 10 genes having different sequence lengths and taxa
occurences (Figure 2a). Furthermore, the species tree
shows a highly non-uniform branch length distribution
(Figure 2b). These features are typical for real data sets.

The large data set is composed of 254 proteins from
69 green plants with an overall length of 96,698 amino
acids [2]. Driskell et al. [2] describe this data set as pro-
blematic, since their reconstructed tree shows relations
not supported by any gene tree and the numbers of sup-
porting genes seem to be barely correlated with the
bootstrap support for clades. The data contain a higher
fraction of missing data compared to the small data set
(Figure 3). As species tree we use the superalignment
ML tree of the original data, reconstructed with the JTT
substitution matrix. Since the data contain no taxon for
which all genes are available, every reconstructed gene
tree is rooted at the edge that best matched the true
rooting. Thereby the model tree is rooted with the
taxon suggested in [2].

Sequence simulation

For most simulations, the superalignment ML tree for
the real data is taken to be the true species tree. Esti-
mated nucleotide and amino acid frequencies as well as
the parameter of the -distribution are used as para-
meters for Monte-Carlo simulations with seq-gen[65].
Unless stated otherwise, protein data are generated with
JTT and nucleotide data with an HKY model with the
transition/transversion ratio taken from the original ML
estimation. Sequences are simulated with the same
lengths distribution as in the original data. If simulations
were performed taking missing taxa into account, those
taxa were deleted from the genes which were also
absent in the original data.
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C. crocodilus (4)
C. latirostris (5)
M. niger (6)
P. palpebrosus (7)
P. trigonatus (8)
A. mississippiensis (9)
A. sinensis (10)
r C. rhombifer (11)
C. acutus (12)
{C. intermediu (13)
- C. moreletii (14)
= C. niloticus (21)
C. johnstoni (16)
[C. mindorensis (17)
C. novaeguineae (18)
C. porosus (19)
{E. palustris (20)
C. siamensis (15)
C. cataphractus (22)
O. tetraspis (23)

T. schlegelii (24)
G. gangeticus (25)

{: Paleognathae (1)
Neognathae (2)

Testudines (3)

0.04

Figure 2 Small data set (crocodile data). a) Distribution of taxa and gene length in the 10 data sets. On average, 65.2% of the genes are
present in a taxon. b) Superalignment ML tree. The numbers in brackets refer to taxa numbers in the axis of a).

There is also the possibility to use the gene trees from
the original data as the true gene trees (true gene trees
gene-specific, G in Table 3). In this case there is no true
species tree known.

For each simulated data set, at most fifteen different
methods are applied to reconstruct a tree (Table 1).
Note that not all methods are applicable for all settings.
Consensus is only applicable for complete data and the
medium- and low-level methods are only applicable if
sequence information is present.

Tree Distance Computation

If applicable, we measured the accuracy of the methods
by the normalized Robinson-Foulds distance (RF) of the
inferred species tree to the true species tree. The Robin-
son-Foulds distance [66] is the number of splits that are
present in one tree but not in the other one, and vice
versa. Since unrooted n-taxa trees have a maximum of
n - 3 inner branches, the maximal Robinson-Foulds

distance is 2(n - 3). In the following, RF denotes the
normalized Robinson-Foulds distance, where the dis-
tances are divided by 2(n - 3). This yields a value
between 0% and 100%, which can be interpreted as the
percentage of false or missing splits in the inferred tree
compared to the true tree.

Results and Discussion

Each simulation setting is abbreviated by four letters
corresponding to values for each of the four categories
of simulation parameters (Table 3).

Complete data (S, ¢, E, n)

The first and simplest simulation is that the topology
and parameters of the species tree equal those of the
true gene trees and the length of each gene alignment is
taken from the original data set. In 500 replications, SA
nearly always reconstructs the true tree, i.e., RF = 0
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Figure 3 Large data set (green plant data). Distribution of taxa
and gene length in the 254 data sets. On average, 15.8% of the
genes are present in a taxon.

(Figure 4a). The MR methods and the intermediate
methods show mean RF distances of less than 2%. In
contrast, the mean distance of an inferred single gene
tree to the true species tree is 16.5%. This value can be
viewed as the mean distance when reconstruction is
based on the sequence information of one gene only.
Therefore we will call it the baseline distance. Surpris-
ingly, QILI shows a mean RF distance of 35%, which is
much larger than 16.5%. Thus, accuracy is lost by com-
bining gene trees with this method.

Missing data (S, m, E, n)

Next, we use the same 500 simulated alignments as
before, but delete those sequences from the simulated
gene alignments which are not present in the original
alignment (cf. Figure 2a). The resulting distributions of
the RF distances (Figure 4b) show that all methods are
strongly affected by missing data. With a mean RF dis-
tance of about 6.2%, SA is again the most accurate
method. Among the remaining methods, MRP_BR
(10.8%) and SuperQP (11%) show the smallest mean RF
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distances. The cut methods, QILI, and average consen-
sus show mean RF distances larger than the baseline
distance of 16.5%. Thus, these methods perform on
average worse on incomplete data sets than the ML
reconstruction using only one gene present in all taxa.
These methods seem to be unable to efficiently utilize
the additional information provided by extra, but incom-
plete, gene data.

Large data set (L, m, E, n)

This simulation uses the data set of 254 genes from 69
green plant species (see method section). Compared to
the small data set, the alignment of the large data set
contains more taxa, more genes, but a smaller fraction
of genes present per taxon (Figure 3). Here, we study
the simplest simulation setting with missing data.
Although SA trees are reconstructed with parsimony to
keep computing time reasonable, they still show the
highest accuracy with a mean RF distance of 4.8%
(Figure 5). Among the MR methods, MRP_I (12%) is no
longer as accurate as the other MR methods. MRF_BR
(5.7%) and MRF_PU (5.8%) are the supertree methods
with the highest accuracy. MinCut (93.9%) reconstructs
trees that are very distant to the true species tree.
A possible reason is the high proportion of missing
data. The accuracy of MinCut is improved by ModMin-
Cut (54%) and MaxCut (31.5%), but all cut methods
show larger distances than the average complete gene
tree (the baseline distance, 18.5%). QILI shows a much
better performance compared to the small data set, its
mean accuracy (20.4%) is now comparable to SuperQP
(16.1%) and SDM (20.2%). These methods show average
distance values very close to the baseline distance. But
QILI still has a high variance, whereas SuperQP shows
good results in most cases and produces unresolved
trees in a few cases.

In general, the results of the large data set are similar
to those for the small data set: In both settings, the
methods that improve the baseline distance are the
same, superalignment outperforms the other methods,
the MR methods are the best supertree methods, and
SuperQP is the best medium-level method. Thus, we
expect the results also to be similar when introducing
deviating settings. In the following, we only present the
results for the small data set.

Long sequences (S, m, E, 1)

We also test whether the methods are able to combine
highly informative, but incomplete, data sets. Thus, we
minimize the effect of erroneous gene tree reconstruc-
tion by generating gene sequences ten times longer than
the original gene sequences while taxa occurrences are
the same as in Figure 2a. The accuracy of inferred spe-
cies trees and gene trees is substantially improved for all
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Figure 4 Distribution of normalized RF distances (500 simulations) for the simulation settings S, ¢, E, n and S, m, E, n. The
reconstructed trees were compared with the model tree via the RF distance (see methods for details). The distributions resulting from 500
repetitions are shown. The boxes mark the 1/4- and 3/4-quantiles, the vertical line with the notches is the median with the 95% confidence
intervall for comparing two medians. The vertical line without the notches is the mean of the data. The vertical black line drawn throughout the
diagrams is the mean RF distance of all complete gene trees, which serves as the baseline distance.

methods (data not shown). High mean RF distances for
QILI (30.3%) and AvCon (8.1%), however, show that
these methods fail to reconstruct reasonable trees from
highly informative data sets with missing data.
The mean RF distances for MinCut, SuperQP and SDM
are between 1% and 2% and all remaining methods
show an average RF distance of <1%.

Bootstrapped phylogenetic trees

We extended the simulation with missing data (S, m,
E, n) by bootstrapping the superalignment and the gene
trees. In this case, reconstructed gene trees were the
majority-rule consensus of trees reconstructed from
bootstrapped alignments. Since branches with low sup-
port are discarded from each gene tree, the accuracy of
supertree methods is expected to improve. Note that this
bootstrap procedure does not a ect the medium-level
methods. Here, we measured the accuracy of

reconstruction for 200 of the alignments that were the
basis of the simulations summarized in Figure 4b (S, m,
E, n). The bootstrapped gene trees lead to an improve-
ment of the accuracy of all supertree methods when
compared to the results without bootstrapping (data not
shown). The mean RF distance is now 5.6% for supera-
lignment, between 9 and 10.3% for all MR methods, and
between 12 and 22% for the cut methods.

Gene-specific evolutionary rates (S, m, Ry, n)

Now we introduce a more complicated setting where the
evolutionary rates vary between genes. The true gene
trees were generated from the species tree by stretching
or shrinking all branch lengths with a I'-distributed ran-
dom factor drawn independently for each gene in each
simulation. In two different settings, the shape parameter
for the I'-distribution was & = 3 and o = 1:67, respec-
tively. As in the previous simulations, the substitution
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Figure 5 Distribution of normalized RF distances (200
simulations) for the simulation setting L, m, E, n. Large data set
with missing data according to Figure 3. “Gene Trees” shows the
distances of the trees from the complete alignments, not from the
pruned alignments, although the latter are used for the data
combination methods.

parameters for the sequence simulation were equal for
each gene. The gene trees and the SA tree were also
obtained by bootstrapping. For each choice of o, we com-
puted 100 simulated alignments. For neither setting do
the results differ substantially from the previous simula-
tion with bootstrapping (data not shown).

Gene-specific substitution parameters (S, m, P, n)
Here, as in the previous setting, the true gene trees differ
from the species tree by their branch lengths. However,
this time the branch lengths were fitted from the original
data to obtain the true gene trees. For each alignment,
the species tree was pruned to the respective taxon set.
Afterwards, GTR parameters and branch lengths were
fitted to the pruned tree using the original alignment. If a
branch length got down to 10°°, the lower bound in
IQPNNI, the respective branch length was set to 1//,
where [ is the length of the corresponding alignment.
The trees constructed this way were used as the true
gene trees for the simulations. The sequence simulations
used the estimated GTR parameters for each gene.

This simulation setting only allows for simulation of
pruned data sets. Thus, the baseline distance is not
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applicable. The results cannot be compared directly to
the previous simulations, since the average tree length is
now larger, but the ranking of the methods can be com-
pared. Figure 6 shows that the superalignment trees
remain best (mean RF distance of 2.4%), even if simula-
tion parameters differ between genes. SA, the MR meth-
ods, MaxCut and SuperQP are clearly better than the
distance based methods, MinCut and ModMinCut.

Gene specific topologies (S, m, G, n)

Here, the previous setting is extended as follows: Not
only branch lengths and substitution parameters are
gene-specific but also the topologies. Therefore, the
gene trees reconstructed from the original data were
used as true gene trees for this simulation. As before,
only the setting with missing data can be studied, since
the true gene trees already contain missing data. As we
do not know the underlying species topology, a more
complicated evaluation method is used: the inferred tree
from each method is compared to the tree reconstructed
from the true gene trees with the same method. e.g. an
MRP_BR tree was reconstructed from the true gene
trees and was used as a model tree when the distances
to MRP_BR are evaluated in Figure 7. Also the early-

Gene trees
Consensus
MRP_BR  t-{]]---1eec00e0
MRP_PU -+ %*[D —————— Jo o
MRP_I - [
MRF_BR - +-{[]----
MRF_PU A +{J}----- Jeoo o
MRC t-{]}---1e0cc0 oo
MinCut A
ModMinCut +----- /e ]
MaxCut - t-{}------ io
QILI A b T (I T —— ]
SuperQP + {1 fo
AvCon - b
SDM 4 oo p------ R
SA A e

0 20 40 60 80
normalized RF distance in %
Figure 6 Distribution of normalized RF distances (500
simulations) for the simulation setting S, m, P, n. Simulation
with gene-specific GTR parameters and missing data. The baseline
distance is not applicable here (see text for details).
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Figure 7 Distribution of normalized RF distances (200
simulations) for the simulation setting S, m, G, n. Simulation
with gene-specific topologies and missing data. Note that the
baseline distance is defined differently here: the gene tree distances
are computed by comparing each reconstructed gene tree to the
corresponding true gene tree and normalized with the appropriate
number of taxa. The numbers on the right are the numbers of
unresolved branches in the tree reconstructed from the original
data with the corresponding method.

O O O W

and medium-level trees are reconstructed from the
original sequence data and used for the distance compu-
tations. With this procedure, we estimate how consis-
tently each method finds its own reconstructed species
tree when sequence data are simulated along the gene
trees. This is similar to a parametric bootstrap approach.
Here, we face the problem that some trees reconstructed
from the original data are not fully resolved. Also in
these cases, we compute the Robinson-Foulds distances
to these trees and normalize it with the same factor of 2
(n - 3), where n is the number of taxa. Thus, the poly-
tomies in these trees are treated as true and the distance
increases if a tree reconstructed in the simulation is
more resolved. To highlight this problem, we list the
number of branches missing in the trees reconstructed
from the original data on the right margin of Figure 7.

The resulting distances clearly show that SA is the
most consistent method, since it has the smallest aver-
age distance to the SA tree from the original data
(7.8%). It is followed by MRP_BR with a mean RF dis-
tance of 13.2%.
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Incomplete lineage sorting (S, ¢, Ty, e and S, m, Ty, e)

In this setting, the true gene trees were generated from
the true model tree by a coalescent process (for details
of the coalescent model used here, see Ewing et al.
[67]). This can result in different branch lengths, but
also different topologies. The species tree was rooted
according to Figure 2b. From this rooted species tree,
we simulated gene trees with different coalescent para-
meters. The coalescent parameter € was used to gener-
ate incongruent gene trees with different amounts of
incorrect branches. The larger 6, the more incongruence
is caused by incomplete lineage sorting. e.g. 6 = 0:005
results in a considerable incongruence among the gene
trees: the mean normalized RF distance between the
true species tree and the true gene trees is 22%
(Figure 8a).

First, we investigate the performance of the supertree
methods in the presence of incongruent gene trees with-
out any reconstruction error. In Figure 8a, we see that
the matrix representation methods can estimate the spe-
cies tree quite accurately in the presence of complete
data; MRP_PU and MRF_PU give the best results with a
mean reconstruction error of 4.6% and 4.7%, respec-
tively. The matrix representation methods, headed by
MRF_PU (12.5%), are also the best methods when data
are missing (Figure 8b).

Incomplete lineage sorting and gene tree reconstruction
(S,¢, Ty, nand S, m, Ty, n)

The gene trees from the previous section are taken as
true gene trees. Along these, sequences are simulated
and phylogenies are inferred as before. Thus, reconstruc-
tion error is added to the error present due to incomplete
lineage sorting. The mean distance of the inferred gene
trees to the species tree is 32% (Figure 9a). In the case of
complete data, this distance is decreased by all methods
except QILIL The distributions and mean distances of
MRP_BR (8.7%), MRP_PU (9.1%), MRP I (10.5%),
MRE_BR (8.9%), MRE_PU (8.6%), MRC (8.2%), MaxCut
(11.7%), SuperQP (10%), AvCon (8.5%), SDM (8.5%) and
SA (11.1%) are very similar. Thus the differences between
the methods are less distinct. However, the mean supera-
lignment distance is now larger than the average dis-
tances of most methods.

This might be due to the small number of genes (10)
and the different sequence lengths (Figure 2a). More
than 50% of all positions in the superalignment stem
from only three genes. The corresponding three inferred
gene tree topologies also show the smallest average
RF-distances to the superalignment tree (numbers not
shown). Thus these three genes mainly drive the supera-
lignment reconstruction. If their gene trees are distant
from the true species tree, the superalignment result
will also deviate.
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Figure 8 Distribution of normalized RF distances (500 simulations) for the simulation settings S, ¢, To.005, € and S, m, Tg.00s, €.
Simulation with gene-specific trees generated by a coalescent process (6 = 0:005) without reconstruction error. Early- and medium-level
methods cannot be applied since no simulated sequences are available.

We also tested the methods on incongruent gene trees
together with missing data. That is, the same alignments
were used but the information was pruned according to
Figure 2a. Several methods show a lower mean accuracy
than the phylogeny of a full gene, namely MinCut, Mod-
MinCut, QILI and AvCon (Figure 9b). MRP_BR (20.4%),
MRP_PU (21.6%), MRP I (21.1%), MRF_BR (21.7%) and
MRF_PU (22.2%) still outperform superalignment
(22.3%) on average, but the difference is marginal.

However, the above behavior is not representative for
all degrees of incomplete lineage sorting. In Figure 10a,
we see how the mean normalized RF distance of the
true gene trees to the true species tree increases with 6.
As a consequence, the distances of the reconstructed
gene trees increase, too. At low ¢ (0.001-0.002), the
reconstruction error exceeds the error introduced by
incomplete lineage sorting. In this parameter area we
observe figures similar to Figure 4 with SA performing
better on average (figures not shown). With very high 60,
however, the error introduced by incomplete lineage

sorting is larger than the reconstruction error added to
the true gene trees. In this parameter area, we observe
that MRP_BR slightly outperforms SA (Figure 10b).
MRP_BR is used here as a representative supertree
method, which usually performs well compared to other
methods.

Note that in each case, the standard deviations are
overlapping with the mean of the competing method
(Figure 10b). However, we must keep in mind that the
data are paired, i.e., for each of the 500 simulations with
6 = 0, we get one distance value for SA and one for
MRP_BR. Thus, we tested the null hypothesis that the
median difference in these paired distances is 0 using
the Wilcoxon signed-rank test (Table 4). The results
shown in Table 4 support the conclusion that SA is sig-
nificantly better in regions where the error introduced
by phylogenetic reconstruction is prevalent, whereas
MRP BR is significantly better in regions where true
gene trees differ a lot. Thus, if the reconstruction error
dominates the error caused by incomplete lineage
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Figure 9 Distribution of normalized RF distances (500 simulations) for the simulation settings S, ¢, To.00s5, N and S, m, Tg.q05, N.
Simulation with gene-specific trees generated by a coalescent process (6 = 0:005). The true gene trees are equal to the trees used in Figure 8.
Now, alignments are simulated along these trees and ML trees are reconstructed.
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Figure 10 Mean and standard deviation of the RF distances with different levels of incongruence. The results of the true and
reconstructed gene trees are computed from the distribution of mean distances of all simulations. Note that 8 does not increase linearly but the
last step is a doubling. The detailed results for # = 0 and @ = 0:005 are shown in Figure 4 and Figure 9, respectively. Different numbers of
simulation replicates were used: 500 for 8 = 0 and 8 = 0:005 and 200 for the remaining settings.
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Table 4 Paired Wilcoxon signed-rank test
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Complete data

Missing data

0 Sample size p-value Median difference  Confidence Interval p-value Median difference  Confidence interval
0 500 <22 x107° 1.5 1515 <22x107'¢ 25 12, 25]
0.001 200 22 x10° 1.5 [ 5 22x107° 25 [2,25]
0.002 200 0.69 18 x10° [-0.5,1:9 x 107 22x10° 1 [05, 0.5]
0.003 200 06 2478 x 107 [-0.5, 0.5] 0.69 32 %107 [-0.5, 0.5]
0.004 200 1.8x 103 -1 [-1.5,32 X 107 047 6x 107 [-0.5, 0.5]
0.005 500  16x 10" -1.5 [-1.51] 1.1 x 10 -1 [-1.5,-0.5]
001 200 61x107'° -2.5 321 7.4x10" 2.5 [-3,-2]

The distances of MRP)_BR are compared with SA, thus positive median differences stand for higher distances in MRP_BR and negative differences stand for
higher distances in SA. p-values < 0:05 find median differences whose 95%-confidence intervall does not include 0 are marked in bold.

sorting, SA is the most accurate method by minimizing
stochastic error. On the other hand, if incomplete
lineage sorting is the prevalent source of gene tree
incongruency, reconstructing the trees first and then
applying a supertree method is favorable. However, in
the case of high incomplete lineage sorting effects, the
accuracies of all reconstruction methods are quite low.
Figure 9 shows that about 8% of the branches are recon-
structed incorrectly with complete data and about 20%
with missing data for the best reconstruction methods.

Conclusions

We presented a detailed simulation study to assess the
accuracy of superalignment, supertree and medium-level
methods for reconstructing phylogenetic trees from
multiple data sets. Although supertrees are often used
to combine data of different kinds, our simulations only
refer to sequence-based approaches. Morphological
characters are not included due to the lack of reasonable
probabilistic models to simulate their evolution. This
study is first in comparing a broad range of methods for
combining incomplete data sets. Furthermore, the true
gene trees were generated from the true species tree in
different ways (see also Table 3): (a) all gene trees were
identical to the species tree, (b) the branch lengths but
not the topology were gene-specific, (c) the gene trees
from the original data were used as true gene trees and
(d) the gene trees showed different topologies modeling
incomplete lineage sorting. All conclusions are based on
the specific implementations used for these methods as
described in the methods section.

Gene features like sequence lengths and taxon overlap
influence the accuracy of the methods presented.
Instead of covering many different parameter combina-
tions, we used the parameters of two very different nat-
ural data sets for the simulations. They cover 10 genes
of 25 taxa and and 254 genes of 69 taxa, respectively.
Note that supertree methods can be applied to substan-
tially larger data sets (e.g. [20]). We expect that the
accuracy of the methods will be influenced by the
amount and distribution of missing data as well as

the taxon overlap between alignments. Additionally, the
incongruency among the true gene trees and alignment
lengths influence the relative performance of the meth-
ods. Adding more genes may increase the number of
incongruent trees [68], while adding more taxa typically
increases the amount of missing data. Thus, accuracy
will generally decrease.

The first main result is that one of the matrix repre-
sentation methods, which are the most abundant super-
tree reconstruction methods used in the literature,
usually shows the second-best result after superalign-
ment. Especially the MRP and MRF methods with
Baum/Ragan-coding result in very accurate trees. Since
these methods are based on splits, bootstrap-based
weighting can be easily incorporated, which is expected
to further increase the accuracy of the reconstructed
trees [28,32]. Among the medium-level methods,
SuperQP yields better results than the distance-based
approaches, especially when data are missing. The accu-
racy of SuperQP is often consecutive to or among the
accuracies of the MR-based supertree methods.

Second, in the case of complete gene trees, the major-
ity-rule consensus method is also applicable. In all simu-
lation settings with complete gene trees, some supertree
methods perform better on average than the consensus
method. In these cases, supertree branches that are sup-
ported by less than half of the gene trees are correctly
resolved, while remaining unresolved in the consensus
tree. This shows that, although supertree methods have
been criticized for not being majority-rule methods [69],
the resolution of additional branches can be favorable.
However, as for majority-rule consensus trees, it is
desirable to also label the supertree branches with the
support in the gene trees.

Third, we introduced the baseline distance as a mea-
sure to judge the benefit of the combination methods.
The baseline distance for one setting is defined as the
mean RF distance between the true species tree and the
reconstructed gene trees using complete alignments. We
observe that, for most of the simulation parameters stu-
died here, QILI, average consensus, MinCut and
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modified MinCut show larger mean RF distances than
the single gene trees. QILI has already been observed to
be slightly worse than MRP [58]. Average consensus is
clearly outperformed by SDM when data are missing.
We applied both methods as medium-level methods by
taking pairwise distances directly from the alignment
distances, not from the reconstructed gene trees. While
average consensus was suggested as a late-level method
[14], SDM has been explicitly designed as a medium
level method [15]. Thus, average consensus may not be
able to resolve the conflicts in the non-tree-like dis-
tances. The behavior of MinCut can be partly explained
by the fact that it resembles Adams consensus [54].
This means that uncertain taxa will be placed at the
root of subtrees, which can disturb quite a few splits,
leading to high RF distances. The cut methods presented
here implement a heuristic based on the rooted triplets
in the gene trees. Recently, Lin et al. [70] suggested
another approach which maximizes the common rooted
triplets in the supertree and the gene trees. They show
that their method outperforms modified MinCut and
MaxCut on example data sets.

Finally, we observe that superalignment methods usually
show the highest accuracy on average. This applies to
incomplete data as well as gene-specific substitution para-
meters. Superalignment also results in the most consistent
phylogenetic estimation when each method is not com-
pared to a model tree but to the original result obtained
with that very method (Figure 7). However, in the pre-
sence of high incongruency among true gene trees, that
means, if reconstruction error is not the main cause that
gene trees differ from the species tree, the implicit weight-
ing by sequence length can have a negative effect on the
performance of superalignment leading to outperformance
by the supertree method MRP BR. This bias might be
avoided by introducing a normalization, but then, the
opposite and still unwanted bias could emerge. Further-
more, it has been discussed (e.g. [71]) that SA should be
preferred over supertree methods since the former does
not imply character weighting. Furthermore, Edwards
argued recently [72] that in the presence of gene tree con-
flict caused by coalescence effects as many genes as possi-
ble should be used and they should be weighted equally.
This is consistent with our observation, that supertree
methods outperform superalignment in the presence of
strong coalescence effects. There are also species tree
reconstruction methods that use a coalescent model to
account for the differences between true gene trees (e.g.
[73]). Kubatko et al. [74] have shown that concatenation
of gene alignments may be inappropriate when the gene
tree histories differ considerably. The coalescent model
can be applied for closely related species (e.g. grasshoppers
[75]), but severe problems caused by incomplete lineage
sorting seem not to play a role among taxa of deep
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phylogenetic trees (e.g. for Metazoa [67]). Since these
methods typically require complete data, we did not
include them in our comparison. We rather concentrated
on methods which were explicitly designed for missing
data and that resolve conflict of unknown source.

Our results are in general concordance with pre-
viously published comparisons. Dutilh et al. [7] used
real data sets and also found superalignment to perform
best. Eulenstein et al. [34] used simulated data and find
MRP and MRF to perform similar and better than Min-
Cut and ModMinCut. Swenson et al. [76] compare
superalignment and weighted and unweighted MRP
using biologically motivated simulations and also find
the highest accuracy for superalignment. We apply,
however, a broader range of methods than previous
studies.

All conclusions presented here are based on the accu-
racy measured by the mean RF distance. This does not
imply that the methods presented as better on average
always show superior results and could, thus, be used as
a gold standard. Rather, we highly recommend to use
several of the superior methods (considering also var-
ious levels of data combination) and to compare their
results. By comparing the accuracies of the recon-
structed supertrees with the accuracies of the ML gene
trees, we showed the baseline distance to be a reason-
able criterion for excluding unsuitable methods. If the
baseline distance cannot be improved by a data combi-
nation method, it is preferable to use only genes for ML
reconstruction that are present in all taxa and to possi-
bly sequence the missing genes in some taxa. For a real
data supertree analysis, not the baseline distance but
only the distances between the reconstructed gene trees
are available to assess which method may be appropri-
ate. Thus, the homogeneity of the gene trees can be an
indicator whether variation is present in the gene trees.
Assessing the homogeneity of overlapping gene trees is
a complex task of itself [23,77-79] and is not covered in
our study.

The source of variation, i.e., why the reconstructed
gene trees differ from the species tree, should also be
taken into account, since it has an influence on the
relative performance of the methods. If a tree-like evolu-
tionary history is assumed and true gene tree incongru-
ence is unlikely or rare, superalignment results in the
most accurate trees. This also holds in the presence of
gene-specific substitution parameters and branch
lengths, as has been observed before [27]. But if the dif-
ference of the true gene trees to the species trees is the
main source of variation, supertree methods are favor-
able. Applying a superalignment method to data with
different underlying topologies or highly varying
parameters has also been shown to be problematic
(e.g. [80,81]).
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In the case of known gene tree variation, methods that
model the assumed causes can also be applied (e.g.
[67,82] for incomplete lineage sorting). When exploring
gene tree effects, like horizontal gene transfer or incom-
plete lineage sorting, gene trees have to be reconstructed
and compared to a species tree. If the intention of an
analysis is species tree reconstruction, however, external
information may be considered: External information,
like the rates of horizontal gene transfer, gene duplication
or incomplete lineage sorting helps to judge whether
complex evolutionary models are necessary to recon-
struct the species tree. If these complex scenarios are not
assumed to play a major role, application of superalign-
ment minimizes the stochastic error. On the other hand,
if gene-tree conflict is present but the underlying biologi-
cal model is unknown, supertree or medium-level meth-
ods may be more reasonable. They account for gene tree
variation but make no assumptions on the underlying
evolutionary model causing the variation.

Our study provides comparative data for methods
combining the data at different levels. This broad collec-
tion of methods hence provides valuable help to choose
a promising set of approaches to reconstruct species
trees from sets of orthologous genes.

Availability and requirements

A Software to simulate data as in this study is available
from our webpage http://www.cibiv.at/software/supi.
The software published under GPL is written in Python
and Java and is platform independent.
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