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Abstract

Background: Hidden Markov models are widely employed by numerous bioinformatics programs used today.
Applications range widely from comparative gene prediction to time-series analyses of micro-array data. The
parameters of the underlying models need to be adjusted for specific data sets, for example the genome of a
particular species, in order to maximize the prediction accuracy. Computationally efficient algorithms for parameter
training are thus key to maximizing the usability of a wide range of bioinformatics applications.

Results: We introduce two computationally efficient training algorithms, one for Viterbi training and one for
stochastic expectation maximization (EM) training, which render the memory requirements independent of the
sequence length. Unlike the existing algorithms for Viterbi and stochastic EM training which require a two-step
procedure, our two new algorithms require only one step and scan the input sequence in only one direction. We
also implement these two new algorithms and the already published linear-memory algorithm for EM training into
the hidden Markov model compiler HMM-CONVERTER and examine their respective practical merits for three small
example models.

Conclusions: Bioinformatics applications employing hidden Markov models can use the two algorithms in order to
make Viterbi training and stochastic EM training more computationally efficient. Using these algorithms, parameter
training can thus be attempted for more complex models and longer training sequences. The two new algorithms
have the added advantage of being easier to implement than the corresponding default algorithms for Viterbi
training and stochastic EM training.

Background
Hidden Markov models (HMMs) and their variants are
widely used for analyzing biological sequence data.
Bioinformatics applications range from methods for
comparative gene prediction (e.g. [1,2]) to methods for
modeling promoter grammars (e.g. [3]), identifying pro-
tein domains (e.g. [4]), predicting protein interfaces (e.g.
[5]), the topology of transmembrane proteins (e.g. [6])
and residue-residue contacts in protein structures (e.g.
[7]), querying pathways in protein interaction networks
(e.g. [8]), predicting the occupancy of transcription

factors (e.g. [9]) as well as inference models for genome-
wide association studies (e.g. [10]) and disease associa-
tion tests for inferring ancestral haplotypes (e.g. [11]).
Most of these bioinformatics applications have been

set up for a specific type of analysis and a specific biolo-
gical data set, at least initially. The states of the underly-
ing HMM and the implemented prediction algorithms
determine which type of data analysis can be performed,
whereas the parameter values of the HMM are chosen
for a particular data set in order to optimize the corre-
sponding prediction accuracy. If we want to apply the
same method to a new data set, e.g. predict genes in a
different genome, we need to adjust the parameter
values in order to make sure the performance accuracy
is optimal.
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Manually adjusting the parameters of an HMM in
order to get a high prediction accuracy can be a very
time consuming task which is also not guaranteed to
improve the performance accuracy. A variety of training
algorithms have therefore been devised in order to
address this challenge. These training algorithms require
as input and starting point a so-called training set of
(typically partly annotated) data. Starting with a set of
(typically user-chosen) initial parameter values, the
training algorithm employs an iterative procedure which
subsequently derives new, more refined parameter
values. The iterations are stopped when a termination
criterion is met, e.g. when a maximum number of itera-
tions have been completed or when the change of the
log-likelihood from one iteration to the next become
sufficiently small. The model with the final set of para-
meters is then used to test if the performance accuracy
has been improved. This is typically done by analyzing a
test set of annotated data which has no overlap with the
training set by comparing the predicted to the known
annotation.
Of the training algorithms used in bioinformatics

applications, the Viterbi training algorithm [12,13] is
probably the most commonly used, see e.g. [14-16]. This
is due to the fact that it is easy to implement if the
Viterbi algorithm [17] is used for generating predictions.
In each iteration of Viterbi training, a new set of para-
meter values j is derived from the counts of emissions
and transitions in the Viterbi paths Π* for the set of
training sequences  . Because the new parameters are
completely determined by the Viterbi paths, Viterbi
training converges as soon as the Viterbi paths no
longer change or, alternatively, if a fixed number of
iterations have been completed. Viterbi training finds at
best a local optimum of the likelihood P( , Π*|j), i.e.
it derives parameter values j that maximize the contri-
bution from the set of Viterbi paths Π* to the likelihood.
There already exist a number of algorithms that can
make Viterbi decoding computationally more efficient.
Keibler et al. [18] introduce two heuristic algorithms for
Viterbi decoding which they implement into the gene-
prediction program TWINSCAN/N-SCAN, called
“Treeterbi” and “Parallel Treeterbi”, which have the
same worst case asymptotic memory and time require-
ments as the standard Viterbi algorithm, but which in
practice work in a significantly more memory efficient
way. Sramek et al. [19] present a new algorithm, called
“on-line Viterbi algorithm” which renders Viterbi decod-
ing more memory efficient without significantly increas-
ing the time requirement. The most recent contribution
is from Lifshits et al. [20] who propose more efficient
algorithms for Viterbi decoding and Viterbi training.
These new algorithms exploit repetitions in the input

sequences (in five different ways) in order to accelerate
the default algorithm.
Another well-known training algorithm for HMMs is

Baum-Welch training [21] which is an expectation max-
imization (EM) algorithm [22]. In each iteration, a new
set of parameter values is derived from the estimated
number of counts of emissions and transitions by con-
sidering all possible state paths (rather than only a sin-
gle Viterbi path) for every training sequence. The
iterations are typically stopped after a fixed number of
iterations or as soon as the change in the log-likelihood
is sufficiently small. For Baum-Welch training, the likeli-
hood P( |j) [13] can be shown to converge (under
some conditions) to a stationary point which is either a
local optimum or a saddle point. Baum-Welch training
using the traditional combination of forward and back-
ward algorithm [13] is, for example, implemented into
the prokaryotic gene prediction method EASYGENE
[23] and the HMM-compiler HMMoC [15]. As for
Viterbi training, the outcome of Baum-Welch training
may strongly depend on the chosen set of initial para-
meter values. As Jensen [24] and Khreich et al. [25]
describe, computationally more efficient algorithms for
Baum-Welch training which render the memory
requirement independent of the sequence length have
been proposed, first in the communication field by
[26-28] and later, independently, in bioinformatics by
Miklós and Meyer [29], see also [30]. The advantage of
this linear-memory memory algorithm is that it is com-
paratively easy to implement as it requires only a one-
rather than a two-step procedure and as it scans the
sequence in a uni- rather than bi-directional way. This
algorithm was employed by Hobolth and Jensen [31] for
comparative gene prediction and has also been imple-
mented, albeit in a modified version, by Churbanov and
Winters-Hilt [30] who also compare it to other imple-
mentations of Viterbi and Baum-Welch training includ-
ing checkpointing implementations.
Stochastic expectation maximization (EM) training or

Monte Carlo EM training [32] is another iterative proce-
dure for training the parameters of HMMs. Instead of
considering only a single Viterbi state path for a given
training sequence as in Viterbi training or all state
paths as in Baum-Welch training, stochastic EM training
considers a fixed-number of K state paths Πs which are
sampled from the posterior distribution P(Π|X) for
every training sequence X in every iteration. Sampled
state paths have already been used in several bioinfor-
matics applications for sequence decoding, see e.g.
[2,33] where sampled state paths are used in the context
of gene prediction to detect alternative splice variants.
All three above training algorithms, i.e. Viterbi train-

ing, Baum-Welch training and stochastic EM training,
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can be combined with the traditional check-pointing
algorithm [34-36] in order to trade time for memory
requirements.
We here introduce two new algorithms that make

Viterbi training and stochastic EM training computa-
tionally more efficient. Both algorithms have the signifi-
cant advantage of rendering the memory requirement
independent of the sequence length for HMMs while
keeping the time requirement the same (for Viterbi
training) or modifying it by a factor of M K/(M + K), i.
e. decreasing it when only one state path K = 1 is
sampled for a model of M states (for stochastic EM
training). Both algorithms are inspired by the linear-
memory algorithm for Baum-Welch training which
requires only a uni-directional rather than bi-directional
movement along the input sequence and which has the
added advantage of being considerably easier to imple-
ment. We present a detailed description of the two new
algorithms for Viterbi training and stochastic EM train-
ing. In addition, we implement all three algorithms, i.e.
the new algorithms for Viterbi training and stochastic
EM training and the previously published linear-memory
algorithm for Baum-Welch training, into our HMM-
compiler HMM-CONVERTER[37] and examine the
practical features of these these three algorithms for
three small example HMMs.

Methods and Results
Definitions and notation
In order to simplify the notation in the following, we
will assume without loss of generality that we are deal-
ing with a 1st-order HMM where the Start state and
the End state are the only silent states. Our description
of the existing and the new algorithms easily generalize
to higher-order HMMs, HMMs with more silent states
(provided there exists no circular path in the HMM
involving only silent states) and n-HMMs, i.e. HMMs
which read n un-aligned input sequences rather than a
single input sequence at a time. An HMM is defined by

● a set of states  = {0, 1, ... , M}, where state 0
denotes the start and state M denotes the End state
and where all other states are non-silent,
● a set of transition probabilities  = {ti,j |i, j Î  },
where ti,j denotes the transition probability to go
from state i to state j and t i jj S ,∈∑ = 1 for every state
i Î  and
● a set of emission probabilities ℰ = {ei(y)|i Î  , y
Î }, where ei(y) denotes the emission probability
of state i for symbol y and e yiy

( )∈∑ =


1 for every
non-silent state i Î  and  denotes the alphabet
from which the symbols in the input sequences are

derived, e.g.  = {A, C, G, T} when dealing with
DNA sequences.

We also define:

● Tmax is the maximum number of states that any
state in the model is connected to, also called the
model’s connectivity.
●  = {X1, X2, ... , XN} denotes the training set of N
sequences, where each particular training sequence

Xi of length Li is denoted X x x xi i i
L
i
i= …( , , , )1 2 . In

the following and to simplify the notation, we pick
one particular training sequence X Î  of length L
as representative which we denote X = (x1, x2, ... , xL).
We write Xn = (x1, x2, ... , xn), n Î {1, ... , L}, to denote
the sub-sequence of X which finishes at sequence
position n.
● Π = (π0, π1, ... , πL+1) denotes a state path in the
HMM for an input sequence X of length L, i.e. state
πi is assigned to sequence position xi. Π

* denotes a
Viterbi path and Πs a state path that has been
sampled from the posterior distribution P(Π|X ) of
the corresponding sequence X.

A linear-memory algorithm for Viterbi training
Of the HMM-based methods that provide automatic
algorithms for parameter training, Viterbi training [13]
is the most popular. This is primarily due to the fact
that Viterbi training is readily implemented if the
Viterbi algorithm is used to generate predictions. Similar
to Baum-Welch training [21,22], Viterbi training is an
iterative training procedure. Unlike Baum-Welch train-
ing, however, which considers all state paths for a given
training sequence in each iteration, Viterbi training only
considers a single state path, namely a Viterbi path,
when deriving new sets of parameters. In each iteration,
a new set of parameter values is derived from the counts
of emissions and transitions in the Viterbi paths [17] of
the training sequences. The iterations are terminated as
soon as the Viterbi paths of the training sequences no
longer change.
In the following,

● let E y X Xi
q( , , ( ))*Π denote the number of times

that state i reads symbol y from input sequence X in
Viterbi path Π*(X) given the HMM with parameters
from the q-th iteration,

● in particular let E y X X mi
q

k k k( , , ( , ))* *Π  = denote

the number of times that state i reads symbol y
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from input sequence X in the partial Viterbi path

Π* * * * *( , ) ( , , , )X m mk k k k   = = … =−0 1 which finishes

at sequence position k in state m, and

● let T X Xi j
q
,

*( , ( ))Π denote the number of times

that a transition from state i to state j is used in
Viterbi path Π*(X) for sequence X given the HMM
with parameters from the q-th iteration,

● in particular let T X X mi j
q

k k k,
* *( , ( , ))Π  = denote

the number of times that a transition from state i to
state j is used in the partial Viterbi path

Π* * * * *( , ) ( , , , )X m mk k k k   = = … =−0 1 which finishes

at sequence position k in state m.

In the following, the superscript q will indicate from
which iteration the underlying parameters derive. If we
consider all N sequences of a training set  = {X1, ...
XN} and a Viterbi path Π*(Xn) for each sequence Xn in
the training set, the recursion which updates the values
of the transition and emission probabilities reads:

t
T X X

T X X
i j
q i j

q n n

n

N

i j
q n n

n

N

j

M,

,
*

,
*

( , ( ))

( , ( ))

+ =

==

= ∑
∑∑

1 1

11

Π

Π
(1)

e y
E y X X

E y X X
i
q i

q n n

n

N

i
q n n

n

N

y

+ =

=∈

= ∑
∑∑

1 1

1

( )
( , , ( ))

( ’, , ( ))

*

*

’

Π

Π


(2)

These equations assume that we know the values of

T X Xi j
q n n
,

*( , ( ))Π and E y X Xi
q n n( , , ( ))*Π , i.e. how often

each transition and emission is used in the Viterbi path
Π*(Xn) for training sequence Xn.

One straightforward way to determine T X Xi j
q n n
,

*( , ( ))Π

and E y X Xi
q n n( , , ( ))*Π is to first calculate the two-

dimensional Viterbi matrix for every training sequence
Xn, to then derive a Viterbi state path Π*(Xn) from each
Viterbi matrix using the well-known traceback procedure
[17] and to then simply count how often each transition
and each emission was used. Using this strategy, every
iteration in the Viterbi training algorithm would
require  (M maxi{Li} + maxi{Li}) memory and
( )MT L Lmax i

N

i

N
i i= =∑ ∑+

1 1
time, where Lii

N

=∑ 1
is the sum of

the N sequence lengths in the training set  and maxi
{Li} the length of the longest sequence in training set  .
However, for many bioinformatics applications where the
number of states in the model M is large, the connectiv-
ity Tmax of the model high or the training sequences are

long, these memory and time requirements are too large
to allow automatic parameter training using this
algorithm.
A linear-memory version of the Viterbi algorithm,

called the Hirschberg algorithm [38], has been known
since 1975. It can be used to derive Viterbi paths in
memory that is linearized with respect to the length of
one of the input sequences while increasing the time
requirement by at most a factor of two. The Hirschberg
algorithm, however, only applies to n-HMMs with n ≥ 2,
i.e. HMMs which read two or more un-aligned input
sequences at a time. One significant disadvantage of the
Hirschberg algorithm is that it is considerably more diffi-
cult to implement than the Viterbi algorithm. Only few
HMM-based applications in bioinformatics actually
employ it, see e.g. [1,37,39]. We will see in the following
how we can devise a linear-memory algorithm for Viterbi
training that does not involve the Hirschberg algorithm
and that can be applied to all n-HMMs including n = 1.
We now introduce a linear-memory algorithm for

Viterbi training. The idea for this algorithm stems from
the following observations:
(V1) If we consider the description of the Viterbi algo-

rithm [17], in particular the recursion, we realize that
the calculation of the Viterbi values can be continued by
retaining only the values for the previous sequence
position.
(V2) If we have a close look at the description of the

traceback procedure [17], we realize that we only have
to remember the Viterbi matrix elements at the previous
sequence position in order to deduce the state from
which the Viterbi matrix element at the current
sequence position and state was derived.
(V3) If we want to derive the Viterbi path Π from the

Viterbi matrix, we have to start at the end of the
sequence in the End state M.
Observations (V1) and (V2) imply that local informa-

tion suffices to continue the calculation of the Viterbi
matrix elements (V1) and to derive a previous state (V2)
if we already are in a particular state and sequence posi-
tion, whereas observation (V3) reminds us that in order
to derive the Viterbi path, we have to start at the end of
the training sequence. Given these three observations, it
is not obvious how we can come up with a computa-
tionally more efficient algorithm for training with
Viterbi paths. In order to realize that a more efficient
algorithm exists, one also has to also note that:
(V4) While calculating the Viterbi matrix elements in

the memory-efficient way outlined in (V1), we can
simultaneously keep track of the previous state from
which the Viterbi matrix element at every current state
and sequence position was derived. This is possible
because of observation (V2) above.
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(V5) In every iteration q of the training procedure, we
only need to know the values of T X Xi j

q
,

*( , ( ))Π and
E y X Xi
q( , , ( ))*Π , i.e. how often each transition and

emission was used in each Viterbi state path Π*(X) for
every training sequence X , but not where in the Viterbi
matrix each transition and emission was used.
Given all observations (V1) to (V5), we can now for-

mally write down an algorithm which calculates
T X Xi j

q
,

*( , ( ))Π and E y X Xi
q( , , ( ))*Π in a computation-

ally efficient way which linearizes the memory require-
ment with respect to the sequence length and which is
also easy to implement. In order to simplify the nota-
tion, we describe the following algorithm for one parti-
cular training sequence X and omit the superscript for
the iteration q, as both remain the same throughout the
algorithm. In the following,

● Ti,j (k, m) denotes the number of times the transi-
tion from state i to state j is used in a Viterbi state
path that finishes at sequence position k in state m,
● Ei(y, k, m) denotes the number of times that state i
reads symbol y in a Viterbi state path that finishes at
sequence position k in state m,
● vi(k) denotes the Viterbi matrix element for state i
and sequence position k, i.e. vi(k) is the probability
of the Viterbi state path, i.e. the state path with the
highest overall probability, that starts at the begin-
ning of the sequence in the Start state and finishes
in state i as sequence position k,
● i, j, n Î  , y Î  and l Î  denotes the pre-
vious state from which the current Viterbi matrix
element vm(k) was derived, and
● δi,j is the delta-function with δi,j = 1 for i = j and
δi,j = 0 else.

Initialization: at the start of training sequence X =
(x1, ... , xL) and for all m Î  , set

v
m

m

T m

E y m

m

i j

i

( )

( , )

( , , )
,

0
0

0

0 0

0 0

1

0
=

=
≠

⎧
⎨
⎩

=

=

Recursion: loop over all positions k from 1 to L in the
training sequence X and loop, for each such sequence
position k, over all states m Î  \{0} = {1, ... , M } and
set

v k e x v k t

T k m T k l

m m k
n

n n m

i j i j l

( ) ( ) { ( ) }

( , ) ( , )

,

, , ,

= ⋅ − ⋅

= − +
∈

max


1

1  ii m j

i i m i y xE y k m E y k l
k

⋅

= − + ⋅



 
,

, ,( , , ) ( , , )1

where l denotes the state at the previous sequence
position k − 1 from which the Viterbi matrix element
vm(k) for state m and sequence position k derives, i.e.

l v k tn S n n m= − ⋅∈argmax { ( ) },1 .

Termination: at the end of the input sequence, i.e. for
k = L and for m = M the silent End state, set

v L v L t

T L M T L l

E y

M
n

n n M

i j i j l i M j

i

( ) { ( ) }

( , ) ( , )

( ,

,

, , , ,

= ⋅

= + ⋅
∈

max


 

LL M E y L li, ) ( , , )=

where l denotes the state at the sequence position L
from which the Viterbi matrix element vM (L) for the
End state M and sequence position L derives, i.e.

l v L tn S n n M= ⋅∈argmax { ( ) }, .

The above algorithm yields T L M T X Xi j i j
q

, ,
*( , ) ( , ( ))= Π

and E y L M E y X Xi i
q( , , ) ( , , ( ))*= Π (and vM(L) =P

q(X, Π*

(X))), i.e. we know how often a transition from state i to
state j was used and how often symbol y was read by
state i in Viterbi state path Π*(X) in iteration q.

Theorem 1: The above algorithm yields T L Mi j, ( , ) =

T X Xi j
q
,

*( , ( ))Π and E y L M E y X Xi i
q( , , ) ( , , ( ))*= Π .

Proof: We will prove these statements via induction
with respect to the sequence position k.
(1) Induction start at k = 0: This corresponds to the

initialization step in the algorithm. Ti,j (0, m) = 0 and Ei
(y, 0, m) = 0 for all m Î  as any zero-length Viterbi
path finishing in state m at sequence position 0 has zero
transitions from state i to j and has not read any
sequence symbol.
(2) Induction step k − 1 ® k for k Î {1, ... L − 1}

if the state at sequence position k = L is not the
End state M : This case corresponds to the recursion
in the algorithm. We assume that

T k m T X X mi j i j
q

k k k, ,
* *( , ) ( , ( , ))− = =− − −1 1 1 1Π  and

E y k m E y X X mi i
q

k k k( , , ) ( , , ( , ))* *− = =− − −1 1 1 1Π  .

We need to distinguish two cases (a) and (b). Let l
denote the state at sequence position k − 1 from which
the Viterbi matrix element vm(k) for state m and
sequence position k derives, i.e.

l v k tn S n n m= − ⋅∈argmax { ( ) },1 .

● Case (a):
Emissions (i): m = i and y = xk : In this case, Ei(y, k,
m) = Ei(y, k − 1, l) + 1. As we know that Ei(y, k − 1, l)
is the number of times that state i reads symbol y in a
Viterbi path ending in state l at sequence position
k − 1, we need to add 1 count for reading symbol
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y = xk by state m = i at the next sequence position k
in order to obtain Ei(y, k, m).
Transitions (ii): l = i and m = j: In this case, Ti,j

(k, m) = Ti,j(k − 1, l) + 1. As we know that Ti,j (k − 1, l)
is the number of times that a transition from state i to
state j is used in a Viterbi path ending in state l at
sequence position k − 1, we need to add 1 count for
the transition from state l = i to state m = j which
brings us from sequence position k − 1 to k in order to
get Ti,j (k, m).
● Case (b):
Emissions (i): m ≠ i or y ≠ xk : In this case, Ei(y, k,
m) = Ei(y, k − 1, l). We know that Ei(y, k − 1, l) is
the number of times that state i reads symbol y in a
Viterbi path ending in state l at sequence position k
− 1. If we go from state l at position k − 1 to state
m at position k and read symbol xk and if m ≠ i or y
≠ xk , we do not need to modify the number of
counts as we know that state i at position k does not
read symbol y, i.e. Ei(y, k, m) = Ei(y, k − 1, l).
Transitions (ii): l ≠ i or m ≠ j: In this case, Ti,j

(k, m) = Ti,j (k − 1, l). We know that Ti,j (k − 1, l) is
the number of times that a transition from state i to
state j is used in a Viterbi path ending in state l at
sequence position k − 1. If we make a transition
from state l at position k − 1 to state m at position k
and if l ≠ i or m ≠ j, we do not need to modify the
number of counts as we know this is not a transition
from state i to state j, i.e. Ti,j (k, m) = Ti,j (k − 1, l).

(3) If the state at sequence position k = L is the
End state M : This case corresponds to the termination
step in the algorithm. As in (2), we need to distinguish
two cases (a) and (b), but now only for the transition
counts. Let l denote the state at sequence position L
from which the Viterbi matrix element vM (L) for the
End state M and sequence position L derives, i.e.

l v L tn S n n m= ⋅∈argmax { ( ) }, .

Emissions (i): In this case, Ei(y, L, M) = Ei(y, L, l). As
we know that Ei(y, L, l) is the number of times that
state i reads symbol y in a Viterbi path ending in state l
at sequence position L, we do not need to modify this
number of counts when going to the silent End state at
the same sequence position L as silent states do not
read any symbols from the input sequence. As we are
now at the end of the input sequence X and the Viterbi

path Π*(X), we have E y L M E y X Xi i
q( , , ) ( , , ( ))*= Π .

● Case (a):
Transitions (i): l = i and M = j: In this case, Ti,j (L,
M) = Ti,j (L, l) + 1. As we know that Ti,j (L, l) is the
number of times that a transition from state i to

state j is used in a Viterbi path ending in state l at
sequence position L, we need to add 1 count for the
transition from state l = i to the End state M = j at
sequence position L. Note that this transition of
state does not incur a change of sequence position
as the End state is a silent state. As we are now at
the end of the input sequence X and the Viterbi

path Π*(X), we have T L M T X Xi j i j
q

, ,
*( , ) ( , ( ))= Π .

● Case (b):
Transitions (i): l ≠ i or M ≠ j: In this case, Ti,j (L, M)
= Ti,j (L, l). We know that Ti,j (L, l) is the number
of times that a transition from state i to state j is
used in a Viterbi path ending in state l at sequence
position L. If we make a transition from state l at
position L to the End state M at sequence position
L and if l ≠ i or M ≠ j, we do not make a transition
from state i to state j and thus do not need to mod-
ify the number of counts, i.e. Ti,j (L, M) = Ti,j (L, l).
Also in case (a), we are now at the end of the input
sequence X and the Viterbi path Π*(X ) and thus

have T L M T X Xi j i j
q

, ,
*( , ) ( , ( )).= Π

End of proof.
As is clear from the above description of the algo-

rithm, the calculation of the vm, Ti,j and Ei values for
sequence position k requires only the respective values
for the previous sequence position k − 1, i.e. the mem-
ory requirement can be linearized with respect to the
sequence length.
For an HMM with M states and a training sequence

of length L and for every free parameter of the HMM
that we want to train, we thus need in every iteration

 (M ) memory to store the vm values and  (M) mem-
ory to store the cumulative counts for the free para-
meter itself, e.g. the Ti,j values for a particular transition
from state i to state j. For an HMM, the memory
requirement of the training using the new algorithm is
thus independent of the length of the training sequence.
For training one free parameter in the HMM with the

above algorithm, each iteration requires  (MTmaxL)
time to calculate the vm values and to calculate the
cumulative counts. If Q is the total number of free para-
meters in the model and if we choose P of these para-
meters to be trained in parallel, i.e. P Î {1, ... Q} and
Q/P Î N, the memory requirement increases slightly
to  (MP ) and the time requirement becomes

( )MT L Q
Pmax . This algorithm can therefore be readily

adjusted to trade memory and time requirements, e.g. to
maximize speed by using the maximum amount of avail-
able memory. This can be directly compared to the
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default algorithm for Viterbi training described above
with first calculates the entire Viterbi matrix and which
requires  (M L) memory and  (TmaxLM) time to
achieve the same. Our new algorithm thus has the sig-
nificant advantage of linearizing the memory require-
ment with respect to the sequence length while keeping
the time requirement the same, see Table 1 for a
detailed overview. Our new algorithm is thus as memory
efficient as Viterbi training using the Hirschberg algo-
rithm, while being more time efficient, significantly
easier to implement and applicable to all n-HMMs,
including the case n = 1.

A linear-memory algorithm for stochastic EM training
One alternative to Viterbi training is Baum-Welch train-
ing [21], which is an expectation maximization (EM)
algorithm [22]. As Viterbi training, Baum-Welch train-
ing is an iterative procedure. In each iteration of Baum-
Welch training, the estimated number of counts for
each transition and emission is derived by considering
all possible state paths for a given training sequence in
the model rather than only the single Viterbi path. As
discussed in the introduction, there already exists an
efficient algorithm for Baum-Welch training which line-
arizes the memory requirement with respect to the
sequence length and which is also relatively easy to
implement.

One variant of Baum-Welch training is called stochas-
tic EM algorithm [32]. Unlike Viterbi training which
considers only a single state path and unlike Baum-
Welch training which considers all possible state paths
for every training sequence, the stochastic EM algorithm
derives new parameter values from a fixed number of K
state paths (each of which is denoted Πs(X)) that are
sampled for each training sequence from the posterior
distribution P(Π|X). Similar to Viterbi and Baum-Welch
training, the stochastic EM algorithm employs an itera-
tive procedure. As for Baum-Welch training, the itera-
tions are stopped once a maximum number of iterations
have been reached or once the change in the log-likeli-
hood is sufficiently small.
In strict analogy to the notation we introduced for

Viterbi training, E y X Xi
q s( , , ( ))Π denotes the number of

times that state i reads symbol y from input sequence X
in a sampled state path Πs(X) given the HMM with para-
meters from the q-th iteration. Similarly, T X Xi j

q s
, ( , ( ))Π

denotes the number of times that a transition from state
i to state j is used in a sampled state path Πs(X) for
sequence X given the HMM with parameters from the q-
th iteration.
As usual, the superscript q indicates from which itera-

tion the underlying parameters of the HMM derive. If we
consider all N sequences of the training set  = {X1, ...
XN} and sample K state paths Π k

s nX( ) , k Î {1, ... K},

Table 1 Theoretical computational requirements

training one parameter at a time

type of training algorithm time memory reference

Viterbi Viterbi  (TmaxLM)  (ML) [17]

Lam-Meyer  (TmaxLM)  (M) this paper

Baum-Welch Baum-Welch  (TmaxLM)  (ML) [13]

checkpointing  (TmaxLM log(L))  (M log(L)) [34]

linear-memory  (TmaxLM)  (M) [29]

stochastic EM forward & back-tracing  (TmaxL(M + K))  (ML) [32]

Lam-Meyer  (TmaxLMK)  (MK + Tmax) this paper

training P of Q parameters at the same time with P Î {1, ... , Q} and Q/P Î N

Viterbi Viterbi  (TmaxLMQ/P)  (ML) [17]

Lam-Meyer  (TmaxLMQ/P)  (MP) this paper

Baum-Welch Baum-Welch  (TmaxLMQ/P)  (ML + P) [13]

checkpointing  (TmaxLMQ log(L/P))  (M log(L)) [34]

linear-memory  (TmaxLM Q/P)  (M) [29]

stochastic EM forward & back-tracing  (TmaxL(M + K)Q/P )  (ML) [32]

Lam-Meyer  (TmaxLMKQ/P )  (MKP + Tmax) this paper

Overview of the theoretical time and memory requirements for Viterbi training, Baum-Welch training and stochastic EM training for an HMM with M states, a
connectivity of Tmax and Q free parameters. K denotes the number of state paths sampled in each iteration for every training sequence for stochastic EM training.
The time and memory requirements below are the requirements per iteration for a single training sequence of length L. It is up to the user to decide whether to
train the Q free parameters of the model sequentially, i.e. one at a time, or in parallel in groups. The two tables below cover all possibilities.

In the general case we are dealing with a training set  = {X1, X2, ... , XN} of N sequences, where the length of training sequence Xi is Li. If training involves the
entire training set, i.e. all training sequences simultaneously, L in the formulae below needs to be replaced by Lii

N

=∑ 1
for the memory requirements and by maxi

{Li} for the time requirements. If, on the other hand, training is done by considering by one training sequence at a time, L in the formulae below needs to be
replaced by Lii

N

=∑ 1
for the time requirements and by maxi{Li} for the memory requirements.
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for each sequence Xn in the training set, the step which
updates the values of the transition and emission prob-
abilities can be written as:

t
T X X

T X X
i j
q i j

q n
k
s n

k

K

n

N

i j
q n

k
s n

k

K,

,

, ’

( , ( ))

( , ( ))

+ ==

=

= ∑∑
∑

1 11

1

Π

Π
nn

N

j

M

i
q i

q n
k
s n

k

K

n

N

i
q n

e y
y X X

y X

E

E

==

+ ==

∑∑
∑∑=

11

1 11

’

( )
( , , ( ))

( , ,

Π

′ ΠΠ k
s n

k

K

n

N

y
X( ))

==∈ ∑∑∑ 11′ 

These expressions are strictly analogous to equations
1 and 2 that we introduced for Viterbi training.
As before, these assume that we know the values

of T X Xi j
q n

k
s n

, ( , ( ))Π and E y X Xi
q n

k
s n( , , ( ))Π , i.e. how

often each transition and emission is used in each

sampled state path Π k
s nX( ) for every training sequence

Xn.
Obtaining the counts from the forward algorithm and
stochastic back-tracing
It is well-known that we can obtain the above counts Ti,j

(X, Πs(X)) and Ei(y, X, Π
s(X)) for a given training

sequence X, iteration q and a sampled state path Πs(X)
by using a combination of the forward algorithm and
stochastic back-tracing [13,32]. For this, we first calcu-
late all values in the two-dimensional forward matrix
using the forward algorithm and then invoke the sto-
chastic back-tracing procedure to sample a state-path Πs

(X) from the posterior distribution P(Π|X).
We will now explain these two algorithms in detail in

order to facilitate the introduction of our new algorithm.
In the following,

● fi(k) denotes the sum of probabilities of all state
paths that have read training sequence X up to and
including sequence position k and that end in state
i, i.e. fi(k) = P(x1, ... , xk , s(xk ) = i), where s(xk)
denotes the state that reads sequence position xk
from input sequence X. We call fi(k) the forward
probability for sequence position k and state i.
● pi(k, m) denotes the probability of selecting state
m as the previous state while being in state i at
sequence position k (i.e. sequence position k has
already been read by state i), i.e. pi(k, m) = P(πk−1 =
m|πk = i). For a given sequence position k and state
i, pi(k, m) defines a probability distribution over pre-

vious states as p k mim
( , ) =∑ 1 .

The forward matrix is calculated using the forward
algorithm [13]:

Initialization: at the start of the input sequence, con-
sider all states m Î  in the model and set

f
m

mm( )0
1 0

0 0
=

=
≠

⎧
⎨
⎩

Recursion: loop over all positions k from 1 to L in the
input sequence and loop, for each such sequence posi-
tion k, over all states m Î  \{0} = {1, ... , M} and set

f k e x f k tm m k n

n

M

n m( ) ( ) ( ) ,= ⋅ − ⋅
=

∑
0

1 (3)

Termination: at the end of the input sequence, i.e. for
k = L and m = M the End state, set

P X f L f L tM n

n

M

x n M( ) ( ) ( ) ,= = ⋅
=

∑
0

Once we have calculated all forward probabilities fi(k)
in the two-dimensional forward matrix, i.e. for all states
i in the model and all positions k in the given training
sequence X, we can then use the stochastic back-tracing
procedure [13] to sample a state path from the posterior
distribution P(Π|X).
The stochastic back-tracing starts at the end of the

input sequence, i.e. at sequence position k = L, in the
End state, i.e. i = M , and selects state m as the previous
state with probability:

p k m

f k e x t

f k
i

f k ti

m k m i

i

m

i

( , )

( ) ( )

( )

( )

,

=

− ⋅ ⋅

⋅

1
if state is not silent

mm i

if k
i,

( )
if state is silent

⎧

⎨
⎪
⎪

⎩
⎪
⎪

(4)

This procedure is continued until we reach the start of
the sequence and the Start state. The resulting succes-
sion of chosen previous states corresponds to one state
path Πs(X) that was sampled from the posterior distribu-
tion P(Π|X ).
The denominator in equation (4) corresponds to the

sum of probabilities of all state paths that finish in state
i at sequence position k, whereas the nominator corre-
sponds to the sum of probabilities of all state paths that
finish in state i at sequence position k and that have
state m as the previous state.
When being in state i at sequence position k, we can

therefore use this ratio to sample which previous state
m we should have come from.
As this stochastic back-tracing procedure requires the

entire matrix of forward values for all states and all
sequence positions, the above algorithm for sampling a
state path requires  (ML) memory and  (MTmaxL)
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time in order to first calculate the matrix of forward
values and then  (L) memory and  (LTmax) time for
sampling a single state path from the matrix. Note that
additional state paths can be sampled without having to
recalculate the matrix of forward values. For sampling K
state paths for the same sequence in a given iteration,
we thus need  ((M + K)TmaxL) time and  (ML)
memory, if we do not to store the sampled state paths
themselves.
If our computer has enough memory to use the for-

ward algorithm and the stochastic back-tracing proce-
dure described above, each iteration in the training
algorithm would require  (M maxi{Li} + K maxi{Li})

memory and ( )MT L K Lmax ii

N
ii

N

= =∑ ∑+
1 1

time, where

Lii

N

=∑ 1
is the sum of the N sequence lengths in the

training set  and maxi{Li} the length of the longest
sequence in training set  . As we do not have to keep
the K sampled state paths in memory, the memory
requirement can be reduced to  (M maxi{Li}).
For many bioinformatics applications, however, where

the number of states in the model M is large, the con-
nectivity Tmax of the model high or the training
sequences are long, these memory and time require-
ments are too large to allow automatic parameter train-
ing using stochastic EM training.
Obtaining the counts in a more efficient way
Our previous observations (V1) to (V5) that led to the
linear-memory algorithm for Viterbi training can be
replaced by similar observations for stochastic EM
training:
(S1) If we consider the description of the forward

algorithm above, in particular the recursion in Equation
(3), we realize that the calculation of the forward values
can be continued by retaining only the values for the
previous sequence position.
(S2) If we have a close look at the description of the

stochastic back-tracing algorithm, in particular the sam-
pling step in Equation (4), we observe that the sampling
of a previous state only requires the forward values for
the current and the previous sequence position. So, pro-
vided we are at a particular sequence position and in a
particular state, we can sample the state at the previous
sequence position, if we know all forward values for the
previous sequence position.
(S3) If we want to sample a state path Πs(X) from the

posterior distribution P(Π|X), we have to start at the
end of the sequence in the End state, see the description
above and Equation (4) above. (The only valid alterna-
tive for sampling state paths from the posterior distribu-
tion would be to use the backward algorithm [13]
instead of the forward algorithm and to then start the

stochastic back-tracing procedure at the start of the
sequence in the Start state.)
Observations (S1) and (S2) above imply that local

information suffices to continue the calculation of the
forward values (S1) and to sample a previous state (S2)
if we already are in a particular state and sequence posi-
tion, whereas observation (S3) reminds us that in order
to sample from the correct probability distribution, we
have to start the sampling at the end of the training
sequence. Given these three observations, it is – as
before for Viterbi training – not obvious how we can
come up with a computationally more efficient algo-
rithm. In order to realize that a more efficient algorithm
does exist, one also has to note that:
(S4) While calculating the forward values in the mem-

ory-efficient way outlined in (S1) above, we can simulta-
neously sample a previous state for every combination of
a state and a sequence position that we encounter in the
calculating of the forward values. This is possible
because of observation (S2) above.
(S5) In every iteration q of the training procedure, we

only need to know the values of T X Xi j
q s
, ( , ( ))Π and

E y X Xi
q s( , , ( ))Π , i.e. how often each transition and

emission appears in each sampled state path Πs(X) for
every training sequence X , but not where in the matrix
of forward values the transition or emission was used.
Given all observations (S1) to (S5) above, we can now

formally write down a new algorithm which calculates

T X Xi j
q s
, ( , ( ))Π and E y X Xi

q s( , , ( ))Π in a computationally

more efficient way. In order to simplify the notation, we
consider one particular training sequence X = (x1, ... xL)
of length L and omit the superscript for the iteration q,
as both remain the same throughout the following algo-
rithm. In the following, Ti,j (k, m) denotes the number of
times the transition from state i to state j is used in a
sampled state path that finishes at sequence position k in
state m and Ei(y, k, m) denotes the number of times state
i read symbol y in a sampled state path that finishes at
sequence position k in state m. As defined earlier, fi(k)
denotes the forward probability for sequence position k
and state i, pi(k, m) is the probability of selecting state m
as the previous state while being in state i at sequence
position k, i, j, n Î  and y Î  .
Initialization: at the start of the training sequence X

and for all states m Î  , set

f
m

m

T m

E y m

m

i j

i

( )

( , )

( , , )
,

0
1 0

0 0

0 0

0 0

=
=
≠

⎧
⎨
⎩

=

=
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Recursion: loop over all positions k from 1 to L in the
training sequence X and loop, for each such sequence
position k, over all states m Î  \{0} = {1, ... , M}
and set

f k e x f k t

p k n
e x f k t

f

m m k n

n

M

n m

m
m k n n m

( ) ( ) ( )

( , )
( ) ( )

,

,

= ⋅ − ⋅

=
⋅ − ⋅

=
∑

0

1

1

mm

i j i j l i m j

i i

k

T k m T k l

E y k m E y k l

( )

( , ) ( , )

( , , ) ( , , )
, , , ,= − + ⋅

= − +

1

1

 

 m i y xk, ,⋅

where l denotes the state at previous sequence posi-
tion k − 1 that was sampled from the probability distri-
bution pm(k, n), n Î S, while being in state m at
sequence position k.
Termination: at the end of the input sequence, i.e. for

k = L and m = M the End state, set

f L f L t

p L n
f L t

f L

T L M T

M n

n

M

x n M

M
n n M

M

i j i

( ) ( )

( , )
( )

( )

( , )

,

,

, ,

= ⋅

=
⋅

=

=
∑

0

jj l i M j

i i

L l

E y L M E y L l

( , )

( , , ) ( , , )
, ,+ ⋅

=

 

where l now denotes the state at sequence position L
that was sampled from the probability distribution pM(L,
n), n Î  , while being in the End state M at sequence
position L, i.e. at the end of the training sequence.

The above algorithm yields T L M T X Xi j i j
q s

, ,( , ) ( , ( ))= Π , and

E y L M E y X Xi i
q s( , , ) ( , , ( ))= Π (and f L P XM

q( ) ( ))= , i.e. we
know how often a transition from state i to state j was
used and how often symbol y was read by state i in a
state path ΠS(X) sampled from the posterior distribution
P(X|Π) in iteration q for sequence X.
Theorem 2: The above algorithm yields

T L M T X Xi j i j
q s

, ,( , ) ( , ( ))= Π and E y L M E y X Xi i
q s( , , ) ( , , ( ))= Π .

Proof: The proof for this theorem is very similar to
the proof of theorem 1 for Viterbi training and therefore
omitted. The key differences are, first, that l here corre-
sponds to the state at the previous sequence position
that is sampled from a probability distribution rather
than deterministically determined and, second, that Πs

here corresponds to a sampled state path rather than a
deterministically derived Viterbi path Π*.
End of proof.
As is clear from the above algorithm, the calculation

of the fm, pm, Ti,j and Ei values for sequence position k

requires only the respective values for the previous
sequence position k − 1, i.e. the memory requirement
can be linearized with respect to the sequence length.
For an HMM with M states, a training sequence of

length L and for every free parameter to be trained, we
thus need  (M) memory to store the fm values,  (Tmax)

memory to store the pm values and  (M) memory to
store the cumulative counts for the free parameter itself in
every iteration, e.g. the Ti,j values for a particular transition
from state i to state j. If we sample K state paths, we have
to store the cumulative counts from different state paths
separately, i.e. we need K times more memory to store the
cumulative counts for each free parameter, but the mem-
ory for storing the fm and the pm values remains the same.
Overall, if K state paths are being sampled in each itera-
tion, we thus need  (M) memory to store the fm values,

 (Tmax) memory to store the pm values and  (MK)
memory to store the cumulative counts for the free para-
meter itself in every iteration. For an HMM, the memory
requirement of the new training algorithm is thus inde-
pendent of the length of the training sequence.
For training one free parameter in the HMM with the

above algorithm, each iterations requires  (MTmaxL)
time to calculate the fm and the pm values and to calcu-
late the cumulative counts for one training sequence. If
K state paths are being sampled in each iteration, the
time required to calculate the cumulative counts
increases to  (MTmaxLK), but the time requirements
for calculating the fm and pm values remains the same.
For sampling K state paths for the same input

sequence and training one free parameter, we thus need

 (MK + Tmax) memory and  (MTmaxLK) time for
every iteration. If the model has Q parameters and if P
of these parameters are to be trained in parallel, i.e. P Î
{1, ... Q} and Q/P Î N, the memory requirement
increases slightly to  (MKP + Tmax) and the time
requirement becomes ( )MT LK Q

Pmax . As for Viterbi

training, the linear-memory algorithm for stochastic EM

training can therefore be readily used to trade memory
and time requirements, e.g. to maximize speed by using
the maximum amount of available memory, see Table 1
for a detailed overview.
This can be directly compared to the algorithm

described in 2.1 with requires  (ML) memory and

 (TmaxL(M + K)) time to do the same. Our new algo-
rithm thus has the significant advantage of linearizing the
memory requirement and making it independent of the
sequence length for HMMs while increasing the time

requirement only by a factor of MK
M K+

, i.e. decreasing it

when only one state path K = 1 is sampled.
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Examples
The algorithms that we introduce here can be used to
train any HMM. The previous sections discuss the theo-
retical properties of the different parameter training
methods in detail which are summarized in Table 1.
Even though the theoretical properties of the respec-

tive algorithms are independent of any particular HMM,
the outcome of the different types of parameter training
in terms of prediction accuracy and parameter conver-
gence may very well depend on the features of a parti-
cular HMM. This is because the quantities that can be
shown to be (locally) optimized by some training algo-
rithms do not necessarily translate into an optimized
prediction accuracy as defined by us here.
In order to investigate how well the different methods

do in practice in terms of prediction accuracy and para-
meter convergence, we implemented Viterbi training,
Baum-Welch training and stochastic EM training for
three small example HMMs. For each model, we imple-
mented the linear-memory algorithm for Baum-Welch
training published earlier as well as the linear-memory
algorithms for Viterbi training and stochastic EM train-
ing presented here.
In the first step, we use each model with the original

parameter values to generate the sequences of the data set.
We then randomly choose initial parameter values to initi-
alize the HMM for parameter training. Each type of para-
meter training is performed three times using 2/3 of the
un-annotated data set as training set and the remaining 1/
3 of the data set for performance evaluation, i.e. we per-
form three cross-evaluation experiments for each model.
Example 1: The dishonest casino
As first case, we consider the well-known example of
the dishonest casino [13], see Figure 1. This casino con-
sists of a fair (state F) and a loaded dice (state L).
The fair dice generates numbers from  = {1, 2, 3, 4,
5, 6} with equal probability, whereas the loaded dice
generates the same numbers in a biased way. The prop-
erties of the dishonest casino are readily captured in a
four-state HMM with 8 transition and 12 emission
probabilities, six each for each non-silent state F and L.
Parameterizing the emission and transition probabilities
of this HMM results in two independent transition
probabilities and 10 independent emission probabilities,
i.e. altogether 12 values to be trained. In order to avoid
premature termination of parameter training, we use
pseudo-counts of 1 for every parameter to be trained.
The data set for this model consists of 300 sequences

of 5000 bp length each. The results of the training
experiments are shown in Figures 2 and 3.
Example 2: The extended dishonest casino
In order to investigate a HMM with a more complicated
regular grammar, we extended the above example of the

dishonest casino so it can now use the loaded dice
(state L) only in multiples of two and the fair dice
(state F) only in multiples of three, see Figure 4.
This extended HMM has seven states, the silent Start

and End states, two F states and three L states, 11 tran-
sition probabilities and 30 emission probabilities. Para-
meterizing the HMM’s probabilities yields two
independent transition probabilities and 10 independent

F

L

Start End

Figure 1 HMM of the dishonest casino. Symbolic representation
of the HMM of the dishonest casino. States are shown as circles,
transitions are shown as directed arrows. Please refer to the text for
more details.
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Figure 2 Performance for the dishonest casino. The average
performance as function of the number of iterations for each
training algorithm. The performance is defined as the product of
the sensitivity and specificity and the average is the average of
three cross-evaluation experiments. For stochastic EM training, a
fixed number of state paths were sampled for each training
sequence in each iteration (stochastic EM 1: one sampled state
path, stochastic EM 3: three sampled state paths, stochastic EM 5:
five sampled state paths). The error bars correspond to the standard
deviation of the performance from the three cross-evaluation
experiments. Please refer to the text for more information.
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emission probabilities to be trained, i.e. 12 parameter
values. In order to avoid premature termination of para-
meter training, we use pseudo-counts of 1 for every
parameter to be trained.
The data set for this model consists of 300 sequences

of 5000 bp length each. The results for this extended
model are shown in Figures 5 and 6.
Example 3: The CpG island model
In order to study the features for the different training
algorithms for a bioinformatics application, we also
investigate an HMM that can be used to detect CpG
islands in sequences of genomic DNA [13], see Figure 7.
The model consists of 10 states, the silent Start and End
states, four non-silent states to model regions inside CpG
islands (states A+, C+, G+ and T+) and four non-silent
states to model regions outside CpG islands (states A−, C
−, G− and T−). The emission probabilities for each of the
eight non-silent states is a delta-function so that any par-
ticular state (say A+ or A−) has an emission probability of

1 for reading the corresponding DNA nucleotide (in this
case A) and a probability of zero for all other nucleotides,
i.e. eX + (Y) = eX− (Y) = δX,Y for X, Y Î {A, C, G, T}. This
implies that none of the emission probabilities of this
model thus requires training. With a total of 80 transi-
tion probabilities the model is, however, highly con-
nected as any non-silent state is connected in both
directions to any other non-silent state. Parameterizing

Figure 3 Parameter convergence for the dishonest casino. Average differences of the trained and known parameter values as function of
the number of iterations for each training algorithm. For a given number of iterations, we first calculate the average value of the absolute
differences between the trained and known value of each emission parameter (left figure) or transition parameter (right figure) and then take
the average over the three experiments from the three-fold cross-evaluation. The error bars correspond to the standard deviation from the three
cross-evaluation experiments. The algorithms have the same meaning as in Figure 2. Please refer to the text for more information.
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Figure 4 HMM of the extended dishonest casino. Symbolic
representation of the HMM of the extended dishonest casino. States
are shown as circles, transitions are shown as directed arrows.
Please refer to the text for more details.
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Figure 5 Performance for the extended dishonest casino. The
average performance as function of the number of iterations for
each training algorithm. The performance is defined as the product
of the sensitivity and specificity and the average is the average of
three cross-evaluation experiments. For stochastic EM training, a
fixed number of state paths were sampled for each training
sequence in each iteration (stochastic EM 1: one sampled state
path, stochastic EM 3: three sampled state paths, stochastic EM 5:
five sampled state paths). The error bars correspond to the standard
deviation of the performance from the three cross-evaluation
experiments. Please refer to the text for more information.
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these transition probabilities results in 33 parameters, 32
of which were determined in training (the transition
probability to go to the End state was fixed). In order to
avoid premature termination of parameter training, we
use pseudo-counts of 1 for every parameter to be trained.
The data set for this model consists of 180 sequences

of 5000 bp length each. Figures 8 and 9 show the result-
ing performance.
Prediction accuracy and parameter convergence Our
primary goal is to investigate how the prediction accu-
racy of the different training algorithms varies as func-
tion of the number of iterations. The prediction
accuracy or performance is defined as the product of
the sensitivity and specificity. Figures 2, 5 and 8 show
the prediction accuracy as function of the number of

iterations for all three training methods for the respec-
tive model.
Another important goal of parameter training is to

recover the original parameter values of the correspond-
ing model. We therefore also investigate how well the
trained parameter values converge to the original para-
meter values, see Figures 3, 6 and 9 show the average
differences between the trained and known parameter

Figure 6 Parameter convergence for the extended dishonest casino. Average differences of the trained and known parameter values as
function of the number of iterations for each training algorithm. For a given number of iterations, we first calculate the average value of the
absolute differences between the trained and known value of each emission parameter (left figure) or transition parameter (right figure) and
then take the average over the three cross-evaluation experiments. The error bars correspond to the standard deviation from the three cross-
evaluation experiments. The algorithms have the same meaning as in Figure 5. Please refer to the text for more information.
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Figure 7 CpG island HMM. Symbolic representation of the CpG
island HMM. States are shown as circles, transitions are shown as
directed arrows. Every non-silent state can be reached from the
Start state and has a transition to the End state. In addition, every
non-silent state is connected in both directions to all non-silent
states. For clarity, we here only show the transitions from the
perspective of the A+ state. Please refer to the text for more details.
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Figure 8 Performance for the CpG island model. The average
performance as function of the number of iterations for each
training algorithm. The performance is defined as the product of
the sensitivity and specificity and the average is the average of
three cross-evaluation experiments. For stochastic EM training, a
fixed number of state paths were sampled for each training
sequence in each iteration (stochastic EM 1: one sampled state
path, stochastic EM 3: three sampled state paths, stochastic EM 5:
five sampled state paths). The error bars correspond to the standard
deviation of the performance from the three cross-evaluation
experiments. Please refer to the text for more information.
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values as function of the number of iterations for each
training algorithm and the respective model. Every data
point is calculated by first determining the average value
of the absolute differences between the trained and
known value of each emission parameter (left figures) or
transition parameter (right figures) and then taking the
average over the three experiments from the three-fold
cross-evaluation.
For the dishonest casino and the extended dishonest

casino, stochastic EM training performs best, both in
terms of performance and parameter convergence. It is
interesting to note that the results for sampling one,
three or five state paths per training sequence and per
iteration are essentially the same within error bars. For
these two models, Viterbi training converges fastest, i.e.
the Viterbi paths remain the same from one iteration to
the next, but the point of convergence is sub-optimal in
terms of performance and in particular in terms of para-
meter convergence. Baum-Welch training does better
than Viterbi training for these two models, but not as
well as stochastic BM training as it requires more itera-
tions to reach a lower prediction accuracy and worse
parameter convergence and as it exhibits the largest var-
iation with respect to the three cross-evaluation experi-
ments. The latter is due to many high-scoring, sub-
optimal state paths. For the CpG island model, all train-
ing algorithms do almost equally well, with Viterbi
training converging fastest. Table 2 summarizes the
CPU time per iteration for the different training

algorithms and models. For all three models, stochastic
EM training is faster than Baum-Welch training for one,
three or five sampled state paths per training sequence.
Viterbi training is even a bit more time efficient than
stochastic EM training when sampling one state path
per training sequence.
Based on the results from these three small example

models, we would thus recommend using stochastic EM
training for parameter training.

Conclusion and discussion
A wide range of bioinformatics applications are based
on hidden Markov models. Having computationally effi-
cient algorithms for training the free parameters of
these models is key to optimizing the performance of
these models and to adapting the models to new data
sets, e.g. biological data sets from a different organism.
We here introduce two new algorithms which render

the memory requirements for Viterbi training and sto-
chastic EM training independent of the sequence length.
This is achieved by replacing the usual bi-directional
two-step procedure (which involves first calculating the
Viterbi matrix and then retrieving the Viterbi path (in
case of Viterbi training) or first calculating the forward
matrix and the backward matrix before estimating counts
(in case of Baum-Welch training)) by a one-step proce-
dure which scans each training sequence only in a one-
directional way. For an HMM with M states and a con-
nectivity of Tmax, a training sequence of length L and one
iteration, our new algorithm reduces the memory
requirement of Viterbi training from  (ML) to  (M )

while keeping the time requirement of  (MTmaxL)
unchanged, see Table 1 for details. For stochastic EM
training where K is the number of state paths sampled
for every training sequence in every iteration, the mem-
ory requirements are (as, typically, L ≫ K + 1 ≥ K +
Tmax/M ) reduced from  (ML) to  (MK + Tmax) while
the time requirement per iteration changes from
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Figure 9 Parameter convergence for the CpG island model.
Average differences of the trained and known parameter values as
function of the number of iterations for each training algorithm. For
a given number of iterations, we first calculate the average value of
the absolute differences between the trained and known value of
each transition parameter (this model does not have any emission
parameters that require training) and then take the average over
the three cross-evaluation experiments. The error bars correspond to
the standard deviation from the three cross-evaluation experiments.
The algorithms have the same meaning as in Figure 8. Please refer
to the text for more information.

Table 2 CPU time use for different models

CPU time (sec) per
iteration

dishonest extended
dishonest

CpG
island

Casino Casino Model

Baum-Welch training 8.85 5.94 22.22

stochastic EM training K = 1 5.12 3.42 5.42

stochastic EM training K = 3 6.02 4.42 10.30

stochastic EM training K = 5 7.06 5.38 14.84

Viterbi training 4.42 2.84 5.00

Overview of the CPU time usage in seconds per iteration for Viterbi training,
Baum-Welch training and stochastic EM training for the three different
models. For each model, we implemented each of the three training methods
using the linear-memory algorithms for Baum-Welch training, Viterbi training
and stochastic EM training. The number of state paths that are sampled for
each iteration and each training sequence in stochastic EM training is
denoted K.
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(TmaxL(M + K)) to  (TmaxLMK) depending on the user-
chosen value of K. An added advantage of our two new
algorithms is they are easier to implement than the corre-
sponding default algorithms for Viterbi training and sto-
chastic EM training. In addition to introducing the two
new algorithms for Viterbi training and stochastic EM
training, we also examine their practical merits for three
small example models by comparing them to the linear-
memory algorithm for Baum-Welch training which was
introduced earlier. Based on our results from these three
(non-representative) models, we would recommend using
stochastic EM training for parameter training.
We have implemented the new algorithms for Viterbi

training and stochastic EM training as well as the lin-
ear-memory algorithm for Baum-Welch training into
our HMM-compiler HMMCONVERTER[37] which can
be used to set up a variety of HMM-based applications
and which is freely available under the GNU General Pub-
lic License version 3 (GPLv3). Please see http://people.cs.
ubc.ca/~irmtraud/training for more information and the
source code.
We hope that the new parameter training algorithms

introduced here will make parameter training for
HMM-based applications easier, in particular those in
bioinformatics.
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