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Abstract

Background: Proteins are dynamic molecules that exhibit a wide range of motions; often these conformational
changes are important for protein function. Determining biologically relevant conformational changes, or true
variability, efficiently is challenging due to the noise present in structure data.

Results: In this paper we present a novel approach to elucidate conformational variability in structures solved
using X-ray crystallography. We first infer an ensemble to represent the experimental data and then formulate the
identification of truly variable members of the ensemble (as opposed to those that vary only due to noise) as a
sparse estimation problem. Our results indicate that the algorithm is able to accurately distinguish genuine
conformational changes from variability due to noise. We validate our predictions for structures in the Protein Data
Bank by comparing with NMR experiments, as well as on synthetic data. In addition to improved performance over
existing methods, the algorithm is robust to the levels of noise present in real data. In the case of Human
Ubiquitin-conjugating enzyme Ubc9, variability identified by the algorithm corresponds to functionally important
residues implicated by mutagenesis experiments. Our algorithm is also general enough to be integrated into state-
of-the-art software tools for structure-inference.

Introduction
A central tenet of molecular biology is that a protein’s
three-dimensional (3D) structure is crucial to its func-
tion. Indeed the structural genomics initiative is produ-
cing an ever increasing number of structures at high
resolution, providing accurate coordinates for each atom
in the structure [1]. A protein’s structure, however, is
rarely static. Proteins are dynamic molecules, capable of
exhibiting a wide range of motions and conformational
variability [2,3]. Such conformational changes are impor-
tant in biological functions such as enzymatic catalysis,
cellular transport, and signaling [4,5]. It has been postu-
lated that even subtle conformational changes may have
important functional consequences [6].
A multi-conformer model, or ensemble, attempts to

model variability by explaining the data using an ensem-
ble of conformers, rather than just one conformer.
Indeed, conformational variability in a protein might be
present even in a single experiment, where the observed
data is an average over multiple conformations [7,8].
Multi-conformer approaches have long been the norm

when modeling NMR data. It has been suggested that,
for an accurate representation of the physical heteroge-
neity in a protein, such multiple-conformer models also
be used to explain X-ray crystallography data [8-10].
An open problem– and the focus of this paper– is

understanding the nature of conformational variability
implied by experimental data. The key challenge here is
to distinguish variability resulting due to noise in experi-
mental data and uncertainty in structure determination
techniques from functionally relevant physical motion
[9,11,12]. The problem is particularly difficult to solve
with single-conformer approaches, given their limited
ability to model the data. Indeed, this issue has been a
driving force in the efforts toward ensemble approaches
[8]. Even with the current ensemble approaches, it is
difficult to disentangle a protein’s physical motion (e.g.
hinge or loop motions) from other kinds of protein
motion (e.g., vibrational motion). The key problem is
that limited sampling (i.e. number of conformations)
and multiplicity of the problem make for weak statistical
estimates [8,10,13]. While a growing number of tools
address the problem of using ensembles to implicitly
model conformational variability [7,10,12,14,15], they
generally do not distinguish between variability due to
noise vs. physical motion.
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There have been some attempts to analyze structural
variability, but using pairs of structures rather than
ensembles. Conventional parameters such as torsional
angle differences, temperature factors and root-mean-
squared-distance (RMSD) values have been used to
identify flexible regions. But they combine estimation
noise and true variability into a single quantity; thus,
they are of limited usefulness under noisy data (e.g., for
low-to-medium resolution structures) (see Related
Work, [11]). More importantly, conformational variabil-
ity is best described over a population (i.e., ensemble) of
conformations; pairwise comparison between structures
implies such limited sampling of the conformational
space that it may be unreliable for all but the least noisy
datasets.
In this paper, we take a different approach to analyz-

ing variability. Our approach is inspired by recent devel-
opments in regression-based predictive models in
machine learning. The basic intuition behind the
approach is to construct an ensemble of conformers
that explain the experimental data and then use sparse
estimation to distinguish between conformers that are
just noisy versions of a base conformation (e.g., the PDB
structure) and those that capture true conformational
variability (relative to the base). Accordingly, structures
sampled from a Gaussian distribution about the base
structure should be more predictive of the base struc-
ture than structures displaying true variability. This
allows us to separate out the biologically relevant varia-
bility due to physical motion using a feature selection
technique, Lasso [16]. Lasso, which stands for “least
absolute shrinkage and selection operator,” is a regular-
ized regression technique in which only the most signifi-
cant predictor features are selected [16]. We illustrate
the approach on X-ray crystallographic data, as it is the
most common source of structural data. Our results
demonstrate that the method compares favorably with
previous approaches. It is more robust to specific para-
meter choices and produces fewer false positives and
false negatives (see Comparative Analysis). In contrast
to conventional approaches, we use Electron Density
Maps (EDM), as opposed to 3-D coordinates used for
pairwise structure comparison, for identification of true
variability; this allows us greater power in accurately
identifying true structural outliers without the need for
any artificial parameters to model noise [17]. Finally,
our predictions of true variable regions are in good
agreement with the dynamics inferred from solution
NMR experiments; the latter are presumably closer to
the physical reality.
One of the key contributions of our work is in fram-

ing the problem as a sparse estimation problem, in a
way that allows a wealth of machine learning knowledge
to be applied to it. In particular, the problem of

identifying sparse models that can be physically inter-
preted has recently gained much attention in machine
learning, data mining and statistics due to the exponen-
tial growth in publicly available data [18]. We show here
that identification of true variable regions in an ensem-
ble is naturally formulated as a sparse learning problem
via Lasso. This formulation allows us to rigorously deal
both with noise in the experimental data and uncer-
tainty associated with the structure-building process.
Our approach of using Lasso is quite general, and can
be applied to any structural data. Application of our
method to proteins of interest may reveal interesting
conformational changes that might go unnoticed due to
the absence of alternate structural evidence, i.e., inde-
pendently solved alternate conformations, which are still
expensive and cumbersome to obtain.
A key intuition driving our approach is as follows: to

identify true variability in a protein fragment, rather
than performing a per-atom statistical test, we perform
a whole-model statistical test. A per-atom test will
essentially ignore correlated motions (even if small)
between neighboring atoms; in contrast, a whole-model
test will be able to identify even small correlated
motions. We formalize this approach using the Lasso-
based test. We exploit the idea of borrowing informa-
tion from all the samples to make a reliable statistical
inference on a particular sample. In contrast, a pairwise
t-statistic approach uses information from only a single
sample to make a decision [13].

Related Work
Coordinate-based methods using pairwise comparisons
have had reasonable success in identifying flexible
regions [11,19]. However these techniques were
designed to identify true flexibility in conformations that
have been solved independently, where there is already
some evidence of variability. Nigham et al. give a statis-
tical test based on pairwise RMSD to identify regions
showing true variability in the presence of noise. Key to
their method is the assumption of a uniform, normal
independent noise (artificially added) at each coordinate.
However, this assumption typically does not hold in rea-
lity [20].
Related approaches rely on the use of various para-

meters such as torsion angle differences, temperature
factors and RMSD. Torsion angle differences are highly
sensitive to noise: small deviations in coordinates might
cause significant changes in torsion angles [11]. Tem-
perature factors (B-factors) are parameters used to
model uncertainty in atomic positions; the value of the
B-factor corresponding to an atom represents the degree
of uncertainty in that atom’s location in the model. This
distribution accounts for small vibrations about an
atom’s position. However, B-factors tend to encapsulate
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in one value the conformational variability, as well as
ambiguities related to inadequacies in data (e.g., related
to crystal imperfections, errors in measurement of inten-
sities). This problem is aggravated at medium-to-low
resolutions (> 1.5Å). At such resolutions, B-factors act
as “error-sinks,” absorbing any errors (not necessarily
related to protein motion) in the optimization and
model building process [17].
A number of methods have been proposed to model

multiple conformations that might give rise to X-ray
crystallographic data from a single crystal [7,9,10,12].
Although independently optimized multi-conformer
representations prove to be a very attractive solution,
interpretation of what the ensemble represents is a gray
area [9,12]. Knight et al. (2008) give a simple residue-
level heuristic test based on the variance in the ensem-
ble to identify true variability. However, there is no con-
sensus method to identify true structural variability, and
the interpretation of such ensembles is still the subject
of debate [9,12].

Results
Our method consists of two steps (Figure 1): a) con-
struction of an ensemble representative of the observed
data, and b) analysis of the variability in this ensemble
using Lasso. The ensemble generation algorithm is inde-
pendent of the classification of variability; the ensemble
can be obtained from any other method. However, it is
important to ensure that all the structures in the ensem-
ble are of high-quality, and represent the data almost as
well as the PDB structure (see Methods: Ensemble Con-
struction). To formulate the classification problem using
Lasso, we express the PDB structure as a linear combi-
nation of the members of the ensemble (each member
is thus a feature). We fit the regression using EDMs
obtained from the diffraction data and 3-D coordinates
of individual members. Members of the ensemble that
are noisy versions of the PDB structure, and hence
more correlated with it, will be selected in this regres-
sion. The remaining structures are classified as truly
variable (see Methods: Analysis of variability and Elec-
tron Density Map).

Synthetic Data
Our algorithm successfully models variability in a simu-
lated crystal having two conformations, one the PDB
structure (conformer 1) and the other constructed com-
putationally (conformer 2) (Figure 2A; green and gray;
RMSD = 0.989 Å). The second conformer was con-
structed using ChainTweak [21]; we randomly selected a
conformation from a set of 100. Side chains were built
using RAPPER and all atoms were assigned a B-factor of
30 Å2. Synthetic diffraction data were computed by
averaging the simulated structure factors of the two

conformers using the experimental resolution cutoffs
[12,22].
Starting from an EDM of the simulated crystal, our

algorithm generates structures similar to both the origi-
nal structures (Figure 2A, B). Of the 13 structures output
by the algorithm, 4 structures were non-redundant;
remaining structures were almost identical to these 4
structures. Lasso regression on these 4 structures shows
that the ensemble correctly identifies the heterogeneity in
the original data; 2 structures have coefficients ω ≈ 0 with
regression done with EDM of conformer 1 (as per a t-test;
colored blue in Figure 2A), corresponding to structures
with true variability (see Methods: Electron Density
Map). Moreover, the same conformations had statisti-
cally significant coefficients (ω > 0) in the regression with
the EDM of conformer 2. Indeed, these conformations are
closer to conformer 2 (RMSDs = 0.298, 0.128 Å) than the

Figure 1 Overview of the ensemble generation and classification
algorithm. Roughly 2000 conformations are constructed using
ChainTweak and side-chains are added using RAPPER. The
optimization is carried out until the fit-to-data converges (Rfree). In the
final step, structures that collectively represent the data as well as the
PDB structure are selected for classification via Lasso. EDM: Electron
density map. R is a measure of agreement between the amplitudes of
the structure factors calculated from a structure and those from the
original diffraction data. Rfree is the corresponding cross-validation
parameter, calculated on diffraction data not used in the structure
optimization process [20].
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conformations classified as non-variable (RMSDs = 0.456,
0.765 Å). The algorithm thus appears to recover the het-
erogeneity in the data (Figure 2B).
Performance analysis
Our method is robust and consistent (Figure 3A, B).
The consistency and accuracy of our method depends
on the extent of correlation between the features (see
Methods: Analysis of variability). Correlation between
structures that are truly variable and ones variable due
to noise, will result in different regularization penalties
(l) selecting very different structures, leading to highly
variable regression weights [23,24]. Our simulations
indicate that the features (i.e. conformations in
the ensemble) are uncorrelated to a large extent
(Figure 3A), indicated by the overall smooth trends for
ω as we increase the regularization penalty l. Increasing
l shrinks the individual weights of the features towards

zero, thereby decreasing the ratio |ω|1/max|ω|1. We
believe the overall smoothness of the regularization path
may be due to the efficiency of the sampling algorithm-
ChainTweak, which constructs highly diverse and
uncorrelated conformations. In our simulations we find
that, of the four structures in the ensemble, only one
structure (red) is dominant for all regularization penal-
ties. A second structure (red) is selected only at low l’s
(< 50; Figure 3A).
We find that our overall classifications are quite

robust to the size of optimized grid region ‘G’ (see
Methods: Electron Density Map). The average weight of
a structure, calculated by averaging over all fragments, is
consistent across varying fragment and window sizes;
structures represented in red do indeed have the highest
average weights and those in blue, negligible average
weights (Figure 3B). One could vary ‘G’ in two ways: by

Figure 2 Example of ensemble construction and classification. A) PDB structure is shown in green, the second conformer in the synthetic
crystal is in gray. The two structures classified by Lasso as variable are shown in blue and the two as variable due to noise, in red. B) Summary
of the algorithm output using synthetic data. RMSD is calculated with respect to the PDB structure (green). Suitability of the linear model and
statistical significance of the regression coefficients were evaluated using standard techniques (R2 and t-test).

Figure 3 Performance analysis. A) Regularization path for the ensemble (|ω|1 ® 0 as l ® ∞ towards left). B) Residue-level lasso with varying
window sizes centered on each residue (l = 10). The color code is the same as in Fig 2.
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splitting the chain into separate fragments and carrying
out Lasso on each one, or by sliding a window centered
around each residue and optimizing over each window.
Our results on the fragment-based approach are identi-
cal to Figure 3B; we used fragment sizes of 1,2,4 and 8
(data not shown). For the second approach, we used
sliding windows of sizes 3 and 5 centered on each resi-
due (Figure 3B), and optimized over the bounding box
enclosing the residues in the window.
Comparative analysis
Lasso compares favorably to other methods in identify-
ing true flexibility. The pairwise comparison method of
Nigham et al. (Pflex) is sensitive to the standard devia-
tion of added noise (s). Pflex computes a flexibility mea-
sure, ‘f’, for each residue based on RMSD, s and a
threshold p-value. A lower f implies higher flexibility.
We used the values suggested by Nigham et al. for s
(0.1 < = s < = 0.2) and the threshold p-value (= 0.0001).
Pflex tends to easily classify structures as variable at low
levels of added noise (s = 0.1, Figure 4A); three of the

four structures in the ensemble are classified as variable.
At higher noise levels it fails to classify any structure as
truly variable, leading to false negatives; f remains at 8
for all residues for all structures in the ensemble (s =
0.2, Figure 4A Inset). While B-factors can correctly
identify the regions of high variability, they fail to distin-
guish between noise and true variability, as evidenced by
the similar profiles (Figure 4B). RMSD (best-fit) provides
some indication of the true variability, but the interpre-
tation may be sensitive to noise levels. The extent of the
initial variability in the crystal, represented by each
structure in the ensemble can be analyzed by looking at
normalized RMSD: RMSD from the PDB structure nor-
malized by the RMSD of conformer 2 (from the PDB
structure). A higher normalized RMSD implies the
structure is closer to conformer 2, and a lower score
implies it is closer to the PDB structure (Figure 4C).
However, it is not clear what RMSD cutoff one should
use in the presence of noise to robustly classify a struc-
ture as variable.

Figure 4 Comparative analysis. A) Pflex is sensitive to the parameter s, producing false-positives at low values and false-negatives at higher
values (inset). B) Average B-factors correctly identify the regions of variability, but cannot distinguish between true variability and variability due
to noise. C) Choosing a RMSD cutoff for classification is difficult with noisy coordinates. The color code is the one used in Figures 2 and 3.
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Real Data
Our algorithm performs well on experimental diffraction
data from 5 crystal structures across a range of resolu-
tions (Table 1). We evaluated our models by comparing
them with the best available single-conformer model
(i.e., PDB). Analysis of data fits and variability amongst
the models emphasizes the advantages of representing
the data using multiple conformers. Even when our
ensemble contains models differing by ~1 Å, we get an
equivalent/improved fit to data: Rens

free is lower than or
equal to the PDB Rfree. Our average improvements in
Rfree are competitive with other approaches that con-
struct multiple-conformer representations [7,9,12].
Tests on real data show that multi-conformer models

add the most value at low resolutions; at high resolu-
tions (< 1.5Å) the ensemble is not able to significantly
improve upon the fit-to-data (Table 1 PDB
Rfree <= Rens

free). It is possible that the truly variable con-
formers themselves cluster into a small number of sets.
This may be especially true for PDB structures 3di9 and
1ew4, where the greater number of observations might
have a bearing on the larger size of the ensemble. More-
over, for low resolutions, it is interesting to note that
most of the variability observed is due to noise - less
than 8 alternate conformers are truly variable in most
cases. This re-confirms the importance of analyzing the
basis of variability, particularly in multi-conformer
representations of low resolution data. Our method is
suited for this analysis as the structures are selected
robustly and the resulting sparsity can be physically
interpreted.
We observe that Lasso can classify variability effec-

tively for most cases; structures classified as variable

appear to differ more than those classified as non-vari-
able (Figure 5A, B). Since we use an iterative method to
solve the regression problem, interpretation of variability
in the ensemble can be further analyzed by looking at
the solution trajectory for Lasso (ω vs. Lasso iteration;
Figure 5C). The trajectory can help give a qualitative
picture of the landscape near the native conformation:
structures whose coefficients go to zero faster are
farther away from the native structure.
We then asked the question: “is there any biological

insight from the ensemble that can help us in under-
standing protein function ?” To this end, our results on
the crystal structure of the human ubiquitin-conjugating
enzyme (Ubc9, pdbid: 1a3s) give some interesting anec-
dotal evidence [26]. Using a window-size of 5 centered
on each residue, we applied Lasso to identify the most
variable regions for 1a3s (11 structures; Figure 6A). Four
fragments turn out to be highly variable: the N-terminal
helix (6-20), 30-40, 115-120 and C-terminus residues
135-145. This is in good agreement with NMR experi-
ments, which reveal that Leu6, Ala10, Arg13, Arg17,
Leu38, Leu119, Gln126, Asp127, Ala129, Glu132, Ile136
and Asn140 are amongst the most flexible residues in
an otherwise rigid structure [27,28]. These residues
overlap with our predictions of the true variable regions
(Figure 6A). Our method is thus able to identify physi-
cally relevant variabilities.
Additionally, it is known that the N-terminus is

important for Ubc9’s specificity for SUMO rather than
ubiquitin [27,28]. However, the molecular mechanisms
responsible for substrate identification and interaction
are not well understood [29]. Tatham et al. (2003) con-
ducted site-directed mutagenesis experiments on Ubc9
to discover that mutations R13A/K14A and R17A/K18A
disrupted Ubc9’s interaction with SUMO-1. More
recently, through a crystal structure of the Ubc9-
SUMO-1 complex, R13 and R17 have been observed to
be involved in key non-covalent interactions with
SUMO-1 [30]. A closer look at the heterogeneity mod-
eled by our method suggests two possible conforma-
tional states for R13 (Figure 6B). Proximity of the two
arginines at positions 13 and 17 indicate that such con-
formational changes might influence the binding inter-
face with an E1-ubiquitin conjugate [28,30]. Finally, we
looked at the dynamics captured by the ensemble near
the active site for substrate recognition Cys93. We find
that Gln126 and Asp127 have been modeled in multiple
conformations by our algorithm (Figure 6C). Interest-
ingly, these residues have been shown to be highly flex-
ible and possibly important for substrate recognition
through mutagenesis experiments [31]. Further detailed
analysis in light of our results could give some insight
into the molecular mechanisms underlying such specific
interactions.

Table 1 Summary of the models obtained using real
diffraction data

PDB id 1ew4 1q4r 3di9 9ilb 1a3s

Resolution(Å) 1.4 1.9 2.0 2.3 2.8

No. Of
reflections

22183 7578 22017 9535 5605

PDB R 0.206 0.187 0.244 0.156 0.176

PDB Rfree 0.229 0.245 0.264 0.193 0.236

Rens
free

0.228 0.216 0.237 0.193 0.240

Ensemble Size 77 4 40 5 11

RMSD (Å) 0.792-
1.13

0.678-
0.859

0.728-
1.085

0.805-
1.413

0.826-
1.238

PDB R and Rfree are calculated after 6 iterations of optimization in PHENIX [25].
These may differ from published values. “No. of reflections” gives the total

number of experimental observations (i.e. intensity measurements). Rens
free

measures the collective ability of the ensemble to represent the data. Rens
free is

calculated in the same way as Rfree, except that amplitudes of structure factors
averaged over the ensemble are used to calculate the residual [7]. Small
RMSD ranges observed for the ensemble highlight the challenges of
identifying true variability in real data.
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Conclusions
We have introduced a novel technique for analyzing
conformational changes that may be present in a real
protein crystal. Our method first constructs a high-qual-
ity, diverse ensemble of structures respresentative of the
crystallographic data. We then use a sparse estimation
algorithm (Lasso) to distinguish structures that are gen-
uinely variable from those that appear variable due to
noise.
Unlike previous approaches, our method involves the

estimation of variability by operating in the EDM space
rather than in the 3-D coordinate space. This allows us

to avoid the errors that are implicitly introduced in
inferring the 3-D coordinates from the EDM. In particu-
lar, our method is able to effectively deal with correlated
motions, without assuming independent and identically
distributed (i.i.d) noise - a key assumption in earlier
approaches [11]. Tests on real data show that the algo-
rithm is able to capture physically relevant conforma-
tional changes, even for low resolution structures where
the amount of noise is significant. Another advantage of
operating in EDM-space is that our current technique is
independent of any structure inference packages, and
can be integrated to improve structure inference at an

Figure 5 Interpretation of ensembles on real data. A) Lasso tests on 9ilb:124-132 classifies 2 structures as non-variable (pink, yellow). B) For
the same loop, structures classified as truly variable (red, cyan, green) deviate more from the PDB structure (black). C) Trajectory of the solution
can give qualitative knowledge of the landscape in the vicinity of the native structure. All density maps are contoured at 1.5s for clarity. Figures
were generated using PyMol [36].
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earlier stage in the structure-building process (e.g., from
an initial experimental EDM). We believe that this
approach is particularly useful in inferring/analyzing
low-resolution structures. A common criticism of
ensemble modeling approaches at low-resolutions is that
they over-fit the data [9,12]. In contrast, our use of
Lasso enables us to identify and discard structures that
are variable only due to noise, permitting simultaneous
optimization of the ensemble against the data without
significant over-fitting risk. This, in turn, should
improve automated structure determination at low reso-
lutions where ambiguous EDMs often lead to error-
prone single conformer models [9,12].

A key contribution of this paper is the Lasso-based
statistical test to distinguish variability due to noise
from that due to true heterogeneity. We believe that the
general approach we have introduced - to evaluate noise
using the entire ensemble, rather than on a per-atom
pairwise basis - may be of value in other ensemble
based analyses also. Lasso’s performance as a statistical
test here could be further improved by using kernel-
based algorithms that can effectively deal with correla-
tions and non-linear generative models [32].
Correctly estimating the true variability in a protein’s

structure is crucial. Our results indicate that the magni-
tude of variations within the ensemble could give

Figure 6 Flexibility analysis of the 1a3s ensemble. A) Residue level Lasso with a window size of 5 reveals four fragments (peaks) of potential
interest: 6-15, 30-40, 115-120 and135-142. B) The N-terminal region (12-20) of 1a3s. Multiple rotamers of R13 (left, red) might affect the
interaction surface consisting of R18 (red), K14 and K18 (yellow), thus influencing Ubc9’s N-terminus specificity. C) Variability around the catalytic
site Cys93 (yellow). Residues Gln126 (brown) and Asp127 (green) have been identified through mutagenesis experiments as critical for Ubc9’s
interaction with a substrate. The black structure represents PDB coordinates.
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misleading results for structural analysis, especially with
single conformer models. Furthermore, true, localized
variability could have a significant impact on solvent
accessibilities, secondary structure prediction, estimation
of electrostatic and potential energies, and template-based
homology modeling techniques [8]. Accurate estimate of
these quantities, in turn, is crucial to understanding the
biochemical and functional characteristics of a protein.

Methods
Ensemble Construction
To obtain a diverse, high-quality ensemble representing
the X-ray diffraction data, we seed a single-conformer
maximum likelihood optimization procedure (e.g., PHE-
NIX) with a diverse set of conformations [25]. We
assume that realistic conformations explaining the crys-
tallographic data will be within a limited RMSD distance
of the published PDB structure; this follows similar
assumptions in previous work [7,10]. However, hinge
motion, if present in a single crystal specimen, can also
be detected by sampling in a larger conformational
space around the PDB structure. Starting from the back-
bone coordinates in the PDB, we construct alternate
backbone conformations within 2Å RMSD using
ChainTweak, a state-of-the-art inverse-kinematics based
neighborhood-sampling algorithm [21]. ChainTweak
can, in principle, exhaustively sample from the neigh-
borhood of a conformation; leading to a highly variable
and diverse ensemble. For each backbone, we assign
side-chains using RAPPER [7], based on their fit to the
Electron Density Map (EDM). We tried sampling from
higher RMSD neighborhoods around the PDB structure,
but RAPPER often fails to find a rotamer-assignment
compatible with the EDM for conformations greater
than 2Å RMSD from the PDB backbone. The final
ensemble is obtained by subsequent optimization using
PHENIX and filtering based on fit-to-data, measured
using a cross-validation parameter Rfree; lower Rfree

implies better fit-to-data. The final ensemble consists of
structures that are of high quality and collectively repre-
sent the data, as well as the PDB structure (Figure 1).

Analysis of Variability using Lasso
Given an ensemble of conformations, our goal in this
section is to identify the subset of conformations whose
variation from a given base conformation is most likely
due to only noise in the experimental data. The remain-
ing conformations can then be interpreted as demon-
strating true variability compared to the base
conformation. The choice of a base conformation here
is arbitrary; a natural choice for it is the PDB structure,
since one is often interested in conformational variabil-
ity not captured by the published PDB structure. To
achieve this goal, we formulate a Lasso regression

problem: we express the base conformation as a linear
combination of the ensemble members (each such
conformation is thus a feature); we use experimental
data (i.e. diffraction data) to fit this regression. As part
of the Lasso framework for feature selection, we assign
(unknown) weights to each feature. The key strength of
Lasso is that it is likely to make the weights for irrele-
vant features exactly zero, clearly identifying them. The
intuition here is that structures sampled from a Gaus-
sian distribution (i.e. modeled by B-factors) about the
PDB structure should be more predictive of the PDB
structure than structures displaying true variability. The
former structures will be assigned a non-zero weight
during Lasso and can then be classified as not displaying
true structural variability, since they are adequately
represented by the PDB structure and do not represent
biologically relevant long time-scale motion.
Lasso regression is often an effective technique for

shrinkage and feature selection in cases where feature
selection must be performed with noisy, limited data
[16,32,33]. The loss function of Lasso regression is
defined as:

L =
∑

i

(yi −
∑

p

βpxip)2 + λ
∑

p

||βp||1 (1)

where xip denotes the pth predictor (feature) in the ith
data point, yi denotes the value of the response for this
data point, and bp denotes the regression coefficient of
the pth feature. The l1 regularizer leads to a sparse solu-
tion in the feature space, which means that regression
coefficients for the most irrelevant and redundant fea-
tures shrink to zero. Interestingly, recent theoretical
work recovers Lasso as a formulation of a linear robust
regression problem under feature-wise uncorrelated and
norm-bounded noise [33]. The authors suggest that
such problems are of interest when values of the fea-
tures are obtained with noisy pre-processing steps, and
the magnitudes of such noises are bounded.
We exploit this parallel in our formulation, where we

compute each feature (i.e. each structure in the ensem-
ble) by optimizing against the observed data. The PDB
structure is the observed quantity, and the individually
optimized structures in the ensemble are our noisy pre-
dictor features. A sparse solution in the b space will
then represent structures which are variable due to
noise (bp > 0), thus decomposing the variability
observed in the ensemble. To get the regularization pen-
alty l, we follow suggestions based on other applications
of Lasso and use cross-validation [16,24].

Electron Density Map
Lasso regression can be performed either in the coor-
dinate space or the electron density space (EDM). In
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contrast to previous approaches, which use coordi-
nate based methods for pairwise structure compari-
son, we have designed the test using EDMs, since the
former cannot distinguish between model errors and
genuine structural outliers [17]. EDMs are obtained
by taking an inverse-fourier transform of the
observed diffraction data, which are appropriately
scaled using B-factors [22]. Another advantage of
using an EDM is that it directly includes the B-fac-
tors of the models, and hence can also inherently
deal with isotropic or anisotropic B-factors. This cir-
cumvents the problem of estimating actual uncer-
tainty from B-factors, which is often a challenge for
coordinate based methods. The simple regression test
quantifies the relevance of each structure in the
ensemble to the Gaussian distribution around the
PDB (as given by the B-factors).
As part of our Lasso formulation, we assume as the

observed variable, the EDM computed from the PDB
structure. The predictor variables, or features, are EDMs
of structures in the ensemble. The electron density at a
point ‘g’ on a grid describing the observed EDM (ρg

PDB),
is then modeled as a linear combination of electron den-
sities at the point ‘g’ of the predictor EDMs (ρg

i ). We
assume that the observed electron density is noisy with
respect to our generative model and model this using a
normally distributed noise component εg. We then mini-
mize the Lasso loss function:

ρ
g
PDB =

∑

i

ωiρ
g
i + εg (2)

min
∑

gεG

(ρg
PDG−

∑

i

ωiρ
g
i )

2+ λ
∑

i

ωi (3)

Here, ωi are the regression coefficients. The structures
for which ωi approaches zero are the ones most irrele-
vant compared to the PDB, and hence exhibit true varia-
bility. To optimize over a fragment (e.g., one residue), ‘g’
is restricted to the bounding box for the fragment.
All EDMs are constructed using Clipper [34], and are

described on the same unit cell with the same symmetry
as that of the PDB structure. The optimization was car-
ried out using the non-linear optimization library
IPOPT, which uses an interior point method, combined
with an efficient line-search procedure, to minimize the
non-linear objective function [35].
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