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extremely large datasets of DNA data
Vladimir Yanovsky

Abstract

The growing volume of generated DNA sequencing data makes the problem of its long term storage increasingly
important. In this work we present ReCoil - an I/O efficient external memory algorithm designed for compression of
very large collections of short reads DNA data. Typically each position of DNA sequence is covered by multiple reads
of a short read dataset and our algorithm makes use of resulting redundancy to achieve high compression rate.
While compression based on encoding mismatches between the dataset and a similar reference can yield high
compression rate, good quality reference sequence may be unavailable. Instead, ReCoil’s compression is based on
encoding the differences between similar or overlapping reads. As such reads may appear at large distances from
each other in the dataset and since random access memory is a limited resource, ReCoil is designed to work
efficiently in external memory, leveraging high bandwidth of modern hard disk drives.

1 Introduction
1.1 Motivation
High speeds and relatively low prices of High Through-
put Sequencing (HTS) technologies led to their wide-
spread use for various kinds of applications, making it
important to store high volumes of generated sequencing
data efficiently.
Given a genetic sequence, an HTS sequencer outputs a

set of subsequences, called reads, of the sequence. Unlike
the more expensive sequencing technologies that were
used, for example, for the Human Genome Project, the
HTS reads usually have higher error rate and shorter
lengths. On the other hand, the datasets produced by an
HTS sequencer are usually of high coverage, i.e. they can
have many different reads overlapping at each position,
making them highly compressible. In this work we address
the problem of compression of datasets of HTS reads.
Previous research [1] show that for the sequence of a

human genome it is hard to achieve compression rate
significantly better than a trivial two bits per nucleotide.
Hence the algorithms for compression of HTS datasets
must take advantage of the self-similarity due to read
overlaps. One difficulty that must be overcome is that for
huge HTS datasets similar or overlapping reads can be at
great distance from each other in the input and splitting

it into smaller chunks will miss these similarities. Hence
our goal was a compression algorithm that works on the
whole dataset at once, using external memory without a
significant hit in performance.

1.2 Previous Work
DNA Sequence Compression
DNA sequence contains a large number of approximate
repeats. Yet, general purpose compression tools, such as
gzip or bzip2, cannot make use of this redundancy in
order to achieve compression rate for DNA sequences or
datasets significantly better than the trivial encoding of
two bits for each of four possible nucleotides [1].
Specialized DNA compression algorithms find approxi-

mate repeats in the sequence and then attempt to encode
efficiently the differences between the instances of the
repeat. The best compression to date for a single sequence
is achieved by DNACompress [1]. This tool is based on
PatternHunter [2] - a package for sequence homology
search similar to BLAST. DNACompress runs Pattern-
Hunter to find approximate repeats in the sequence, then
sorts them such that long high similarity repeats appear
first. During the encoding stage DNACompress extracts
the highest scoring approximate repeat and encodes all its
instances using edit operations transforming between
them. Then the list of all hits reported by PatternHunter is
filtered out of all sequences overlapping with those
encoded by the step. This step is repeated until theCorrespondence: volodyan@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto, Canada

Yanovsky Algorithms for Molecular Biology 2011, 6:23
http://www.almob.org/content/6/1/23

© 2011 Yanovsky; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:volodyan@cs.toronto.edu
http://creativecommons.org/licenses/by/2.0


remaining highest scoring hit has the score below some
threshold. While it is possible to modify DNACompress
for the compression of the datasets of HTS reads, it is not
designed to handle large input size: in [3] the authors
tested DNACompress and found it could not handle even
the smallest of their datasets.
Genomic Dataset Compressed Indexing
Several works consider the problem of compressed full-
text self-indexing of a DNA dataset. For example, Makinen
et al. [4] describes an algorithm to build a compressed self-
index for a collection of strings of equal length generated
by the SNPs in a single string. The index they introduce is
a suffix array based data structure that given a string T
permits the following operations:

- Count(T) - counts the number of appearances of T
as a substring of the strings in the collection
- Search(T) - outputs the positions where T appears
as a substring in the strings of the collection
- Display(i, j, k) - displays Sk[i ... j], where Sk is the
k’th string of the collection

While compressed full text indices achieve lower com-
pression rate than known dedicated compression utilities
[5], they address a different set of tradeoffs than our work,
in which we attempt to achieve the best compression rate.
Compression Using Known Reference Sequence
Knowing a reference genome makes it possible to achieve
very high compression rate by storing only the differ-
ences between the sequences. In [6] this approach was
used for compression of a single human genome. To
further improve the compression rate, the algorithm
stores the mutations in the target genome using public
databases of known genomic variations. The result was
just a 4 MB compressed file.
Other tools, such as SlimGene [7] and MZip [8], address

the problem of compressing a dataset by mapping each
read against a highly similar reference sequence and stor-
ing only the differences between the read and the refer-
ence. These tools receive as an input alignments of each
read produced by a mapping program and use methods
for variable length integer coding, such as Huffman cod-
ing, to efficiently store the alignments. In addition to com-
pressing DNA sequences, SlimGene [7] and MZip [8]
discuss ways to efficiently store the quality scores - the
values attached to each position in the read, reflecting the
confidence level of the sequencer in its output for that
position. Due to relatively high space requirement of the
quality scores, the works suggest to store them using lossy
compression, arguing that, in practice, storing exact values
would not be beneficial in most applications. In this work
we only address compression of DNA sequences.
There are limitations to the reference-based approach.

The reference sequence might not be available, for

example for a metagenomic dataset, or not be similar
enough for organisms with very high polymorphism.
Also, there is a strong practical advantage of compres-
sion methods that keep all the data required for the
decompression in the compressed file. Decoding a refer-
ence-based encoded sequence, especially following a
transfer or long term storage, can be inconvenient, as
the decoder must be able to access the reference, likely
to be stored separately from the compressed dataset due
to its size.
Reconstruction of the original (or assembled) sequence,

if it is not given, and using it as the reference for storing
the dataset is not a viable option: the problem of genome
assembly, especially in the presence of sequencing errors,
is computationally too expensive and there are no known
De Novo assembly algorithms that would work on a
workstation [9]. Hence our interest in this work to con-
sider the problem of compression of a dataset under
assumption that the original sequence is unknown.
Coil
[3] is a tool designed for compression of datasets of
DNA sequences. Coil builds a hash table H of the lists
of locations of all DNA strings of length k, called k-
mers, and uses it to find the subset of sequences similar
to each sequence in the input dataset S. This subset can
be found as follows: for a sequence Si compute the set
of all k-mers in Si and use hash table H to merge the
lists of sequences containing them. Those sequences
that appear frequently enough in the merged list are
likely to be similar to Si. Since this merged list has to be
found for each input sequence, in order to speed up
execution, Coil uses the following Least Recently Used
(LRU ) heuristic for k-mers’ list merging. When Coil
computes the set of sequences similar to Si, instead of
merging all location lists for all k-mers in Si into one
possibly very long list, it manages only a fixed number r
of small, fixed-size LRU arrays Aj, 0 ≤ j < r, which
together hold the most recently accessed sequences that
share a k-mer with Si.
The sequences in each Aj are maintained in the order

of time since their last sighting and for each sequence
Coil counts the number of times the sequence was
accessed since it was placed in Aj last time. Scanning
through the lists of sequences containing each k-mer in
Si, each such sequence s is merged into Asmodr as fol-
lows: if s is already present, its counter is incremented
and the sequence is moved to the front of the array;
otherwise all sequences in the array are shifted back to
make space for s, discarding the least recently seen
sequence if the array was already full. The size of this
array is necessarily small, otherwise the updates to it
would be too expensive. This may result in sequences
being placed in and removed from some Aj repeatedly
in the cases when k-mer lists are expected to be long
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such as for smaller values of k and for datasets contain-
ing many short reads, like those produced by HTS.
In the next stage Coil builds a weighted similarity graph

with the vertices corresponding to the sequences of the
dataset and an edge between a sequence Si and each
sequence in each array Aj. The weight of each edge equals
the corresponding appearance counter.
In the encoding step, in a manner reminiscent of phy-

logenetic tree approximations, Coil uses the Maximum
Spanning Tree in the similarity graph as its encoding
tree. Coil stores the read in the root of the spanning
tree explicitly and then encodes, in the order of a preor-
der traversal of the tree, each child with the set of dif-
ferences between it and its parent. If the weight of the
edit script is above some threshold, the child is stored
explicitly. Finally, Coil compresses the scripts with a
general purpose compression utility such as bzip2.

1.3 Our Contribution
In this work we design a compression algorithm suitable
for very large datasets. As for this task the internal mem-
ory is the main bottleneck, ReCoil does not assume that
the input or the data structures created by the algorithms
fit in RAM. Instead, ReCoil uses hard disks as its working
memory. While bandwidth of modern disks is comparable
to that of internal memory, their access times are many
orders of magnitude slower. Hence, if the algorithm is
designed in a way to minimize the number of random
accesses, its performance can become competitive to the
RAM-based algorithms. All steps of ReCoil were designed
as reductions to either scanning or sorting of the input -
two tasks that can be done I/O-efficiently. Decompression
can be reduced to input scanning, hence it is very fast.
The main contribution of the ReCoil algorithm is over-

coming the necessity to split large datasets into smaller
chunks in order to fit in Random Access Memory. In addi-
tion, while sharing the idea of spanning tree based com-
pression with Coil, our algorithm improves over Coil in
various ways:

- ReCoil makes use of highly repetitive k-mers. Coil
does not compress high count repeats, storing them
explicitly.
- ReCoil’s encoding scheme allows for encoding of
matches of arbitrary length, while the only edit
operations allowed by Coil are insertions, deletion
and substitution of a single nucleotide. While SNPs
are the most frequent mutation, Coil’s encoding
scheme is not efficient for encoding of the similarity
due to overlaps between reads, which are the main
source of compressibility of HTS datasets.
- ReCoil uses effectively the complementarity of the
DNA in the dataset.

We compare our algorithm to the general purpose
compressors such as bzip2 and 7-zip as well as to Coil.
It should be noted that one of the reasons ReCoil and
Coil can achieve better compression than the general
purpose tools is that the order of reads in the dataset is
not significant and they can safely disregard it. The
source code is available from the author upon request.

2 Methods
ReCoil uses the natural idea that if two strings s1 and
s2 are sufficiently similar, then it is more space effi-
cient to store one of the strings and the differences
between it and the second string, then to store both
strings explicitly.

2.1 Memory Model and Basic Definitions
Memory Model
We use the standard model of Aggarwal and Vitter
[10] for analysis of external memory algorithms. In this
model the machine has Random Access Memory
(RAM) of size M and a disk of unlimited size. The
CPU can operate only on data that is currently in
RAM. Data is transferred between RAM and the disk
in blocks of B consecutive elements, where B < M. In
this model performance of algorithms is measured in
terms of number of accesses to the disk, reflecting an
observation that runtimes of most disk-bound algo-
rithms are dominated by disk accesses. Aggarwal and
Vitter [10] prove that in this model scanning an array
of size n has complexity Θ (Scan n) = Θ(n/B) and sort-

ing requires Θ(Sort n) = Θ( nB logM
B

n
B) accesses to the

disk. It is common to express I/O performance of an
algorithm on data of size n in terms of the Sort and
the Scan complexity.
Basic Definitions
Before proceeding to the description of the algorithm let
us introduce some basic definitions:

- For an integer k and a string s we call the set of all
substrings of s of length k the seeds or k-mers con-
tained in s.
- Maximal exact matches (MEMs) are exact matches
between two strings that cannot be extended in
either direction towards the beginning or end of two
strings without allowing for a mismatch.

Next we will give a brief overview of the compression
algorithm and explain it in more detail later.

2.2 Overview
To encode the similarities between two reads ReCoil
uses the set of MEMs between them: in order to encode
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s2 given s1 we store the locations of MEMs shared by s1
and s2, and the letters of s2 not in these MEMs.
The similarity graph for the dataset is defined as a

weighted undirected graph with vertices corresponding
to the reads of the dataset. For any two reads s1 and s2
the weight of the edge connecting them should reflect
the profitability of storing s1 and the differences between
it and s2 versus storing both reads explicitly.
The encoding algorithm has four major steps, all of

which have at most O(Sort n) I/O complexity:

- Compute the similarity graph.
- Find the set of encoding edges - the edges of a
maximum spanning tree (MST) in the similarity
graph (there may in general be multiple MSTs).
- Pick the root of the MST arbitrarily and store the
sequence in the root explicitly.
- Traverse the MST, encoding each node using the
set of the Maximum Exact Matches (MEMs)
between the node’s read and the read of its parent
in the MST.

Note that while the similarity graph is defined here as a
clique, unprofitable edges of high weight are not used in
the encoding and may be excluded from the graph. In
addition, for simplicity of the MST construction we make
the graph connected by adding for each i an edge of high
weight between reads ri and ri+1.

2.3 Construction of the Similarity Graph
We define the weight of an edge of the similarity graph
to be equal to the number of k-mers shared by the reads
corresponding to the edge’s endpoints. As for large data-
sets this graph cannot be held in memory, its construc-
tion was reduced to an external memory merge sort
algorithm. In order to do this ReCoil creates an array
containing the seeds for all reads, sorts this array by
numeric representation of the seeds and uses the sorted
array to create an anchor for each pair of reads sharing a
seed:
This algorithm is illustrated in Figure 1.

1. For each string S - a read or its reverse comple-
ment - generate all seeds contained in S.
2. For some parameter t for each read select only the
seeds with the t topmost numeric representations
among all the seeds generated for that read. Output
all selected seeds to a file.
3. Sort the file created in step 2 by numeric repre-
sentation of the seeds.
4. Create an anchors file containing pairs of reads
sharing a seed. (Below we describe a heuristic to
deal with highly repetitive seeds).

5. Sort the anchors file lexicographically using exter-
nal memory sort.
6. Define the similarity graph as an undirected
weighted graph with vertices corresponding to the
reads and weight of an edge connecting two reads
defined as the number of anchors corresponding to
the pair of reads. (Note that after the sorting in step 5
the range of anchors corresponding to each pair of
reads is contiguous.)
7. Use an external memory MST construction algo-
rithm [11] in order to find the Maximum Spanning
Tree in the similarity graph built in the previous
step.

In step 2 we use the heuristic introduced in the Mini-
mus Assember [12] in order to limit the number of
seeds created by the algorithm.
Note that step 4 of the algorithm is quadratic in the

number of reads sharing a seed. Fortunately, if the seeds
are long, most of them have relatively low counts. Yet, to
restrict the time ReCoil spends on each seed, for the range
of reads containing the seed the algorithm first adds the
anchors corresponding to the reads that are adjacent in
the range, then those with distance of two between them,
etc. until some predefined number of anchors per seed
were created. In our tests the cut off was set to 80, i.e. we
created at most 80 anchors for each seed.
The external memory MST stage has O(Sort n) I/O

complexity [11], where n stands for the number of
edges in the similarity graph. It is easy to see that all
other stages of the algorithm are reductions to either
scanning or sorting of their inputs, thus have either O
(Scan n) or O(Sort n) I/O complexity, where n is the
size of the input to the stage.
In the following section we explain how we use the

similarities between the reads for compression.

2.4 Encoding the Dataset
The external memory Kruskal algorithm of step 7 builds
an unrooted tree where neither head-to-tail direction on
the edges nor any traversal of the spanning tree are com-
puted by the algorithm. Prim’s algorithm results in a
rooted tree but cannot be implemented efficiently in
external memory. One solution to find the directions of
edges (rooting) of the tree would be to use the external
memory Breadth First Search (BFS) algorithm described
in [13]. This algorithm computes the BFS order on a tree
of N vertices in O(Sort n) I/O operations using a reduc-
tion to an external memory algorithm for computing an
Eulerian Tour in a graph. Yet while the similarity graph
can be very large, its spanning tree can be stored in the
RAM of a modern computer for any practical number of
reads (vertices). Hence we can use a simple in-memory
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ACCGTTA
CCCTTAG
GTTAGCA

(ACC, 1); (CCG, 1); (CGT, 1); (GTT, 1); (TTA, 1);

(CCC, 2); (CCT, 2); (CTT, 2); (TTA, 2); (TAG, 2);

(GTT, 3); (TTA, 3); (TAG, 3); (AGC, 3); (GCA, 3)

(ACC, 1);                     (CCG, 1);

(CGT, 1);                     (GTT, 1);

(TAG, 2);                               (TTA, 3);

(AGC, 3); (CCC, 2);           (CCT, 2);

(CTT, 2); (GCA, 3);           (GTT, 3);

(TAG, 3); (TTA, 1); (TTA, 2);

(1, 3) [from GTT]

(2, 3)                  [from TAG]

(1, 2); (1, 3); (2, 3)  [from TTA]

(1, 2); (1, 3); (1, 3); (2, 3); (2, 3);

1

2 3

2

2

Sequences:

1. Seeds:

3. Seeds sorted:

4. Anchors created:

5. Anchors sorted:

6. Similarity graph:

1

2 3

2

2

7. MST in similarity graph:

Figure 1 Top level illustration of the algorithm of Section 2.3 for construction of the similarity graph for three sequences. To simplify
the illustration we do not consider here the reverse complement reads and the filtering of Step 2. The encoding that corresponds to the tree
can be found in Section 2.4.
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BFS algorithm for rooting of the spanning tree as it is fas-
ter than the external memory BFS for graphs that can fit
in RAM.
After the BFS, the algorithm uses an external memory

sort to reorder the reads in the order of the BFS traver-
sal of the MST. Let us denote with S the BFS-reordered
read array and with p(i) denote the position of a parent
of read S[i] in S. By construction, i < j ⇒ p(i) ≤ p(j).
Algorithm 1 scans through the array of BFS edges (p(i),

i) and S in parallel in order to encode read S[i] based on
read S[p(i)]. The algorithm runs several sequential scans
simultaneously. In case of a single disk, k simultaneous
scans can be implemented using a separate buffer of size
B for each scan, where B < M/k. As a result, the I/O
complexity of Algorithm 1 is the same as of the scan:
while the scan can use any block size B < M, the only dif-
ference would be in the multiplicative constant. In the
description below, Load(destRAM, srcdisk, pos) buffers
into a RAM array destRAM at most B bytes, starting
from position pos of a disk array srcdisk. The value
returned by the function is the position of the last ele-
ment read.

Init: Allocate arrays Children and Parents of B bytes;
Let LastParent = LastChild = 0, i = 1;
Write down S[0] - the sequence in the root -

explicitly;
foreach BFS edge (p(i), i) do
if i > LastChild then
| LastChild = Load(Children, S, i);
end
if p(i) > LastParent then
| LastParent = Load(Parents, S, p(i));
end
Use the MEM-based encoding of Section 2.5 to

encode the sequence S[i] given S[p[i]] or the reverse
complement of S[p[i]], depending on what results in a
shorter encoding;

end
Finalize: Use a general purpose compression algo-

rithm, such as 7-zip, to further improve the
compression.
Algorithm 1: Encoding of a BFS-ordered sequence S

of reads.
To illustrate the encoding, for the sequences of Figure 1

we have:

1. Reorder the sequences in the BFS order of the
MST, rooted in sequence 1, i.e. to (1, 3, 2):
ACCGTTA, GTTAGCA, CCCTTAG. Let’s label the
reordered sequences as 1’, 2’, 3’.
2. Write the root explicitly: ACCGTTA.
3. Encode 2’ referring to 1’: ReadLen = 7, MEMs =
(SourceID = 1’, StartIn-Source = 3, StartInDest = 0,
Length = 4); PlainTextLetters = GTT.

4. Encode 3’ referring to 2’: ReadLen = 7, MEMs =
(SourceID = 2’, StartIn-Source = 2, StartInDest = 3,
Length = 4); PlainTextLetters = CCC.

To further improve the compression rate, ReCoil uses
difference coding to reduce the ranges of the numbers it
stores. Like Coil, it uses separate files for storing properties
such as read lengths as these values are typically identical
and can be compressed well using the final general pur-
pose compression step. The combined I/O complexity of
this stage is the same as that of external memory sorting
of the reads.
Finally, we show how ReCoil finds the MEM-based

encoding of one read relative to another similar read.

2.5 Encoding Sequence Similarities
Given two strings s1 and s2 we use the following simple
algorithm to find all MEMs shared by them:

1. Merge the seeds contained in s1 and s2 in one
array and sort this array using the seeds’ numeric
representations as the keys.
2. Scan the sorted array and for each seed shared by
both s1 and s2 create a tuple (r1, r2), where r1 and r2
are positions of the seed in s1 and s2 respectively.
3. Sort the tuples defined above lexicographically,
where the keys are defined as (r1 - r2, r1), i.e. first by
diagonal of the match corresponding to the anchor,
then by the position of the match in the first read; as a
result, the anchors corresponding to each MEM follow
sequentially, making it easy to extract the MEMs. A
similar sorting strategy was used by Ning et al. [14].

In the next step ReCoil uses the sparse dynamic pro-
gramming algorithm of Eppstein et al. [15] in order to find
the subset of MEMs that results in the optimal compres-
sion of s1 relative to s2. This algorithm finds the optimal
alignment between two sequences under affine gap cost,
subject to the restriction that each matching segment is at
least k nucleotides long. The Gap Open Penalty is defined
by the shortest MEM length that is profitable to use for
the encoding. For larger values of k this algorithm is much
faster than the Smith-Waterman [16] algorithm.
Denote by Gain(s1, s2) the space saved if s2 is encoded

relative to s1 using the encoding described above. Since for
every MEM in the encoding, the space saved is the differ-
ence between the memory required to store the location
of the MEM versus storing it explicitly, Gain function is
symmetric and the same amount of space is saved,
whether s1 is encoded relative to s2 or vice versa.

2.6 Decompression
The inputs to the decompressor are several streams pro-
duced by the encoder: the read lengths, the list of MEMs
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shared between the reads and their parents that were
used for the encoding, as well as explicitly stored letters
of the reads. These streams are read concurrently. Note
that the data in the streams is ordered in the BFS order
on the encoding spanning tree. As in the case of algo-
rithm 1, the decoding uses several buffers in order to
implement multiple sequential accesses to a single disk.
Since the reads are decoded in the BFS order on the

encoding tree, in order to decode, we create a stream of
the decoded reads maintaining the position of the par-
ent of the currently decoded read. Since this position
changes in a non-decreasing order, the decompression
step has O(Scan n) I/O complexity, i.e. O(n/B) disk
accesses, where B is the size of the block loaded into
memory on each access.

3 Results and Discussion
ReCoil was implemented in C++ using the STXXL [17]
library of external memory data structures. The k-mer
size selected was 15 for the similarity graph construction
and 10 for the encoding step. We tested ReCoil on both
simulated and real datasets. The simulated datasets were
generated by making random samples of given length
from Human Chromosome 14, adding single-nucleotide
errors (insertions, deletions or substitutions) with prob-
ability 0.02 and reverse complementing each read with
probability 0.5. All our generated datasets were of the
same size of 1.8 billion nucleotides.
The results are summarized in Table 1 and Figure 2.

From the results on the synthetic datasets we can see
that as the read length increases, the compression rate of
ReCoil improves. One explanation for the better com-
pression is that longer reads are more likely to share
more and longer MEMs. Also in our tests the run times
were decreasing when the length of the synthetic reads
was increasing: if the coverage is kept constant, longer
reads result in smaller similarity graphs. On the other
hand the general purpose algorithms have runtimes and
compression rate independent of read length.
There are several reasons why we were able to achieve

better compression rate than Coil, 7-zip and bzip2. First,
the algorithms we implemented in ReCoil allow us to

make use of similarities between the reads located far
from each other in the input, as ReCoil does not require
splitting of the input into smaller parts. Another reason
for better compression of ReCoil than Coil, is the fact
that the edges between the reads in our similarity graph
reflect better the gain obtained by encoding one read
relative to another.
To test ReCoil on a real short read data, we com-

pressed a dataset of 192 million Illumina reads of length
36 downloaded from http://www.ncbi.nlm.nih.gov/sra/
SRX001540, which is a part of “Human male HapMap
individual NA18507” project http://www.ncbi.nlm.nih.
gov/sra/SRP000239. This resulted in a file of size 1.18
GB. 7-zip compressed the same sequences to size 1.9
GB. 7-zip was our general purpose compressor of choice
in the comparisons since in our experience it resulted in
the best compression. Out of 192 million sequences in
the dataset, ReCoil stored 4 million sequences explicitly,
the rest were stored compressed. We were not able to
run Coil on this dataset, while it took about 14 hours
for ReCoil to compress this dataset using a 1.6 GHz
Celeron with four hard disks and 4 GB of RAM. ReCoil
can make use of several disks installed on the machine
not only to scale up to large datasets but also to speed
up the computations due to higher disk bandwidth.
Nevertheless all the algorithms remain efficient if only a
single hard disk is present.
We also attempted to compare our algorithm to a

publically available reference-based compression algo-
rithm MZip [8]. Unfortunately it could not scale to the
size of our datasets as just its preprocessing step, con-
verting the results of a BWA mapping program to its
internal format took more than 90 minutes on a set of
3.5 million reads of length 36, not counting the BWA
alignment step itself, and we were unable to run the
pipeline to completion.

4 Limitations and Future Work
Our goal in this work was to design an algorithm that
maximizes compression ratio. Yet the ability to retrieve a
sequence without full decompression will improve applic-
ability of the algorithm. One simple way to accomplish

Table 1 Comparison of compressed file size, runtime and compression ratios of ReCoil to Coil, 7-zip and bzip2

ReCoil Coil 7-zip bzip2

Readlen Megabases Size Time % Size Time % Size Time % Size Time %

36 6912 1180 840 0.17 NA NA NA 1900 300 0.27 2250 45 0.36

70 1800 326 290 0.18 450 650 0.25 412 78 0.23 483 11 0.27

100 1800 278 246 0.15 415 625 0.23 405 76 0.22 481 11 0.27

120 1800 241 198 0.13 387 590 0.21 403 77 0.22 480 11 0.27

File sizes are shown in megabytes and run times in minutes. ReCoil, Coil and 7-zip were given 2 GB of RAM, while bzip2 was run with the compression-level = 9.
Both ReCoil and Coil used 7-zip as a post-processing compression step, this step was included in the timings. Decoding time for ReCoil was less than 5 minutes
for all datasets, including the 7-zip uncompress step.
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this would be to store the sequences at some levels of the
spanning tree explicitly. Then in order to decode a
sequence of a node one must go up in the tree until reach-
ing a level of not encoded nodes.
One limitation of ReCoil in practice is that it only

deals with the sequencing data, while compressing the
metadata such as quality values is as important. Another
limitation of ReCoil’s approach is that in order to limit
the number of anchors corresponding to repeats and to
reduce the number of seeds created we had to use var-
ious heuristics that compromise how well the weights of
the edges of the similarity graph reflect the savings from
encoding one read relative to another. Ferragina et al.
[18] describe an algorithm for computing the BWT
transform in external memory. While we saw in our
testing that BWT-based bzip2 provided significantly
worse compression than ReCoil, one direction for future
work would be to use a BWT-based approach in order
to find the MEMs and build the similarity graph more
efficiently.
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