
RESEARCH Open Access

Random generation of RNA secondary structures
according to native distributions
Markus E Nebel, Anika Scheid* and Frank Weinberg

* Correspondence: a_scheid@cs.
uni-kl.de
Department of Computer Science,
University of Kaiserslautern,
Germany

Abstract

Background: Random biological sequences are a topic of great interest in genome
analysis since, according to a powerful paradigm, they represent the background
noise from which the actual biological information must differentiate. Accordingly,
the generation of random sequences has been investigated for a long time. Similarly,
random object of a more complicated structure like RNA molecules or proteins are
of interest.

Results: In this article, we present a new general framework for deriving algorithms
for the non-uniform random generation of combinatorial objects according to the
encoding and probability distribution implied by a stochastic context-free grammar.
Briefly, the framework extends on the well-known recursive method for (uniform)
random generation and uses the popular framework of admissible specifications of
combinatorial classes, introducing weighted combinatorial classes to allow for the
non-uniform generation by means of unranking. This framework is used to derive an
algorithm for the generation of RNA secondary structures of a given fixed size. We
address the random generation of these structures according to a realistic
distribution obtained from real-life data by using a very detailed context-free
grammar (that models the class of RNA secondary structures by distinguishing
between all known motifs in RNA structure). Compared to well-known sampling
approaches used in several structure prediction tools (such as SFold) ours has two
major advantages: Firstly, after a preprocessing step in time O(n2) for the
computation of all weighted class sizes needed, with our approach a set of m
random secondary structures of a given structure size n can be computed in worst-
case time complexity O (

m · n · log(n)) while other algorithms typically have a
runtime in O(m · n2). Secondly, our approach works with integer arithmetic only
which is faster and saves us from all the discomforting details of using floating point
arithmetic with logarithmized probabilities.

Conclusion: A number of experimental results shows that our random generation
method produces realistic output, at least with respect to the appearance of the
different structural motifs. The algorithm is available as a webservice at http://
wwwagak.cs.uni-kl.de/NonUniRandGen and can be used for generating random
secondary structures of any specified RNA type. A link to download an
implementation of our method (in Wolfram Mathematica) can be found there, too.

Keywords: Random generation, stochastic context-free grammars, RNA secondary
structures

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

© 2011 Nebel et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:a_scheid@cs.uni-kl.de
mailto:a_scheid@cs.uni-kl.de
http://wwwagak.cs.uni-kl.de/NonUniRandGen
http://wwwagak.cs.uni-kl.de/NonUniRandGen
http://creativecommons.org/licenses/by/2.0

Background and Introduction
The topic of random generation algorithms (also called samplers) has been widely

studied by computer scientists. As stated in [1], it has been examined under different

perspectives, including combinatorics, algorithmics (design and/or engineering), as well

as probability theory, where two of the main motivations for random sampling are the

testing of combinatorial properties of structures (e.g. conjectured structural properties,

quantitative aspects), as well as the testing of properties of the corresponding algo-

rithms (with respect to correctness and/or efficiency).

As considers software engineering, the so-called random testing approach is com-

monly used to test implementations of particular algorithms, as it is usually not feasi-

ble to consider all possible inputs and unknown which of these inputs are among the

most interesting ones. In fact, this approach requires for the generation of random

instances of program inputs that obey various sorts of syntactic and semantic con-

straints (where the random instances usually ought to be of a preliminarily fixed input

size in order to be comparable to each other).

In the Bioinformatics area, algorithms for generating random biological sequences

have been investigated for a long time (see e.g. [2,3]). As stated in [4], random sequences

are a topic of great interest in genome analysis, since according to a powerful paradigm,

they represent the background noise from which the actual biological information must

differentiate. Thus, random generation of combinatorial objects can be used in this con-

text for simulations studies in order to isolate signal (unexpected events) from noise

(statistically unavoidable regularities). In fact, according to [4], random biological

sequences are for instance widely used for the detection of over-represented and under-

represented motifs, as well as for determining whether scores of pairwise alignments are

relevant or not: although there exist analytic approaches for these kinds of problems, for

the most complex cases, it is often still necessary to be able to alternatively use a corre-

sponding experimental approach (based on randomly generated sequences obtained

from a computer programm). For this purpose, random sequences must obviously obey

to a certain model that takes into account some relevant properties of actual real-life

sequences, where such models are usually based on statistical parameters only. However,

it is known that these classical models can be enriched by adding structural parameters

(see [4]). Over the past years, several methods have been proposed for the random gen-

eration of more complex structures, where special attention has been paid to RNA sec-

ondary structures. RNA is a single-stranded nucleotide polymer and a major component

of cellular processes (like DNA and proteins). An RNA strand is formed by linking

together certain nucleotide units. The specific sequence of nucleotides along this chain

is called the primary structure of the molecule. By pairing of nucleotides that are not

linked in this chain (i.e. by the so-called effects of base pairing), the linear primary struc-

ture is folded into a three-dimensional conformation, called the tertiary structure, which

in many cases determines the function of the molecule. Most of the 3D structure is

determined by the intramolecular base-pairing interactions in the plane, which together

form the secondary structure of the molecule. For this reason, pseudoknots (induced by

crossing base pairs) are considered as tertiary interactions and are usually not permitted

in the definition of secondary structure. As unknotted structures contain only nested

base pairs and are thus essentially two-dimensional, they can be modeled as planar

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 2 of 46

graphs. This rather descriptive and commonly used planar graph model for RNA sec-

ondary structures was first formalized in [5]. An example is shown in Figure 1.

Most of the existing random generation algorithms for RNA secondary structures are

used for predicting the structure of a given RNA sequence (see e.g. [6,7]), while others

can be employed for instance for evaluating structure comparison softwares [8]. Note

that secondary structure prediction methods based on random sampling represent a

non-deterministic counterpart to the up-to-date most successful and popular physics-

based prediction methods that make use of the energy minimization paradigm and are

realized by dynamic programming algorithms (see e.g. [9-12]). Random sampling also

differs from the stochastical RNA structure prediction approach that is based on con-

text-free modeling of structural motifs and adding some statistical parameters observed

in real-life data by assigning probabilities to the corresponding motifs (see e.g. [13-15]).

Nevertheless, it should be mentioned that statistical sampling methods like [6,7] used

for RNA structure prediction are based on thermodynamics and thus inevitably inherit

the problems and imprecisions related to energy minimizing methods, which are

caused by the still incomplete commonly used free energy models for RNAs. In order

to overcome these pitfalls, one could take the competing point of view and consider

only typical structural information observed in a set of sample data as the basis for a

new random generation method. If that information draws a realistic picture for all the

different motifs of a molecule’s folding, the corresponding sampling method is likely to

produce realistic results. Accordingly, several authors made use of stochastic context

free grammars and employed machine-learning techniques to train parameter values

from a set of known secondary structures. Such grammars have widely been used in a

predictive mode (see, e.g., [14]) but there are also successful examples of applications

where the random sampling of derivation trees has been the core of the method (see,

Figure 1 An RNA secondary structure. Unpaired and paired bases are represented by white and gray
points, respectively.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 3 of 46

e.g., [16-18] but also [19] for examples). In the present paper, we follow that line of

ideas and rely on the approach of the technical report [20] to develop a new algorithm

for the (non-uniform) random generation of RNA secondary structures (without pseu-

doknots) according to a distribution induced by a set of sample RNA data (note that

the algorithm actually generates secondary structures for a preliminary fixed size, not

for a given RNA sequence of this size, which means we take the combinatorial point

of view and completely abstract from sequence).

The main contribution of this manuscript is the derivation of a new and efficient

algorithm for the random generation of RNA secondary structures according to an ela-

borate and thus very realistic model. For this purpose we use and generalize the

approach from [20]. Particularly, our random generation method is based on a sophis-

ticated context-free grammar for unknotted structures which, in order to model the

class of all considered RNA secondary structures as realistic as possible, distinguishes

between all known structural motifs that may occur in unknotted RNA secondary

structure. This means that any structural feature is modeled by one or more specific

grammar rules with corresponding probabilities observed from real-life data. Note that

this grammar is actually a special variant of the comprehensive grammar used in [21]

for deriving a realistic RNA structure model and for performing the first ever analytical

analysis of the expected free energy of a random secondary structure (of a specified

RNA type). Actually, that grammar has been designed as a mirror of the famous

Turner energy model [22,23] which serves as the foundation for most of the existing

physics-based RNA structure prediction methods: all structural motifs for which there

are different thermodynamic rules and parameters are created by distinct production

rules (with corresponding probabilities).

According to [20], our sampling method involves a weighted unranking algorithm for

obtaining the final structures. Briefly, considering an arbitrary structure class of size

(cardinality) c, a corresponding unranking method uses a well-defined ordering of all

class elements (according to a particular numbering scheme, the so-called ranking

method) and for a given input number r Î {1,..., c} outputs the structure with rank r in

the considered ordering. That way, the random sampling based on a stochastic grammar

- building heavily on the use of small floating point numbers - is translated into an

unranking algorithm using integer values only. Notably, a complete structure of size n is

generated by recursively unranking the distinct structural components from the corre-

sponding subclasses (of substructures with sizes less than n). In our case, the weighted

unranking algorithm requires a precomputation step in worst-case time O(n2) for com-

puting all weighted class sizes up to input size n. The worst-case complexity for generat-

ing a secondary structure of size n at random is then given by O(n log n) since we are

ranking structures according to the boustrophedon order (see e.g. [7]).

By the end of this paper, we analyze the quality of randomly generated structures by

considering some experimental results. First, we will consider statistical indicators of

many important parameters related to particular structural motifs and compare the

ones observed in the used sample set of real world RNA data to those observed in a

corresponding set of random structures. Their comparison measures indicate that our

method actually generates realistic RNA structures. Obviously, an algorithm which, for

a given structure size n, produces random RNA secondary structures that are - related

to expected shapes of such structures -in most cases realistic is a major improvement

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 4 of 46

over existing approaches which, for example, are only capable of generating secondary

structures uniformly for size n. Furthermore, we will consider the two different free

energy models defined in [21] for RNA secondary structure (with unknown RNA

sequence) to get further evidence of the good quality of our random generation

method (with respect to free energies and thus rather likely also with respect to

appearance of the different structural motifs of RNA).

Prior Results and Basic Definitions
Uniform Random Generation

In the past, the problem of uniform random generation of combinatorial structures,

that is the problem of randomly generating objects (of a preliminary fixed input size)

of a specified class that have the same or similar properties, has been extensively stu-

died. Special attention has been paid on the wide class of decomposable structures

which are basically defined as combinatorial structures that can be constructed recur-

sively in an unambiguous way.

In principle, two general (systematic) approaches have been developed for the uniform

generation of these structures: First, the recursive method originated in [24] (to generate

various data structures) and later systematized and extended in [25] (to decomposable

data structures), where general combinatorial decompositions are used to generate

objects at random based on counting possibilities. Second and more recently, the so-

called Boltzmann method [1,26], where random objects (under the corresponding Boltz-

mann model) have a fluctuating size, but objects with the same size invariably occur

with the same probability. Note that according to [26], Boltzmann samplers may be

employed for approximate-size (objects with a randomly varying size are drawn) as well

as fixed-size (objects of a strictly fixed size are drawn) random generation and are an

alternative to standard combinatorial generators based on the recursive method. How-

ever, fixed-size generation is considered the standard paradigm for the random genera-

tion of combinatorial structures.

(Admissible) Constructions and Specifications

According to [25], a decomposable structure is a structure that admits an equivalent

combinatorial specification:

Definition 0.1 ([25]). Let A = (A1, ...,Ar) be an r-tuple of classes of combinatorial

structures. A specification for A is a collection or r equations with the ith equation

being of the form Ai = φi (A1, ...,Ar), where ji denotes a term built of the Aj using

the constructions of disjoint union, cartesian product, sequence, set and cycle, as well

as the initial (neutral and atomic) classes.

The needed formalities that will also be used in the sequel are given as follows:

Definition 0.2 ([27]). If A is a combinatorial class, then An denotes the class of

objects in A that have size (defined as number of atoms) n. Furthermore:

• Objects of size 0 are called neutral objects or tags and a class consisting of a sin-

gle neutral object � is called a neutral class, which will be denoted by ε (ε1, ε2,... to

distinguish multiple neutral classes containing the objects �1, �2, ..., respectively).

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 5 of 46

• Objects of size 1 are called atomic objects or atoms and a class consisting of a

single atomic object is called an atomic class, which will be denoted by Ƶ(Ƶa, Ƶb,...

to distinguish the classes containing the atoms a,b,..., respectively).

• If A1, ...,Ak are combinatorial classes and �1, ..., �k are neutral objects, the combi-

natorial sum or disjoint union is defined as

A1 + ... +Ak := (ε1 × A1) ∪ ... ∪ (εk × Ak) where ∪ denotes set theoretic union.

• If A and B are combinatorial classes, the cartesian product is defined as

A × B :=
{
(α,β) |α ∈ A and β ∈ B}, where size(a, b) = size(a) + size(b).

Note that the constructions of disjoint union, cartesian product, sequence, set and

cycle are all admissible:

Definition 0.3 ([27]). Let φ be an m-ary construction that associates to a any collection

of classes B1, ...,Bm a new class A := φ [B1, ...,Bm]. The construction φ is admissible iff

the counting sequence (an) of A only depends on the counting sequences (b1,n),..., (bm,n)

of B1, ...,Bm, where the counting sequence of a combinatorial class A is the sequence of

integers (an)n≥0 for an = card (An).

The framework of (admissible) specifications obviously resembles that of context-free

grammars (CFGs) known from formal language theory (note that we assume the reader

has basic knowledge of the notions concerning context-free languages and grammars.

An introduction can be found for instance in [28]). In order to translate a CFG into the

framework of admissible constructions, it is sufficient to make each terminal symbol an

atom and to assume each non-terminal A to represent a class A (the set of all words

which can be derived from non-terminal A). However, for representing CFGs, only the

admissible constructions disjoint union, cartesian product and sequence are needed:

Words are constructed as cartesian products of atoms, sentential forms as cartesian pro-

ducts of atoms and the classes assigned to the corresponding non-terminal symbols. For

instance, a production rule A ® aB translates into the symbolic equation A = a × B.
Different production rules with the same left-hand side give rise to the union of the cor-

responding cartesian products. Nevertheless, it should be noted that [25] also shows

how to reduce specifications to standard form, where the corresponding standard speci-

fications constitute the basis of the recursive method for uniform random generation

and extends the usual Chomsky normal form (CNF) for CFGs. Briefly, in standard speci-

fications, all sums and products are binary and the constructions of sequences, sets and

cycles are actually replaced with other constructions (for details see [25]).

The prime advantage of standard specifications is that they translate directly into

procedures for computing the sizes of all combinatorial subclasses of the considered

class C of combinatorial objects. This means they can be used to count the number of

structures of a given size that are generated from a given non-terminal symbol. More-

over, standard specifications immediately translate into procedures for generating one

such structure uniformly at random. The corresponding procedures (for class size cal-

culations and structure generations) are actually required for (uniform) random gen-

eration of words of a given CFG by means of unranking.

Simply speaking, the unranking of decomposable structures (like for instance RNA

secondary structures which can be uniquely decomposed into distinct structural com-

ponents) works as follows: Each structure s in the combinatorial class Sn of all feasible

structures having size n is given a number (rank) i ∈ {
0, ..., card (Sn) − 1

}
, defined by a

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 6 of 46

particular ranking method. Based on this ordering of the considered structure class Sn,

the corresponding unranking algorithm for a given input number

i ∈ {
0, ..., card (Sn) − 1

}
computes the single structure s ∈ Sn having number i in the

ranking scheme defined for class Sn.

Note that in this context of unranking particular elements from a considered struc-

ture class, the corresponding algorithms make heavy use of their decomposability, as

the distinct structural components are unranked from the corresponding subclasses. In

fact, the class sizes can be derived according to the following recursion:

size(C,n): =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 C is neutral and n = 0,
0 C is neutral and n �= 0,
1 C is atomic and n = 1,
0 C is atomic and n �= 1,∑k

i=1 size (Ai,n) C = A1 + ... +Ak,∑n
j=0 size

(A, j
) · size (B,n − j

) C = A × B.

Note that when computing the sums for cartesian products, we can either consider

the values for j in the sequential (also called lexicographic) order (1, 2, 3,..., n) or in the

so-called boustrophedon order
(
1,n, 2,n − 1, ...,

⌈ n
2

⌉)
. In either case, given a fix number

of considered combinatorial (sub)classes (or corresponding non-terminal symbols), the

precomputation of all class size tables up to size n requires O(n2) operations on coeffi-

cients. One random generation step then needs O(n2) arithmetic operations when

using the sequential method and O (
n · log(n)) operations when using the boustrophe-

don method (for details we refer to [25]). Obviously, using uniform unranking proce-

dures to construct the ith structure of size n for a randomly drawn number i, any

structure of size n is equiprobably generated. Consequently, in order to make sure

that, for given size n and a sample set of random numbers i, the corresponding struc-

tures are in accordance with an appropriate probability distribution (as for instance

observed from real-life RNA data), it is mandatory to use a corresponding non-uniform

unranking method or an alternative non-uniform random generation approach.

Non-Uniform Random Generation

Coming back to the random testing problem from software engineering, we observe

that generating objects of a given class of input data according to a uniform distribu-

tion is sufficient for testing the correctness of particular algorithms. However, if one

intends to gather information about the “real-life behaviour” of the algorithm (e.g. with

respect to runtime or space requirements), we need to perform simulations with input

data that are as closely as possible related to corresponding application. This means to

obtain suitable test data, we need to specify a distribution on the considered class that

is similar to the one observed in real life and draw objects at random according to this

(non-uniform) distribution. Deriving such a “realistic” distribution on a given class of

objects can easily be done by modeling the class by an appropriate stochastic context-

free grammar (SCFG). Details will follow in the next section.

As regards RNA, it has been proven that both the combinatorial model (that is based

on a uniform distribution such that all structures of a given size are equiprobable and

that completely abstracts from the primary structure, see e.g. [29-31]) and the Ber-

noulli-model (which is capable of incorporating information on the possible RNA

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 7 of 46

sequences for a given secondary structure, see e.g. [32-34]) for RNA secondary struc-

tures are rather unrealistic. However, modeling these structures by an appropriate

SCFG yields a more realistic RNA model, where the probability distribution on all

structures is determined from a database of real world RNA data (see e.g. [35,36]).

Based on this observation, the problem of non-uniform random generation of combi-

natorial structures has been recently addressed in [20]. There, it is described how to

get algorithms for the random generation of objects of a previously fixed size according

to an arbitrary (non-uniform) distribution implied by a given SCFG. In principle, the

construction scheme introduced in [20] extends on the recursive method for the (uni-

form) random generation [25] and adapted it to the problem of unranking of [37]: the

basic principle is that any (complex) combinatorial class can be decomposed into (or

can be constructed from) simpler classes by using admissible constructions.

Essentially, in [20], a new admissible construction called weighting has been intro-

duced in order to make non-uniform random generation possible. By weighting, we

understand the generation of distinguishable copies of objects. Formally:

Definition 0.4. If A is a combinatorial class and l is an integer, the weighting of A by

l is defined as
λA := A + . . . + A︸ ︷︷ ︸

λ times
. We will call two objects from a combinatorial class

copies of the same object iff they only differ in the tags added by weighting operations.

For example, if we weight the class A = {a} by two, we assume the result to be the

set {a, a}; weighting B = {b} by three generates {b,b,b}. Thus, 2A + 3B = {a, a, b, b, b}
and within this class, a has relative frequency 2

5, while b has relative frequency 3
5.

Hence, this way it becomes possible to regard non-uniformly distributed classes.

As weighting a class can be replaced by a disjoint union, size (λA,n) = λ · size (A,n)

and the complexity results from [37] also hold for weighted classes. Hence, the corre-

sponding class size computations up to n need O(n2) time.

Stochastic Context-Free Grammars

As already mentioned, stochastic context-free grammars (SCFGs) are a powerful tool for

modeling combinatorial classes and the essence of the non-uniform random sampling

approach that will be worked out in this article. Therefore, we will now give the

needed background information.

Basic Concepts

Briefly, SCFGs are an extension of traditional CFGs: usual CFGs are only capable of

modeling the class of all generated structures and thus inevitably induce a uniform dis-

tribution on the objects, while SCFGs additionally produce a (non-uniform) probability

distribution on the considered class of objects. In fact, an SCFG is derived by equip-

ping the productions of a corresponding CFG with probabilities such that the induced

distribution on the generated language models as closely as possible the distribution of

the sample data.

The needed formalities are given as follows:

Definition 0.5 ([38]). A weighted context-free grammar (WCFG) is a 5-tuple

G = (I,T,R, S,W), where I (resp. T) is an alphabet (finite set) of intermediate (resp.

terminal) symbols (I and T are disjoint), S Î I is a distinguished intermediate symbol

called axiom, R ⊂ I × (I ∪ T)* is a finite set of production rules and W : R ® ℝ+ is a

mapping such that each rule f Î R is equipped with a weight wf : = W(f). If G is a

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 8 of 46

WCFG, then G is a stochastic context-free grammar (SCFG) iff the following additional

restrictions hold:

1. For all f Î R, we have W(f) Î (0,1], which means the weights are probabilities.

2. The probabilities are chosen in such a way that for all A Î I, we have∑
f∈R,Q(f)=A

wf = 1, where Q(f) denotes the premise of the production f, i.e. the first

component A of a production rule (A, a) Î R. In the sequel, we will write wf : A

® a instead of f = (A, a) Î R, wf = w(f).

However, at this point, we decided to not recall the basic concepts regarding SCFGs,

as they are not really necessary for the understanding of this article. The interested

reader is referred to the corresponding section in [21]. For a more fundamental intro-

duction on stochastic context-free languages, see for example [39]. In fact, the only

information needed in the sequel is that if structures are modeled by a consistent

SCFG, then the probability distribution on the production rules of the SCFG implies a

probability distribution on the words of the generated language and thus on the mod-

eled structures. To ensure that a SCFG gets consistent, one can for example assign

relative frequencies to the productions, which are computed by counting the produc-

tion rules used in the leftmost derivations of a finite sample of words from the gener-

ated language. For unambiguous SCFGs, the relative frequencies can actually be

counted efficiently, as for every word, there is only one leftmost derivation to consider.

Modeling RNA Secondary Structure via SCFGs

Besides the popular planar graph representation of unknotted secondary structures,

many other ways of formalizing RNA folding have been described in literature. One

well-established example is the so called bar-bracket representation, where a secondary

structure is modeled as a string over the alphabet Σ: = {(,), |}, with a bar | and a pair

of corresponding brackets () representing an unpaired nucleotide and two paired

bases in the molecule, respectively (see, e.g. [30]). Obviously, both models abstract

from primary structure, as they only consider the number of base pairs and unpaired

bases and their positions. Moreover, there exists a one-to-one correspondence between

both representations, as illustrated by the following example:

Example 0.1. The secondary structure shown in Figure 1 has the following equivalent

bar-bracket representation that can be decomposed into subwords corresponding to the

basic structural motifs that are distinguished in state-of-the-art thermodynamic models:

exterior loop︷ ︸︸ ︷
||||((((|||hel1|||hel2||hel3|︸ ︷︷ ︸

multiloop(of degree 3)

))))||, where

hel1 = ((((

bulge left︷ ︸︸ ︷
|||| (((||||||︸︷︷︸

hairpin

))))))), hel3 = ((

2×2 interior loop︷ ︸︸ ︷
|| (|| || ((((|||)))) |||||||︸ ︷︷ ︸

2×7 interior loop

) ||)),

and hel2 = (((

multiloop(of degree 2)︷ ︸︸ ︷
|| ((((|hel2,1|||||||︸ ︷︷ ︸

1×7 interior loop

)))) |||||hel2,2))), with

hel2,1 = ((

single bulge left︷ ︸︸ ︷
| (||||︸︷︷︸

hairpin

))) and hel2,2 = (

1×1 interior loop︷ ︸︸ ︷
|((|||||︸︷︷︸

hairpin

))|)

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 9 of 46

Note that the reading order of secondary structures is from left to right, which is due

to the chemical structure of the molecule.

Consequently, secondary structures without pseudoknots can be encoded as words of

a context-free language and the class of all feasible structures can thus effectively be

modeled via a corresponding CFG. Basically, that CFG can be constructed to describe

a number of classical constraints (e.g. the presence of particular motifs in structures)

and it can also express long-range interactions (e.g. base pairings). By extending it to a

corresponding SCFG, we can also model the fact that specific motifs of RNA secondary

structures are more likely to be folded at certain stages than others (and not all possi-

ble motifs are equiprobable at any folding stage).

In fact, it is known for a long time that SCFGs can be used to model RNA secondary

structures (see e.g. [40]). Additionally, SCFGs have already been used successfully for

the prediction of RNA secondary structure [14,15]. Moreoever, they can be employed

for identifying structural motifs as well as for deriving stochastic RNA models that

are - with respect to the expected shapes - more realistic than other models [36].

Furthermore, note that an SCFG mirror of the famous Turner energy model has been

used in [21] to perform the first analytical analysis of the free energy of RNA second-

ary structures; this SCFG marks a cornerstone between stochastic and pyhsics-based

approaches towards RNA structure prediction.

Random Generation With SCFGs

SCFGs can easily be used for the random generation of combinatorial objects accord-

ing to the probability distribution induced by a sample set, where the only problem is

that they do not allow the user to fix the length of generated structures. In particular,

given an SCFG G and the corresponding language (combinatorial class) L(G), a ran-

dom word w ∈ L(G) can be generated in the following way:

• Start with the sentential form S (where S denotes the axiom of the grammar G).
• While there are non-terminal symbols (in the currently considered sentential

form), do the following:

1) Let A denote the leftmost non-terminal symbol.

2) Draw a random number r from the interval (0,1].

3) Substitute symbol A by the right-hand side a of the production A ® a
determined by the random number r.

This means consider all m ≥ 1 rules p1 : A ® a1,..., pm : A ® am having left-hand

side A, where according to the definition of SCFGs,
∑m

i=1
pi = 1must hold. Then, find

k ≥ 1 with
∑k−1

i=1 pi < r ≤ ∑k
i=1 pi, i.e. determine k ≥ 1 with r ∈

(∑k−1

i=1
pi,
∑k

i=1
pi

]
.

The production corresponding to the randomly drawn number r Î (0,1] is then given

by A ® ak and hence, in the currently considered sentential form, the non-terminal

symbol A is substituted by ak.

• If there are no more non-terminal symbols, then the currently considered senten-

tial form is equal to a word w ∈ L(G);w has been randomly generated.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 10 of 46

Note that the choice of the production made in 3) according to the previously drawn

random number is appropriate, since it is conform to the probability distribution on

the grammar rules.

Example 0.2. Consider the language generated by the SCFG with productions ¾: S ® �

and ¼: S ® (S). Thus, we start with the sentential form S, then consider the leftmost non-

terminal symbol, which is given by S, and draw a random number r Î (0,1]. If 0 <r ≤ ¾,

the production determined by r is S ® � and thus, we get the empty word and are fin-

ished. Otherwise, ¾ <r ≤ ¾ + ¼ = 1, which means we have to consider A ® (S) for the

substitution in step 3) and thus obtain the sentential form (S). Afterwards, we must repeat

the process, as there is still one non-terminal symbol left.

Unfortunately, there is one major problem that comes with this approach for the

(non-uniform) random generation of combinatorial objects: The underlying (consis-

tent) SCFG G implies a probability distribution on the whole language L(G), such that

we generate a word of arbitrary size. In order to fix the size, we can proceed along the

following lines:

1) We translate the grammar G into a new framework which allows to consider

fixed sizes for the random generation, such that

2) the distribution implied on L(G) conditioned on any fixed size n is kept within

the new framework.

A well-known approach which allows for 1) is connected to the concept of admissi-

ble constructions used to describe a decomposable combinatorial class (see above). As

the operations (like cartesian products, unions, and so on) used to construct the com-

binatorial objects are also used to define an order on them, it becomes possible to

identify the ith object of a given size and the problem of generating objects uniformly

at random reduces to the problem of unranking, that is the problem of constructing

the object of order (rank) i, for i a random number (see e.g. [41]).

Remark. Some might think that with an appropriate SCFG (modeling a given class of

objects) at hand, it is not really necessary to use an unranking method that implies

cumbersome formalities such as admissible constructions and decomposable classes if

we want to generate random objects of a fixed size n. As a matter of principle, they

are right - we could also use a conditional sampling method: If we need to generate a

word of size n from non-terminal symbol A, where there are m ≥ 1 rules fi = A ® ai,

1 ≤ i ≤ m, having left-hand side A, then we just need to choose the next production fi
according to

Prob
(
A → αi⇒∗x|size(x) = n

)
Prob

(
A⇒∗x|size(x) = n

) ,

which is the posterior probability that we used production rule fi under the condition

that a word of size n is generated.

Similarly, if the production rule is of the type A ® BC (assuming the grammar is in

Chomsky normal form (CNF), which does not pose a problem, as an unambiguous

SCFG can be efficiently transformed into CNF [39]), we can choose a way to split size

n into sizes j and n - j for the lengths generated from non-terminal symbols B and C.

This requires precomputing n length-dependent probabilities (i.e. all probabilities for

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 11 of 46

generating a word of any length up to n) for each non-terminal symbol, which might

seem to be similar (with respect to complexity) to precomputing all class sizes up to n

for all considered combinatorial (sub)classes as needs to be done for unranking. How-

ever, there is a striking difference between the two approaches: While conditional sam-

pling makes heavy use of rather small floating point values - with all the well-known

problems and discomforting details like underflows or using logarithms associated with

it - our unranking approach builds on integer values only which we assume a major

advantage. There is another striking difference: length-dependent probabilities (which

by the way yield a so-called length-dependent SCFG (LSCFG), see [42], and already

have been used in [43]), require a very rich training set. In fact, if the RNA data set

used for determining the distribution induced by the grammar is not rich enough, then

the corresponding stochastic RNA model is underestimated and its quality decreases.

This is especially a problem when considering comprehensive CFGs that distinguish

between many different structural motifs in order to get a realistic picture of the mole-

cules’ behaviour; such a grammar should however be preferred over simple lightweight

grammars as basis for a non-uniform random generation method. Nevertheless, this

problem does not surface when sticking to conventional probabilities and the corre-

sponding traditional SCFG model. Actually, since we consider a huge CFG where all

possible structural motifs are created by distinct productions, we generally obtain rea-

listic probability distributions and RNA models (see [21]).

Finally note that of course we could make use of random sampling strategies origin-

ally designed to sample structures connected to a given sequence in order to generate

a random secondary structure only. However, such algorithms typically use a linear

time to sample a single base pair (see, e.g., [6]) such that the time to sample a com-

plete structure is quadratic in its length. This causes no problems for the original

application of such algorithms since the sequence-dependent preprocessing which is

part of their overall procedure is at least quadratic in time and thus the dominating

part. Here our approach is of advantage (replacing a factor n by log(n)) and since our

preprocessing only depends on the size of the structure to be generated it is performed

once and stored to disk for later reuse. Last but not least we are not sure, if the differ-

ent existing approaches just mentioned could easily be made as fast as ours by simple

changes only.

Bottom line is that hooking up to unranking of combinatorial classes offers three sig-

nificant benefit compared to conditional sampling, namely a fast sampling strategy, the

usage of integers instead of floating point values and a greater independence of the

richness of the training data (compared to length-dependent models). For this reason,

we assume our unranking algorithm a valuable contribution, even though it requires a

more cumbersome framework.

Unranking of Combinatorial Objects

The problem of unranking can easily be solved along the composition of the objects at

hand, i.e. the operations used for its construction, once we know the number of possi-

ble choices for each substructure. Assume for example we want to unrank objects

from a class C = A + B. We will assume all elements of A to be of smaller order than

those of B (this way we use the construction of the class to imply an ordering). Finding

the ith element of C, i.e. unranking class C, now becomes possible by deciding whether

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 12 of 46

A. In this case, we recursively call the unranking procedure for A. Otherwise (i.e. if

i ≥ card(A)), we consider B, searching for its (i − card(A)))th element.

Formally, we first need to specify an order on all objects of the considered combina-

torial class that have the same size. This can be done in a recursive way according to

the admissible specification of the class:

Definition 0.6 ([37]). Neutral and atomic classes contain only one element, such

that there is only one possible ordering. Furthermore, let <Cn denote the ordering

within the combinatorial class Cn, then

• If C = A1 + ... +Ak and γ , γ ′ ∈ Cn, then γ<Cnγ ′ iff[
γ ∈ (Ai)

n and γ ′ ∈ (Aj)
n and i < j

]
or

[
γ , γ ′ ∈ (Ai)

n and γ<(Ai)
nγ ′] .

• If C = A × B and γ = (α,β), γ ′ = (α′,β ′) ∈ Cn, then γ<Cnγ ′ iff[
size(α) < size(α′)

]
or
[
j = size(α) = size(α′) andα<(A)jα

′
]
or
[
α = α′andβ<(B)n−jβ

′]
when considering the lexicographic order (1, 2, 3,..., n), which is induced by the spe-

cification Cn = A0 × Bn +A1 × Bn−1 +A2 × Bn−2 + ... +An × B0.

• If C = A × B and γ = (α,β), γ ′ = (α′,β ′) ∈ Cn, then γ<Cnγ ′ iff[
min(size(α), size(β)) < min(size(α′), size(β ′))

]
or[

min(size(α), size(β)) = min(size(α′), size(B′)) and size(α) < size(α′)
]
or[

j = size(α) = size(α′) and α<(A)jα
′
]
or
[
α = α′ andβ<(B)n−jβ ′

]
when considering the boustrophedon order

(
1, n, 2,n − 1, ...,

⌈ n
2

⌉)
, induced by the

specification Cn = A0 × Bn +An × B0 +A1 × Bn−1 +An−1 × B1 + ...
Considering <Cn, the actual unranking algorithms are quite straightforward. There-

fore, they will not be presented here and we refer to [20,44] for details.

Recall that in [20], the basic approach towards non-uniform random generation is

weighting of combinatorial classes, as this makes it possible that the classes are non-

uniformly distributed. If those combinatorial classes are to correspond to a considered

SCFG, we have to face the problem that the maximum likelihood (ML) training intro-

duces rational weights for the production rules while weighting as an admissible con-

struction needs integer arguments.

When translating rational probabilities into integral weights, we have to assure that

the relative weight of each (unambiguously) generated word remains unchanged. This

can be reached by scaling all productions by the same factor (common denominator of

all probabilities), while ensuring that derivations are of equal length for words of the

same size (ensured by using grammars in CNF). However, a much more elegant way is

to scale each production according to its contribution to the length of the word gener-

ated, that is, productions lengthening the word by k will be scaled by ck. Since we con-

sider CFGs, the lengthening of a production of the form A ® a is given by |a| - 1.
However, this rule leads to productions with a conclusion of length 1 not being

reweighted, hence we have to assure that all those productions already have integral

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 13 of 46

weights. Furthermore, �-productions need a special treatment. We don’t want to dis-

cuss full details here and conclude by noticing that the reweighting normal form (RNF)

keeps track of all possible issues:

Definition 0.7 ([20]). If G = (I,T,R, S,W) is a WCFG, G is said to be in reweighting

normal form (RNF) iff

1. G is loop-free and �-free.

2. For all A ® a Î R with A = S, we have |a| ≤ 1.

3. For all A ® a Î R with A ≠ S, we have |a| > 1 or W(A ® a) Î N.

4. For all A Î I there exists a Î (I ∪ T)* such that A ® a Î R.

Note that the last condition (that any intermediate symbol occurs as premise of at

least one production) is not required for reweighting, but necessary for the translation

of a grammar into an admissible specification.

Definition 0.8 ([20]). A WCFG G is called loop-free iff there exists no nonempty

derivation A ⇒+ A for A Î I. It is called �-free iff there exists no (A, �) Î R with A = S

and there exists no (A, a1Sa2) Î R, where � denotes the empty word.

If G and G′ are WCFGs, then G and G′ are said to be word-equivalent iff

L(G) = L(G′) and for each word w ∈ L(G), we have W(w) = W’(w).

In [20], it is shown how to transform an arbitrary WCFG to a word-equivalent, loop-

free and �-free grammar, that grammar to one in RNF and the latter to the corre-

sponding admissible specification. Formally:

Theorem 0.1 ([39]). If Gis a SCFG, there exists a SCFG G′in Chomsky normal form

(CNF) that is word-equivalent to G, and G′can be effectively constructed from G.
The construction given in [39] assumes that G is �-free. It can however be extended

to non-�-free grammars by adding an additional step after the intermediate grammar G
has been created (see e.g. [20]). Furthermore, it should be noted that an unambiguous

grammar is inevitably loop-free.

Theorem 0.2 ([20]). If Gis a loop-free, �-free WCFG, there exists a WCFG G′in RNF

that is word-equivalent to Gand G′can be effectively constructed from G.
Altogether, starting with an arbitrary unambiguous SCFG G0 that models the class of

objects to be randomly generated, we have to proceed along the following lines:

• Transform G0 to a corresponding �-free and loop-free SCFG G1.

• Transform G1 into G2 in RNF (where all production weights are rational).

• Reweight the production rules of G2 (such that all production weights are inte-

gral), yielding reweighted WCFG G3.

• Transform G3 (with integral weights) into the corresponding admissible

specification.

• This specification (with weighted classes) can be translated directly

- into a recursion for the function size of all involved combinatorial (sub)

classes (where class sizes are weighted) and

- into generating algorithms for the specified (weighted) classes,

yielding the desired weighted unranking algorithm for generating random elements

of L(G0).

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 14 of 46

A small example that shows how to proceed from SCFG to reweighted normal form

and the corresponding weighted combinatorial classes which allow for non-uniform

generation by means of unranking is discussed in the Appendix.

Generating Random RNA Secondary Structures
We will now consider the previously discussed approach to construct a weighted

unranking algorithm that generates random RNA secondary structures of a given size

according to a realistic probability distribution. As for this paper, the corresponding

probability distribution will be induced by a set of sample (SSU and LSU r)RNA sec-

ondary structures from the databases [45,46], which will be referred to as biological

database in the sequel. However, the presented algorithm can easily be used for any

other distribution, which can be defined by a database of known RNA structures of a

particular RNA type; our webservice implementation accessible at http://wwwagak.cs.

uni-kl.de/NonUniRandGen is actually able to sample random secondary structures of

any specified RNA type. A link to download an implementation of our algorithm (in

Wolfram Mathematica) can be found there, too.

Considered Combinatorial Class
According to the common definition of RNA secondary structure, we decided to con-

sider the combinatorial class of all RNA secondary structures without pseudoknots

that meet the stereochemical constraint of hairpin loops consisting of at least 3

unpaired nucleotides, formally:

Definition 0.9 ([21]). The language L containing exactly all RNA secondary struc-

tures is given by (note that according to this definition, completely unpaired structures

are prohibited) L := LuL+
lu, where Llu := (Ll)Lu,Lu := {|}∗ is the language of all bar-

bracket representations of single-stranded regions and Ll is the language of all bar-

bracket representations of other possible substructures, i.e. is the smallest language

satisfying the following conditions:

1. {|}+\{|, ||} ⊂ Ll (bar-bracket representations of hairpin loops).

2. If w ∈ Ll, then (w) ∈ Ll (bar-bracket representation of a stacked pair).

3. If w ∈ Ll, then {|||}+(w) ⊂ Ll and (w){|}+ ⊂ Ll (bar-bracket representations of

bulge loops).

4. If w ∈ Ll, then {|||}+(w){|||}+ ⊂ Ll (bar-bracket representations of interior loops).

5. If w1, ...,wn ∈ Ll and n ≥ 2, then Lu(w1)Lu(w2) · · ·Lu(wn)Lu ⊂ Ll (bar-bracket

representations of multibranched loops).

The desired weighted unranking algorithm thus generates, for a given size n and a

given number i ∈ {0, ..., card(Ln) − 1}, the ith secondary structure s ∈ Ln, where

card(Ln) = size(L,n) is the number of elements in the weighted class Ln.

Considered SCFG Model
First, we have to find a suitable SCFG that generates L and models the distribution of

the sample data as closely as possible. To reach this goal, it is important to appropri-

ately specify the set of production rules in order to guarantee that all substructures

that have to be distinguished are generated by different rules. This is due to the fact

that by using only one production rule f to generate different substructures (e.g. any

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 15 of 46

http://wwwagak.cs.uni-kl.de/NonUniRandGen
http://wwwagak.cs.uni-kl.de/NonUniRandGen

unpaired nucleotides independent of the type of loop they belong to), there is only one

weight (the probability pf of this production f) with which any of these substructures is

generated, whereas the use of different rules f1,..., fk to distinguish between these sub-

structures implies that they may be generated with different probabilities pf
1
, ...pfk,

where pf1 + ... + pfk = pf . This way, we ensure that more common substructures are gen-

erated with higher probabilities than less common ones.

Example 0.3. A (rather simple) unambiguous SCFG Gs generating the language L is

given by:

w1:Ss → CA,
w2:A → (((B)))C, w3:A → (((B)))CA,
w4:B → |||||||||C, w5:B → CA,
w6:C → ε, w7:C → |||C.

This grammar unambiguously generates L for the following reasons:

• Every sentential form C(B)C(B) ... (B)C obviously is generated in a unique way;

this resembles L = LuL+
lu and Llu := (Ll)Lu of L′s definition. The number of outer-

most pairs of brackets in the entire string uniquely determines the corresponding

sentential form to be used.

• Now B either generates a hairpin-loop |≥3, which unambiguously is possible by

rules B ® |||C, C ® |C and C ® �, or

• B itself has to generate at least one additional pair of brackets. In this case, B ®
CA must be applied (only A can generate brackets) and then A ® (B)C resp. A ®
(B)CA are used; the number of outermost brackets to be generated (from B under

consideration) again uniquely determines that part of the derivation.

When changing the production w5: B ® CA used to generate any possible k-loop for

k ≥ 2 (any loop that is not a hairpin loop) with probability w5 into the two rules

w5.1 : B → C(B)C, w5.2 : B → C(B)CA,

where w5.1 + w5.2 = w5, it becomes possible to generate any possible 2-loop (i.e. a

stacked pair, a bulge (on the left or on the right), or an interior loop) and all kinds of

multiloops (i.e. any k-loop with k ≥ 3) with different probabilities, which could increase

the accuracy of the SCFG model. By additionally replacing the first of these two new

rules, w5.1 : B ® C(B)C, by the four productions

w5.1.1 : B → (B), w5.1.2 : B → ∣∣C(B), w5.1.3 : B → (B)C
∣∣ , w5.1.4 : B → ∣∣C(B)C∣∣ ,

where (w5.1.1 + ... + w5.1.4) + w5.2 = w5.1 + w5.2 = w5, we can distinguish between the

different types of 2-loops more accurately, yielding a more realistic secondary structure

model. In fact, in the case of significant differences of the new probabilities (w5.1.1, ...,

w5.1.4 and w5.2), we can expect a huge improvement in the model’s accuracy. Note that

it is not hard to see that changes to a grammar like the ones just discussed do not

change the language generated. However, this is not at all obvious with respect to

ambiguity of the grammar.

According to the previously mentioned facts (and the corresponding illustrations by

Example 0.3), we decided that the basis for our weighted unranking algorithm should

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 16 of 46

be the following e-free, loop-free and unambiguous (note that these are exactly the

preliminary required conditions for the basis SCFG according to [20]) SCFG, which

has been derived from the sophisticated SCFG presented in [21] that distinguishes

between all known structural motifs that can be found in RNA secondary structure:

Definition 0.10. The unambiguous �-free SCFG Ĝsto generating exactly the language

L is given by Ĝsto =
(
IĜsto

,
∑

Ĝsto
,RĜsto

, S′
)
, where

IĜsto
= {S′,E, S,T,C,A, L,G,D,B, F,H,P,Q,R,V,W,O, J,K,M,X, Y,Z,N,U},∑

Ĝsto
= {(,), |} and RĜsto

contains exactly the following rules:

p̂1 : S′ → E,

p̂2 : E → S, p̂3 : E → SC,

p̂4 : S → A, p̂5 : S → TA,

p̂6 : T → E, p̂7 : T → C,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ shape of exterior loop

p̂8 : C → —, p̂9 : C → C|, � strands in exterior loop

p̂10 : A → (L), � initiate helix

p̂11 : L → A, p̂12 : L → M, � initiate stacked pair or multiple loop

p̂13 : L → P, p̂14 : L → Q, p̂15 : L → R, � initiate interior loop

p̂16 : L → F, p̂17 : L → G, � initiate hairpin loop or bulge loop

p̂18 : G → A—, p̂19 : G → AD, p̂20 : G → —A, p̂21 : G → DA, � shape of bulge loop

p̂22 : D → B|,
p̂23 : B → —, p̂24 : B → B—,

}
strands in bulge loop

p̂25 : F → —|—, p̂26 : F → ————, p̂27 : F → ————H,

p̂28 : H → —, p̂29 : H → H—,

}
hairpin loop

p̂30 : P → —A—, p̂31 : P → |A|—, p̂32 : P → —|A|, p̂33 : P → —|A——, � small interior loops

p̂34 : Q → —|O——, p̂35 : Q → —|V|,
p̂36 : R → |O——, p̂37 : R → ——W|,
p̂38 : V → JO,

p̂39 : W → JA,

p̂40 : O → AK,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
other interior loops

p̂41 : J → —, p̂42 : J → J—,

p̂43 : K → —, p̂44 : K → K—,

}
strands in interior loop

p̂46 : M → XY,

p̂46 : X → A, p̂47 : X → UA,

p̂48 : Y → Z,

p̂49 : Z → X, p̂50 : Z → XN,

p̂51 : N → Z, p̂52 : N → U,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
multiple loop

p̂53 : U → —, p̂54 : U → U—, � strands in multiple loop

Figures 2 and 3 illustrate by examples how (parts of) secondary structures are gener-

ated by this SCFG, where we used to denote the full parse tree for I ⇒* x (i.e. for

consecutive applications of an arbitrary number of production rules that generate the

subword x from the intermediate symbol I) in oder to obtain a more compact tree

representation. In fact, it is easy to see that the overall structure is always produced by

starting with the axiom S’, while any particular substructure or structural motif that

belongs to the combinatorial (sub)class I is created from the corresponding intermedi-

ate symbol I.

For our application it is crucial that Ĝsto - as claimed its definition - is unambiguous.

To prove this, we first note that Ĝsto has been constructed starting from a simple gram-

mar which generates L by iteratively replacing one production by several ones (like we

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 17 of 46

did in the previous example) in order to distinguish more and more structural motifs

but without changing the language generated. Furthermore, a standard construction to

make the grammar �-free has been applied. That way, we can be sure that Ĝsto gener-

ates L (formally this fact easily follows by obvious bi-simulation proofs for each substi-

tution and by the proven correctness of the used construction to ensure �-freeness).

To prove unambiguity, we translate Ĝsto into a system of equations for its structure

generating function (see [47] for details) S[z] =
∑

w∈Ld(w)z
|w| where d(w) denotes the

number of derivation trees Ĝsto offers for w. Eliminating all but the variable associated

with the axiom and simplifying (for this step we made use of Mathematica) yields the

single equation

−z5 + S[z](−1 + z)(−1 + z(2 − S[z](−1 + z)z + z4)) = 0

Figure 2 Unique parse tree for the bar-bracket word considered in Example 0.1 that corresponds
to the planar secondary structure from Figure 1.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 18 of 46

This equation is exactly the one of our grammar Gs from Example 0.3 which proves

that for all n both grammars have the same number of derivation trees for words of

size n. Knowing that both grammars generate L and that Gs is unambiguous, the same

can be concluded for Ĝsto.

Note that Ĝsto contains more production rules (and more different non-terminal sym-

bols) than the SCFG considered in [21], but this new grammar is �-free and addition-

ally, the right-hand side of every single production contains at most two non-terminal

symbols, such that the resulting unranking algorithm has to consider less cases (i.e.

less “else if ()” cases). For details, see [20] and the Appendix.

Furthermore, it should be mentioned that we decided to assign relative frequencies

to the production rules of Ĝsto, since such probabilities can be computed efficiently for

unambiguous SCFGs. Moreover, by estimating the probabilities p̂i, 1 ≤ i ≤ 54, by their

relative frequencies, the resulting grammar Ĝsto has the consistency property, which

means Ĝsto provides a probability distribution on the language L(Ĝsto) = L. In particu-

lar, it is well-known that relative frequencies in our context yield a maximum likeli-

hood (ML) estimator for the rule probabilities and thus a consistent estimator for the

parameter set. We have trained the probabilities (relative frequencies) of Ĝsto from the

structures s ∈ L
(
Ĝsto

)
given in our biological database. The resulting probabilities are

given in Table 1, their floating point approximations, rounded to the third decimal

place in Table 2.

In oder to see if over-fitting is an issue for our sophisticated grammar and its rich

parameter set, i.e. to see if our training set is large enough to derive reliable values for

the rule probabilities, we performed the following experiments: We selected a random

Figure 3 Particular subtrees of the tree presented in Figure 2.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 19 of 46

Table 1 The probabilities (relative frequencies) for the production rules of the SCFG Ĝsto
obtained by training it using our biological database

Nonterminal Nt Probabilities of Rules with Premise Nt

S’ p̂1 := 1

E p̂2 :=
137
6476

, p̂3 :=
6339
6476

,

S p̂4 :=
177

12952
, p̂5 :=

12775
12952

,

T p̂6 :=
11086
12775

, p̂7 :=
1689
12775

,

C p̂8 :=
14367
148978

, p̂9 :=
134611
148978

,

A p̂10 := 1,
L p̂11 :=

605069
792975

, p̂12 :=
31912
792975

, p̂13 :=
4912

264325
, p̂14 :=

5821
158595

,

p̂15 :=
1893

264325
, p̂16 :=

2723
31719

, p̂17 :=
38399
792975

,

G p̂18 :=
11667
38399

, p̂19 :=
7235
38399

, p̂20 :=
11831
38399

, p̂21 :=
7666
38399

,

D p̂22 := 1,

B p̂23 :=
4967
12748

, p̂24 :=
7781
12748

,

F p̂25 :=
3912
68075

, p̂26 :=
23208
68075

, p̂27 :=
8191
13615

,

H p̂28 :=
8191
40700

, p̂29 :=
32509
40700

,

P p̂30 :=
533
4912

, p̂31 :=
1053
4912

, p̂32 :=
2963
14736

, p̂33 :=
7015
14736

,

Q p̂34 :=
4986
29105

, p̂35 :=
24119
29105

,

R p̂36 :=
2357
5679

, p̂37 :=
3322
5679

,

V p̂38 := 1,

W p̂39 := 1,

O p̂40 := 1,

J p̂41 :=
27441
84620

, p̂42 :=
57179
84620

,

K p̂43 :=
15731
53725

, p̂44 :=
37994
53725

,

M p̂45 := 1,

X p̂46 :=
6196
87035

, p̂47 :=
80839
87035

,

Y p̂48 := 1,

Z p̂49 :=
2812
55123

, p̂50 :=
52311
55123

,

N p̂51 :=
7737
17437

, p̂52 :=
9700
17437

,

U p̂53 :=
109939
518817

, p̂54 :=
408878
518817

,

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 20 of 46

90% (resp. 50%) portion of the original training set and re-estimated the probabilities

of all the grammar rules. This process was iterated 40 times, resulting in a sample of

40 parameter sets. Finally, for each parameter we determined its variance along this

sample of size 40. The corresponding values lay between 0 (resulting for intermediate

symbols without alternatives; for whose productions a probability of 1 is predeter-

mined) and 2.87652 × 10-6 (resp. 2.86242 × 10-5). We can conclude that over-fitting is

no issue in connection with our sophisticated grammar and the training set used.

Derivation of the Algorithm

The elaborate SCFG Ĝsto is appropriate for being used as the basis for the desired

weighed unranking method: after having determined the RNF of this SCFG and the

corresponding weighted combinatorial classes, we easily find a recursion for the size

function (in the same ways as discussed in Example App-.4). Then, we can use the

resulting weighted class sizes for the straightforward construction of the desired

unranking algorithm.

In fact, for the construction of the complete algorithm, we simply have to use Algo-

rithms 1 to 4 (Unranking of neutral classes, atomic classes, disjoint unions and carte-

sian products, respectively) and Algorithm 6 (Unranking of weighted classes) given in

[20] as subroutines. However, to improve the worst-case complexity of the resulting

Table 2 Floating point approximations of the probabilities (relative frequencies) for the
production rules of the SCFG Ĝsto (rounded to three decimal places)

Nonterminal Nt Probabilities of Rules with Premise Nt

S’ p̂1 := 1.000,
E p̂2 := 0.021, p̂3 := 0.979,
S p̂4 := 0.014, p̂5 := 0.986,
T p̂6 := 0.868, p̂7 := 0.132,
C p̂8 := 0.096, p̂9 := 0.904,
A p̂10 := 1.000
L p̂11 := 0.763, p̂12 := 0.040, p̂13 := 0.019, p̂14 := 0.037,

p̂15 := 0.007, p̂16 := 0.086, p̂17 := 0.048,
G p̂18 := 0.304, p̂19 := 0.188, p̂20 := 0.308, p̂21 := 0.200,
D p̂22 := 1.000
B p̂23 := 0.390, p̂24 := 0.610,
F p̂25 := 0.057, p̂26 := 0.341, p̂27 := 0.602,
H p̂28 := 0.201, p̂29 := 0.799,
P p̂30 := 0.109, p̂31 := 0.214, p̂32 := 0.201, p̂33 := 0.476,
Q p̂34 := 0.171, p̂35 := 0.829,
R p̂36 := 0.415, p̂37 := 0.585,
V p̂38 := 1.000
W p̂39 := 1.000
O p̂40 := 1.000
J p̂41 := 0.324, p̂42 := 0.676,
K p̂43 := 0.293, p̂44 := 0.707,
M p̂45 := 1.0000
X p̂46 := 0.071, p̂47 := 0.929,
Y p̂48 := 1.0000
Z p̂49 := 0.051, p̂50 := 0.949,
N p̂51 := 0.444, p̂52 := 0.556,
U p̂53 := 0.212, p̂54 := 0.788.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 21 of 46

unranking procedure from O(n2) to O (
n · log(n)) by using the boustrophedonic order

instead of the sequential order, a simple change in Algorithm 4 (Unranking of cartesian

products) is neccessary (see e.g. [7]).

A random RNA secondary structure of size n can easily be computed by drawing a

random number i ∈ {0, . . . , size(L,n) − 1} and then unranking the ith structure of

size n. The worst-case runtime complexity of this procedure is equal to that of unrank-

ing and is thus given by O (
n · log(n)) when using the boustrophedonic order. By

repeating this procedure m times, a set of m (not necessarily distinct) random RNA

secondary structures of size n can be generated in time O (
m · n · log(n)), where a pre-

processing time of O(n2) is required for the computation of all (weighted) class sizes

up to input length n.

A complete and detailed description of the derivation of our weighted unranking

algorithm for (SSU and LSU r)RNA secondary structures can be found in the Appen-

dix, since it is too comprehensive to be presented here and the different steps for its

generation correspond to those described in [20].

Availability of Software

It may be of interest to the reader that this non-uniform random generation algorithm

for RNA secondary structures has been implemented as a webservice which is accessi-

ble to the scientific community under http://wwwagak.cs.uni-kl.de/NonUniRandGen.

Since it is relevant for researchers to have methods available for generating random

structures that are realistic for a particular investigation, this webservice is also capable

of allowing the user to specify the distribution from which the corresponding struc-

tures should be sampled (in the form of a set of secondary structure samples from

which the parameters for our grammars are inferred). Furthermore, our Mathematica

source code used to implement the webservice can be downloaded from our website

and used under GNU public licence.

Discussion
The purpose of this section is to analyze the quality of randomly generated structures

by considering some experimental results.

Parameters for Structural Motifs

As a first step, we decided to consider several important parameters related to particu-

lar structural motifs of RNA secondary structure and compare the observed statistical

values derived from a native sample (here our biological database, i.e. the set of real-

life RNA data that we used for deriving the distribution and thus the weights for the

unranking algorithm) to those derived from a corresponding random sample (i.e. a set

of random structures generated by our algorithm). In order to obtain an appropriate

random sample, we have generated exactly one random structure of size n for each

native RNA structure of size n given in our database, such that for each occurring size

n, the random sample and the native sample contain the same number of structures

having this size.

The determined results are presented in Table 3. Comparing the specific values of all

different parameters, we can guess that our algorithm produces random RNA second-

ary structures that are, related to the different structural motifs and thus related to the

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 22 of 46

http://wwwagak.cs.uni-kl.de/NonUniRandGen

expected shape of such structures, in most cases realistic. Obviously, this is a major

improvement over existing approaches for the random generation of secondary struc-

tures of a given input size n (where the corresponding specific RNA sequence is not

known, but only its length n), as those (sequence-independent) methods are only cap-

able of generating structures uniformly at random for input size n. Furthermore, with

the SCFG model used here, we have an new model for RNA secondary structures at

hand which realistically reflects the structure of an RNA molecule and its basic struc-

tural motifs.

Related Free Energies

For further investigation on the accuracy of our random generator, we take on a com-

pletely different point of view and consider thermodynamics. The reason behind this

idea is that if an RNA secondary structure model induced by a SCFG shows a realistic

behaviour (expectation and variance) with respect to minimum free energy, then it is

rather likely that our grammar also shows a realistic picture for all the different struc-

tural motifs of a molecule’s folding (as the free energy of a molecule’s structure is

defined as the sum of the energy contributions of all its substructures).

Table 3 Expectation and variance of important parameters related to particular
structural motifs of RNA secondary structure

Parameter Expected Value Variance

Random Native Random Native

numunp 848.179 839.956 98964.7 103426.

numbps 420.848 424.96 27785.3 31310.9

numurs 179.73 181.822 4959.96 5117.47

nume 1. 1. 0. 0.

numh 36.6983 36.4818 196.935 185.596

nums 321.18 324.26 16538.8 19343.4

numb 20.6061 20.5782 87.1894 50.3103

numi 26.1442 26.538 125.66 194.769

numm 16.2197 17.1018 57.8874 41.0261

numhel 99.6683 100.7 1549.24 1492.84

unpe 106.014 79.8382 4039.69 3897.61

unph 6.93534 6.93188 18.4264 77.464

unps – – – –

unpb 1.9948 1.99596 3.10283 6.87868

unpi 7.14617 7.08869 16.5725 31.1197

unpm 16.0122 16.2577 87.4906 195.497

unphel – – – –

bpse 9.41479 6.94105 29.1956 6.30949

bpsh – – – –

bpss 1. 1. 0. 0.

bpsb 1. 1. 0. 0.

bpsi 1. 1. 0. 0.

bpsm 2.68212 2.72734 1.12921 1.21643

bpshel 4.22249 4.22006 13.6266 5.52299

Values are derived from a native sample (our biological database) and from a random sample, respectively.
numxdenotes the number of occurrences of motif xin one secondary structure and unpx(bpsx) denotes the number of
accessible unpaired bases (base pairs) in one substructure of type x. unp, bps, urs denote unpaired bases, base pairs and
unpaired regions, whereas e, h, s, b, i, m, hel denote exterior loop, hairpin loop, stacked pair, bulge loop, interior loop,
multiloop and helix, respectively.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 23 of 46

Since we do not know the corresponding RNA sequences for the randomly generated

structures, we can not use one of the common sequence-dependent thermodynamic

models for RNAs. Therefore, we decided to consider both the static and dynamic free

energy models (in the static model, averaged free energy contributions for the distin-

guished structural motifs are considered which can easily be derived from the training

data (by sequence counting). These averaged values actually represent the free energy

contributions that have to be added for the respective whole substructures. For the

dynamic model, corresponding average values for length-dependent free energy contri-

butions (that depend on the number of unpaired or paired bases within particular sub-

structures) are added for each component (unpaired base or base pair) in the

respective motifs, such that in contrast to the static model, substructures of different

lengths are assigned different free energy values) defined in [21] for RNA secondary

structures with unknown sequence. These models are based on the well-known Turner

energy model [22,23] and model parameters have been derived from the same biologi-

cal database (of SSU and LSU rRNAs) that we consider in this article. In fact, both

models have turned out to show a realistic behaviour and can therefore be used to

judge the quality of random structures generated by our algorithm.

Unquantified Results

Similar to [21], we denote the free energy of a given secondary structure s ∈ L according

to the static and dynamic model by gstat(s) and gdyn(s), respectively. Moreover, the

expected free energy and corresponding variance that have been analytically derived in

that paper for any n > 0 are denoted by μenergy,n := E
[
energy(s) | size(s) = n

]
and

σ 2
energy,n := V

[
energy(s) | size(s) = n

]
, respectively, where energy Î {gstat, gdyn}. The corre-

sponding confidence interval for n > 0 and k > 1, which contains at least
(
100 − 100

k2

)
percent of the energies in {energy(s) | s ∈ Ln} is denoted by Ienergy,n(k): = (μenergy,n - kse-

nergy,n, μenergy,n + ksenergy,n). As these analytical energy results from [21] and our unrank-

ing algorithm have been derived from the same database of real-life RNA data and by

modeling the same class L of structures via very similar SCFGs, it seems adequate to use

them for comparisons with the energies of our randomly generated structures.

Before we start with our comparisons, note that for any sample set S of secondary

structures, we can calculate the corresponding energy points

EP(S, energy) := {(size(s), energy(s)) | s ∈ S}, where energy Î {gstat, gdyn}. Obviously, we

can also compute the corresponding “average energy points”

AvEP(S, energy) :=
{
(n,μn :=

1
card(Sn)

∑
s∈Sn energy(s)) | Sn �= ∅

}
and the correspond-

ing “energy variance points”

VarEP(S, energy) :=
{
(n, σ 2

n :=
1

card(Sn)

∑
s∈Sn

(
μn − energy(s)

)2 | Sn �= ∅
}
, respectively.

In the sequel, we will denote a random sample generated by our algorithm by ℛ and a

native sample (biological database) by N .

In order to obtain an appropriate random sample for our energy comparisons, we

derived a large set of random structures by generating 1000 RNA secondary structures

for each of the sizes n Î {500,1000,1500,..., 5000, 5500} with our weighted unranking

algorithm. To compare the energies of our randomly generated structures to the corre-

sponding confidence interval(s), we decided to consider any k ∈ {√2, 2,
√
10,

√
20},

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 24 of 46

meaning the probability that the free energy of a random RNA secondary structure of

size n lies within the corresponding interval is greater than 0.5, 0.75, 0.9, and 0.95,

respectively.

Figure 4 shows a plot of the corresponding four confidence intervals (analytically

derived, related to our biological data) along with the energy points for our random

sample and for our native database, respectively, under the assumption of the static

energy model. The corresponding plots for the dynamic energy model are shown in

Figure 5. Looking at both figures, we immediately see that the energies for our set of

randomly generated RNA secondary structures seem to fit to the ones for the consid-

ered RNA database and also to the corresponding analytically obtained energy results

from [21]. This observation becomes even more clear by considering Figures 6 and 7.

There, we compare the previously introduced “average energy points” and “energy var-

iance points” to the analytically determined expected free energy and corresponding

variance from [21], respectively.

Quantified Results

The previously considered energy comparisons have been presented only by unquanti-

fied plots. This may not be very satisfying, since it is obvious that the free energy

would decrease with structure size and aside from this, it could have been expected

that for large randomly generated sets of structures of a given size, the average energy

and corresponding variance fit the analytically obtained energy results derived under

the assumption of a basically equivalent SCFG model for secondary structures. There-

fore, there is a need to consider some sort of quantification and additionally present

corresponding quantified comparison results. What really matters is the degree to

which the energy ranges of the random structures agree, in distribution, with our bio-

logical database. This means we have to find out if the energies related to a random

sample (generated by our unranking method) and those related to a native sample

(given by the structures in our biological database) come from a common distribution.

Figure 4 Plots of the confidence intervals Igstat ,n(k). Intervals are shown for the static energy model (blue),
for k ∈ {√2, 2,

√
10,

√
20} (top left to bottom right), together with the corresponding energy points EP(R, gstat)for the

random sample (cyan) and EP(N , gstat) for the native sample (green).

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 25 of 46

Consequently, we have to consider the energies of a random sample and those of a

native one as two independent sets of values and determine the extend to which their

distributions coincide, or in other words to test for significant differences between

these two sets. For this reason, we decided to apply one of the most common (non-

parametric) significance tests known from statistics, the so-called Mann-Whitney

U-test [48], which is widely used as statistical hypothesis test for assessing whether two

independent samples of observations (with arbitrary sample sizes) come from the same

distribution. It is also known as the Wilcoxon rank-sum test [49] which however can

only be applied for equal sample sizes.

Figure 6 Plot of expectations of the free energy. Plots show μgstat ,n (blue) and μgdyn,n (purple) of a
random RNA secondary structure of size n, together with the “average energy points”
AvEP(R, gstat)(cyan) and AvEP(R, gdyn) (magenta) for the random sample.

Figure 5 Plots of the confidence intervals Igdyn,n(k). Intervals are shown for the dynamic energy model
(purple), for k ∈ {√2, 2,

√
10,

√
20} (top left to bottom right), together with the corresponding energy points EP(R, gdyn)for

the random sample (magenta) and EP(N , gdyn) for the native sample (yellow).

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 26 of 46

Formally, this test is used to check whether the null hypothesis N0 - which states that

the two independent samples X and Y are identically distributed (i.e. F(X) = F(Y)) - can

be accepted or else, has to be rejected. More specifically, the result of such a test, the

so-called p-value, is a probability answering the following question: If the two samples

really have the same distribution, what is the probability that the observed difference is

due to chance alone? In other words, were the deviations (differences between the two

samples) the result of chance, or were they due to other factors and how much devia-

tion can occur before one must conclude that something other than chance causes the

differences? The p-value is called statistically significant if it is unlikely that the differ-

ences occurred by chance alone, according to a preliminary chosen threshold probabil-

ity, the significance level a (common choices are e.g. a Î {0.10,0.05,0.01}). If p ≥ a, the
deviation is small enough that chance alone accounts for it; this is within the range of

acceptable deviation. If p < a, we must conclude that some factor other than chance

causes the deviation to be so great, this will lead us to decide that the two sets come

from different distributions.

For our analysis, we again decided to generate the same numbers of random struc-

tures for any size as are given for this size in our biological database, such that random

and native sample contain the same numbers of structures for any occurring size (and

hence the sample sizes are equal). Moreover, note that the unquantified results pre-

sented in Figures 4 and 5 might yield the assumption that for any structure size, some

energy values of randomly generated structures are scattered too widely around the

corresponding expected value, such that those randomly drawn secondary structures

can not be considered realistic (neither with respect to thermodynamics nor with

respect to structural composition and expected shape). In an attempt to disprove that

assumption, we decided to perform a series of Wilcoxon tests by considering a number

of different random samples. These samples are created by obeying a specified energy-

based rejection scheme: Do not add a randomly generated structure of a given size to

Figure 7 Plot of variances of the free energy. Plots show σ 2
gstat ,n (blue) and σ 2

gdyn,n (purple) of a random
RNA secondary structure of size n, together with the “energy variance points"
VarEP(R, gstat) (cyan) and VarEP(R, gdyn) (magenta) for the random sample.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 27 of 46

the sample if its free energy (according to the static or dynamic model or according to

both models) lies outside the corresponding confidence interval(s). Formally, for any

preliminary chosen value k > 1, a generated structure s ∈ Ln is added to the random

sample iff

[gstat ∈ Igstat ,n(k) (variant “static”)] or [gdyn ∈ Igdyn,n(k) (variant “dynamic”)] or

[gstat ∈ Igstat ,n(k) and gdyn ∈ Igdyn,n(k) (variant “both”)];

otherwise it is rejected. This means we accept only a specified deviation of the

energy energy (s) of the random structure s from the corresponding expected free

energy μenergy,n and reject structures whose energy differs too much from the expected

value. Note that for k = ∞ (confidence interval Ienergy,n(k) contains 100 percent of the

energies energy(s) of all s ∈ Ln), no structures are rejected. Hence, in this case, the cor-

responding random sample corresponds to the usual (unrestricted) output of our

algorithm.

The Wilcoxon test results for our native sample together with any of a number of

random sample sets generated in the previously described restricted manner, respec-

tively, can be found in Table 4. As we can see, the best results are achieved for the

unrestricted sample sets, where all free energies of randomly generated structures were

allowed during the sample creation process. Moreover, these two results (for the

unrestricted case k = ∞) are not statistically significant when considering the common

significance level a = 0.05, that is in both cases, we can assume that the energies of

the random structures and those of the biological data follow a common distribution.

These observations indicate that our weighted unranking algorithm produces random

RNA secondary structures that are - related to the free energy of such structures (in

expectation and variation) - in expectation realistic.

Besides that, it is obvious that the computed p-values are much better for the

dynamic energy model than for the static one. This underlines the suggestion made in

[21] that, although both energy models have been proven to be realistic, due to the

more realistic variation of free energies connected to varying loop length, the dynamic

model should be used for possible applications. Since at least for the dynamic model,

the random data fit very nicely with the native data, we can conclude that structures

generated by our non-uniform random generation algorithm behave realistic with

respect to free energies and - as the energy of the overall structure is assumed to be

equal to the sum of the substructure energies - rather likely also with respect to

appearance of the different structural motifs of RNA molecules.

Conclusion
Altogether, we can finally conclude that the non-uniform random generation method

proposed in this article produces appropriate output and may thus be used (for

research issues as well as for practical applications) to generate random RNA second-

ary structures. In fact, for any arbitrary type of (pseudoknot-free) RNA, a correspond-

ing random sampler can be derived in the presented way. Actually, our webservice can

be used for generating random secondary structures of any specified type of RNA. It

just requires a database of known structures for the respective RNA type as input.

Note that in this work, we abstract from sequence and consider only the structure

size as input for our algorithm. Thus, an interesting problem for future research would

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 28 of 46

be to find a way to extend the presented realistic SCFG model to additionally deal with

RNA sequence. In fact, this work and especially the considered elaborate SCFG could

mark some sort of stepping stone towards new stochastic RNA secondary structure

prediction methods realized by statistical random sampling.

Appendix
How to Construct a Weighted Unranking Algorithm from a Given SCFG

The purpose of this section is to give a rather small example for applying the construc-

tion scheme described in detail in [20] to proceed from an arbitrary SCFG to

reweighted normal form (RNF) and then to the corresponding weighted combinatorial

classes which allow for non-uniform generation by means of unranking.

Example App-.4. Let us consider the SCFG Gd, which contains the following rules:

w1:S → B,
w2:B → (((B))), w3:B → |||C,
w4:C → ε, w5:C → |||C.

Table 4 Significance results for statistical hypothesis testing, computed by the Wilcoxon
rank-sum method

Chosen Value of k Percent
Within Corr.
Interval

Models Used
for Rejection

Model for
Native
Energies

Model for
Random
Energies

Resulting
Wilcoxon p-Value

(approx.)

Dynamic Dynamic Dynamic 0.000843810

3
√
11

≈ 1.00504 1 Static Static Static 1.872·10-9

Both Dynamic Dynamic 0.000507

Both Static Static 1.851·10-10

Dynamic Dynamic Dynamic 0.001567
2
√
5√

19
≈ 1.02598 5 Static Static Static 1.454·10-10

Both Dynamic Dynamic 0.0002654

Both Static Static 1.009·10-9

Dynamic Dynamic Dynamic 0.001374√
10
3

≈ 1.05409 10 Static Static Static 3.526·10-9

Both Dynamic Dynamic 0.0004116

Both Static Static 9.018·10-10

Dynamic Dynamic Dynamic 0.0036182√
3

≈ 1.15470 25 Static Static Static 2.530·10-7

Both Dynamic Dynamic 0.001228

Both Static Static 1.162·10-7

Dynamic Dynamic Dynamic 0.02394√
2 ≈ 1.41421 50 Static Static Static 1.278·10-6

Both Dynamic Dynamic 0.001389

Both Static Static 1.515 10-7

Dynamic Dynamic Dynamic 0.1184

2 75 Static Static Static 0.001034

Both Dynamic Dynamic 0.0495

Both Static Static 0.0009445

∞ 100 – Dynamic Dynamic 0.4007

– Static Static 0.08961

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 29 of 46

To apply the approach presented in [20] to transform a given SCFG to RNF, the

grammar needs to be �-free and loop-free. Thus, we first have to transform grammar

Gd into the following one:

ŵ1:S → B,
ŵ2:B → (((B))), ŵ3:B → C,
ŵ4:C → |||, ŵ5:C → |||C.

The transformation of Gd into RNF now works as follows: First, we have to gather all

possible chains A ® A1 ® A2 ® ... ® a, where A ≠ S and |a| = 1. These chains are

B ® C, B ® C ® | and C ® |; the rules B ® C and C ® | are then removed. Sec-

ond, we have to replace each of these chains by a specific new rule. In fact, we have

to add BC,� ® C, B|,C ® | and C|,� ® | to the new set of productions. Consequently,

our new rule set is now given by

ŵ1:S → B,
ŵ2:B → (((B))),
ŵ5:C → |||C,
1:BC,ε → C, 1:B|||,C → |||, 1:C|||,ε → |||.

Third, for each occurrence of a non-terminal symbol A in the conclusion of a production

and each previously added new rule Aα,A1A2... → α corresponding to a chain A ® A1 ®
A2 ® ... ® a, add a specific new rule. This way, we obtain the following production set:

ŵ1:S → B, ŵ1 · ŵ3:S → BC,ε , ŵ1 · ŵ3 · ŵ4:S → B|||,C,
ŵ2:B → (((B))), ŵ2 · ŵ3:B → (((BC,ε))), ŵ2 · ŵ3 · ŵ4:B → (((B|||,C))),
ŵ5:C → |||C, ŵ5 · ŵ4:C → |||C|||,ε ,
1:BC,ε → C, 1:B|||,C → |||, 1:C|||,ε → |||.

Fourth, each intermediate symbol that no longer occurs as premise in any of the pro-

ductions has to be removed and fifth, each production of the form S ® a, where S is

the axiom and |a| > 1 has to be changed in a specific way. However, since in our case,

there is obviously nothing left to do, the transformation of Gd into RNF is finished.

For Gd (in RNF), where all production weights are rational, we can determine the

common denominator s of the weights of productions with premise S, as well as the

common denominator c of the weights of the remaining productions (i.e., of the pro-

ductions with premise B or C). Then, the reweighting of the production rules of (the

RNF of) Gd is done by multiplying the weights of productions with source S by s, and

the weights of the other productions A ® a, where A ≠ S, by the factor c|a|-1. After

that, we obtain the following reweighted grammar G′
d:

w′
1:S → B, w′

2:S → BC,ε , w′
3:S → B|||,C,

w′
4:B → (((B))), w′

5:B → (((BC,ε))), w′
6:B → (((B|||,C))),

w′
7:C → |||C, w′

8:C → |||C|||,ε ,
1:BC,ε → C, 1:B|||,C → |||, 1:C|||,ε → |||,

where each W ′
i , 1 ≤ i ≤ 8, is integral.

The (now weighted) grammar can easily be translated into a corresponding admissi-

ble specification, which includes the weighting of all involved combinatorial (sub)

classes, as described earlier. For the reweighted grammar G′
d, this specification is given

by the following equations:

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 30 of 46

S1 = B, S2 = BC,ε, S3 = B|,C,
B1 = Z(×B×Z), B2 = Z(×BC,ε×Z), B3 = Z(×B|,C×Z),
C1 = Z| × C, C2 = Z| × C |,ε,

BC,ε = C, B|,C = Z|, C |,ε = Z|,
S = w′

1 · S1 + w′
2 · S2 + w′

3 · S3,
B = w′

4 · B1 + w′
5 · B2 + w′

6 · B3,
C = w′

7 · C1 + w′
8 · C2,

which can be simplified in the following way:

B1 = Z(× B × Z), B2 = Z(× C × Z), B3 = Z(× Z| × Z),
C1 = Z— × C, C2 = Z— × Z—,

S = w′
1 · B + w′

2 · C + w′
3 · Z|,

B = w′
4 · B1 + w′

5 · B2 + w′
6 · B3,

C = w′
7 · C1 + w′

8 · C2.

As described earlier, this specification (with weighted classes) derived from

reweighted grammar G′
d transforms immediately into a recursion for the function size

of all needed combinatorial classes. For G′
d, the recursion for the function size has the

following form:

size(I,n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

size(B,n− 2) I = B1,

size(C,n − 2) I = B2,

1 I = B3 and n = 3,

size(C,n − 1) I = C1,
1 I = C2 and n = 2,

w′
1 · size(B,n) + w′

2 · size(C,n) + w′
3 · 1 I = S and n = 1,

w′
1 · size(B,n) + w′

2 · size(C,n) + w′
3 · 0 I = S and n �= 1,

w′
4 · size(B1,n) + w′

5 · size(B2,n) + w′
6 · size(B3,n) I = B,

w′
7 · size(C1,n) + w′

8 · size(C2,n) I = C,
0 else.

This recursive size function (with weighted class sizes) can now be used for the

straightforward construction of a corresponding algorithm for the non-uniform genera-

tion of elements of L(Gd) by means of unranking, as proposed in [20].

Derivation of the Algorithm

In this section, we give a complete and detailled description of the derivation of our

weighted unranking algorithm for RNA secondary structures. The different steps are

made according to the approach described in [20] to get an unranking algorithm that

generates random RNA secondary structures of a given size n according to the distri-

bution on all these structures.

Considered (unambiguous, �-free and loop-free) SCFG

First, note that in [21], to obtain the stochastic model for RNA secondary structures

derived from real-world RNA data, the following unambiguous SCFG which unam-

biguously generates exactly the language L given in Definition 0.9 has been used:

Definition App-.11. The unambiguous SCFG Gsto generating exactly the language L
is given by Gsto = (IGsto ,

∑
Gsto

, RGsto , S) , where

IGsto = {S,T,C,A, L,G,B, F,H,P,Q,R, J,K,M,N,U},

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 31 of 46

Gsto = {(,), |} and RGsto contains exactly the following rules:

p1:S → TAC,
p2:T → TAC, p3:T → C,
p4:C → C|||, p5:C → ε,
p6:A → (((L))),
p7:L → (((L))), p8:L → M, p9:L → P, p10:L → Q,
p11:L → R, p12:L → F, p13:L → G,
p14:G → (((L)))|||, p15:G → (((L)))B||||||, p16:G → |||(((L))), p17:G → ||||||B(((L))),
p18:B → B|||, p19:B → ε,
p20:F → |||||||||, p21:F → ||||||||||||, p22:F → |||||||||||||||H,
p23:H → H|||, p24:H → ε,
p25:P → |||(((L)))|||, p26:P → |||(((L)))||||||, p27:P → ||||||(((L)))|||, p28:P → ||||||(((L)))||||||,
p29:Q → ||||||(((L)))K|||||||||, p30:Q → |||||||||J(((L)))K||||||,
p31:R → |||(((L)))K|||||||||, p32:R → |||||||||J(((L)))|||,
p33:J → J|||, p34:J → ε,
p35:K → K|||, p36:K → ε,
p37:M → U(((L)))U(((L)))N,
p38:N → U(((L)))N, p39:N → U,
p40:U → U|||, p41:U → ε.

In this grammar, different intermediate symbols have been used to distinguish

between different substructures. In fact, the reason why this grammar has so many

production rules is that the grammar must be able to distinguish between all the dif-

ferent classes of substructures for which there are different free energy rules according

to Turner’s thermodynamic model considered in [21].

However, as �-freeness and loop-freeness are required preliminarily, we have to con-

sider another unambiguous SCFG generating the same language L, where we have to

guarantee that the same substructures are distinguished as are distinguished in Gsto.

Using the usual way of transforming a non-�-free grammar into an �-free one, the

following definition can immediately be obtained from the previous one:

Definition App-.12. The unambigous and �-free SCFG G′
sto generating exactly the

language L is given by G′
sto = (IG′

sto
,
G′

sto
,RG′

sto
, S′), where

IG′
sto
= {S′, S,T,C,A, L,G,B, F,H,P,Q,R, J,K,M,N,U},

G′sto = {(,), |} and RG′
sto contains exactly the following rules:

p′
0:S

′ → S,
p′
1:S → A, p′

2:S → AC, p′
3:S → TA, p′

4:S → TAC,
p′
5:T → A, p′

6:T → AC, p′
7:T → TA, p′

8:T → TAC,
p′
9:T → C,

p′
10:C → |||, p′

11:C → C|||,
p′
12:A → (((L))),
p′
13:L → (((L))), p′

14:L → M, p′
15:L → P, p′

16:L → Q,
p′
17:L → R, p′

18:L → F, p′
19:L → G,

p′
20:G → (((L)))|||, p′

21:G → (((L)))||||||, p′
22:G → (((L)))B||||||,

p′
23:G → |||(((L))), p′

24:G → ||||||(((L))), p′
25:G → ||||||B(((L))),

p′
26:B → |||, p′

27:B → B|||,
p′
28:F → |||||||||, p′

29:F → ||||||||||||, p′
30:F → |||||||||||||||, p′

31:F → |||||||||||||||H,
p′
32:H → |||, p′

33:H → H|||,
p′
34:P → |||(((L)))|||, p′

35:P → |||(((L)))||||||, p′
36:P → ||||||(((L)))|||, p′

37:P → ||||||(((L)))||||||,
p′
38:Q → ||||||(((L)))|||||||||, p′

39:Q → ||||||(((L)))K|||||||||, p′
40:Q → |||||||||(((L)))||||||, p′

41:Q → |||||||||J(((L)))||||||,
p′
42:Q → |||||||||(((L)))K||||||, p′

43:Q → |||||||||J(((L)))K||||||,
p′
44:R → |||(((L)))|||||||||, p′

45:R → |||(((L)))K|||||||||, p′
46:R → |||||||||(((L)))|||, p′

47:R → |||||||||J(((L)))|||,
p′
48:J → |||, p′

49:J → J|||,
p′
50:K → |||, p′

51:K → K|||,
p′
52:M → (((L)))(((L))), p′

53:M → U(((L)))(((L))), p′
54:M → (((L)))U(((L))), p′

55:M → (((L)))(((L)))N,
p′
56:M → U(((L)))U(((L))), p′

57:M → U(((L)))(((L)))N, p′
58:M → (((L)))U(((L)))N, p′

59:M → U(((L)))U(((L)))N,
p′
60:N → (((L))), p′

61:N → U(((L))), p′
62:N → (((L)))N, p′

63:N → U(((L)))N,
p′
64:N → U,
p′
65:U → |||, p′

66:U → U|||.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 32 of 46

Unfortunately, the set of productions of G′
sto contains productions with up to 5 non-

terminal symbols in the conclusion. This is not acceptable for our purpose, for the fol-

lowing reason: the desired unranking algorithm makes use of the size of combinatorial

classes whose representations somehow are derived from CFGs with particular integer

weights on their productions. If we constructed this WCFG by starting with the gram-

mar G′
sto, then this would yield a huge number of production rules. Consequently, the

translation would imply a huge specification of the combinatorial classes and the cor-

responding function to compute their sizes and thus the corresponding unranking

algorithm would have to distinguish between an unnecessarily and most importantly

unacceptably large number of cases.

Nevertheless, the size of the production set of the weighted grammar underlying the

desired unranking algorithm can be significantly reduced by starting with a modifica-

tion of grammar G′
sto which has only production rules with minimum possible numbers

of non-terminal symbols in the conclusion. In fact, by transforming G′
sto appropriately

considering this observation, we obtained the SCFG Ĝsto:

Definition App-.13. The unambiguous �-free SCFG Ĝsto generating exactly the lan-

guage L is given by Ĝsto = (IĜsto
,
Ĝsto

,RĜsto
, S′), where

IĜsto
= {S′,E, S,T,C,A, L,G,D,B, F,H,P,Q,R,V,W,O, J,K,M,X, Y ,Z,N,U},

Ĝsto
= {(,), |) and RĜsto

contains exactly the following rules:

p̂1:S′ → E,
p̂2:E → S, p̂3:E → SC,
p̂4:S → A, p̂5:S → TA,
p̂6:T → E, p̂7:T → C,
p̂8:C → |||, p̂9:C → C|||,
p̂10:A → (((L))),
p̂11:L → A, p̂12:L → M, p̂13:L → P, p̂14:L → Q,
p̂15:L → R, p̂16:L → F, p̂17:L → G,
p̂18:G → A|||, p̂19:G → AD, p̂20:G → |||A, p̂21:G → DA,
p̂22:D → B|||,
p̂23:B → |||, p̂24:B → B|||,
p̂25:F → |||||||||, p̂26:F → ||||||||||||, p̂27:F → ||||||||||||H,
p̂28:H → |||, p̂29:H → H|||,
p̂30:P → |||A|||, p̂31:P → |||A||||||, p̂32:P → ||||||A|||, p̂33:P → ||||||A||||||,
p̂34:Q → ||||||O||||||, p̂35:Q → ||||||V|||,
p̂36:R → |||O||||||, p̂37:R → ||||||W|||,
p̂38:V → JO,
p̂39:W → JA,
p̂40:O → AK,
p̂41:J → |||, p̂42:J → J|||,
p̂43:K → |||, p̂44:K → K|||,
p̂45:M → XY,
p̂46:X → A, p̂47:X → UA,
p̂48:Y → Z,
p̂49:Z → X, p̂50:Z → XN,
p̂51:N → Z, p̂52:N → U,
p̂53:U → |||, p̂54:U → U|||.

Transforming our SCFG into RNF

Now, we can construct the desired weighted grammar that will be underlying our

unranking algorithm: In the first step, we gather all possible chains of productions that

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 33 of 46

do not lengthen the sentential form. In fact, we have to consider all rules A ® a, A ≠

S’, with |a| = 1, to obtain all such chains (note that these rules will be removed after

step 1). Hence, we have to consider the following set R1
rnf of 22 production rules:

p̂2:E → S,
p̂4:S → A,
p̂6:T → E, p̂7:T → C,
p̂8:C → |||,
p̂11:L → A, p̂12:L → M, p̂13:L → P, p̂14:L → Q,
p̂15:L → R, p̂16:L → F, p̂17:L → G,
p̂23:B → |||,
p̂28:H → |||,
p̂41:J → |||,
p̂43:K → |||,
p̂46:X → A,
p̂48:Y → Z,
p̂49:Z → X,
p̂51:N → Z, p̂52:N → U,
p̂53:U → |||.

Thus, the following 32 chains are gathered in step 1:

E ⇒ S, targets[E] = {(S,λE,S := p̂2, ε),
E ⇒ S ⇒ A, (A,λE,A := p̂2 · p̂4, S)},

S ⇒ A, targets[S] = {(A,λS,A := p̂4, ε)},

T ⇒ E, targets[T] = {(E,λT,E := p̂6, ε),
T ⇒ C, (C,λT,C := p̂7, ε),
T ⇒ C ⇒ |||, (|||,λT,||| := p̂7 · p̂8,C),
T ⇒ E ⇒ S, (S,λT,S := p̂6 · p̂2,E)},
T ⇒ E ⇒ S ⇒ A, (A,λT,A := p̂6 · p̂2 · p̂4,ES)},

C ⇒ |||, targets[C] = {(|||,λC,||| := p̂8, ε)},

L ⇒ A, targets[L] = {(A,λL,A := p̂11, ε),
L ⇒ M, (M,λL,M := p̂12, ε),
L ⇒ P, (P,λL,P := p̂13, ε),
L ⇒ Q, (Q,λL,Q := p̂14, ε),
L ⇒ R, (R,λL,R := p̂15, ε),
L ⇒ F, (F,λL,F := p̂16, ε),
L ⇒ G, (G,λL,G := p̂17, ε)},

B ⇒ |||, targets[B] = {(|||,λB,||| := p̂23, ε)},

H ⇒ |||, targets[H] = {(|||,λH,||| := p̂28, ε)},

J ⇒ |||, targets[J] = {(|||,λJ,||| := p̂41, ε)},

K ⇒ |||, targets[K] = {(|||,λK,||| := p̂43, ε)},

X ⇒ A, targets[X] = {(A,λX,A := p̂46, ε)},

Y ⇒ Z, targets[Y] = {(Z,λY ,Z := p̂48, ε),
Y ⇒ Z ⇒ X, (X,λY ,X := p̂48 · p̂49,Z),
Y ⇒ Z ⇒ X ⇒ A, (A,λY ,A := p̂48 · p̂49 · p̂46,ZX)},

Z ⇒ X, targets[Z] = {(X,λZ,X := p̂49, ε),
Z ⇒ X ⇒ A, (A,λZ,A := p̂49 · p̂46,X)},

N ⇒ Z, targets[N] = {(Z,λN,Z := p̂51, ε),
N ⇒ U, (U,λN,U := p̂52, ε),
N ⇒ U ⇒ |||, (|||,λN,||| := p̂52 · p̂53,U),
N ⇒ Z ⇒ X, (X,λN,X := p̂51 · p̂49,Z),
N ⇒ Z ⇒ X ⇒ A, (A,λN,A := p̂51 · p̂49 · p̂46,ZX)},

U ⇒ |||, targets[U] = {(|||,λU,||| := p̂53, ε)}.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 34 of 46

Furthermore, the 22 production rules contained in R1
rnf are now removed. This

results in the following set R1
Ĝsto

:= RĜsto
\R1

rnf of 32 rules:

p̂1:S′ → E,
p̂3:E → SC,
p̂5:S → TA,
p̂9:C → C|||,
p̂10:A → (((L))),
p̂18:G → A|||, p̂19:G → AD, p̂20:G → |||A, p̂21:G → DA,
p̂22:D → B|||,
p̂24:B → B|||,
p̂25:F → |||||||||, p̂26:F → ||||||||||||, p̂27:F → ||||||||||||H,
p̂29:H → H|||,
p̂30:P → |||A|||, p̂31:P → |||A||||||, p̂32:P → ||||||A|||, p̂33:P → ||||||A||||||,
p̂34:Q → ||||||O||||||, p̂35:Q → ||||||V|||,
p̂36:R → |||O||||||, p̂37:R → ||||||W|||,
p̂38:V → JO,
p̂39:W → JA,
p̂40:O → AK,
p̂42:J → J|||,
p̂44:K → K|||,
p̂45:M → XY,
p̂47:X → UA,
p̂50:Z → XN,
p̂54:U → U|||.

Additionally, in step 2, for each chain a new intermediate symbol and a new produc-

tion are introduced. Thus, according to the 32 chains gathered in step 1, we here

obtain the following set R2
rnf of 32 new production rules:

1:ES,ε → S, 1:EA,S → A,
1:SA,ε → A,
1:TE,ε → E, 1:TC,ε → C, 1:T|||,C → |||,
1:TS,E → S, 1:TA,ES → A,
1:C|||,ε → |||,
1:LA,ε → A, 1:LM,ε → M, 1:LP,ε → P, 1:LQ,ε → Q,
1:LR,ε → R, 1:LF,ε → F, 1:LG,ε → G,
1:B|||,ε → |||,
1:H|||,ε → |||,
1:J|||,ε → |||,
1:K|||,ε → |||,
1:XA,ε → A,
1:YZ,ε → Z, 1:YX,Z → X, 1:YA,ZX → A,
1:ZX,ε → X,
1:ZA,X → A,
1:NZ,ε → Z, 1:NU,ε → U, 1:N|||,U → |||,
1:NX,Z → X, 1:NA,ZX → A,
1:U|||,ε → |||.

In step 3, for each occurrence of a non-terminal symbol in the conclusion of a pro-

duction and each chain starting with this non-terminal symbol, we have to add a new

production with the corresponding new intermediate symbol instead of the considered

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 35 of 46

one. Thus, in step 3, the remaining 32 production rules from R1
Ĝsto

:= RĜsto
\R1

rnf are

transformed (according to R2
rnf) into the following set R2

Ĝsto
of 79 new rules:

p̂1:S′ → E, p̂1 · λE,S:S′ → ES,ε ,
p̂1 · λE,A:S′ → EA,S,

p̂3:E → SC, p̂3 · λS,A:E → SA,εC,
p̂3 · λC,|||:E → SC|||,ε , p̂3 · λS,A · λC,|||:E → SA,εC|||,ε ,

p̂5:S → TA, p̂5 · λT,E:S → TE,εA,
p̂5 · λT,C:S → TC,εA, p̂5 · λT,|||:S → T|||,CA,
p̂5 · λT,S:S → TS,EA, p̂5 · λT,A:S → TA,ESA,

p̂9:C → C|||, p̂9 · λC,|||:C → C|||,ε|||,
p̂10:A → (((L))), p̂10 · λL,A:A → (((LA,ε))),

p̂10 · λL,M:A → (((LM,ε))), p̂10 · λL,P:A → (((LP,ε))),
p̂10 · λL,Q:A → (((LQ,ε))), p̂10 · λL,R:A → (((LR,ε))),
p̂10 · λL,F :A → (((LF,ε))), p̂10 · λL,G:A → (((LG,ε))),

p̂18:G → A|||, p̂19:G → AD,
p̂20:G → |||A, p̂21:G → DA,
p̂22:D → B|||, p̂22 · λB,|||:D → B|||,ε|||,
p̂24:B → B|||, p̂24 · λB,|||:B → B|||,ε|||,
p̂25:F → |||||||||, p̂26:F → ||||||||||||,
p̂27:F → ||||||||||||H, p̂27 · λH,|||:F → ||||||||||||H|||,ε ,
p̂29:H → H|||, p̂29 · λH,|||:H → H|||,ε|||,
p̂30:P → |||A|||, p̂31:P → |||A||||||,
p̂32:P → ||||||A|||, p̂33:P → ||||||A||||||,
p̂34:Q → ||||||O||||||, p̂35:Q → ||||||V|||,
p̂36:R → |||O||||||, p̂37:R → ||||||W|||,
p̂38:V → JO, p̂38 · λJ,|||:V → J|||,εO,
p̂39:W → JA, p̂39 · λJ,|||:W → J|||,εA,
p̂40:O → AK, p̂40 · λK,|||:O → AK|||,ε ,
p̂42:J → J|||, p̂42 · λJ,|||:J → J|||,ε|||,
p̂44:K → K|||, p̂44 · λK,|||:K → K|||,ε|||,
p̂45:M → XY, p̂45 · λY ,Z:M → XYZ,ε ,

p̂45 · λY ,X :M → XYX,Z, p̂45 · λY ,A:M → XYA,ZX,
p̂45 · λX,A:M → XA,εY, p̂45 · λX,A · λY ,Z:M → XA,εYZ,ε ,

p̂45 · λX,A · λY ,X :M → XA,εYX,Z, p̂45 · λX,A · λY ,A:M → XA,εYA,ZX,
p̂47:X → UA, p̂47 · λU,|||:X → U|||,εA,
p̂50:Z → XN, p̂50 · λN,Z:Z → XNZ,ε ,

p̂50 · λN,U:Z → XNU,ε , p̂50 · λN,|||:Z → XN|||,U,
p̂50 · λN,X :Z → XNX,Z, p̂50 · λN,A:Z → XNA,ZX,
p̂50 · λX,A:Z → XA,εN, p̂50 · λX,A · λN,Z:Z → XA,εNZ,ε ,

p̂50 · λX,A · λN,U:Z → XA,εNU,ε , p̂50 · λX,A · λN,|||:Z → XA,εN|||,U,
p̂50 · λX,A · λN,X :Z → XA,εNX,Z, p̂50 · λX,A · λN,A:Z → XA,εNA,ZX,

p̂54:U → U|||, p̂54 · λU,|||:U → U|||,ε|||.

In step 4, we must delete all intermediate symbols that no longer occur as premise.

Obviously, intermediate symbols no longer occurring as premise of a production are

T, L,N,Y.

We easily observe that the productions that contain at least one of these 4 intermediate

symbols in the conclusion and thus have to be removed are exactly the following ones:

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 36 of 46

p̂5:S → TA,
p̂10:A → (((L))),
p̂45:M → XY, p̂45 · λX,A:M → XA,εY,
p̂50:Z → XN, p̂50 · λX,A:Z → XA,εN.

Consequently, after the removal of these 6 rules from R2
Ĝsto

, there still remain 73 new

production rules.

Finally in step 5, we must make sure that the conclusion of all productions with pre-

mise S’ (axiom of Ĝsto that we started with) does not have a length greater than 1.

However, since there is only one production with premise S’ in our start grammar Ĝsto

and the conclusion of this production has size 1, there is nothing to do. Thus, the

resulting new grammar is given by:

Definition App-.14. The WCFG Ĝ∗
sto generating exactly the language L is given by

Ĝ∗
sto = (IĜ∗

sto
∪ I′Ĝ∗

sto
,
Ĝ∗

sto
,RĜ∗

sto
∪ R′

Ĝ∗
sto
, S′), where

IĜ∗
sto
= {S′,E, S,C,A,G,D,B, F,H,P,Q,R,V,W,O, J,K,M,X,Z,U},

I′Ĝ *
sto

= {ES,ε ,EA,S, SA,ε ,
TE,ε ,TC,ε ,T|||,C,TS,E,TA,ES,C|||,ε ,

LA,ε , LM,ε , LP,ε , LQ,ε , LR,ε , LF,ε , LG,ε ,

B|||,ε ,H|||,ε , J|||,ε ,K|||,ε ,

XA,ε ,YZ,ε ,YX,Z,YA,ZX,ZX,ε ,ZA,X ,

NZ,ε ,NU,ε ,N|||,U,NX,Z,NA,ZX,U|||,ε},

Ĝ∗

sto
= {(,), |} and RĜ∗

sto
contains exactly the following rules:

λ1:S′ → E, λ2:S′ → ES,ε , λ3:S′ → EA,S,
λ4:E → SC, λ5:E → SA,εC, λ6:E → SC|||,ε , λ7:E → SA,εC|||,ε ,
λ8:S → TE,εA, λ9:S → TC,εA, λ10:S → T|||,CA,
λ11:S → TS,EA, λ12:S → TA,ESA,
λ13:C → C|||, λ14:C → C|||,ε|||,
λ15:A → (((LA,ε))), λ16:A → (((LM,ε))), λ17:A → (((LP,ε))), λ18:A → (((LQ,ε))),
λ19:A → (((LR,ε))), λ20:A → (((LF,ε))), λ21:A → (((LG,ε))),
λ22:G → A|||, λ23:G → AD, λ24:G → |||A, λ25:G → DA,
λ26:D → B|||, λ27:D → B|||,ε|||,
λ28:B → B|||, λ29:B → B|||,ε|||,
λ30:F → |||||||||, λ31:F → ||||||||||||, λ32:F → ||||||||||||H, λ33:F → ||||||||||||H|||,ε ,
λ34:H → H|||, λ35:H → H|||,ε|||,
λ36:P → |||A|||, λ37:P → |||A||||||, λ38:P → ||||||A|||, λ39:P → ||||||A||||||,
λ40:Q → ||||||O||||||, λ41:Q → ||||||V|||,
λ42:R → |||O||||||, λ43:R → ||||||W|||,
λ44:V → JO, λ45:V → J|||,εO,
λ46:W → JA, λ47:W → J|||,εA,
λ48:O → AK, λ49:O → AK|||,ε ,
λ50:J → J|||, λ51:J → J|||,ε|||,
λ52:K → K|||, λ53:K → K|||,ε|||,
λ54:M → XYZ,ε , λ55:M → XYX,Z, λ56:M → XYA,ZX ,
λ57:M → XA,εYZ,ε , λ58:M → XA,εYX,Z, λ59:M → XA,εYA,ZX,
λ60:X → UA, λ61:X → U|||,εA,
λ62:Z → XNZ,ε , λ63:Z → XNU,ε , λ64:Z → XN|||,U,
λ65:Z → XNX,Z, λ66:Z → XNA,ZX,
λ67:Z → XA,εNZ,ε , λ68:Z → XA,εNU,ε , λ69:Z → XA,εN|||,U,
λ70:Z → XA,εNX,Z, λ71:Z → XA,εNA,ZX,
λ72:U → U|||, λ73:U → U|||,ε|||,

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 37 of 46

whereas R′
Ĝ∗
sto
contains exactly the following rules:

λ74:ES,ε → S, λ75:EA,S → A,
λ76:SA,ε → A,
λ77:TE,ε → E, λ78:TC,ε → C, λ79:T|||,C → |||,
λ80:TS,E → S, λ81:TA,ES → A,
λ82:C|||,ε → |||,
λ83:LA,ε → A, λ84:LM,ε → M, λ85:LP,ε → P, λ86:LQ,ε → Q,
λ87:LR,ε → R, λ88:LF,ε → F, λ89:LG,ε → G,
λ90:B|||,ε → |||,
λ91:H|||,ε → |||,
λ92:J|||,ε → |||,
λ93:K|||,ε → |||,
λ94:XA,ε → A,
λ95:YZ,ε → Z, λ96:YX,Z → X, λ97:YA,ZX → A,
λ98:ZX,ε → X, λ99:ZA,X → A,

λ100:NZ,ε → Z, λ101:NU,ε → U, λ102:N|||,U → |||,
λ103:NX,Z → X, λ104:NA,ZX → A,
λ105:U|||,ε → |||.

Reweighting the Production Rules

Now, the weights of the 73 production rules given in the subset of productions RĜ∗
sto

have to be reweighted. In order to achieve this goal, we first have to compute the two

common denominators s and c, where s is the common denominator of the weights of

productions with premise S’ (i.e., of productions number 1 to 3), and c is the common

denominator of the weights of the remaining productions (i.e., of productions number

4 to 73) of RĜ∗
sto
. Using the rounded probabilities (weights) for the production rules of

Ĝ∗
sto as given in Table 5, we immediately find the smallest common denominators to be

s = 10,000 and c = 10,000.

The desired new weights for the considered set of productions RĜ∗
sto
are then com-

puted by multiplying the old weights of productions with source S’ by s, and by multi-

plying the old weights of productions A ® a, A ≠ S’ (and A ∈ IĜ∗
sto
), by c|a|-1.

Formally, for the reweighted set of productions RĜ∗
sto
, we get the following weights:

μi := λi · s, for i ∈ {1, 2, 3}
and

μi := λi · c|αi|−1, where λi : Ai → αi, for i ∈ {4, ..., 73}.
The resulting integer weights can be found in Table 6.

Transforming Reweighted Grammar into Admissible Specification

Given the reweighted grammar Ĝ∗
sto, we immediately obtain the following admissible

specification of the corresponding combinatorial classes (note that this specification

has already been simplified by removing classes that are only duplicates of others):

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 38 of 46

E1 = S × C, E2 = A × C,
E3 = S × α|||, E4 = A × α|||,
S1 = E × A, S2 = C × A, S3 = α||| × A,
S4 = S × A, S5 = A × A,
C1 = C × α|||, C2 = α||| × α|||,
A1 = α(((× A × α))), A2 = α(((× M × α))), A3 = α(((× P × α))),
A4 = α(((× Q × α))), A5 = α(((× R × α))), A6 = α(((× F × α))),
A7 = α(((× G × α))),
G1 = A × α|||, G2 = A × D,
G3 = α||| × A, G4 = D × A,
D1 = B × α|||, D2 = α||| × α|||,
B1 = B × α|||, B2 = α||| × α|||,
F1 = α||| × α||| × α|||, F2 = α||| × α||| × α||| × α|||, F3 = α||| × α||| × α||| × α||| × H,
F4 = α||| × α||| × α||| × α||| × α|||,
H1 = H × α|||, H2 = α||| × α|||,
P1 = α||| × A × α|||, P2 = α||| × A × α||| × α|||, P3 = α||| × α||| × A × α|||,
P4 = α||| × α||| × A × α||| × α|||,
Q1 = α||| × α||| × O × α||| × α|||, Q2 = α||| × α||| × V × α|||,
R1 = α||| × O × α||| × α|||, R2 = α||| × α||| × W × α|||,
V1 = J × O, V2 = α||| × O,
W1 = J × A, W2 = α||| × A,
O1 = A × K, O2 = A × α|||,
J1 = J × α|||, J2 = α||| × α|||,
K1 = K × α|||, K2 = α||| × α|||,
M1 = X × Z , M2 = X × X , M3 = X × A,
M4 = A × Z , M5 = A × X , M6 = A × A,
X1 = U × A, X2 = α||| × A,
Z1 = X × Z , Z2 = X × U , Z3 = X × α|||,
Z4 = X × X , Z5 = X × A,
Z6 = A × Z , Z7 = A × U , Z8 = A × α|||,
Z9 = A × X , Z10 = A × A,
U1 = U × α|||, U2 = α||| × α|||,

S ′ = μ1 · E + μ2 · S + μ3 · A,
E = μ4 · E1 + μ5 · E2 + μ6 · E3 + μ7 · E4,
S = μ8 · S1 + μ9 · S2 + μ10 · S3 + μ11 · S4 + μ12 · S5,
C = μ13 · C1 + μ14 · C2,
A = μ15 · A1 + μ16 · A2 + μ17 · A3 + μ18 · A4 + μ19 · A5 + μ20 · A6 + μ21 · A7,
G = μ22 · G1 + μ23 · G2 + μ24 · G3 + μ25 · G4,
D = μ26 · D1 + μ27 · D2,
B = μ28 · B1 + μ29 · B2,
F = μ30 · F1 + μ31 · F2 + μ32 · F3 + μ33 · F4,
H = μ34 · H1 + μ35 · H2,
P = μ36 · P1 + μ37 · P2 + μ38 · P3 + μ39 · P4,
Q = μ40 · Q1 + μ41 · Q2,
R = μ42 · R1 + μ43 · R2,
V = μ44 · V1 + μ45 · V2,
W = μ46 · W1 + μ47 · W2,
O = μ48 · O1 + μ49 · O2,
J = μ50 · J1 + μ51 · J2,
K = μ52 · K1 + μ53 · K2,
M = μ54 · M1 + μ55 · M2 + μ56 · M3 + μ57 · M4 + μ58 · M5 + μ59 · M6,
X = μ60 · X1 + μ61 · X2,
Z = μ62 · Z1 + μ63 · Z2 + μ64 · Z3 + μ65 · Z4 + μ66 · Z5 + μ67 · Z6 + μ68 · Z7 + μ69 · Z8 + μ70 · Z9 + μ71 · Z10,
U = μ72 · U1 + μ73 · U2.

Now, this(simplified) specification can easily be transformed into the following recur-

sive form for the function size:

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 39 of 46

size(I,n) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

μ1 · size(E ,n) + μ2 · size(S,n) + μ3 · size(A,n) I = S ′,
sizeE(I,n) I ∈ {Ei|1 ≤ i ≤ 4} or I = E ,
sizeS(I,n) I ∈ {Si|1 ≤ i ≤ 5} or I = S,
sizeC(I,n) I ∈ {Ci|1 ≤ i ≤ 2} or I = C,
sizeA(I,n) I ∈ {Ai|1 ≤ i ≤ 7} or I = A,
sizeG(I,n) I ∈ {Gi|1 ≤ i ≤ 4} or I = G,
sizeD(I,n) I ∈ {Di|1 ≤ i ≤ 2} or I = D,
sizeB(I,n) I ∈ {Bi|1 ≤ i ≤ 2} or I = B,
sizeF(I,n) I ∈ {Fi|1 ≤ i ≤ 4} or I = F ,
sizeH(I,n) I ∈ {Hi|1 ≤ i ≤ 2} or I = H,
sizeP(I,n) I ∈ {Pi|1 ≤ i ≤ 4} or I = P ,
sizeQ(I,n) I ∈ {Qi|1 ≤ i ≤ 2} or I = Q,
sizeR(I,n) I ∈ {Ri|1 ≤ i ≤ 2} or I = R,
sizeV(I,n) I ∈ {Vi|1 ≤ i ≤ 2} or I = V ,
sizeW(I,n) I ∈ {Wi|1 ≤ i ≤ 2} or I = W ,
sizeO(I,n) I ∈ {Oi|1 ≤ i ≤ 2} or I = O,
sizeJ(I,n) I ∈ {Ji|1 ≤ i ≤ 2} or I = J ,
sizeK(I,n) I ∈ {Ki|1 ≤ i ≤ 2} or I = K,
sizeM(I,n) I ∈ {Mi|1 ≤ i ≤ 6} or I = M,
sizeX(I,n) I ∈ {Xi|1 ≤ i ≤ 2} or I = X ,
sizeZ(I,n) I ∈ {Zi|1 ≤ i ≤ 10} or I = Z ,
sizeU(I,n) I ∈ {Ui|1 ≤ i ≤ 2} or I = U ,
0 else,

Table 5 Floating point approximations of the probabilities (weights) λi, 1≤i≤73, for the
production rules of the grammar Ĝ∗

sto (rounded to four decimal places)

Nonterminal Nt Weights of Rules with Premise Nt

S’ l1 : = 1.0000, l2 : = 0.0212, l3 : = 0.0003,

E l4 : = 0.9788, l5 : = 0.0134, l6 : = 0.0944, l7 : = 0.0013,

S l8 : = 0.8559, l9 : = 0.1304, l10 : = 0.0126, l11 : = 0.0181,

l12 : = 0.0002,

C l13 : = 0.9036, l14 : = 0.0871,

A l15 : = 0.7630, l16 : = 0.0402, l17 : = 0.0186, l18 : = 0.0367,

l19 : = 0.0072, l20 : = 0.0858, l21 : = 0.0484,

G l22 : = 0.3038, l23 : = 0.1884, l24 : = 0.3081, l25 : = 0.1996,

D l26 : = 1.0000, l27 : = 0.3896,

B l28 : = 0.6104, l29 : = 0.2378,

F l30 : = 0.0575, l31 : = 0.3409, l32 : = 0.6016, l33: = 0.1211,

H l34 : = 0.7987, l35 : = 0.1608,

P l36 : = 0.1085, l37 : = 0.2144, l38 : = 0.2011, l39 : = 0.4760,

Q l40 : = 0.1713, l41 : = 0.8287,

R l42 : = 0.4150, l43 : = 0.5850,

V l44 : = 1.0000, l45 : = 0.3243,

W l46 : = 1.0000, l47 : = 0.3243,

O l48 : = 1.0000, l49 : = 0.2928,

J l50 : = 0.6757, l51 : = 0.2191,

K l52 : = 0.7072, l53 : = 0.2071,

M l54 : = 1.0000, l55 : = 0.0510, l56 : = 0.0036, l57: = 0.0712,

l58 : = 0.0036, l59 : = 0.0003,

X l60 : = 0.9288, l61 : = 0.1968,

Z l62 : = 0.4211, l63 : = 0.5279, l64 : = 0.1119, l65 : = 0.0215,

l66 : = 0.0015, l67 : = 0.0300, l68 : = 0.0376, l69 : = 0.0080,

l70 : = 0.0015, l71 : = 0.0001,

U l72 : = 0.7881, l73 : = 0.1670.

Note that for i ∈ {74, ..., 105}, λi := 1 holds.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 40 of 46

where

sizeE(I,n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−1
j=1 size(S, j) · size(C,n − j) I = E1,∑n−1
j=1 size(A, j) · size(C,n − j) I = E2,

size(S,n − 1) I = E3,
size(A,n − 1) I = E4,
μ4 · size(E1,n) + μ5 · size(E2,n) + μ6 · size(E3,n) + μ7 · size(E4,n) I = E ,
0 else,

Table 6 Integer weights μi, 1≤i≤73, for the production rules of the grammar Ĝ∗
sto

Nonterminal Nt Integer weights of Rules with Premise Nt

S’ μ1 : = 10000, μ2 : = 212,

μ3 : = 3,

E μ4 : = 9788, μ5 : = 134,

μ6 : = 944, μ7 : = 13,

S μ8 : = 8559, μ9 : = 1304,

μ10 : = 126, μ11 : = 181,

μ12 : = 2,

C μ13 : = 9036, μ14 : = 871,

A μ15 : = 76300000, μ16 : = 4020000,

μ17 : = 1860000, μ18 : = 3670000,

μ19 : = 720000, μ20 : = 8580000,

μ21 : = 4840000,

G μ22 : = 3038, μ23 : = 1884,

μ24 : = 3081, μ25 : = 1996,

D μ26 : = 10000, μ27 : = 3896,

B μ28 : = 6104, μ29 : = 2378,

F μ30 : = 5750000, μ31 : = 340900000000,

μ32 : = 6016000000000000, μ33 : = 1211000000000000,

H μ34 : = 7987, μ35 : = 1608,

P μ36 : = 10850000, μ37 : = 214400000000,

μ38 : = 201100000000, μ39 : = 4760000000000000,

Q μ40 : = 1713000000000000, μ41 : = 828700000000,

R μ42 : = 415000000000, μ43 : = 585000000000,

V μ44 : = 10000, μ45 : = 3243,

W μ46 : = 10000, μ47 : = 3243,

O μ48 : = 10000, μ49 : = 2928,

J μ50 : = 6757, μ51 : = 2191,

K μ52 : = 7072, μ53 : = 2071,

M μ54 : = 10000, μ55 : = 510,

μ56 : = 36, μ57 : = 712,

μ58 : = 36, μ59 : = 3,

X μ60 : = 9288, μ61 : = 1968,

Z μ62 : = 4211, μ63 : = 5279,

μ64 : = 1119, μ65 : = 215,

μ66 : = 15, μ67 : = 300,

μ68 : = 376, μ69 : = 80,

μ70 : = 15, μ71 : = 1,

U μ72 : = 7881, μ73 : = 1670.

Note that for i ∈ {74, ..., 105}, μi := 1 holds.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 41 of 46

sizeS(I,n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−1
j=1 size(E , j) · size(A,n − j) I = S1,∑n−1
j=1 size(C, j) · size(A,n − j) I = S2,

size(A,n − 1) I = S3,∑n−1
j=1 size(S, j) · size(A,n − j) I = S4,∑n−1
j=1 size(A, j) · size(A,n − j) I = S5,

μ8 · size(S1,n) + μ9 · size(S2,n) + μ10 · size(S3,n)

+μ11 · size(S4,n) + μ12 · size(S5,n) I = S,
0 else,

sizeC(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
size(C,n − 1) I = C1,
1 I = C2, and n = 2,
μ13 · size(C1,n) + μ14 · size(C2,n) I = C,
0 else,

sizeA(I,n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

size(A,n − 2) I = A1,

size(M,n − 2) I = A2,

size(P ,n − 2) I = A3,

size(Q,n − 2) I = A4,

size(R,n − 2) I = A5,

size(F ,n − 2) I = A6,

size(G,n − 2) I = A7,

μ15 · size(A1,n) + μ16 · size(A2,n) + μ17 · size(A3,n) + μ18 · size(A4,n)

+μ19 · size(A5,n) + μ20 · size(A6,n) + μ21 · size(A7,n) I = A,

0 else,

sizeG(I,n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

size(A,n − 1) I = G1,∑n−1
j=1 size(A, j) · size(D,n − j) I = G2,

size(A,n − 1) I = G3,∑n−1
j=1 size(D, j) · size(A,n − j) I = G4,

μ22 · size(G1,n) + μ23 · size(G2,n) + μ24 · size(G3,n) + μ25 · size(G4,n) I = G,
0 else,

sizeD(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
size(B,n − 1) I = D1,
1 I = D2 and n = 2,
μ26 · size(D1,n) + μ27 · size(D2,n) I = D,
0 else,

sizeB(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
size(B,n− 1) I = B1,
1 I = B2 and n = 2,
μ28 · size(B1,n) + μ29 · size(B2,n) I = B,
0 else,

sizeF(I,n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 I = F1 and n = 3,
1 I = F2 and n = 4,
size(H,n − 4) I = F3,
1 I = F4 and n = 5,
μ30 · size(F1,n) + μ31 · size(F2,n)
+μ32 · size(F3,n) + μ33 · size(F4,n) I = F ,
0 else,

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 42 of 46

sizeH(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
size(H,n − 1) I = H1,
1 I = H2, and n = 2
μ34 · size(H1,n) + μ35 · size(H2,n) I = H,
0 else,

sizeP(I,n) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

size(A,n − 2) I = P1,
size(A,n − 3) I = P2,
size(A,n − 3) I = P3,
size(A,n − 4) I = P4,
μ36 · size(P1,n) + μ37 · size(P2,n) + μ38 · size(P3,n) + μ39 · size(P4,n) I = P ,
0 else,

sizeQ(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
size(O,n − 4) I = Q1,
size(V ,n − 3) I = Q2,
μ40 · size(Q1,n) + μ41 · size(Q2,n) I = Q,
0 else,

sizeR(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
size(O,n − 3) I = R1,
size(W ,n − 3) I = R2,
μ42 · size(R1,n) + μ43 · size(R2,n) I = R,
0 else,

sizeV(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
∑n−1

j=1 size(J , j) · size(O,n − j) I = V
size(O,n − 1) I = V2,
μ44 · size(V1,n) + μ45 · size(V2,n) I = V ,
0 else,

sizeW(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
∑n−1

j=1 size(J , j) · size(A,n − j) I = W1

size(A,n − 1) I = W2,
μ46 · size(W1,n) + μ47 · size(W2,n) I = W ,
0 else,

sizeO(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
∑n−1

j=1 size(A, j) · size(K,n − j) I = O1

size(A,n − 1) I = O2,
μ48 · size(O1,n) + μ49 · size(O2,n) I = O,
0 else,

sizeJ(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
size(J ,n − 1) I = J1,
1 I = J2 and n = 2,
μ50 · size(J1,n) + μ51 · size(J2,n) I = J
0 else,

sizeK(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
size(K,n − 1) I = K1,
1 I = J2 and n = 2,
μ52 · size(K1,n) + μ53 · size(K2,n) I = K,
0 else,

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 43 of 46

sizeM(I,n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−1
j=1 size(X , j) · size(Z ,n − j) I = M1,∑n−1
j=1 size(X , j) · size(X ,n − j) I = M2,∑n−1
j=1 size(X , j) · size(A,n − j) I = M3,∑n−1
j=1 size(A, j) · size(Z ,n − j) I = M4,∑n−1
j=1 size(A, j) · size(X ,n − j) I = M5,∑n−1
j=1 size(A, j) · size(A,n − j) I = M6,

μ54 · size(M1,n) + μ55 · size(M2,n) + μ56 · size(M3,n)

+μ57 · size(M4,n) + μ58 · size(M5,n) + μ59 · size(M6,n) I = M,

0 else,

sizeX(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
∑n−1

j=1 size(U , j) · size(A,n − j) I = X1

size(A,n − 1) I = X2,
μ60 · size(X1,n) + μ61 · size(X2,n) I = X ,
0 else,

sizez(I,n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−1
j=1 size(X , j) · size(Z ,n − j) I = Z1,∑n−1
j=1 size(X , j) · size(U ,n − j) I = Z2,

size(X ,n − 1) I = Z3,∑n−1
j=1 size(X , j) · size(X ,n − j) I = Z4,∑n−1
j=1 size(X , j) · size(A,n − j) I = Z5,∑n−1
j=1 size(A, j) · size(Z ,n − j) I = Z6,∑n−1
j=1 size(A, j) · size(U ,n − j) I = Z7,

size(A,n − 1) I = Z8,∑n−1
j=1 size(A, j) · size(A,n − j) I = Z9,∑n−1
j=1 size(A, j) · size(A,n − j) I = Z10,

μ62 · size(Z1,n) + μ63 · size(Z2,n) + μ64 · size(Z3,n) + μ65 · size(Z4,n)
+μ66 · size(Z5,n) + μ67 · size(Z6,n) + μ68 · size(Z7,n) + μ69 · size(Z8,n)
+μ70 · size(Z9,n) + μ71 · size(Z10,n) I = Z ,
0 else,

sizeU(I,n) :=

⎧⎪⎪⎨⎪⎪⎩
size(U ,n − 1) I = U1,
1 I = U2, and n = 2
μ72 · size(U1,n) + μ73 · size(U2,n) I = U ,
0 else.

From those recurrences, the desired algorithm can easily be constructed. As the

complete presentation of this algorithm would be too comprehensive, we decided to

omit it and instead refer to Algorithms 1 to 4 and 6 given in [20], since for the con-

struction of our unranking algorithm, we had to use exactly these Algorithms as

subroutines.

Acknowledgements
AS thanks Carl-Zeiss-Stiftung for supporting her research. All authors wish to thank an anonymous reviewer for careful
reading and helpful remarks and suggestions made for a previous version of this article.

Authors’ contributions
MEN and FW have invented the general framework for the non-uniform random generation. AS and MEN designed
the SCFG for RNA secondary structures; MEN proved its unambiguity. AS developed and implemented the algorithms
for generating random RNA secondary structures. AS performed all experiments and evaluated the quality of our
algorithms. MEN supervised the work and development of ideas. AS drafted the manuscript; a revision and its final
version have been prepared by MEN. All authors have read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 20 April 2011 Accepted: 12 October 2011 Published: 12 October 2011

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 44 of 46

References
1. Flajolet P, Fusy E, Pivoteau C: Boltzmann Sampling of Unlabelled Structures. Proceedings of ANALCO’07 (Analytic

Combinatorics and Algorithms) Conference SIAM Press; 2007, 201-211.
2. Fitch WM: Random sequences. Journal of Molecular Biology 1983, 163:171-176.
3. Altschul SF, Erickson BW: Significance of nucleotide sequence alignments: a method for random sequence

permutation that preserves dinucleotide and codon usage. Mol Biol Evol 1985, 2(6):256-538.
4. Denise A, Ponty Y, Termier M: Random Generation of structured genomic sequences. Proceedings of RECOMB 2003

2003, 3, (poster).
5. Waterman MS: Secondary Structure of Single-Stranded Nucleic Acids. Advances in Mathematics Supplementary Studies

1978, 1:167-212.
6. Ding Y, Lawrence CE: A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Research

2003, 31(24):7280-7301.
7. Ponty Y: Efficient sampling of RNA secondary structures from the Boltzmann ensemble of low-energy: the

boustrophedon method. Journal of Mathematical Biology 2008, 56:107-127.
8. Allali J, d’Aubenton Carafa Y, Chauve C, Denise A, Drevet C, Ferraro P, Gautheret D, Herrbach C, Leclerc F, de Monte A,

Ouangraoua A, Sagot MF, Saule C, Termier M, Thermes C, Touzet H: Benchmarking RNA secondary structures
comparison algorithms. Actes des Journées Ouvertes de Biologie, Informatique et Mathématiques - JOBIM’08 2008, 67-68.

9. Wuchty S, Fontana W, Hofacker I, Schuster P: Complete Suboptimal Folding of RNA and the Stability of Secondary
Structures. Biopolymers 1999, 49:145-165.

10. Zuker M: On Finding All Suboptimal Foldings of an RNA Molecule. Science 1989, 244:48-52.
11. Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003,

31(13):3406-3415.
12. Hofacker IL: The Vienna RNA secondary structure server. Nucleic Acids Research 2003, 31(13):3429-3431.
13. Dowell RD, Eddy SR: Evaluation of several lightweight stochastic context-free grammars for RNA secondary

structure prediction. BMC Bioinformatics 2004, 5:71.
14. Knudsen B, Hein J: RNA secondary structure prediction using stochastic context-free grammars and evolutionary

history. Bioinformatics 1999, 15(6):446-454.
15. Knudsen B, Hein J: Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids

Research 2003, 31(13):3423-3428.
16. Pedersen J, Meyer I, Forsberg R, Simmonds P, Hein J: A comparative method for finding and folding RNA secondary

structures in protein-coding regions. Nucleic Acids Reserach 2004, 32:4925-4936.
17. Pedersen JS, Forsberg R, Meyer IM, Hein J: An Evolutionary Model for Protein-Coding Regions with Conserved RNA

Structure. Molecular Biology and Evolution 2004, 21:1913-1922.
18. Wiebe NJP, Meyer IM: ¡sc¿Transat¡/sc¿A Method for Detecting the Conserved Helices of Functional RNA Structures,

Including Transient, Pseudo-Knotted and Alternative Structures. PLoS Comput Biol 2010, 6(6):e1000823.
19. Gesell T, von Haeseler A: In silico sequence evolution with site-specific interactions along phylogenetic trees.

Bioinformatics 2006, 22:716-722.
20. Weinberg F, Nebel ME: Non Uniform Generation of Combinatorial Objects. Tech. rep., Technische Universität

Kaiserslautern; 2010.
21. Nebel ME, Scheid A: Analysis of the Free Energy in a Stochastic RNA Secondary Structure Model. IEEE/ACM

Transactions on Computational Biology and Bioinformatics 2010.
22. Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH: Thermodynamic parameters for

an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry
1998, 37:14719-14735.

23. Mathews DH, Sabina J, Zuker M, Turner DH: Expanded Sequence Dependence of Thermodynamic Parameters
Improves Prediction of RNA Secondary Structure. J Mol Biol 1999, 288:911-940.

24. Nijenhuis A, Wilf HS: Combinatorial Algorithms , 2 1978, Academic Press.
25. Flajolet P, Zimmermann P, Van Cutsem B: A Calculus for the Random Generation of Combinatorial Structures.

Theoretical Computer Science 1994, 132(2):1-35.
26. Duchon P, Flajolet P, Louchard G, Schaeffer G: Boltzmann Samplers for the Random Generation of Combinatorial

Structures. Combinatorics, Probability, and Computing, Volume 13 2004, 577-625, [Special issue on Analysis of
Algorithms].

27. Flajolet P, Sedgewick R: Analytic Combinatorics Cambridge University Press; 2009.
28. Harrison MA: Introduction to Formal Language Theory Addison-Wesley; 1978.
29. Stein PR, Waterman MS: On some new sequences generalizing the Catalan and Motzkin numbers. Discrete

Mathematics 1978, 26:216-272.
30. Viennot G, Chaumont MVD: Enumeration of RNA Secondary Structures by Complexity. Mathematics in medicine and

biology, Lecture Notes in Biomathematics 1985, 57:360-365.
31. Nebel ME: Combinatorial Properties of RNA Secondary Structures. Journal of Computational Biology 2002,

9(3):541-574.
32. Hofacker IL, Schuster P, Stadler PF: Combinatorics of RNA secondary structures. Discrete Applied Mathematics 1998,

88:207-237.
33. Nebel ME: Investigation of the Bernoulli-Model of RNA Secondary Structures. Bulletin of Mathematical Biology 2004,

66:925-964.
34. Zuker M, Sankoff D: RNA Secondary Structures and their Prediction. Bull Mathematical Biology 1984, 46:591-621.
35. Nebel ME: On a statistical filter for RNA secondary structures. Tech. rep., Frankfurter Informatik-Berichte; 2002.
36. Nebel ME: Identifying Good Predictions of RNA Secondary Structure. Proceedings of the Pacific Symposium on

Biocomputing 2004, 423-434.
37. Molinero X: Ordered Generation of Classes of Combinatorial Structures. PhD thesis Universitat Politècnica de

Catalunya; 2005.
38. Fu KS, Huang T: Stochastic Grammars and Languages. International Journal of Computer and Information Sciences

1972, 1(2):135-170.

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 45 of 46

http://www.ncbi.nlm.nih.gov/pubmed/6842586?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14654704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10070264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10070264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2468181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10383470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10383470?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15229291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15229291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20589081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20589081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16332711?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9778347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9778347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10329189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10329189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12162892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15294413?dopt=Abstract

39. Huang T, Fu KS: On Stochastic Context-Free Languages. Information Sciences 1971, 3:201-224.
40. Sakakibara Y, Brown M, Hughey R, Mian IS, Sjölander K, Underwood RC, Haussler D: Stochastic context-free grammars

for tRNA modeling. Nucleic Acids Research 1994, 22:5112-5120.
41. Liebehenschel J: Ranking and unranking of lexicographically ordered words: an average-case analysis. J Autom Lang

Comb 1998, 2(4):227-268.
42. Weinberg F, Nebel ME: Extending Stochastic Context-Free Grammars for an Application in Bioin-formatics. 4th

International Conference on Language and Automata Theory and Applications (LATA2010) 2010.
43. Nawrocki EP, Eddy SR: Query-Dependent Banding (QDB) for Faster RNA Similarity Searches. PLoS Comput Biol 2007,

3:e56.
44. Martínez C, Molinero X: A generic approach for the unranking of labeled combinatorial classes. Random Struct.

Algorithms 2001, 19(3-4):472-497.
45. Wuyts J, Rijk PD, de Peer YV, Winkelmans T, Wachter RD: The European Large Subunit Ribosomal RNA Database.

Nucleic Acids Research 2001, 29:175-177.
46. Wuyts J, de Peer YV, Winkelmans T, Wachter RD: The European Database on Small Subunit Ribosomal RNA. Nucleic

Acids Research 2002, 30:183-185.
47. Salomaa A, Soittola M: Automata-theoretic aspects of formal power series Springer; 1978.
48. Mann H, Whitney D: On a test of whether one of two random variables is stochastically larger than the other.

Annals of Mathematical Statistics 1947, 18:50-60.
49. Wilcoxon F: Individual Comparisons by Ranking Methods. Biometrics Bulletin 1945, 1:80-83.

doi:10.1186/1748-7188-6-24
Cite this article as: Nebel et al.: Random generation of RNA secondary structures according to native
distributions. Algorithms for Molecular Biology 2011 6:24.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Nebel et al. Algorithms for Molecular Biology 2011, 6:24
http://www.almob.org/content/6/1/24

Page 46 of 46

http://www.ncbi.nlm.nih.gov/pubmed/7800507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7800507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17397253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752288?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background and Introduction
	Prior Results and Basic Definitions
	Uniform Random Generation
	(Admissible) Constructions and Specifications
	Non-Uniform Random Generation
	Stochastic Context-Free Grammars
	Basic Concepts
	Modeling RNA Secondary Structure via SCFGs
	Random Generation With SCFGs

	Unranking of Combinatorial Objects

	Generating Random RNA Secondary Structures
	Considered Combinatorial Class
	Considered SCFG Model
	Derivation of the Algorithm
	Availability of Software

	Discussion
	Parameters for Structural Motifs
	Related Free Energies
	Unquantified Results
	Quantified Results

	Conclusion
	Appendix
	How to Construct a Weighted Unranking Algorithm from a Given SCFG
	Derivation of the Algorithm
	Considered (unambiguous, ϵ-free and loop-free) SCFG
	Transforming our SCFG into RNF
	Reweighting the Production Rules
	Transforming Reweighted Grammar into Admissible Specification

	Acknowledgements
	Authors' contributions
	Competing interests
	References

