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Abstract

Background: In genomics, a commonly encountered problem is to extract a subset of variables out of a large set
of explanatory variables associated with one or several quantitative or qualitative response variables. An example is
to identify associations between codon-usage and phylogeny based definitions of taxonomic groups at different
taxonomic levels. Maximum understandability with the smallest number of selected variables, consistency of the
selected variables, as well as variation of model performance on test data, are issues to be addressed for such
problems.

Results: We present an algorithm balancing the parsimony and the predictive performance of a model. The
algorithm is based on variable selection using reduced-rank Partial Least Squares with a regularized elimination.
Allowing a marginal decrease in model performance results in a substantial decrease in the number of selected
variables. This significantly improves the understandability of the model. Within the approach we have tested and
compared three different criteria commonly used in the Partial Least Square modeling paradigm for variable
selection; loading weights, regression coefficients and variable importance on projections. The algorithm is applied
to a problem of identifying codon variations discriminating different bacterial taxa, which is of particular interest in
classifying metagenomics samples. The results are compared with a classical forward selection algorithm, the much

used Lasso algorithm as well as Soft-threshold Partial Least Squares variable selection.

Conclusions: A regularized elimination algorithm based on Partial Least Squares produces results that increase
understandability and consistency and reduces the classification error on test data compared to standard

approaches.

Background

With the tremendous increase in data collection techni-
ques in modern biology, it has become possible to sam-
ple observations on a huge number of genetic,
phenotypic and ecological variables simultaneously. It is
now much easier to generate immense sets of raw data
than to establish relations and provide their biological
interpretation [1-3]. Considering cases of supervised sta-
tistical learning, huge sets of measured/collected vari-
ables are typically used as explanatory variables, all with
a potential impact on some response variable, e.g. a phe-
notype or class label. In many situations we have to deal
with data sets having a large number of variables p in
comparison to the number of samples 7. In such ‘large
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p small #’ situations selection of a smaller number of
influencing variables is important for increasing the per-
formance of models, to diminish the curse of dimen-
sionality, to speed up the learning process and for
interpretation purposes [4,5]. Thus, some kind of vari-
able selection procedure is frequently needed to elimi-
nate unrelated features (noise) for providing a more
observant analysis of the relationship between a modest
number of explanatory variables and the response.
Examples include the selection of gene expression mar-
kers for diagnostic purposes, selecting SNP markers for
explaining phenotype differences, or as in the example
presented here, selecting codon preferences discriminat-
ing between different bacterial phyla. The latter is parti-
cularly relevant to the classification of samples in
metagenomic studies [6]. Multivariate approaches like
correspondence analysis and principal component analy-
sis has previously been used to analyze variations in

© 2011 Mehmood et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:tahir.mehmood@umb.no
http://creativecommons.org/licenses/by/2.0

Mehmood et al. Algorithms for Molecular Biology 2011, 6:27
http://www.almob.org/content/6/1/27

codon usage among genes [7]. However, in order to
relate the selection specifically to a response vector, like
the phylum assignment, we need a selection based on a
supervised learning method.

Partial Least Square (PLS) regression is a supervised
method specifically established to address the problem
of making good predictions in the ‘large p small 1’ situa-
tion, see [8]. PLS in its original form has no implemen-
tation of variable selection, since the focus of the
method is to find the relevant linear subspace of the
explanatory variables, not the variables themselves.
However, a very large p and small # can spoil the PLS
regression results, as demonstrated by Keles et. al. [9],
discovering that the asymptotic consistency of the PLS
estimators for univariate responses do not hold, and by
[10], who observed a large variation on test set.

Boulesteix has theoretically explored a tight connec-
tion between PLS dimension reduction and variable
selection [11] and work in this field has existed for
many years. Examples are [8,9,11-23]. For an optimum
extraction of a set of variables, we need to look for all
possible subsets of variables, which is impossible if p is
large enough. Normally a set of variables with a reason-
able performance is a compromise over the optimal sub
set.

In general, variable selection procedures can be cate-
gorized [5] into two main groups: filter methods and
wrapper methods. Filter methods select variables as a
preprocessing step independently of some classifier or
prediction model, while wrapper methods are based on
some supervised learning approach [12]. Hence, any
PLS-based variable selection is a wrapper method.
Wrapper methods need some sort of criterion that relies
solely on the characteristics of the data as described by
[5,12]. One candidate among these criteria is the
PLS loading weights, where down-weighting small
PLS loading weights is used for variable selection
[8,11,13-17,24-27]. A second possibility is to use the
magnitude of the PLS regression coefficients for variable
selection [18-20,28-34]. Jackknifing and/or bootstrapping
on regression coefficients has been utilized to select
influencing variables [20,30,31,33,34]. A third commonly
used criterion is the Variables Importance on PLS pro-
jections (VIP) introduced by Eriksson et. al. [21] and is
commonly used in practise [22,31,35-37].

There are several PLS-based wrapper selection algo-
rithms, for example uninformative variable elimination
(UVE-PLS) [18], where artificial random variables are
added to the data as a reference such that the variable
with least performance are eliminated. Iterative PLS
(IPLS) adds new variable(s) in the model or remove
variables from the model if it improves the model per-
formance [19]. A backward elimination procedure based
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on leave one variable out is another example [5].
Although wrapper based methods perform well the
number of variables selected is still often large [5,12,38],
which may make interpretation hard ([23,39,40]).

Among recent advancements in PLS methodology
itself we find that Indahl et. al. [41] propose a new data
compression method for estimating optimal latent vari-
ables classification and regression problems by combin-
ing PLS methodology and canonical correlation analysis
(CCA), called Canonical Powered PLS (CPPLS). In our
work we have adopted this new methodology and pro-
posed a regularized greedy algorithm based on a back-
ward elimination procedure. The focus is on
classification problems, but the same concept can be
used for prediction problems as well. Our principle idea
is to focus on a parsimonious selection, achieved by tol-
erating a minor performance deviation from any ‘opti-
mum’ if this gives a substantial decrease in the number
of selected variables. This is implemented as a regulari-
zation of the search for optimum performance, making
the selection less dependent on ‘peak performance’ and
hence more stable. In this respect, the choice of the
CPPLS variant is not important, and even the use of
non-PLS based methods could in principle be imple-
mented with some minor adjustments. Both loading
weights, PLS regression coefficients significance obtained
from jackknifing and VIP are explored here for ordering
the variables with respect to their importance.

1 Methods

1.1 Model fitting

We consider a classification problem where every object
belongs to one out of two possible classes, as indicated
by the n x 1 class label vector C. From C we create the
n x 1 numeric response vector y by dummy coding, i.e.
y contains only 0’s and 1’s. The association between y
and the n x p predictor matrix X is assumed to be
explained by the linear model E(y) = X3 where f3 are the
p x 1 vector of regression coefficients. The purpose of
variable selection is to find a column subset of X cap-
able of satisfactory explaining the variations in C.

From a modeling perspective, ordinary least square fit-
ting is no option when n <p. PLS resolves this by
searching for a small set of components, ‘latent vectors’,
that performs a simultaneous decomposition of X and y
with the constraint that these components explain as
much as possible of the covariance between X and y.

1.2 Canonical Powered PLS (CPPLS) Regression

PLS is an iterative procedure where relation between X
and y is found through the latent variables. The PLS
estimate of the regression coefficients for the above
given model based on k components can be achieved by
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where P, is the p; x k matrix of X-loadings that is
summary of X-variables, p, is the a vector of y-loadings
i.e. summary of y-variables and W is the p x k matrix of
loading weights, for details see [8]. Recently, Indahl et.
al. [41] proposed a new data compression method for
estimating optimal latent variables by combining PLS
methodology and canonical correlation analysis (CCA).
They introduce a flexible trade-off between the element
wise correlations and variances specified by a power
parameter 7, ranging from 0 to 1. Defines the loading
weights as
v 1-vy
w(y) =Ky, |:51|‘3m7(x1r7)|1 TV std(x) Y

14 1-
splcorr(xp, )1 1 =Y std(xp) Y

where s, denotes the sign of the kX correlation and K,
is a scaling constant assuring unit length w(7). In this
study we restricted y to lower region (0.001, 0.050) and
to upper region (0.950, 0.999). This means we consider
combinations of y for emphasizing either the variance (y
close to 0) or the correlations (y close to 1). The y value
from above regions that optimizes the canonical correla-
tion is always selected for each component of CPPLS
algorithm, see Indahl et. al. [41] for details on the
CPPLS algorithm.

Based on the CPPLS estimated regression coefficients
B we can predict the dummy-variables by

7=XpB

and from the data set (y, C) we build a classifier using
straightforward linear discriminant analysis [42].

1.3 First regularization - model dimension estimate
The CPPLS algorithm assumes that the column space of
X has a subspace of dimension & containing all informa-
tion relevant for predicting y (known as the relevant
subspace) [43]. In order to estimate o we use cross-vali-
dation and the performance P, defined as the fraction of
correctly classified observations in a cross-validation
procedure, using a components in the CPPLS algorithm.
The cross-validation estimate of & can be found by
systematically trying out a range of dimensions a4 = 1,...,
A, compute P, for each a, and choose as ¢ the a where
we reach the maximum P,. Let us denote this value a*.
It is well known that in many cases P, will be almost
equally large for many choices of a. Thus, estimating o
by this maximum value is likely to be a rather unstable
estimator. To stabilize this estimate we use a regulariza-
tion based on the principle of parsimony where we
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search for the smallest possible a whose corresponding
performance is not significantly worse than the opti-
mum. If p, is the probability of a correct classification
using the a-component model, and p,- similar for the
a*-component model, we test Hy : p, = p,- against the
alternative H; : p, <p,+ In practice P, and P, are esti-
mates of p, and p,~. The smallest a where we cannot
reject Hy is our estimate ¢. The testing is done by ana-
lyzing the 2 x 2 contingency table of correct and incor-
rect classifications for the two choices of a, using the
McNemar test [44]. This test is appropriate since the
model classification at a specific component depends on
the model classification at the other components.

This regularization depends on a user-defined rejec-
tion level ¢ of the McNemar test. Using a large ¢ (close
to 1) means we easily reject Hy, and the estimate g is

"Toften similar to a*. By choosing a smaller ¢ (closer to 0)
we get a harder regularization, i.e. a smaller & and more
stability at the cost of a lower performance.

1.4 Selection criteria

We have implemented and tried out three different cri-

teria for PLS-based variable selection:

1.4.1 Loading weights

Variable j can be eliminated if the relative loading

weight, r; for a given PLS component satisfies
Wa,j

max w,

1.4.2 Regression coefficients

Variable j can be eliminated if the corresponding regres-

sion coefficient §; = 0. Testing Hy : B; = 0 against H;: f§;

# = 0 can be done by a jackknife t-test. All computa-

tions needed have already been done in the cross-valida-

tion used for estimating the model dimension o. For

each variable we compute the corresponding false dis-

covery rate (g -value) which is based on the p values

from jackknifing, and variable j can be eliminated if g;

>u for some fixed threshold u € [0, 1].

1.4.3 Variable importance on PLS projections (VIP)

VIP for the variable j is defined according to [21] as

1j = | | < u for some chosen threshold u € [0, 1].

vi= | p Y (P30 ata) (waif 11wal1)1) Y (03, (t'ala)

a=1 a=1

where a = 1, 2, ..., a*, w,; is the loading weight for
variable j using @ components and £,, w, and p,, are
CPPLS scores, loading weights and y-loadings respec-
tively corresponding to the 4™ component. [22] explains
the main difference between the regression coefficient f3;
and v;. The v; weights the contribution of each variable
according to the variance explained by each PLS compo-
nent, i.e. p3,tit, where (w,,,»/||wa||)2 represents the
importance of the j” variable. Variable j can be
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eliminated if v; <u for some user-defined threshold u €
[0, ). It is generally accepted that a variable should
be selected if v; > 1, see [21,22,36], but a proper thresh-
old between 0.83 and 1.21 can maximize the perfor-
mance [36].

1.5 Backward elimination
When we have n <<p it is very difficult to find the truly
influencing variables since the estimated relevant sub-
space found by Cross-Validated CPPLS (CVCPPLS) is
bound to be, to some degree, ‘infested’” by non-influen-
cing variables. This may easily lead to errors both ways,
i.e. both false positives and false negatives. An approach
to improve on this is to implement a stepwise estima-
tion where we gradually eliminate ‘the worst’ variables
in a greedy algorithm.

The algorithm can be sketched as follows: Let Z; = X
and let s; be one of the criteria for variable j we have
sketched above (either r;, g; or v)).

1) For iteration g run y and Z, through CVCPPLS.
The matrix Z, has p, columns, and we get the same
number of criterion values, sorted in ascending
order as S(1)s -~ 5(py).

2) There are M criterion values below (above for
citerion g;) the cutoff u. If M = 0, terminate the
algorithm here.

3) Else, let N = [fM1 for some fraction fe (0,1].
Eliminate the variables corresponding to the N most
extreme criterion values.

4) If there are still more than one variable left, let Z,
+1 contain these variables, and return to 1).

The fraction f determines the ‘steplength’ of the elimi-
nation algorithm, where an f close to 0 will only elimi-
nate a few variables in every iteration. The fraction f
and u can be obtained through cross validation.

1.6 Second regularization - final selection

In each iteration of the elimination the CVCPPLS algo-
rithm computes the cross-validated performance, and
we denote this with P, for iteration g. After each itera-
tion, the number of influencing variables decreases, but
P, will often increase until some optimum is achieved,
and then drop again as we keep on eliminating. The
initial elimination of variables stabilizes the estimates of
the relevant subspace in the CVCPPLS algorithm, and
hence we get an increase in performance. Then, if the
elimination is too severe, we start to lose informative
variables, and even if stability is increased even more,
the performance drops.
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Let the optimal performance be defined as

P* = Py = rngang

It is not unreasonable to use the variables still present
after iteration g* as the final selected variables. This is
where we have achieved a balance between removing
noise and keeping informative variables. However, fre-
quently we observe that a severe reduction in the num-
ber variables compared to this ‘optimum’ will give only
a modest drop in performance. Hence, we may eliminate
well beyond g* and find a much simpler model, at a
small loss in performance. To formalize this, we use
exactly the same procedure, involving the McNemar test
that we used in the regularization of the model dimen-
sion estimate. If p, is the probability of a correct classifi-
cation after g iterations, and p,- similar after g*
iterations, we test H, : p, = pg+ against the alternative
H; : pg <pg The largest ¢ where we cannot reject Hy is
the iteration where we find our final selected variables.
This means we need another rejection level d which will
decide to which degree we are willing to sacrifice perfor-
mance over a simpler model. Using d close to 0 means
we emphasize simplicity over performance. In practice,
for each iteration beyond g* we can compute the McNe-
mar test p-value, and list this together with the number
of variables remaining, to give a perspective on the
trade-off between understandability of the model and
the performance. Figure 1 presents the procedure in a
flow chart.

1.7 Choices of variable selection methods for comparison
Three variable selection methods are also considered for
comparison purposes. The classical forward selection

CVCPPLS (y—2,)

‘e’ significance level of regularization

[ S(1) 5 +er s Sy S(Ms1p <o+ » S(pa) ]
[ M s-values above cutoff ‘v’ ]—>
[ Eliminate N=[fM] s-values STOP if no variable left

Zy1

Figure 1 Flow chart. The flow chart illustrates the proposed
algorithm for variable selection.
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procedure (Forward) is a univariate approach, and prob-
ably the simplest approach to variable selection for the
‘large p small n’ type of problems considered here. The
Least Absolute Shrinkage and Selection Operator
(Lasso) [45] is a method frequently used in genomics.
Recent examples are the extraction of molecular signa-
tures [46] and gene selection from microarrays [47]. The
Soft-Thresholding PLS (ST-PLS) [17] implements the
Lasso concept in a PLS framework. A recent application
of ST-PLS is the mapping of genotype to phenotype
information [48].

All methods are implemented in the R computing
environment http://www.r-project.org/.

2 Application
An application of the variable selection procedure is to
find the preferred codons associated with certain pro-
karyotic phyla.

Codons are triplets of nucleotides in coding genes and
the messenger RNA; these triplets are recognized by
base-pairing by corresponding anticodons on specific
transfer RNA carrying individual amino acids. This facil-
itates the translation of genetic messenger information
into specific proteins. In the standard genetic code, the
20 amino acids are individually coded by 1, 2, 4 or 6 dif-
ferent codons (excluding the three stop codons there are
61 codons). However, the different codons encoding
individual amino acids are not selectively equivalent
because the corresponding tRNAs differ in abundance,
allowing for selection on codon usage. Codon preference
is considered as an indicator of the force shaping gen-
ome evolution in prokaryotes [49,50], reflection of life
style [49] and organisms within similar ecological envir-
onments often have similar codon usage pattern in their
genomes [50,51]. Higher order codon frequencies, e.g.
di-codons, are considered important with respect to
joint effects, like synergistic effect, of codons [52].

There are many suggested procedures to analyze
codon usage bias, for example the codon adaptation
index [53], the frequency of optimal codons [54] and
the effective number of codons [55]. In the current
study, we are not specifically looking at codon bias, but
how the overall usage of codons can be used to distin-
guish prokaryote phyla. Notice that the overall codon
usage is affected both by the selection of amino acids
and codon bias within the redundant amino acids. Phy-
lum is a relevant taxonomic level for metagenomic stu-
dies [56,57], so interest lies in having a systematic
search for codon usage at the phylum level [58-60].

2.1 Data

Genome sequences for 445 prokaryote genomes and the
respective Phylum information were obtained from
NCBI Genome Projects (http://www.ncbi.nlm.nih.gov/
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genomes/Iproks.cgi). The response variable in our data
set is phylum, i.e. the highest level taxonomic classifier
of each genome, in the bacterial kingdom. There are in
total 11 several phyla in our data set including Actino-
bacteria, Bacteroides, Crenarchaeota, Cyanobac-teria,
Euryarchaeota, Firmicutes, Alphaproteobacteria, Beta-
proteobacteria, Deltaproteobacteria, Gammapro-teobac-
teria and Epsilonproteobacteria. We only consider two-
class problems, i.e. for some fixed ‘phylum A’, we only
classify genomes as either ‘phylum A’, or ‘not phylum
A’. Thus, the data set has # = 445 samples and 11 dif-
ferent responses of 0/1 outcome, considering one at a
time.

Genes for each genome were predicted by the gene-
finding software Prodigal [61], which uses dynamic pro-
gramming in which start codon usage, ribosomal site
motif usage and GC frame bias are considered for gene
prediction. For each genome, we collected the frequen-
cies of each codon and each di-codon over all genes.
The predictor variables thus consists of relative frequen-
cies for all codons and di-codons, giving a predictor
matrix X with a total of p = 64 + 64> = 4160 variables
(columns).

2.2 Parameter setting/tuning

It is in principle no problem to eliminate (almost) all
variables, since we always go back to the iteration where
we cannot reject the null-hypothesis of the McNemar
test. Hence, we fixed u at extreme values, 0.99 for load-
ing weights, 0.01 for regression coefficients and 10 for
VIP. Three levels of step length f = (0.1,0.5, 1) were con-
sidered. In the first regularization step we tried three
very different rejection levels ¢ = (0.1,0.5, 1) and in the
second we used two extreme levels (d = (0.01,0.99)).

2.3 The split of data into test and training

Figure 2 gives a graphical overview of the data splitting
used in this study. The split is carried out at three levels.
At level 1 we split the data into a test set containing
25% of the genomes and a training set containing the
remaining 75%. This was repeated 100 times, i.e. 100
pairs of test and training sets were constructed by ran-
dom drawing with replacement. Test and training set
were never allowed to overlap. In each of the 100
instances, the training data were used by each of the
four methods listed to the right. They select variables,
and the selected variables were used for classifying the
level 1 test set, and performance was computed for each
method.

Inside our suggested method, the stepwise elimination,
there are two levels of cross-validation as indicated by
the right part of the figure. First, a 10-fold cross-valida-
tion was used to optimize the fraction f and the rejec-
tion level d in the elimination part of our algorithm. At
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Level 1
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Stepwise Elimination
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Figure 2 An overview of the testing/training. An overview of the testing/training procedure used in this study. The rectangles illustrate the
predictor matrix. At level 1 we split the data into a test set and training set (25/75) to be used by all four methods listed on the right. This was
repeated 100 times. Inside our suggested method, the stepwise elimination, there are two levels of cross-validation. First a 10-fold cross-
validation was used to optimize selection parameters f and d, and at level 3 leave-one-out cross-validation was used to optimize the regularized

level 3 leave-one-out cross-validation was used to esti-
mate all parameters in the regularized CPPLS method,
including the rejection level c. These two levels together
corresponds to a ‘cross-model validation’ [62].

3 Results and Discussions
For identification of codon variations that distinguishes
different bacterial taxa to be utilized as classifiers in
metagenomic analysis, 11 models, representing each
phylum, were considered separately. We have chosen
the phylum Actinobacteria for a detailed illustration of
the method, while results for all phyla are provided
below. In Figure 3 we illustrate how the elimination pro-
cess affects model performance (P) reflecting the per-
centage of correctly classified samples, starting at the
left with the full model and iterating to the right by
eliminating variables. Use of any of the three criteria
loading weights, regression coefficient significance or
VIP, produces the same type of behavior. A fluctuation
in performance over iterations is typical, reflecting the
noise in the data. At each iteration, we only eliminate a
fraction (1% in many cases) of the poor ranking vari-
ables, giving the remaining variables a chance to
increase the performance at later iterations. We do not
stop at the maximum performance, which may occur
almost anywhere due to the noise, but keep on eliminat-
ing until we reach the minimum model not significantly
worse than the best. This may lead to a substantial
decrease in the number of variables selected.

In the upper panels of Figure 4, a comparison of the
number of variables selected by the ‘optimum’ model
and our selected model is displayed. A cross-comparison

of the criteria loading weights, regression coefficient and
VIP based elimination procedure is also made. Xiaobo
et. al. [23] has criticized the wrapper procedures for
being unable to extract a small number of variables,
which is important for interpretation purposes [23,39].
This is reflected here as none of the ‘optimum’ model

Optimum Model
\0
o« | see o o
(2]
/ L

8 . . ../ \. \ Selected Model
R VAN N
€
6 0/ \‘ . oo
3 FUll MoYe 1A \
o

91

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T I T T T T TTT
4160 2524 1513 907 596 390 254 166 108 70 45 28

Number of variables left in the model

Figure 3 A typical elimination. A typical elimination is shown
based on the data for phylum Actinobacteria. Each dot in the figure
indicates one iteration. The procedure starts on the left hand side,
with the full model. After some iterations performance(P), which
reflects the percentage of correctly classified samples, has increased,
and reaches a maximum. Further elimination reduces performance,
but only marginally. When elimination becomes too severe, the
performance drops substantially. Finally, the selected model is found
where we have the smallest model with performance not
significantly worse than the maximum.
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Figure 4 The distribution of selected variables. The distribution of the number of variables selected by the optimum model and selected
model for loading weights, VIP and regression coefficients is presented in upper panels, while lower panels display similar for Forward, Lasso
and ST-PLS. The horizontal axes are the number of retained variables as percentage of the full model (with 4160 variables). All results are based
on 100 random samples from the full data set, where 75% of the objects are used as training data and 25% as test data in each sample.

1 | | | |
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Relative Size (%)

selections (lower boxes) resulted in a small number of
selected variables. However, using our regularized algo-
rithm (upper boxes) we are able to select a small num-
ber of variables in all cases. The VIP based elimination
performs best in this respect (upper right panel), but the
other criteria are also competing well. The variance in
model size is also very small for our regularized algo-
rithm compared to the selection based on ‘optimum’
performance.

Comparison of the number of variables selected by
Forward, Lasso and ST-PLS is made in the lower
panels of Figure 4. All three methods end up with a
small number of selected variables on the average, but
ST-PLS has a large variation in the number of selected
variables.

The classification performances in the test and training
data sets are examined in Figure 5. In the left panels we
show the results for our procedure using the criteria
loading weights, regression coefficient and VIP during
selection. In general all three criteria behave equally well.
As expected, the best performance is found in the train-
ing data for the ‘optimum’ model. Also, performance is

consistently worse in the test data compared to the train-
ing data for all cases, but this pattern is most clearly pre-
sent for the ‘optimum’ model. This may be seen as an
indication of over-fitting. A huge variation in test data
performance can be observed for the full model, and
slightly smaller for the ‘optimum’ model. Our selected
models give somewhat worse overall training perfor-
mance, but evaluated on the test sets they come out at
the same level as the ‘optimum’ model, and with a much
smaller variance.

In the right hand panels, performance is shown for the
three alternative methods. Our algorithm comes out
with at least as good performance on the test sets as
any of the three alternative methods. Particularly notably
is the larger variation in test performance for the alter-
native methods compared to the selected models in the
left panels. A formal testing by the Mann-Whitney test
[63] indicates that our suggested procedure with VIP
outperforms Lasso (p < 0.001), Forward (p < 0.001) and
ST-PLS (p < 0.001) on the data sets used in this study.
The same was also true if we used loading weights or
regression coefficient as ranking criteria.
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Figure 5 Performance comparison. The left panel presents the distribution of performance of in the full model, optimum model and selected
models on test and training data sets for loading weights, VIP and regression coefficients, while the right panels display similar for Forward,
Lasso and ST-PLS. All results are based on 100 random samples from the full data set, where 75% of the objects are used as training data and
25% as test data in each sample.

When we are interested in the interpretation of the
variables, it is imperative that the procedure we use
shows some stability with respect to which variables are
being selected. To examine this we introduce a selectiv-
ity score. If a variable is selected as one out of m vari-
ables, it will get a score of 1/m. Repeating the selection
100 times for the same variables, but with slightly differ-
ent data, we add up the scores for each variable and
divide by 100. Thus, a variable having a large selectivity
score is often selected as one among a few variables. A
procedure that selects almost all variables, or completely

new variables, each time, will produce very similar and
small selectivity scores for all variables. Conversely, a
procedure that home in on the same few variables in
each case, will produce some very big selectivity scores
on these variables. In Figure 6 we show the selectivity
scores sorted in descending order for the three criteria
loading weights, regression coefficients and VIP, and for
the alternative methods Forward, Lasso and ST-PLS
selection. This indicates that VIP is the most stable cri-
terion, giving the largest selectivity scores, but loading
weights and regression coefficient performs almost as
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Figure 6 Selectivity score. The selectivity score is sorted in descending order for each criterion loading weights, regression coefficients
significance and VIP in the left panels, while right panels display similar for Forward, Lasso and ST-PLS. Only the first 500 values (out of 4160) are
shown.

good. The Lasso method is as stable as our proposed 95% of our selected model uses 1 component while
method using the VIP criterion, while Forward and ST-  the rest uses 2 components. It is clear from the defini-
PLS seems worse as they spread the selectivity score tion of Loading weights, VIP and regression coefficients
over many more variables. From the definition of VIP  that the sorted index of variables based on these mea-
we know that the importance of the variables is down-  sures will be the same for 1 component. This could be
weighted as number of CPPLS components increases. the reason for the rather similar behavior of loading
This probably reduces the noise influence and thus pro-  weights, VIP and regression coefficient in above analysis.
vides more stable and consistent selection, also observed In order to get a rough idea of the ‘null-distribution’
by [22]. of this selectivity score, we ran the selection on data
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where the response y was permuted at random. From
this the upper 0.1% percentile of the null-distribution is
determined, which is approximately corresponds to the
selectivity score above 0.01. For each phylum and vari-
ables giving a selectivity score above this percentile are
listed in Table 1. The selected variables will also have
positive or negative impact depending on the sign of the
regression coefficients as indicated in the table. A di-
codon with a positive/negative regression coefficient is
informative because it occurs more/less frequently in
this phylum than in the entire population. It appears
that, the larger phyla are in general more difficult to
classify, simply because there are more diversity inside
the group. On the other hand, the results obtained for
the larger phyla are more relevant. Because a larger set
of genomes usually means less sampling bias, i.e. the
data set represents the phylum better. Interestingly, all
of the selected variables are di-codons (no single
codons), providing additional support for that the inter-
action of codons are highly important for explaining
variations in phyla [49,52,64]. It should be noted that
the performance listed for each phylum in Table 1 is an
optimistic estimate of the real performance we must
expect on a new data set, since it is based on variables
selected by maximizing performance over all data in the

Table 1 Selectivity score based selected codons
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present data set. However, for comparisons between
phyla they are still relevant.

4 Conclusion

We have suggested a regularized backward elimination
algorithm for variable selection using Partial Least
Squares, where the focus is to obtain a hard, and at the
same time stable, selection of variables. In our proposed
procedure, we compared three PLS-based selection cri-
teria, and all produced good results with respect to size
of selected model, model performance and selection sta-
bility, with a slight overall improvement for the VIP cri-
terion. We obtained a huge reduction in the number of
selected variables compared to using the models with
optimum performance based on training. The apparent
loss in performance compared to the optimum based
models, as judged by the fit to the training set, is vir-
tually disappearing when evaluated on a separate test
set. Our selected model performs at least as good as
three alternative methods, Forward, Lasso and ST-PLS,
on the present test data. This also indicates that the reg-
ularized algorithm not only obtain models with superior
interpretation potential, but also an improved stability
with respect to classification of new samples. A method
like this could have many potential uses in genomics,

Phylum Gen. Perf. Positive and Negative impact

Actinobacteria 42 906 TCCGTA, TACGGA, GTGAAG, CTTCAC, TGTACA, TCCGTT, AGAAGG, CCTTCT, GAGGCT, GGAACA,
TCCACC, TGTTCC, TTCCGT, CTTAAG, GGGATC, GATCCC, CCTTAA, TTAAGG AACGGA, GGTGGA,
GTCGAC,

Bacteroides 16 96.3 TATATA, TCTATA, CTATAT, TATAGA, ATATAG, TATAGT, TTATAG, CTTATA, CTATAA, ACTATA,
TATATC, GATATA, CTATAG, TATACT TATAAG, ATATAT,

C renarchaeota 16 965 AACGCT, AGCGTT, ACGAGT, ACTCGT, ACGACT, TTAGGG, TCGTGT, ACACGA, CCCTAA, TAGCGT,
TACGAG, ACGCTA, CGTGTT, AACACG, GGGCTA, CTACGA, TCGTAG, CGAGTA, TACTCG, GCGTTT
AGTCGT, CTCGTA, TAGCCC,

Cyanobacteria 17 97.1 CAATTG, GTTCAA, TTGAAC, TAAGAC, GTCTTA, CTTAGT, TTAGTC, GGTCAA, GACTAA, ACTAAG,
CTTGAT, AAGTCA, ATCAAG, TGGTTC, GAACCA, AGTCAA, GACCAA, TTGGTC, TTGATC, GACTTG,
TCTTAG, CAAGTC TTGACC, TGACTT, TTGACT, GATCAA,

Euryarchaeota 31 933 ACACCG, CGGTGT, TCGGGT, GGTGTC, TCGGTG, CACCGA, ACCCGA, CCGCGG, GGTGTG, TCACCG,
TATCGT, TACGCT, TTCTGC GACACC, CACACC,

Firmicutes 89 80.3 TCGGTA, TACCGA, ACAGGA, TCCTGT

Alphaproteobacteria 70 859
Betaproteobacteria 42 90.8

TCGCGA, AAGATC, GATCTT, TTCGCG, AAATTT, CGCGAA
GGAACA, TGTTCC, TAGTCG, CGACTA, GCTAGC, AAGCTC, GAGCTT, TACGAG, CTCGTA, CTTGCA,

GATCTT, TGCAAG, AAGATC, AGGCTT, AAGCCT, CTCGAG

Gammaproteobacteria 92 812

CTCAGT, ACTGAG, GACTCA, TGAGTC, ACTCAG, ACTCTG, CAGAGT, CTCAGA, TCTGAG, CTGTCT,

CCAGAG, CTCTGG, TCACCT, TGACTC, CTCTGT, AGGTGA, GAGTCA, TCACTC, GAGTGA CTGAGT,

AGACAG, ACAGAG,
Deltaproteobacteria 18 960

GACATT, TCATGT, ACATGA, AATGTC, AACATC, ATGTTG, CAACAT, CATTGT, ACAATG, ACATTG,

ACAACA, TGTTGT, AACAAC, GTTGTT, CATTTC, GTTCCA, TGGAAC, CAACAA, TTGTTG, GAAACA,
GGAACA, TGTTCC, AATGAC, GTCATT GATGTT, CAATGT, GAAATG, TGTTTC,

Epsilonproteobacteria 12 969

TCCTGT, ACAGGA, GTATCC, TCAGGA, TCCTGA, TGCAGA, TCTGCA, TTCAGG, CCTGAA, ATATCC,

GAACCT, AGGTTC, GGAGAT, ATCTCC, TTGCAG, GGATAC, GGATAT, CTGCAA, TCCCTG, CAGGGA,
ACTGCA, TGCAGT, TTCCTG, TACAGG

Results obtained for each phylum by using the VIP criterion. Gen. is the number of genomes for that phylum in the data set, Perf. is the average test-set
performance i.e. percentage of correctly classified samples, when classifying the corresponding phylum. This is synonymous to the true positive rate. Positive
impact variables are variables with selectivity score above 0.01 and with positive regression coefficients while Negative impact variables are similar with negative

regression coefficients.
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but more comprehensive testing is needed to establish
the full potential. This proof of principle study should
be extended by multi-class classification problems as
well as regression problems before a final conclusion
can be drawn. From the data set used here we find a
smallish number of di-codons associated with various
bacterial phyla, which is motivated by the recognition of
bacterial phyla in metagenomics studies. However, any
type of genome-wide association study may potentially
benefit from the use of a multivariate selection method
like this.
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