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Abstract

Background: Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences
into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses
otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an L-long suffix
will be located within 2-L distance of each other. In the two decades since its original proposal, CGR has been
generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of
problems in bioinformatics. This report explores the possibility that it can be further extended to approach
algorithms that rely on discrete, graph-based representations.

Results: The exploratory analysis described here consisted of selecting foundational string problems and
refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate
sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding
all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is
that they use longest common extension (LCE) queries as subtasks of their procedures, which we show to have a
constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the
Rabin-Karp algorithm.

Conclusions: The analysis of biological sequences relies on algorithmic foundations facing mounting challenges,
both logistic (performance) and analytical (lack of unifying mathematical framework). CGR is found to provide the
latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by
numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity
of pattern matching problems.

Background
Biological sequence analysis remains a central problem
in bioinformatics, boosted in recent years by the emer-
gence of new generation sequencing high-throughput
techniques [1,2]. With the advances of new technologies,
the need for efficient algorithms for string representa-
tion and processing is increasing continuously.
Sequence representation plays a particular role in this

regard, being the first step that both enables and condi-
tions subsequent data processing, and has been the object
of several analytical approaches over the last years [3]. The

development of string processing algorithms based on
different data structures, particularly suffix trees and suffix
arrays, has been increasing steadily [1,4]. The classical ver-
sion of these structures enhances the functionality of the
underlying sequence by efficiently supporting several look-
up procedures [4]. In particular, these structures can be
used to locate substrings within the index sequence, which
in turn yields efficient algorithms for complex problems
such as the longest common substring, initially thought to
have no linear time solution. Unfortunately, the speed up
obtained from these structures comes with an heavy mem-
ory cost. This cost has been extensively researched, the
most successful trend consisting of using data compres-
sion techniques, such as Lempel-Ziv data compression,
Burrows-Wheeler transform, and local compression
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methods, achieving dramatic improvements in efficiency
(see [5] for a survey). Moreover, these theoretical results
allowed for the development of compressed aligners that
have significantly reduced the resources necessary for
sequence alignment [6-8], namely for aligning reads from
pyro-sequencing platforms [9].
In parallel to these efforts, a particular prolific techni-

que at engendering novel sequence analysis algorithms is
the Chaos Game Representation (CGR), based on Iterated
Function Systems (IFS), firstly proposed more than two
decades ago [10]. This compact, lossless and computa-
tionally efficient representation allows the visualization of
biological sequences and patterns, with a convenient
visual appearance. In fact, CGR captures the patterns
arising from distinct L-tuple compositions in DNA
sequences [11], enabling whole genome representation
and visualization [12]. It was also shown that CGR repre-
sents a generalization of genomic signatures [13,14],
allowing to characterize different species by associating
them with distinctive sequence statistics [12].
In addition, CGR can be interpreted as a generalization

of Markov Chain models [15] and provides tools for the
alignment-free analysis and comparison of biosequences
[16], namely for DNA entropy estimation [17,18]. Some
other applications of CGR include the problem of HIV-1
subtype classification [19], detection of persistent dynamic
of human spike trains [20], horizontal transfer detection
[21], phylogeny and extraction of representative motifs in
regulation sequences [22], to name a few.
Although CGR has been successfully applied to a wide

range of problems, its strength for general string matching
problems is, so far, mostly unexplored. In this work we
propose CGR as a solution for exact and approximate
string matching problems, showing that this representa-
tion might bring useful algorithmic tools for biological
sequence analysis and more general applications.

Methods
We start this section by introducing some notation and
recalling the definition and relevant properties concern-
ing CGR. Thereafter, we embed CGR maps in the Can-
tor set in order to elicit longest common suffixes in an
efficient and unambiguous way. As we shall see in the
Results section this enables the retrieval of longest com-
mon extension queries in constant time, which in turn
yield efficient algorithms for more complex string
matching problems.
Let S denote a string of size N. In all what follows, S[i]

represents the i’th symbol of S, with 1 ≤ i ≤ N. Each S[i]
is a DNA symbol representing each nucleotide or base
(A, C, G, T), i.e., S[i] Î Σ = {A, C, G, T}. Moreover, S[i .. j]
is the substring of S that starts at the i’th and ends at the
j’th positions of S, with 1 ≤ i ≤ j ≤ N. The length of sub-
string S[i..j] is given by |S[i..j]| = j - i + 1. Furthermore,

S[i..] denotes the suffix of S that starts at the i’th position,
i.e., S[i..] = S[i..N]. Similarly, S[..i] denotes the prefix of S
that ends at the i’th position, i.e., S[..i] = S[1..i].

Chaos Game Representation (CGR) definition
The CGR iterative algorithm is constructed on a square
in IR2 where each of its vertex is assigned to a DNA
symbol or base (A, C, G, T). For a given DNA sequence
S of length N, CGR maps each prefix S[..i] onto a point
xi Î IR2 following the iterative procedure:

{
x0 =

( 1
2 ,

1
2

)
xi = xi−1 + 1

2(yi − xi−1), i = 1, . . . ,N
where yi =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0) if S[i] = A
(0, 1) if S[i] = C
(1, 0) if S[i] = G
(1, 1) if S[i] = T.

(1)

The initial point x0 in the original formulation [10]

was taken as the square center, i.e., x0 =
( 1
2 ,

1
2

)
. Alterna-

tively, this point could be chosen randomly on the
square, x0 ~ Unif([0, 1]2), or calculated as the last sym-
bol x0 = xN by differently seeding the iterative function,
providing symmetry adequate for circular genomes [23].
In addition, the contraction ratio of the original formu-

lation is equal to r = 1
2, which means that each iteration

transforms the whole square into a sub-quadrant with
length half the size. More generally, this value can be

any number from 1
2 ≤ r < 1 to preserve bijectivity.

An alternative and non-recursive expression for xi as a
function of all symbols y1,..., yi, contraction ratio r, and
initial point x0, is given by

xi = (1 − r)ix0 + r
i∑

k=1

(1 − r)k−1yi−k+1

= (1 − r)ix0 + r
i∑

k=1

(1 − r)i−kyk, i = 1, . . . ,N.

(2)

The generalization of CGR to higher-order alphabets
was defined, in a more natural way, by extending the
original CGR square to an hypercube [24], which can be
bijectively mapped to 2D polygons by increasing the
value of r [25]. The dimension d of the hypercube will
depend on the length of the alphabet |Σ| as d = log2 |Σ|
and all the remaining properties are maintained.

CGR properties
One important property of CGR is the convergence of
sequence coordinates in the space [0,1]2 when the pre-
fixes they represent share a common suffix. In fact,
CGR maps prefixes with shared suffixes close to each
other reflecting the property that, wherever the
sequence context may be, the same suffix will be always
mapped in the same region of CGR.

In the original CGR formulation where r = 1
2, the dis-

tance between the coordinates is decreased by a factor
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of 2 in each common symbol in their suffixes. One con-
sequence of this result is that the distance between the
coordinates being less that 2-L constitutes a necessary
condition for sharing a L-long suffix. Another foregone
conclusion is that CGR maps can be divided and
labelled according to the corresponding substring, i.e.,
each substring is mapped onto a sub-square, creating a
fractal-like structure. This allows the retrieval of Markov
Chain transition probability tables [15], as exemplified
graphically in Figure 1a. This result is not sensitive to
the initial condition or point x0 chosen, since the Lyapu-
nov exponent is negative.
More generally, in order to extract transition probability

estimates for an L-order Markov chain, the interval [0,1]
should be divided in 2L+1 subintervals. The number of
points in each sub-square thus created is then counted,
which is the same as extracting the number of (L+1)-
nucleotides. Extensions of this property allowed the esti-
mation of Variable Length Markov Models (VLMM)
[26,27] and time series forecasting by Fractal Prediction
Machines (FPM) [28]. For other ratios r and initial points
x0 these properties are all maintained. More recently, CGR
further enabled a novel type of sequence analysis that
associates its fractal geometry properties with biological
structures [29].

Constant-time longest common suffix via Cantor set
embedding
As discussed previously CGR coordinates of prefixes
sharing an L-long suffix are located within 2-L distance of

each other. However, there are prefixes not sharing an
L-long suffix that are also located within the same dis-
tance. We conclude that being in that neighborhood is
not a sufficient condition to determine a common L-long
suffix, as in some borderline cases the common suffix
crudely taken from this fact is longer than the real one.
In this section we address this shortcoming aiming at
finding an efficient procedure to elicit longest common
suffixes within CGR maps.
Intuitively, having not noticed that the aforementioned

condition is only necessary, we would believe that the
size of the longest common suffix of S1[..i] and S2[..j] is
given by the greatest ℓ for which the L∞-norm

|xS1i − xS2j |∞ = max
b=1,2

{|xs1i:b − xS2j:b|}

is still less than 2-ℓ, where xi = (xi:1, xi:2) for all i.
Observe that the L∞-norm corresponds simply to the
maximum distance on the two CGR dimensions. Find-
ing such ℓ can be accomplished in constant time by the
mean of a logarithm operation given by⌈

−log2(|xS1i − xS2j |∞)
⌉

− 1. (3)

To see why Eq. (3) fails to compute the longest com-
mon suffix, let S1 = AT and S2 = TA, therefore, N = 2.
Moreover, i = j = 2. Clearly, the longest common suffix
between S1 and S2 is 0, as they share no common suffix.
However, using Eq. (3) we obtain

Figure 1 CGR representation. Chaos Game Representation (CGR) map of random DNA sequences of length N = 5,000. The first panel

represents the original CGR proposal with contraction parameter p = 1
2
and the superimposed sub-quadrants of the suffix labels. The second

represents the same sequence but with p = 2
3
.
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p = 2
3

This indicates an incorrect common suffix of length
ℓ = 1 between S1 and S2. If these strings are further
extended to S1 = A(A)T and S2 = T(T)A, where (a) is a
sequence of symbol a Î Σ as long as wanted, then the

corresponding CGR coordinates xS1N and xS2N will further

approximate each other in the map and Eq. (3) will
result in ℓ = N - 1, whereas their longest common suffix
remains 0. We refer the intended reader to Additional
file 1 where details on this analysis can be found.
The core of the problem lies on Eq. (3). Start by noticing

that the logarithm in Eq. (3) corresponds to the number of

leading zeros in the fractional part of |xS1i − xS2j |∞ when

this L∞-norm is seen in binary numeral system (base 2).
Intuitively, these leading zeros, say L, represent a match
between S1[i - L + 1...i] and S2[j - L + 1...j]. The shortcom-
ing of Eq. (3) is that the L∞-norm introduces an unex-
pected problem with the carry mechanism. To better see
why, assume again that S1 = AT and S2 = TA, so N = 2. In

this case we can write the CGR coordinates xS12 and xS22 in

base 2 as xS12 = (0.101, 0.101) and xS22 = (0.011, 0.011)

When computing the difference xS12 − xS22 between the

coordinates we get

0. 1 0 1
− 0. 01 1 1

0. 0 1 0
,

and we come across a carry that masks the real dis-
similarity between the last characters of string S1 and S2
(highlighted in bold). Indeed, the difference xS12 − xS22
indicates that the first character of S1 and S2 match,
which is not the case.
In order to solve the longest common suffix in con-

stant time we must be able to compute the difference
between CGR coordinates without incurring the penalty
of the carry mechanism. We achieve this by embedding
the CGR coordinates in the Cantor set [30,31]. For that,
we use base 3, instead of base 2, admitting a numeral
representation consisting entirely of 0’s and 2’s (never
using the digit 1). A way to achieve this is to consider
that usual CGR coordinates are expressed in base 3 by
replacing all 1’s with 2’s. Such CGR coordinates can be
computed similarly as in Eq. (2) by

xi = 2 × 3−i
(
1
3
,
1
3

)
+

i∑
k=1

2 × 3−kyi−k+1

= 2 × 3−i
(
1
3
,
1
3

)
+

i∑
k=1

2 × 3k−i−1yk, i = 0, . . . ,N.

(4)

In this case, the difference xS12 − xS22 in the previous

example becomes

0. 2 0 2
− 0. 01 2 2

0. 1 1 0

indicating, as expected, that strings S1 and S2 mis-
match in the first symbol.
This transformation generally leads to the desired

scalability because the carry-on mechanism does not
change the difference between the operands in the first
bit where the difference takes place. This is a mandatory

practice for the base-3 logarithm log3(|xS12 − xS22 |∞) cor-

rectly identifying the first bit where the difference
between the coordinates is found. In the following, we
show this fact in detail. Start by noticing that when
dealing with the L∞-norm of the difference we only have
to cope with differences where the left operand is
greater than the right one. In that case, the dissimilarity
may take place exactly in the first digit of the difference.
If so, a carry-on may, or may not, take place just before
moving to the second digit of the difference. Either way
we end up with the same base-3 logarithm, as in both
cases the first digit of the difference is greater than 0
(highlighted in bold), i.e.,

0. 2 . . . 2
− 0. 0 . . . 2

0. 2 . . . 0
and

0. 2 . . . 2
− 0. 01 . . . 2

0. 1 . . . 0
.

On the other hand, if the dissimilarity does not take
place in the first digit of the difference, we conclude
that the first bit of the difference greater than 0 will be
exactly the first bit where the mismatch occurs, either
with a carry-on or not. Indeed, assuming that the first k

bits of the difference xS12 − xS22 are similar we have that

0. b1 . . . bk 2 . . . 2
− 0. b1 . . . bk 0 . . . 2

0. 0 · · · 0 2 . . . 0
and

0. b1 . . . bk 2 . . . 2
− 0. b1 . . . bk 01 . . . 2

0. 0 · · · 0 1 . . . 0
,

correctly concluding that a mismatch occurs at the (k +
1)’th bit of the difference and, therefore, S1 and S2 have a
longest common suffix of size k.
In addition, we show that using CGR coordinates

embedded in the Cantor set as in Eq. (4) we achieve a
sufficient and necessary condition to compute longest
common suffixes in constant time. For the sake of sim-
plicity, and without loss of generality, we assume N = M
and i = j.
Theorem. Let S1 and S2 denote two strings of size N.

We have that
∣∣∣xS1i − xS2i

∣∣∣
∞

< 3−L if and only if S1[i - L +

1..i] = S2[i - L + 1..i], with 1 ≤ L ≤ i ≤ N.
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Proof: We start by showing that if
∣∣∣xS1i − xS2i

∣∣∣
∞

< 3−L

then S1[..i] and S2[..i] have a common L-length suffix.
This part of the proof follows by contradiction. Thus,

assume that
∣∣∣xS1i − xS2i

∣∣∣
∞

< 3−L and that S1[i - L + 1..i] ≠

S2[i - L + 1..i]. If S1[i - L + 1..i] ≠ S2[i - L + 1..i] then, in
base 3 numeral representation,

we have that xSdi:c = 0.b1 . . . bk2 . . . and

xS3−d
i:c = 0.b1 . . . bk0 . . . , for some 1 ≤ k < L and c, d = 1, 2.

Then,

3−(k+1) < xSdi:c − xS3−d
i:c < 2 × 3−(k+1) < 3−k.

This contradicts the hypothesis that∣∣∣xS1i − xS2i

∣∣∣
∞

< 3−L , concluding this part of the proof.

We now proceed to prove that if S1[..i] and S2[..i] have

a common L-length suffix then
∣∣∣xS1i − xS2i

∣∣∣
∞

< 3−L .

Since by hypothesis S1 and S2 have a common L-length

suffix we know that yS1k = yS2k for all i-L+1 ≤ k ≤ i.

Hence, by Eq. (4) we have that

xS1i − xS2i = 2 ×
i−L∑
k=1

3k−i−1(yS1k − yS2k ).

The L∞-norm of this difference is then given by

|xS1i − xS2i |∞ =

∣∣∣∣∣2 ×
i−L∑
k=1

3k−i−1(yS1k − yS2k )

∣∣∣∣∣
∞

≤ 2 × (3−L−1 + 3−L−2 + · · · + 3−i) < 3−L.

This concludes the proof.
Interestingly, this representation corresponds to a var-

iant of CGR that uses a contraction ratio of r = 2
3, instead

of the original r = 1
2, and an initial point in the set attrac-

tor x0 = 2
3 . In fact, this result is achieved by using a simi-

lar recursive expression as the one given by Eq. (1):

{
x0 =

( 2
3 ,

2
3

)
xi = xi−1 + 2

3(yi − xi−1), i = 1, . . . ,N
where yi =

⎧⎪⎪⎨
⎪⎪⎩
(0, 0) if S[i] = A
(0, 1) if S[i] = C
(1, 0) if S[i] = G
(1, 1) if S[i] = T.

(5)

The graphical comparison between these two versions
is given in Figure 1. The sub-quadrants in the first case
are contiguous and, therefore, the closeness in this
representation is a necessary but not a sufficient condi-
tion for sharing the same suffix. On the contrary, in the
second representation, the sub-quadrants are separated
by at least 3-L and so the condition becomes sufficient,
as the border effect is absent for every L-long suffix.

Results
In this section we present several exact and approximate
string matching problems, along with their CGR solu-
tion. These include the longest common extension pro-
blem, as well as finding all palindrome and tandem
repeats, exact and approximate string matching, and
longest common substring. In addition, we show how
CGR can be used as a rolling hash for the Rabin-Karp
string search algorithm. A study of the time complexity
attained by these algorithms is given throughout this
section and a summary in provided in Table 1.
All the code for both Mathematica® and JavaScript

implementations is made available at http://cgrsuffix.
github.com/.

CGR data structures and implementation
CGR was implemented using two different data struc-
tures, a standard floating-point matrix and a quadtree-
like structure. In this section we describe these imple-
mentations along with the required notation.
Standard CGR index
The standard implementation uses a floating-point
representation that calculates all the coordinates itera-
tively using Eq. (5). In this implementation, a string S of
size N is represented in memory by a floating-point
matrix of size N × 2. This corresponds to a N-size array

Table 1 Time complexity of different applications

Application output size standard CGR quadtree CGR Suffix Tree

LCE 1 O(1) O(1) O(1)

k-mismatch N O(kN) O(kN) O(kN)

Exact palindromes N O(N) O(N) O(N)

k-mismatch palindromes N O(kN) O(kN) O(kN)

Exact tandem repeats z O(N log N + z) O(N log N + z) O(N log N + z)

k-mismatch tandem repeats z O(kN log N + z) O(kN log N + z) O(kN log N + z)

Longest common suffix 1 O(1) O(1) O(1)

Exact match (MATCHES) occ O(N) O(L + occ) O(L + occ)

Occurrences (COUNT) 1 O(N) O(L + occ) O(L + occ)

Longest common substring 1 O(N log N) O(N log N) O(N)

This time complexity analysis does not include the pre-processing step of building the required indexes, as all depend solely in the size N of the input string S. In
the following L is the length of pattern P.
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of pairs, denoted by xS = (xSi , . . . , x
S
N) , where the i’th

entry xSi = (xSi:1, x
S
i:2) is accessed in O(1) time, for all 1 ≤

i ≤ N.
This data structure is built in optimal time, that is, in

time linear in the length of the string S. Indeed, it takes
O(N) time to build the matrix and each entry of the
matrix is computed in O(1) time. This constant time is

achieved as, for all 1 ≤ i ≤ N, coordinate xSi can be

computed from coordinate xSi−1 as in Eq. (5) by a fixed

number of sum operations.
Depending on the application at hand we may need to

build one or two standard CGR maps. These CGR maps
may correspond to the direct DNA string as well as to
its reverse. In addition, the complement or reverse com-
plement may also be used. The reverse string of S is
denoted by Sr and the reverse complement of S is
denoted by Src. If the string Src is reversed once again,
the complement string Sc is obtained. Finally, given a
string S, we call the CGR map xS the direct CGR index,
the CGR map xS

r the reverse CGR index, the CGR map

xS
rc the reverse-complement CGR index, and the CGR

map xS
c the complement CGR index.

Quadtree-based CGR index
Since in its simplest form a CGR map is just a set of
coordinates on a two-dimensional plan, we can use a
quadtree to index such points [32]. For this index, a tree
data structure is used where each node has at most four
children. Each child node represents a sub-quadrant of
its parent node containing an extension of the parent
prefix. Assuming Σ = {A, C, G, T}, we identify each
child by A, C, G and T . Given a string S with size N, at
most N nodes are stored in the quadtree as follows: for
each prefix S[1..i] of S, we start inserting its reverse on
the quadtree until we reach a leaf, where we insert a
new node and stop. For instance, let S = GACGA and
let us start with an empty quadtree [,,, ]. After inserting
the prefix G, the quadtree becomes [,, 1: [,,,],] where the
symbol S[1] is the unique symbol in quadrant G. After
inserting prefixes GA and GAC, the quadtree becomes
[2: [,,,], 3: [,,,], 1: [,,,],] as S[1], S[2] and S[3] are the
unique points in quadrants G, A and C, respectively.
But, after inserting the prefix GACG, the quadtree
becomes [2: [,,,], 3: [,,,], 1: [, 4: [,,,],,],] as the quadrant G
has a second point S[4] in the subquadrant GC. Simi-
larly, after inserting the prefix GACGA, the quadtree
becomes [2: [,, 5: [,,,],], 3: [,,,], 1: [, 4: [,,,],,],], where the
quadrant A has a new second point in subquadrant AG.
Note that quadtrees as described are just compressed

tries of S prefixes, also known as CGR-trees, described as
quaternary trees related to digital search trees proposed
by Cenac et al. [33]. Moreover, the use of a quadtree to
index the CGR coordinates is equivalent to a suffix tree,

up to an inversion of the text (because of the prefix/suffix
duality). Hence, although as general search trees, quad-
trees may degenerate and its construction becomes quad-
ratic on string size, we can improve such construction to
linear time in worst case using Ukkonen’s algorithm [34]
after an inversion of the text, as expected. For larger
alphabets higher order trees, such as octrees, can be
considered.
Web-based JavaScript implementation
Along with the Mathematica® implementation, a Java-
Script version is also provided, where an efficient binary
representation of CGR coordinates is used, thus eliminat-
ing floating point operations. Additionally, this implemen-
tation also uses quadtrees for indexing CGR maps,
improving search complexity by at least one order of mag-
nitude when compared with traditional implementations.
We choose JavaScript as underlying language so that our

implementation can be used in the Web distributed com-
putational environment. The JavaScript interpreters, such
as those found on modern browsers, include high perfor-
mance features such as runtime compilation, achieving
performances usually associated with scientific computing
environments. Furthermore, it natively supports code
migration (through the SCRIPT element of the browsers
Document Object Model) which provides a seamless
mechanism for code distribution and reuse.

Longest common extension
Given two strings S1 and S2, each one with length N and
M, and a long sequence of position pairs, the longest
common extension (LCE) problem consists in finding,
for a given query pair (i, j), the length of the longest
prefix of S1[i..] that matches a prefix of S2[j..].
This problem is directly related with the longest com-

mon suffix described in the previous section, up to an
inversion of the strings. Therefore, to address LCE queries
with standard CGR indexes it suffices to search for shared
suffixes in the reverse CRG indexes of S1 and S2, as that
suffixes would represent prefixes in the direct indexes.
The position pair (i, j) needs to be updated accordingly, to
(N - i + 1, M - j + 1), in order to reference the correct
positions in the reverse strings. With suffix/prefix duality
problem solved we resort on CGR maps embedded in the
Cantor set to perform LCE queries.
The pseudo-code to find the LCE of S1[i..] and S2[j..],

with |S1| = N and |S2| = M, is given in Algorithm 1.
Algorithm 1 Longest common extension (LCE) of S1

and S2 for position pair (i, j)

LCE(standard CGR index entry xS
r
1
N−i+1 , standard

CGR index entry xS
r
2
M−j+1)

1. return
⌈
−log3(|xS

r
1
N−i+1 − xS

r
2

M−j+1|∞)
⌉

− 1
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This single step algorithm makes each LCE query
answered in constant time. Many string algorithms use
LCE as a subtask that needs to be addressed efficiently
and will therefore benefit from this result, as shown in
the following sections.

Common operations on strings
In this section, several common operations on strings
are analyzed and a comparison between CGR and tradi-
tional data structures is given when appropriate. This
analysis focus on how each operation can be achieved
through different CGR implementations, along with its
respective time complexity.
Given a string S of size N and a pattern P of size L,

searching for occurrences of P within S is probably the
most common operation on strings. This problem,
named MATCHES, has been utterly studied and there
are well known algorithms to solve it in linear time on
the length of S and P. The problem becomes more chal-
lenging if we are given a string S and we want to search,
possible online, for a set of patterns within S. In this
case, the preprocessing and indexing of S can greatly
improve the search time as we just process S once,
which is not the case if we use algorithms such as
Knuth-Morris-Pratt [35] or Aho-Corasick [36]. In this
context, the string S needs to be indexed and standard
or quadtree-based CGR indexes can be used.
If a standard CGR index is used, the occurrences of P

in S can be found by scanning S with LCE queries to
match P in each suffix S[i..], with 1 ≤ i ≤ N - L + 1.
More precisely, if the LCE query of S and P for a given
position pair (i, 1) returns L then P matches S[i..i + L -
1]. The algorithm for computing all matches of a pat-
tern P in a string S is given as Algorithm 2. Recall that
we need to use the reserve CGR indexes of S and P to
tackle suffix/prefix duality and all CGR coordinates are
embedded in the Cantor set, thus, defined as in Eq. (5).
Concerning time complexity, Step 2 takes O(N - L) and
both Step 3 and Step 4 take O(1), hence, the overall
complexity of MATCHES is O(N) as L < < N.
Algorithm 2 MATCHES with standard CGR index

MATCHES(standard CGR index xS
r , pattern P)

1. let xP
r
= (xP

r

1 , . . . , xP
r

L ) be the CGR coordinates

for Pr

2. for (i from 1 to N - L + 1)

3. let k = LCE (xS
r

N−i+1, x
Pr
L )//longest common

prefix of S[i..] and P [1..]
4. if (k = L) then P occurs in S[i..i + L - 1]

Although standard CGR indexes can be space efficient,
as we only need to store a coordinate for each text posi-
tion, the MATCHES operation is not as efficient as with

suffix tree indexes. Indeed, with suffix trees this opera-
tion takes only O(L + occ) time, where occ is the num-
ber of occurrences of P in S (usually, occ < < N).
Notwithstanding, we can improve the running time of
MATCHES by using a quadtree-based CGR index,
instead of a standard one. For this purpose, consider a
quadtree for the CGR map of S. Given a pattern P, we
take its reverse Pr and we descend on the quadtree until
we either reach the end of Pr or a leaf of the quadtree.
Along the descendent path we must check for each
internal node if their CGR coordinates are equal to
those of P, which takes constant time as in Algorithm 2.
If this check is true, we must report an occurrence. If
we reach the end of Pr and we are at node n with chil-
dren, we must also check every node in the subtree
rooted at n as each one matches the pattern. Hence,
searching for a pattern P takes linear time on the size of
P plus the number of its occurrences in S, i.e., O(L +
occ) as in suffix trees.
Another common operation on strings is COUNTS. It

consists on determining the number of occurrences of a
given pattern P in a string S. This can be easily achieved
by adapting the MATCHES operation, for both standard
and quadtree-based CGR indexes, resulting in the same
time complexity. The only difference is that instead of
outputting the occurrences a counter is used to retrieve
the total number of occurrences of P in S.
Other common operations on strings include LONG-

EST COMMON SUFFIX, IS PREFIX and IS SUFFIX.
The LONGEST COMMON SUFFIX was addressed in
the Cantor set description, achieving constant time
complexity as LCE. Given two strings S and P , with |S|
= N, |P| = N and L < N, the IS SUFFIX operation con-
sists in checking if P appears as a suffix of S. This can
be done by computing the LCE for coordinates xPL and

xSN . The answer to IS SUFFIX is true if and only if the

LCE query returns L, otherwise the answer is false. The
IS PREFIX operation consists in checking if P appears
as prefix of S and it can be easily done by reversing
both S and P and applying the previous operation. Since
both IS SUFFIX and IS PREFIX operations rely solely in
LCE, they achieve constant time complexity as long as
the needed CGR indexes are already computed.
We conclude this section by discussing four new

operations that are specific to CGR but related with
relevant operations in suffix trees (namely, SLINK and
WEINERLINK). As we shall see later these operations
provide a way for performing incremental hashing, an
approach used for Rabin-Karp string matching algo-
rithm. The LEFT DELETION of a string S of size N is
the substring of S from which the first letter was taken,
that is, given S = aP, the LEFT DELETION of S is P.

Given the last CGR coordinate of S, denoted by xSN , the
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new CGR coordinate corresponding to the LEFT DELE-
TION of S is given by

xPN−1 = xSN − r(1 − r)N−1(yS1 − x0). (6)

Moreover, the LEFT INSERTION compares what hap-
pen when we add a symbol before the string, that is,
given a string S the LEFT INSERTION of a in S is Q =

aS. Given the last CGR coordinate of S, denoted by xSN ,

the new CGR coordinate corresponding to the LEFT
INSERTION of a in S becomes

xQN+1 = xSN + r(1 − r)N+1(yQ1 − x0).

Clearly, this operations are computed in constant
time. Finally, we recall that symmetric operations of
RIGHT INSERTION and RIGHT DELETION can be
straightforwardly computed from the iterative definition
of CGR in Eq. (1) also with O(1) time complexity.
The examples presented in this section illustrate the

algorithmic equivalence between CGR and suffix tress.
Graphically, this can be observed through the represen-
tation of both data structures, given in Figure 2.

Finding palindromes and tandem repeats
This section presents two applications of CGR based on
exact string matching that rely on LCE described above.
A nucleotide sequence S is said to be a (complemented)
palindrome if it is equal to its reverse complement. In
this case, the first half of S converted to its reverse com-
plement is equal to the second half of S. If the two
halves of the palindrome are not adjacent it is said to be
a separated palindrome. Moreover, the palindrome is
said to have a radius correspondent to the size of each
half. Palindromic sequences play an important role in
molecular biology. They are, for instance, specifically
recognized by many restriction endonucleases [37] and
usually associated with methylation sites [38].
The problem of finding all palindromes focus on

uncovering all maximal complemented palindromes
from a nucleotide sequence. By maximal it means that
only the bigger palindrome is extracted. For instance,
the sequence TTATAA has a palindrome of radius 1
(AT), a palindrome of radius 2 (TATA), and a palin-
drome of radius 3 (TTATAA), but only the latter is
maximal.
The algorithm to find all palindromes uses, as subtask,

forward and backward LCE queries from the midposi-
tions of potential palindromes. The backward query cor-
responds, actually, to a forward query over the reverse
complement of S. The detailed pseudo-code of this algo-
rithm can be found in Addition file 2. Since each of the
aforementioned extensions can be performed over a
reverse and a complement CGR indexes in constant

time, the algorithm takes O(N) time, corresponding to
the time needed to cover all string S.
In practice, palindromes are often separated over the

DNA sequence. If the gap between the two halves of the
palindrome is fixed, it happens to be a simple variant of
the previous problem. Therein, forward and backward
extensions are performed in positions apart of each
other (Additional file 2), a procedure that is again solved
in linear time. The general case of finding all separated
palindromes, without a fixed gap, is more complex as it
is equivalent to the problem of finding all inverted
repeats. As expected, an inverted repeat is a sequence of
nucleotides that is the reverse complement of another
sequence that is found further downstream the DNA
sequence. These sequences are usually transposon
boundaries [39,40].
Another major application that benefits from con-

stant-time LCE queries is finding all tandem repeats in a
nucleotide sequence. Tandem repeats are adjacent
copies of a same DNA subsequence. They usually

Figure 2 CGR and Suffix Tree comparison. CGR and suffix tree
comparison. The CGR of each suffix is close in the map, which
relates directly to suffix trees structure.
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consist of short copies of 2-6 base pairs in length
repeated throughout all eukaryotic genomes. Tandem
repeats often represent important control sequences,
such as upstream promoter sequences [41]. In addition,
they have been used in forensic science for determining
parentage [42].
The problem entailing tandem repeats focus in locating

all tandem repeats in a nucleotide sequence. For instance,
the sequence TTATTA has a tandem repeat TT of radius
1 and a tandem repeat TTATTA of radius 3, both starting
in the first position of the nucleotide sequence. It also con-
tains a tandem repeat TT of radius 1 at position 4.
The algorithm to find for all tandem repeats was first

proposed by Landau and Schmidt [43]. It is a divide and
conquer algorithm that recursively break down the problem
of finding tandem repeats into sub-problems, until these
become simple enough to be solved directly. These simpler
problems can be solved through two LCE queries to elicit
the presence of a tandem repeat. The time complexity of
the algorithm is O(N log N + z) where z is the number of
tandem repeats in S. The details of the algorithm, which
requires the direct and reverse CRG indexes to be built in a
pre-processing phase, are presented in Additional file 2.

Approximate string matching
The k-mismatch problem is an approximate matching pro-
blem where k mismatches are allowed. Approximate
matching is a mandatory task in molecular biology as
DNA sequence patterns are usually described in an
approximate way. This makes way for more relaxed ver-
sions of palindrome and other repeat problems. Landau
and Vishkin [44] and Myers [45] were the first to present
an O(kN) solution for the more general k-differences pro-
blems, where insertions and deletions are also considered.
The idea of the algorithm for approximate matching

stems from the fact that extensions may be intercalated
with mismatches. Therefore, if k mismatches are allowed, k
+ 1 extensions may be performed to match a pattern P of
size L in a substring S[i..i + L - 1], with 1 ≤ i ≤ N - L + 1.
Roughly speaking, match operations are as follows: (i) per-
form a LCE query to match P[1..L] in S[i..i + L-1]; (ii) if a
mismatch takes place in position j < L of P, jump over the
mismatch and go to (i) to perform another LCE query to
match P[j + 1..L] in S[i + j + 1..i + L + 1]. This procedure
must be undertaken recursively until k mismatches are
reached or the end of P is reached. If the extensions does
not reach the end of P then more than k mismatches are
needed. Conversely, if the extensions reach the end of P
then P[1..L] matches S[i..i + L - 1] with at most k
mismatches.
Concerning time complexity, each match operation

takes at most O(k) time, since at most k + 1 extensions
are tried and each extension takes O(1). The scan over
all string S takes O(N), therefore the k-mismatch

problem takes O(Nk) time. A detailed explanation, as
well as the pseudo-code of the algorithm, can be found
in Additional file 2. This procedure needs only the
reverse CGR index of S, without using any special index
data structure.
A simple variant of the k-mismatch algorithm can be

used to solve the all k-mismatch palindromes. The idea is
always to perform an extension and jump over a mismatch
to perform another extension until the number of allowed
mismatches are attained. Consequently, the complexity of
all k-mismatch palindromes is updated to O(Nk) time. The
algorithm for all k-mismatch tandem repeats [46] is also
coincident, although more complex, and is fully described
in the Additional file 2.

Longest common substring
The retrieval of the longest common substring of two
strings is a classical computer science problem. Given a
string S1 of size N and a string S2 of size M, a naive
approach to this problem simply consider all positions i in
S1 and j in S2 and proceed in both strings by matching
symbols, until a mismatch is found. Such procedure takes
O(NM2) time. By using linear time search algorithms, such
as the Knuth-Morris-Pratt, this result can be improved to
O(NM). Still, the performance of these naive solutions
pales in comparison with the linear time performance of
suffix trees [4].
In the CGR framework we propose an algorithm that

does not achieve linear time complexity, as suffix tree
does, but it is sufficiently close to warrant a careful analy-
sis. We start this analysis by considering the simpler pro-
blem of finding duplicates in a list of numbers. Assume we
are given an unordered list of numbers ℓ, of size N, and we
wish to determine if there are any repeated number. A
naive solution would compare every pair of numbers to
check if they are equal, requiring O(N2) time. A more
sophisticated solution would be to sort the list ℓ and check
only consecutive numbers. This algorithm requires overall
O(N log N) time, where the sorting step is the bottleneck
of the procedure.
Our solution for determining the longest common sub-

string with CGR is similar to this procedure. We sort the
CGR coordinates according to the quadrant they appear
on. First, the ones close to (0, 0), then the ones close to (0,
1), then the ones close to (1, 1), and finally the ones close
to (1, 0). If two points are in the same quadrant then they
are sorted according to the second quadrant that they
appear on, or iteratively by the first quadrant that they dif-
fer. The advantage of having LCE queries in constant time
within CGR maps is that two CGR coordinates can be effi-
ciently compared. First, we use LCE to skip the quadrants
that the two coordinates share and, then we use the result-
ing value to order the two. Hence, it is possible to sort all
the CGR coordinates in O(N log N) time.
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To obtain the longest common substring from the CGR
representation we join the CGR coordinates from S1 and
S2 and sort them all together, according to the previous
procedure. Then, we traverse the sorted list and, if two
consecutive coordinates come from two different strings, i.
e., one from S1 and the other from S2, we compute the
LCE between the two. Overall our goal is to determine the
pair that has the largest LCE value, as this corresponds the
longest common substring among the two strings.

Rabin-Karp string matching algorithm
The procedure for calculating the CGR coordinates (Eq.
(1) and (2)) bare a striking similarity to Rabin-Karp string
matching algorithm [47]. This algorithm uses a rolling
hash function h, from strings to integers, allowing to
reduce the problem of comparing strings to the problem
of comparing integers, which can be computed much
more efficiently in commodity hardware.
Given a string S of size N and a pattern P of size L, the

Rabin-Karp algorithm starts by computing the code h(P).
Then, all L-tuples of S are scanned in order to check if h(S
[i..i + L - 1]) = h(P), with 1 ≤ i ≤ N - L + 1. The substrings
for which h(P) = h(S[i..i + L - 1]) are potential occurrences
of P, which should be further checked naively. This algo-
rithm was one of the firsts to achieve linear pattern match-
ing efficiency, taking only O(N) time to scan a string of
size N. Notwithstanding, it results in a randomized algo-
rithm, since h(P) = h(S[i..i + L - 1]) does not constitute a
guarantee that P = S[i..i + L - 1] and so, an additional
check is needed to verify if P = S[i..i + L - 1]. In conse-
quence, its performance is only O(N) in the expected case,
and the worst case may be significantly worse, taking O
(N2) time. Other linear time algorithms such as the
Knuth-Morris-Pratt and the Boyer-Moore can guarantee
linear time performance, even in the worst case [35,48].
The Rabin-Karp algorithm has the advantage of produ-

cing and index as a side effect, which is actually a hash.
Indexes have the advantage that they support subsequent
string searches in much less time than searching over the
all string S. However, their performance depend largely on
the nature of the underlying hash. If the hash values of
consecutive substrings are computed in constant time, it is
possible to achieve almost a O(L + occ) search time, mean-
ing that searching for all the occurrences occ of a L-long
pattern P can be performed in expected optimal time [49].
This is exactly what is attained when CGR is used to
induce a rolling hash function for the Rabin-Karp
procedure.
In the context of CGR, a possible rolling hash function

can be constructed iteratively based on the CGR defini-
tion (Eq. (1)) and the LEFT DELETION operation
described in Eq. (6). If one uses directly the coordinates
of the last symbol of the first L-tuple to compute the first
hash value we have that

h(S[1..L]) = xSL = (1 − r)Lx0 + r
L∑

k=1

(1 − r)L−kySk .

The next hash value h(S[2..L+1]) can be again defined
as the last CGR coordinate of string S[2..L+1]. This

coordinate xS[2..L+1]L
can be computed from xS[1..L]L = xSL

by performing a LEFT DELETION and applying a new
CGR iteration. The computation of this value is straight-

forward. First, the coordinate xS[2..L]L−1 is obtained by

canceling symbol S[1] from xSL , i.e.,

xS[2..L]L−1 = xSL − r(1 − r)L−1(yS1 − x0).

Then, to obtain the intended coordinate xS[2..L+1]L , a

CGR iteration is applied and we get

xS[2..L+1]L = (1 − r)xS[2..L]L−1 + rySL+1,

which can be defined in terms of xSL as

xS[2..L+1]L = (1 − r)xSL − r(1 − r)L(yS1 − x0) + rySL+1.

Thus, the Rabin-Karp CGR-based procedure starts by
defining h (S [1..L]) = xSL and proceeds by computing
iteratively the code for h(S[i + 1..i + L]) as

h(S[i+1..i+L]) = (1−r) · h(S[i..i+L−1])−r(1 − r)L(S[i]−x0)+r · S[i+L], i = 1, . . . ,N−L. (7)

Even though this expression uses vectors and is there-
fore slightly more sophisticated than the most common
expressions, CGR function is essentially a hash, except
for the fact the we are not using remainders as in the
original proposal. However, due to the limitation of the
floating point representation, iterating Eq. (1) will even-
tually overflow, hence producing the same effect as
explicitly computing the remainders. If this occurs for h
(P) a spurious hit might be obtained, requiring a naive
verification. Naturally, infinite precision techniques can
be used to prevent this phenomena, which in turn yield
powerful computation models.
Finally, with Eq. (7) it is possible to update the hash

value in constant time and, therefore, obtaining all the
hash values takes only O(N) for a string S of size N.
Likewise a hash data structure that indexes all L-tuples
of S can be built within this time.

Conclusions
Graph-based data structures such as suffix trees are
heavily applied in sequence comparison and bioinfor-
matics problems, having attained a high performance
level. This optimization makes them the most common
data structures for string-related operations.
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CGR has been, for more than two decades, a fruitful
methodology for biological sequence comparison, provid-
ing a support for aligment-free analysis along with convey-
ing an appealing pattern visualization capacity for whole
genomes. In this work we have shown that CGR can go
beyond these applications and demonstrate how typical
string operations can be recoded and solved using CGR.
We further illustrate the similarities between these two
data structures for biological sequence analysis, showing
that numerical biosequence representations given by
chaos game iterative function systems constitute an alter-
native and competitive approach for common string-
matching problems.
The applications presented in this work have focused

on the longest common extension problem that, after
linear time preprocessing of a standard CGR index, it is
shown to be answered in constant time. This result
allows to efficiently solve other string matching pro-
blems such as searching for palindromes, tandem
repeats and matches with mismatches. Additionally, it is
shown that CGR can be used as an hash function and
its relation with Rarbin-Karp algorithm is highlighted.
The chief advantage of CGR is its simplicity and easy

implementation. In addition, a more complex placement
of the CGR coordinates in memory actually provides an
efficient way to solve more demanding problems, for
example, through the use of quadtrees, here proposed to
solve the longest common substring problem.
The choice between numerical or graphical resolution

is ultimately decided by the efficiency of the implemen-
tation. To assist in this selection we provide a summary
of time complexities achieve by both data structures for
a set of pertinent problems in string processing for
molecular biology, showing the CGR parallelism with
suffix trees in some of the problems addressed.
The operations analyzed covered typical string problems

without being exhaustive. Possible extensions to be
explored numerically include sequence alignment, which
can be implemented using a dynamic programming
approach in a matrix of all the pairwise distances between
the CGR coordinates. The longest common subsequence
can also be addressed in the future using numerical
reasoning.
The comparison of CGR and suffix trees algorithms for

biological sequence analysis provides a useful bridge
between graph and numerical-based formalisms such that
solutions to difficult problems can make use of both
representations.

Additional material

Additional file 1: Longest common extension queries. Additional file
1 presents in detail the problem of computing LCE queries with CGR

maps that uses a contraction parameter ratio of r = 1
2
. It also presents

the solution by embedding the CGR coordinates in the Cantor set and

shows that this corresponds to the CGR map with r = 2
3
.

Additional file 2: Detailed algorithms. Additional file 2 presents in
detail the algorithms sketched throughout the section that exploits LCE
queries in constant time.
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