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Abstract

Background: The ancestries of genes form gene trees which do not necessarily have the same topology as the
species tree due to incomplete lineage sorting. Available algorithms determining the probability of a gene tree given
a species tree require exponential computational runtime.

Results: In this paper, we provide a polynomial time algorithm to calculate the probability of a ranked gene tree
topology for a given species tree, where a ranked tree topology is a tree topology with the internal vertices being
ordered. The probability of a gene tree topology can thus be calculated in polynomial time if the number of orderings
of the internal vertices is a polynomial number. However, the complexity of calculating the probability of a gene tree
topology with an exponential number of rankings for a given species tree remains unknown.

Conclusions: Polynomial algorithms for calculating ranked gene tree probabilities may become useful in developing
methodology to infer species trees based on a collection of gene trees, leading to a more accurate reconstruction of
ancestral species relationships.

Keywords: Incomplete lineage sorting, Coalescent history, Anomalous gene tree, Dynamic programming

Background
Phylogenetic reconstruction methods aim to infer the
species phylogeny which gave rise to a group of extant
species. Typically, this species phylogeny is obtained based
on genetic data from representative individuals of each
extant species. The ancestries of genes at different loci
form gene trees which do not necessarily have the same
topology as the species tree. Gene tree topologies and
species tree topologies might be different due to such
phenomena as incomplete lineage sorting, gene duplica-
tion, recombination within gene loci, and horizontal gene
transfer [1]. In this paper, we focus on incomplete lineage
sorting as the mechanism for incongruence of gene tree
and species tree topologies, in which two gene lineages
do not coalesce in the most recent population ancestral
to the individuals from which the genes were sampled. As
an example, the lineages sampled from species A and B in
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Figure 1b do not coalesce until the population ancestral
to species A, B, and C, thus allowing the B and C lineages
in the gene tree to have a more recent common ancestor
than lineages A and B.
Given a fixed species tree, and assuming the gene tree

evolved under the multi-species coalescent [1], the most
probable gene tree topology can have a different topology
from that of the species tree. Such a gene tree topology is
called an anomalous gene tree. In fact, for every species
tree topology with at least 5 leaves, we can choose edge
lengths in the species tree topology such that anoma-
lous gene trees exist [2]. This implies that the gene tree
topology appearing most often when considering differ-
ent genes might not agree with the species tree topology,
thus we cannot use a simple majority-heuristic to infer the
species tree from a collection of gene trees. Instead we
need statistical tools rather than majority rule heuristics
for inferring the species tree based on gene trees.
Current methods for inferring species trees from gene

trees in this setting can be divided into topology-
based and genealogy-based methods, in which the input
for a reconstruction algorithm accepts either gene tree
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Figure 1 In (a)–(d) the ranked species tree topology is (((A,B)4 ,C)2 , (D,E)3)1. (a) The ranked gene tree matches the ranked species tree.
(b) The (ranked or unranked) gene tree does not match the species tree, and there is an incomplete lineage sorting event (a deep coalescence)
because the lineages from species A and B fail to coalesce more recently than s2. (c) The gene tree and species tree have the same unranked
topology but have different ranked topologies, as D and E coalesce in the gene tree more recently than A and B, while A and B is the most recent
divergence in the species tree. The gene tree in (c) has ranked topology (((A, B)3, C)2, (D, E)4)1. In (c), there are no incomplete lineage sorting events
(no deep coalescences); however, there is an extra lineage at time s3 which leads to the gene tree and species tree having different rankings. In (c),
all coalescences occur in the most recent possible interval consistent with the ranked gene tree, and we have �1 = 2, �2 = 3, �3 = 5, �4 = 5, and
g1 = 2, g2 = 3, g3 = 5, g4 = 5. (d) A gene tree with the same ranked topology as the gene tree in (c) but with coalescences occurring in different
intervals.

topologies or genealogies, i.e., gene trees with branch
lengths (coalescence times). Topology-based methods
include Minimize Deep Coalescence (MDC) [3,4], STAR
[5], STELLS [6], rooted triple consensus [7] and other
consensus and supertree methods [8,9]. Genealogy-based
methods include Bayesian and likelihood methods such
as BEST, *BEAST, and STEM [10-12] and clustering and
distance-based methods [5,13-15]. Possible pros and cons
of the two approaches are that topology-based meth-
ods can be computationally faster and less sensitive to
errors in estimating gene trees (and gene tree branch
lengths) from sequence data [16], while methods that use
coalescence times, particularly using Bayesian modelling,
can be the most accurate when model assumptions are
correct [17].
Another possibility that has been so far unexplored in

methods for inferring species trees from gene trees is
to use ranked gene trees, in which the temporal order

of the nodes of the gene tree (the coalescence times) is
used, but not the continuous-valued branch lengths. This
approach might therefore be intermediate between purely
topology-based methods and genealogy-based methods.
By preserving more of the temporal information in the
gene tree nodes, the hope is to develop methods that are
more powerful than purely topology-based methods and
that are still computationally efficient and robust to errors
in estimating gene trees and gene tree branch lengths from
sequence data.
In [18], a first step toward developing methods that use

ranked gene trees for inferring species trees was taken by
providing formulae to calculate the probability of a ranked
gene tree given a species tree. The previous work, how-
ever, was based on an exponential enumeration of what
were called ranked coalescent histories and did not pro-
vide an algorithm for computing some of the key terms
in the probability of individual ranked histories. In this
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paper, we improve this previous (computationally ineffi-
cient) approach, by providing a method for computing
probabilities of ranked gene trees given species trees
which is polynomial in the number of leaves using a
dynamic programming approach.
Methods for computing probabilities of ranked gene

trees efficiently may also be of interest in the context of
computing probabilities of unranked gene trees, partic-
ularly because no polynomial time algorithm has been
found for calculating the probability of a gene tree topol-
ogy given a species tree under the multispecies coalescent
[6,19-21]. The probability of an unranked gene tree topol-
ogy can be obtained by summing over all ranked gene tree
topologies with the same topology. Thus, for unranked
gene trees with particular shapes where the number of
rankings increases in polynomial time, using ranked gene
trees can potentially increase the speed of computing
probabilities of unranked gene trees as well. We note that
a completely unbalanced gene tree has only one ranking,
while the number of rankings can be exponential in the
number of leaves when gene trees become more balanced.
Thus, our approach for calculating unranked gene tree
probabilities will be most useful for less balanced ranked
gene trees.
The bulk of the paper consists of the derivation of the

polynomial time method for computing ranked gene tree
probabilities. The algorithm is summarized in section ‘An
algorithm’. This is followed by a discussion of applications
to computing probabilities of unranked gene tree topolo-
gies and to inferring ranked species trees under maximum
likelihood and a modification to the MDC criterion.

Calculating the probability of a ranked gene tree
topology
In the following, we will derive the probability of a
ranked gene tree topology given a species tree, P[G | T ].
Equations (1, 2, 3, 4, 8, 10) allow the calculation of
P[G | T ] in time O(n5). The model giving rise to the gene
tree is the multi-species coalescent with constant popu-
lation sizes [1]. Each species consists of a population of
constant size where lineages merge according to the coa-
lescent. Thus, lineages from two different species may
coalesce any time previous to the split of the two species.
We begin with some notation, which is also summarized

in Table 1. Let time be 0 today and increasing going into
the past. Let T be a species tree with n species, and thus
n − 1 speciation events (denoted by 1, . . . , n − 1) occur-
ring at times s1 > · · · > sn−1. Denote the interval between
speciation event i − 1 and speciation event i by τi, see
Figure 1.
Let G be a ranked gene tree topology. It is convenient to

use the same labels for the leaves of G and of T . This is a
slight abuse of notation, as leaf A of T refers to a popula-
tion (or species), and A of G refers to a gene sampled from

Table 1 Notation used in the paper

Symbol Meaning

T Species tree with real-valued divergence times

G Ranked gene tree (real-valued coalescence times not
specified)

n The number of leaves of T and G

si Speciation times, with s1 > · · · > sn−1, let s0 = ∞
τi Intervals between speciation times, τi =[ si , si−1)

�i The number of gene tree lineages at time si

mi The number of coalescence events in interval τi

Gi,�i The ranked gene tree observed from time 0 to time si

gi Theminimum number of gene tree lineages at time si

yi,z Population z in interval τi in beaded tree

ui Internal node (coalescence) with rank i in the gene
tree, u1 is most ancient, un−1 is the most recent

ki,j,z The number of lineages available for coalescence in
population yi,z just after the jth coalescence (consid-
ered forward in time) in interval τi ; ki,0,z is the number
of lineages “exiting” at time si−1

δ(y), δ(u) The set of leaves descended from a node of the
species tree or gene tree, respectively

lca(u) For a node u of the gene tree, the node y of the
species tree with largest rank such that δ(u) ⊂ δ(y)

τ (y) For a node ywith rank i on the species tree, we denote
τ(y) = τi (the interval immediately above y)

λi,j The overall coalescence rate in interval τi immediately
preceding (backwards in time) the jth coalescence

Hk Number of sequences of coalescences above the root
of the species tree starting with k lineages

fi The joint density of coalescence times in interval τi

population A. We denote the nodes of G (which are coa-
lescence events) by u1, . . . ,un−1, where node uj has rank j,
and where higher rank indicates a more recent coales-
cence. A ranked tree topology can be notated similarly to
Newick notation, putting the rank as a subscript for each
node, see also Figure 1.
Let Gi,�i be part of a ranked gene tree evolving on a

species tree between time si and time 0 (i.e. the present).
Gi,�i consists of �i gene tree lineages at speciation time si
and the coalescent history of Gi,�i in time interval (0, si)
is consistent with the ranked gene tree G . Let gi be the
minimum number of lineages required in the ranked gene
tree at time si such that G can be embedded into the
species tree T . Note that n ≥ �i ≥ gi > i. Next we
provide a dynamic programming approach for calculat-
ing the probability of a ranked gene tree given a species
tree. An efficient way to determine the required quantities
g1, . . . , gn−1 is provided in Section ‘Calculation of gi and
ki,j,z’.
Essentially, in our approach, we traverse the intervals

between speciation events going back in time, τn−1, . . . , τ2
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(formalized in Theorem 2), and calculate the probability
of the appropriate coalescent events occurring in inter-
val τi based on how many coalescent events happened
in the later intervals τi+1, . . . , τn−1 (Theorem 3). Finally
with Theorem 1, we account for the most ancestral time
interval τ1.

Theorem 1. The probability of a ranked gene tree given
a species tree is,

P[G | T ]=
n∑

�1=g1

P[G1,�1 | T ] /H�1 (1)

where

H�1 = �1! (�1 − 1)! /2�1−1 (2)

is the probability for the coalescences above the root
appearing in the right order [22].

For precalculated P[G1,�1 |T ] (�1 = 2, . . . , n) the com-
plexity of calculating P[G | T ] is thus O(n). Next, we
will provide a recursive way to calculate P[G1,�1 |T ] for
�1 = 2, . . . , n in polynomial time, thus P[G | T ] can be
calculated in polynomial time.

Theorem 2. The probability P[Gi,�i |T ] can be calcu-
lated for all i recursively (with li ≥ gi),

P[Gi,�i |T ]

=
n∑

�i+1=max(�i,gi+1)

P[Gi,�i |Gi+1,�i+1 , T ]P[Gi+1,�i+1 |T ]

(3)

with

P[Gn−1,n | T ]= 1.

The complexity of calculating P[G1,�1 | T ] for �1 =
2, . . . , n is O(n3), given we know P[Gi,�i |Gi+1,�i+1 , T ] for all
i, �i, �i+1.

Proof. At the time of the most recent speciation event,
sn−1, we have n lineages with probability 1, which is the
initial value of the recursion. Calculating P[Gi,�i |T ] for
i < n − 1 can be done in the following way,

P[Gi,�i |T ]

=
n∑

�i+1=max(�i,gi+1)

P[Gi,�i ,Gi+1,�i+1 |T ]

=
n∑

�i+1=max(�i,gi+1)

P[Gi,�i |Gi+1,�i+1 , T ]P[Gi+1,�i+1 |T ] .

Suppose P[Gi,�i |Gi+1,�i+1 , T ] is known. Given we calcu-
lated the probability P[Gi+1,�i+1 |T ] for �i+1 = i+ 2, . . . , n,

then calculating P[Gi,�i |T ] for �i = i + 1, . . . , n requires
O

(∑n−i
j=1 j

)
= O

((n−i+1
2

))
calculations. Summing up

over i = 1, . . . , n−1 yields a complexity ofO
(∑n

i=2
( i
2
)) =

O
((n+1

3
)) = O(n3).

It remains to determine P
[
Gi−1,�i−1 |Gi,�i , T

]
. Note that

during the interval τi, we have i branches in the species
tree. Let mi be the number of coalescent events in τi, so
mi = �i − �i−1. Let the number of lineages on branch z
just after the jth coalescent event (going forward in time)
in τi be ki,j,z. Calculation of ki,j,z can be done efficiently as
shown in Section ‘Calculation of gi and ki,j,z’.

Theorem 3. We have,

P
[
Gi−1,�i−1 |Gi,�i , T

] =
mi∑
j=0

e−λi,j(si−1−si)∏mi
k=0,k �=j(λi,k − λi,j)

(4)

where λi,j = ∑i
z=1

(ki,j,z
2

)
and

(1
2
)
:= 0.

Proof. The density for the coalescence events in interval
τi can be obtained by considering the waiting time to the
“next” coalescent event (going backwards in time) as being
due to competing exponentials in the different branches,
where the coalescence rate within branch z is

(ki,j,z
2

)
. Thus,

the waiting time until the next coalescent event has rate
λi,j = ∑i

z=1
(ki,j,z

2
)
.

We denote the time between the jth and (j + 1)st coa-
lescent event as vj, where v0 is the time between si−1 and
the first (least recent) coalescent event in τi and with vmi
being the time between si and coalescent eventmi.
The density for the coalescent events in the interval τi

is [18],

fi(v0, v1, . . . , vmi) = e−
∑mi

j=0
∑i

z=1 (
ki,j,z
2 )vj

= e−
∑mi

j=0 λi,jvj .

It remains to integrate over v, for which we distinguish
between case (i) λi,0 = 0, and case (ii) λi,0 > 0.
Case (i): If λi,0 = 0 (which occurs if �i−1 = i, i.e., all

lineages within each population coalesce), then we rewrite
fi as,

fi(v0, v1, . . . , vmi) =
∏mi

j=1 λi,je−λi,jvj∏mi
j=1 λi,j

. (5)

Using the fact that the integral of the numerator of
Equation (5) is a hypoexponential distribution based on
the sum of mi exponential random variables [23] (with
density functions λi,je−λi,jvj , j = 1, . . . ,mi), the probability
of the coalescent events in the interval is the cumulative
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distribution function of the hypoexponential distribution
evaluated at si−1 − si = ∑mi

j=0 vi. Thus, with λi,j < λi,j+1,

P[Gi−1,�i−1 |Gi,�i , T ]

= 1∏mi
j=1 λi,j

−
mi∑
j=1

e−λi,j(si−1−si)

λi,j
∏mi

k=1,k �=j(λi,k − λi,j)

= 1∏mi
j=1 λi,j

+
mi∑
j=1

e−λi,j(si−1−si)∏mi
k=0,k �=j(λi,k − λi,j)

=
mi∑
j=0

e−λi,j(si−1−si)∏mi
k=0,k �=j(λi,k − λi,j)

(6)

where the second line follows because −λi,j = λi,0 − λi,j.
Case (ii): If λi,0 > 0, then we rewrite fi as,

fi(v0, v1, . . . , vmi) =
∏mi

j=0 λi,je−λi,jvj∏mi
j=0 λi,j

(7)

For integrating fi, we use the fact that the integral
of the numerator in Equation (7) is the convolution of
mi + 1 exponential random variables with parameters
λi,0, . . . , λi,mi , which is the hypoexponential distribution.
Now, since λi,j < λi,j+1, we observe, using the probability
density function of the hypoexponential distribution,

P[Gi−1,�i−1 |Gi,�i , T ]

=
∫
v
fi(v0, v1, . . . , vmi) dv

=
mi∑
j=0

e−λi,j(si−1−si)∏mi
k=0,k �=j(λi,k − λi,j)

,

which is the same expression as for the λi,0 = 0 case (6).
Note that for case (i) wemade use of the cumulative distri-
bution function of the hypoexponential distribution, while
for case (ii) we made use of the density function of the
hypoexponential distribution. Both cases yield the same
final expression for P[Gi−1,�i−1 |Gi,�i , T ], which establishes
the proof.

Corollary 4. The probabilities P[Gi−1,�i−1 |Gi,�i , T ] for
all possible i, mi and �i (recall that mi = �i − �i−1) are
calculated in O(n5), given all λi,j.

Proof. For a fixed i, mi and �i, we require O(m2
i ) calcu-

lations to evaluate P[Gi−1,�i−1 |Gi,�i , T ]. We need to deter-
mine P[Gi−1,�i−1 |Gi,�i , T ] for all possible i,mi and �i. First,
we observe that i ≤ �i−1 ≤ n, and thus for a fixed �i, we
have, 0 ≤ mi ≤ �i − i. Second, i < �i ≤ n. And third,

2 ≤ i ≤ n−1. Thus, the number of calculations needed to
calculate P[Gi−1,�i−1 |Gi,�i , T ] for all possible i,mi and �i is,

O

⎛
⎝n−1∑

i=2

n∑
�i=i+1

�i−i∑
mi=0

m2
i

⎞
⎠ = O

⎛
⎝n−1∑

i=2

n∑
�i=i+1

(�i − i)3
⎞
⎠

= O
(n−1∑

i=2
(n − i)4

)

= O (n5).

Corollary 5. The quantities λi,j can be calculated for all
possible i, mi, �i and j in O(n5), given all ki,j,z.

Proof. For a fixed i, mi, �i and j, we require O(i) calcu-
lations to evaluate λi,j. As j = 0, . . . ,mi, with the same
arguments as in Corollary 4, we obtain,

O

⎛
⎝n−1∑

i=2

n∑
�i=i+1

�i−i∑
mi=0

mi∑
j=0

i

⎞
⎠ = O

⎛
⎝n−1∑

i=2
i

n∑
�i=i+1

�i−i∑
mi=0

mi

⎞
⎠

= O

⎛
⎝n−1∑

i=2
i

n∑
�i=i+1

(li − 1)2
⎞
⎠

= O
(n−1∑

i=2
i(n − i)3

)

= O (n5).

We note that the terms P[Gi−1,�i−1 |Gi,�i ,T ] are analo-
gous to the functions gi,j defined in [24,25], which give the
probability that i lineages coalesce into j within time t in
a single population and are used extensively in computing
probabilities related to unranked gene trees [6,19,26,27].
In particular, if only one population, say z∗, has coales-
cence events, then we have r

P[Gi,�i |Gi+1,�i+1 ,T ]

= g�i+1,�i(si − si+1)
∏

z �=z∗ gki,0,z ,ki,0,z(si − si+1)∏�i+1−�i
k=1

(
�i+1−k+1

2
) ,

a product of gi,j functions with the denominator counting
the number of sequences in which mi coalescences could
have occurred. The terms P[Gi−1,�i−1 |Gi,�i , T ] allow for the
coalescences to occur in separate populations, however,
and are constrained by the ranking of the gene tree. For
example, in interval τ3 of Figure 1c, there are two coales-
cences which occur in different populations. If the ranking
of the gene tree were not important, the branches could be
considered independent, and the probability of this event
would be g2,1(s2 − s3)g2,1(s2 − s3). However, the gene tree
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ranking constrains the coalescence of A and B to be less
recent than that of D and E, so the probability for events
in this interval is, r

P[G2,3|G3,5, T ]=[ g2,1(s2 − s3)]2 /2.

We illustrate that we get the same result from Theorem 3:
there are two coalescence events in interval τ3, so we use
j = 0, 1, 2, and calculate

λ3,0 =
(
1
2

)
+

(
1
2

)
+

(
1
2

)
= 0,

λ3,1 =
(
2
2

)
+

(
1
2

)
+

(
1
2

)
= 1,

λ3,2 =
(
2
2

)
+

(
1
2

)
+

(
2
2

)
= 2.

Thus, Equation (4) from Theorem 3 evaluates to

e−0(s2−s3)

(2 − 0)(1 − 0)
+ e−1(s2−s3)

(0 − 1)(2 − 1)
+ e−2(s2−s3)

(0 − 2)(1 − 2)

= 1
2

− e−(s2−s3) + 1
2
e−2(s2−s3)

= 1
2

(
1 − e−(s2−s3)

)2
= [ g2,1(s2 − s3)]2 /2.

Remark 6. The probability of a gene tree topology is
the sum of the probabilities of each ranked gene tree
with the given topology. A given tree topology has (n −
1)! /

∏n−1
i=1 (ci − 1) rankings, where ci is the number of

descendant leaves of interior vertex i. A proof can be found
in [28]. For a completely balanced tree on n = 2k leaves,
the number of rankings grows faster than polynomial: the
numerator can be approximated by,

n!≈ √
2πn(n/e)n,

and the denominator can be approximated by,

n−1∏
i=1

(ci − 1) =
k∏

i=1
(2i − 1)n/2i ≈ nk = nlog2 n,

showing that the ratio grows faster than polynomial in n.

Calculation of gi and ki,j,z
Calculation of gi
If T and G have the same ranked topology, then gi = i+1.
In general, to compute gi, we let lca(uj) be the least com-
mon ancestor node on the species tree for a node uj on
the ranked gene tree – i.e., the node with the largest rank
on the species tree which is ancestral to all species repre-
sented in uj. For a node y on the species tree, let τ(y) be the
interval immediately above y. For example, in Figure 1c,
τ(lca(u4)) = τ3 where u4 is the gene tree node with rank

4 — the node ancestral to D and E only. In order to com-
pute gi, we count the number of gene tree nodes which
may occur closer to the present than si. These are precisely
all gene tree nodes uj where lca(uj) is in any of the inter-
vals τi+1, . . . , τn−1. Since at the present, n lineages are able
to coalesce, we can express gi as,

gi = n −
n−1∑
j=i+1

n−1∏
k=j

I(τ (lca(uk)) > τi) (8)

where τj < τi iff j < i, and where I(·) is an indicator
function taking the value 1 if the condition holds and oth-
erwise 0. Assuming each lca() operation is O(1) [29,30],
preprocessing allows all lca terms to be computed in O(n)

time. Thus, calculating g1, . . . , gn−1 can be done, based on
Equation 8, in O(n3).

Calculation of ki,j,z
We let yi,j be the jth population (read left to right) in
interval τi (equivalently, the jth branch or jth node sub-
tending the branch). In order to label every population
before and after a speciation time si uniquely, extra nodes
can be added to the species tree to form a beaded species
tree (Figure 2), so that there are i nodes at time si, i =
1, . . . , n − 1. For each i ∈ {1, . . . , n − 1}, there is one node
of outdegree 2, and i− 1 nodes of outdegree 1. Thus, pop-
ulation yi,j corresponds to a branch (equivalently, a node)
in the beaded species tree. We denote the outdegree of a
node y by outdeg(y).
In the remainder of this section, we compute the val-

ues ki,j,z, i.e. the number of lineages on branch yi,z of the
beaded species tree during the interval immediately after
the jth coalescence event (going forward in time), with

Figure 2 The beaded version of the species tree topology in
Figure 1a–d.
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ki,0,z being the number of lineages “exiting” the branch at
time si−1. For example, in Figure 1b, we have

k2,0,1 = 1, k2,1,1 = 2, k2,2,1 = 3,
k2,0,2 = 1, k2,1,2 = 1, k2,2,2 = 1,

The value of ki,j,z depends on the number of lineages
entering branch i, �i, as well as the number of lineages
exiting the branch, and not just on the number of coa-
lescence events in the interval. For example, in Figure 1c,
k2,0,1 = 1 and k2,1,1 = 2, while in Figure 1d, k2,0,1 = 2
and k2,1,1 = 3, although the two gene trees have the same
ranked topology andm2 = 1 for both cases.
To determine the terms ki,j,z we note that the number of

coalescences that have occurred more recently than inter-
val τi is n − �i. In a given interval τi, we let z(1) and z(2) be
the left and right children, respectively, of population z of
outdegree 2, and let z(1) = z(2) be the only child of a node
z of outdegree 1.
The number of lineages available to coalesce in popula-

tion z of interval τi is

ki,mi,z =
outdeg(yi,z)∑

j=1
ki+1,0,z(j) (9)

where the z(j) are the daughter populations (one or two)
of z. Further, kn,0,z = 0 for all z. Since the beaded species
tree has n2/2 nodes, precalculating outdeg(yi,z) requires
O(n2). For 0 ≤ j < mi, we have

ki,j,z =
{
ki,j+1,z − 1 jth coalescence on branch z
ki,j+1,z otherwise

(10)

Consequently, determining a particular ki,j,z is O(1). Thus
determining ki,j,z for all possible i, mi and �i is (see also
Corollary 4),

= O

⎛
⎝n−1∑

i=2

n∑
�i=i+1

�i−i∑
mi=0

mi∑
j=0

O(1)

⎞
⎠

= O (n4).

Note that taking the sum over all z is not necessary, as in
all but one branch the ki,j,z equals the ki,j+1,z.

An algorithm
In summary, we derived an algorithm with runtime O(n5)
for calculating the probability of a ranked gene tree given
a species tree on n tips:

1. Calculate g1, . . . gn−1 using Equation (8).
2. Calculate ki,j,z (for i, j = 1, . . . , n; z = 1 . . . i), using

Equations (9) and (10).

3. Calculate λi,j = ∑i
z=1

(ki,j,z
2

)
(for i, j = 1, . . . , n).

4. Calculate P[Gi−1,�i−1 |Gi,�i , T ] (for i = 2, . . . , n;
�i−1 = gi−1, . . . , n; �i = gi, . . . , n), using Theorem 3.

5. Calculate P[G1,�1 |T ] using Theorem 2.
6. Calculate P[G | T ] using Theorem 1.

Conclusions
In this paper, we provide a polynomial-time algorithm
(O(n5) where n is the number of species) to calculate the
probability of a ranked gene tree topology given a species
tree, summarized in Section ‘An algorithm’. We now dis-
cuss applying these results to computing probabilities of
unranked gene tree topologies and to inferring ranked
species trees.

Computing probabilities of unranked gene tree topologies
Previous work on computing probabilities of unranked
gene tree topologies used the concept of coalescent his-
tories, which specify the branches in the species tree in
which each node of the gene tree occurs. An unranked
gene tree probability can then be computed by enumerat-
ing all coalescent histories and computing the probability
of each. The number of coalescent histories grows at least
exponentially when the (unranked) gene tree matches the
species tree, making this approach computationally inten-
sive. Coalescent histories can be enumerated either recur-
sively (e.g., in PHYLONET [31] or [20]) or nonrecursively
(COAL [19]).
A much faster approach using dynamic programming

similar to that used in this paper is implemented in
STELLS [6], which conditions on the ancestral configura-
tion in each branch rather than the number of lineages.
Here an ancestral configuration keeps track not only of the
number of lineages in a branch in the species tree, but also
the particular nodes of the gene tree. Different ancestral
configurations can potentially have the same number of
lineages within a population. Enumerating ancestral con-
figurations turns out to have exponential running time for
arbitrarily shaped trees, but the number of ancestral con-
figurations is still much smaller than the number of coa-
lescent histories. When computing probabilities of ranked
gene tree topologies, however, the ranking specifies the
sequence of coalescence events, leading to a unique ances-
tral configuration given the number of lineages in a time
interval. This fortuitously enables probabilities of ranked
gene tree topologies to be computed in polynomial time.
We note that although the number of rankings for a

gene tree is not polynomial in the number of leaves in
general, the number of rankings can be small for certain
tree shapes. For example, if the gene tree has a caterpillar
shape, in which each internal node has a leaf as a descen-
dant, then there is only one ranking, and thus computing
the ranked and unranked gene tree are equivalent. For
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a pseudo-caterpillar, a tree made by replacing the sub-
tree with four leaves of a caterpillar with a balanced tree
on four leaves [20], there are only two rankings possible,
and for a bicaterpillar [20], for which the left subtree is a
caterpillar with nL leaves and the right subtree is a cater-
pillar with n − nL leaves, there are

( n−2
nL−1

)
rankings. Thus

computing unranked gene tree probabilities by summing
ranked gene tree probabilities can be done in polynomial
time for some tree shapes. We note that for the approach
used by STELLS, some tree shapes can also be computed
in polynomial time, including the cases we mentioned
with a polynomial number of rankings (caterpillar and
pseudo-caterpillar). An open question is whether there are
any classes of unranked gene trees which have a polyno-
mial number of rankings but an exponential number of
ancestral configurations, or vice versa.

Inferring species trees from ranked gene trees
Our fast calculation of the probability of ranked gene tree
topologies can be used to determine the maximum likeli-
hood species tree from a collection of known gene trees.
Assume we have observed N ranked gene trees (i.e., N
loci). Now themaximum likelihood species tree TML (with
branch lengths on internal branches) is

TML = argmax
T

P[G1, . . . ,GN |T ]

where

P[G1, . . . ,GN |T ]=
N∏
k=1

P[Gk|T ]=
Hn∏
i=1

P[G (i)|T ]ni

(11)

is a multinomial likelihood. Here P[Gk|T ] can be deter-
mined with our polynomial-time algorithm, we let G (i)

denote the ith ranked topology, and ni is the number of
times ranked topology i is observed, with

∑Hn
i=1 ni = N .

Note in particular that the ranked topology of TML might
differ from the most frequent ranked gene tree topology
[18].
Our derivation of the ranked gene tree probability also

suggests a way to infer a ranked species tree topology from
ranked gene tree topologies with a similar flavor as the
MDC criterion. In MDC, for an input gene tree and can-
didate species tree, the number of extra lineages (lineages
which necessarily fail to coalesce due to topological dif-
ferences between gene and species trees) on each edge of
the species tree is counted. For MDC, whether the edge of
the species tree is long or short does not affect the deep
coalescence cost. In working with ranked gene trees, how-
ever, we can keep track of the minimum number of extra

lineages within each time interval τi. The total number of
extra lineages in this sense is

n−1∑
i=1

gi − (i + 1) (12)

Minimizing (12) as a criterion for the ranked species tree
will tend to penalize long edges of the species tree which
have multiple lineages persisting through multiple species
divergence events. As an example, in Figure 1b, the gene
tree has a MDC cost of 1 since there are two lineages
exiting the population immediately ancestral to A and B;
however the cost according (12) is 2 because there are two
edges on the beaded version of the species tree (Figure 2)
that each have an extra lineage. In Figure 1c, the gene
tree has a MDC cost of 0 for the species tree since it has
the matching unranked topology; however, the number
of extra lineages from equation (12) is 1. We note that
in Figure 1c, interval τ3, incomplete lineage sorting (and
deep coalescence) have not occurred as these concepts are
normally used. To capture the idea that coalescence has
nevertheless occurred in amore ancient time interval than
allowed, we might refer to the coalescence of A and B in
Figure 1c as an “ancient lineage sorting” event (rather than
incomplete lineage sorting event) or an ancient coales-
cence rather than a deep coalescence. We could therefore
refer tominimizing equation (12) as theMinimize Ancient
Coalescence (MAC) criterion, which would provide an
interesting comparison to the usual topology-based MDC
criterion.
In practice, a method of inferring a species tree from

ranked gene trees would require estimating the ranked
gene trees. This would require clock-like gene trees, or
trees with times estimated for nodes, which can also be
inferred under relaxed clock models in BEAST [32]. To
account for the uncertainty in the gene trees, the counts
for different ranked gene trees could be weighted by their
posterior probabilities obtained from Bayesian estimation
of the gene trees [33]. Thus, in equation (11), we would
let nik be the posterior probability of ranked topology i at
locus k, and use ni = ∑Hn

k=1 nik as the estimated number
of times that ranked topology i was observed. Similarly,
for equation (12), the coalescence cost at a locus could
be distributed over multiple topologies weighted by their
posterior probabilities.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed equally to all parts of this work. Both authors read
and approved the final manuscript.

Acknowledgements
We thank David Bryant for suggesting the dynamic programming approach to
this problem and two anonymous referees for valuable comments, particularly
on calculating gi and ki,j,z . JHD was funded by the New Zealand Marsden fund



Stadler and Degnan Algorithms for Molecular Biology 2012, 7:7 Page 9 of 9
http://www.almob.org/content/7/1/7

and by a Sabbatical Fellowship at the National Institute for Mathematical and
Biological Synthesis, an Institute sponsored by the National Science
Foundation, the U.S. Department of Homeland Security, and the U.S.
Department of Agriculture through NSF Award #EF-0832858, with additional
support from The University of Tennessee, Knoxville. TS was funded by the
Swiss National Science Foundation.

Author details
1Institute of Integrative Biology, Universitätsstrasse 16, 8092, Zürich,
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