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Abstract

Background: Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary
events in various contexts. Several different methods and criteria have been introduced for reconstructing
phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by
minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves.
Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past.

Results: In this paper, we define the parsimony score on networks as the sum of the substitution costs along all
the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony
score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments
at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our
algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming
between different characters along different edges of the network. We analyzed this for experimental data on 10
leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the
heuristics matched with the exhaustively determined optimum parsimony scores.

Conclusion: The parsimony score we define here does not directly reflect the cost of the best tree in the network
that displays the evolution of the character. However, when searching for the most parsimonious network that
describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler
structures, such as trees over networks. The parsimony score on a network that we describe here takes into
account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the
substitution costs along the other edges which are common to all the branching patterns introduced by the
reticulate vertices. Thus the score contains an in-built cost for the number of reticulate vertices in the network, and
would provide a criterion that is comparable among all networks. Although the problem of finding the parsimony
score on the network is believed to be computationally hard to solve, heuristics such as the ones described here
would be beneficial in our efforts to find a most parsimonious network.

Introduction
Phylogenetic trees, or evolutionary trees, are the basic
structures necessary to examine the relationships among
organisms. Phylogenetic networks are generalizations of
phylogenetic trees that are used to model evolutionary
events when they are not only passed via vertical des-
cent, but also by events such as horizontal exchange or
recombination that cannot be modeled on a tree. Several
different methods and criteria have been used to con-
struct phylogenetic trees. The parsimony method is one
such approach for inferring phylogenies, whose general

idea was given in [1-3]. In this paper, our focus is on
extending this approach to phylogenetic networks.
The parsimony principle states that the simplest

explanation that explains the greatest number of obser-
vations is preferred over more complex explanations.
Most phylogeneticists recognize that inferring genealogy
rests on the principle of parsimony, that is, choosing
evolutionary trees so as to minimize requirements for
ad hoc hypotheses of similarity of observed characters.
See [4] for a discussion on some criticisms and rele-
vance of parsimony in phylogenetic analysis.
The cost of each character change event from a parent

to child along an edge is weighted as a substitution cost
of the parental state to the child state on the edge. The
parsimony approach seeks a phylogenetic tree/network
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that, when we reconstruct the evolutionary events lead-
ing to the data on the leaves, minimizes the sum of the
weights on the edges. We then face two important pro-
blems. First, we must be able to make a reconstruction
of events on each vertex of the tree/network, such that
the sum of the substitution costs on the edges is mini-
mized (optimize the parsimony score on a network).
Second, we must be able to search among all (or a sub-
set of) possible phylogenetic networks for the one(s)
that minimizes the parsimony score (find the network
that has minimum parsimony score). This problem is
NP-hard even for phylogenetic trees [5,6]; and heuristic
methods have been developed to reconstruct the phylo-
genetic network with the given number of reticulation
vertices [7,8]. In this paper, we restrict ourselves to the
first of these issues, namely in establishing a parsimony
criterion and to provide algorithms to achieve heuristics
on finding the optimal score for any given phylogenetic
network.
An often used structure to represent the evolution of

sequences with reticulations is a family of trees each
describing the evolution of a segment of the sequence
[9,10]. In previous approaches [8,11-13], the parsimony
criterion on a network has been defined as the sum total
of the substitution costs on the edges of a tree (a sub-
graph of the network) that minimizes the parsimony
score of the site. The parsimony scores for networks
given in these definitions are NP-hard to compute. More-
over, a major problem with this extension is that it favors
more complex evolutionary relationships by adding larger
numbers of edges to trees over simpler ones that contain
fewer additional edges, thus having the potential of over-
estimating the amount of reticulation (horizontal events)
in the data. An ad hoc solution has been provided by the
authors, namely to restrict blocks of contiguous sites to
optimize on the same tree, rather than choosing site-spe-
cific most parsimonious tree. However, it is not clear
how these blocks are chosen.
In this paper, we recall the definition of phylogenetic

networks, and point out the specific class of networks for
which a systematic deletion of sets of edges yields phylo-
genetic trees. To tackle the problem of overestimating
the reticulate vertices, we define the parsimony problem
simply as the sum of all mutations along all edges in the
network. Thus the greater the number of edges in the
network, the more the network will be penalized for hav-
ing excessive number of substitutions and thus later
efforts on searching the best network may identify a sim-
pler structure with fewer reticulation events. It is also of
interest to generalize the parsimony problems when the
substitution costs between states are arbitrarily given. In
such cases, the substitution costs along the edges of the
network are stored as a cost matrix.

In the upcoming sections of the paper, we first recall
the formal definition of a phylogenetic network intro-
duced in [14], that is shown to be appropriate for var-
ious datasets. Then we will provide different parsimony
criteria and some restrictions on the phylogenetic net-
works that offer lower complexity solutions to the pre-
vious definition. The main focus of this paper is to give
a robust definition of the parsimony criterion using any
given substitution cost matrix on phylogenetic networks.
We also provide efficient upper and lower bounds for
the optimum parsimony score on phylogenetic networks
by extending the well-known Sankoff algorithm [15,16]
for general cost matrix and Fitch algorithm [17] for
counting the state changes along the edges of the phylo-
genetic trees. Our algorithm on general cost matrix
works for all phylogenetic networks, thus providing a
robust method to analyze any “weighted” parsimony
score across the space of all phylogenetic networks. We
also present an extension of the Fitch’s algorithm for
networks. This extension gives an upper bound on the
number of state changes along the edges of the network.
Additionally, for a restricted class of phylogenetic net-
works, defined later as phylogenetic networks with no
sister reticulations, we present a method to calculate the
lower bound on the number of state changes.
The parsimony criterion that we define here is simply

the sum of the substitution costs along all the edges of
the network. Although this total cost does not reflect
the cost of the best tree in the network that displays the
evolution of the site, having a overall cost of a network
will be relevant while searching the space of all net-
works with the same number of reticulate vertices for
the most parsimonious network. If needed, the tree-like
evolutionary pattern of the site may later be extracted
from such a parsimonious network that is found for the
set of aligned DNA sequences that contains the site.
This approach to search for a best network has the
advantage of being much more direct than the some-
what ad hoc method that uses the criterion defined in
[8]. Both our approach and the one explained in [8]
would need additional cost considerations to find an
appropriate number of reticulate vertices that reflects
the evolutionary changes of a set of aligned DNA
strings, for example. In this context, our approach has
an advantage of having the score dependent on the
number of reticulate edges. Later approaches to find the
right number of reticulate vertices may just use some
threshold on the score that proceed to consider an addi-
tional reticulate vertex if the score is above the thresh-
old. Finding the most parsimonious network is beyond
the scope of this paper, and we will only focus on effi-
ciently computing the parsimony score defined here for
a given network.
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Parsimony on phylogenetic networks
Definition of phylogenetic networks
We follow the definition of the phylogenetic networks as
given in [[14], Definition 4, page 16]. For all other graph-
theoretical definitions that are not given here, we follow
[18]. A rooted phylogenetic network, simply called here a
phylogenetic network, is defined in [19] as a rooted, direc-
ted acyclic graph (DAG), whose root has indegree 0 and
the leaves have outdegree 0. The vertices whose indegree
is greater than 1 are called reticulate vertices and the
edges with reticulate vertices as head vertices are called
reticulate edges. All other edges are termed tree edges.
The definition given in [14] takes care of the so-called
“time-consistency” restraint, namely, that the tree edges
take place in a positive time and the reticulate vertices
have parents that can only “coexist in time”. Hence, for-
ward, we recall the formal definition of phylogenetic net-
works as given in [14].
Given any directed graph, we say two vertices u and v

cannot coexist in time if there exists a sequence P = (p1,
p2, ..., pk) of paths in N such that:

1. pi is a directed path that contains at least one tree
edge, for every 1 ≤ i ≤ k,
2. u is the tail of p1, and v is the head of pk, and
3. for every 1 ≤ i ≤ k - 1, there exists a network ver-
tex whose two parents are the head pi and the tail of
pi+1.
A phylogenetic network N is a rooted DAG obeying
the following constraints:
1. Every vertex has indegree and outdegree defined
by one of the four combination (0, 2), (1, 0), (1, 2),
or (2, 1) - corresponding to, respectively, root, leaves,
internal tree vertices, and reticulate vertices. All ver-
tices other than reticulate vertices are called tree
vertices.
2. If two vertices u and v cannot coexist in time,
then there does not exist a network vertex w with
edges (u, w) and (v, w).
3. Given any edge of the network, at least one of its
endpoints must be a tree vertex.

Another component of this definition is that for any
edge in the phylogenetic network, at least one of its end-
points (either the head or tail) is a tree vertex. Here, we
will use this definition. Wherever possible, we point out
whether the conditions of the definition are necessary.
Phylogenetic networks can naїvely be thought of as a

network that contain as subgraphs, the trees that explain
the evolutionary histories of different segments of the
input terminal sequences. Given a phylogenetic network,
deleting one of each edge incident to a reticulate vertex
does not guarantee a resulting phylogenetic tree with

the same set of leaves as that of the network. This is an
undesirable property, especially if the parsimony criter-
ion is defined by finding a phylogenetic tree inside the
network that is most parsimonious for the given site, as
defined in [8,11-13]. In order to avoid this problem, it is
necessary to assume that no internal vertex has two reti-
culate children. We call this class of phylogenetic net-
works as a phylogenetic network with no sister
reticulations. See Figure 1 for some examples of phylo-
genetic networks.
Before we proceed to the definition of the parsimony

problems, the following is a useful observation. For a
phylogenetic network N with no sister reticulations, and
having r reticulate vertices and with leaf set X, we denote
T (N) as the set of all trees contained in N. Each such
tree is obtained by following two steps: (1) for each reti-
culate vertex, remove one of the incoming edges, and
then (2) for every vertex v of indegree and outdegree 1,
whose parent is u and child is w, contract the edges (u, v)
and (v, w) into a single edge (u, w). The condition that
each edge in N has a tree vertex as an endpoint and that
each tree vertex has at least one tree vertex as a child,
ensures that the set of leaves of the resulting tree is the
same as that of the network. Hence the set T (N) con-
tains exactly 2r phylogenetic trees whose leaf set is
exactly X.

Maximum Parsimony
We refer the readers to [2,3] for a general description of
the idea of parsimony and to the discussion of various
parsimony algorithms. It has been pointed out in [9] that
the parsimony method for trees can be extended to phy-
logenetic networks. In a series of papers [8,11,12], one
such parsimony criterion is defined by finding a tree in
the network that has the best parsimonious score, and
efficient algorithms to optimize this criterion on a given
phylogenetic network have been devised. Although these
algorithms are shown to perform well in practice, they
can perform correctly only for phylogenetic networks
with no sister reticulations, since it is straightforward to
search for an optimal tree in these restricted class of net-
works. In this section, we state an alternate version of the
parsimony problem and in the following sections provide
some heuristic solutions for optimizing the score on any
phylogenetic network.
Let [n] = {1, 2, ..., n} denote the set of leaf labels of a

given phylogenetic network N. A function l: [n] ® {0, 1,
...,|Σ| - 1} is called a state assignment function over the
alphabet Σ (a non-empty set) for N. We say that a func-
tion λ̂ : V(N) → {0, 1, . . . , |�| − 1} is an extension of
l on N if it agrees with l on the leaves of N. For a vertex

v in N, we call the λ̂(v) as an assignment of λ̂ on v. A
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fully assigned network is a network in which all the ver-
tices have labels from {0, 1, ..., |Σ| - 1}. Let C be a cost
matrix whose ijth entry cij is the cost of transforming
from state i to state j along any edge in N. If e = (u, v) is
an edge in N, where u is the parent of v, we denote

we(λ̂) = cij , where i = λ̂(u) and j = λ̂(v) . For a graph G,

we let E(G) denote the edge set of G. Then the parsimony
problem is defined as follows.
Input: A phylogenetic network N with leaf labels [n]

and a state assignment function l over the alphabet Σ
for N.
Parsimony criterion: For an extension λ̂ of l, let

P1(̂λ) = min
T∈T (N)

∑
e∈E(T)

we(̂λ),

and

P2(̂λ) =
∑

e∈E(N)
we(̂λ).

Output: Given P Î {P1, P2}, find λ̂ that minimizes

P(̂λ) .

We note that P1(̂λ) is introduced in [8] and P2(̂λ) is
the definition we will use in this paper. A more general

approach is to minimize Q(̂λ) =
∑

e∈E(N) de(we(̂λ)) ,

where de is a non-negative weight function on the edges
of N. For the purposes of this paper, we restrict our-
selves to P = P2, although the first of our approaches,
the dynamic programming solution also holds for P = Q.

Parsimony algorithms on networks
Traversing a phylogenetic network
In a network, vertex traversal refers to the process of
visiting each vertex, exactly once, in a systematic way.
Such traversals are classified by the order in which the
vertices are visited. We need two types of network ver-
tex traversals to describe our algorithms. These are
well-known for phylogenetic trees, and we present them
here for phylogenetic networks. The algorithms for the
traversals given below start from any given vertex v in
the network. In this paper, we will always perform the
traversals from the root vertex of the network.
Pre-order traversal of a phylogenetic network from a

vertex v

1. Visit the vertex v.
2. Recursively perform pre-order traversal from each
child that has not yet been visited.

Post-order traversal of a phylogenetic network from a
vertex v

1. Recursively perform post-order traversal from
each child that has not yet been visited.
2. Visit the vertex v.

Since a phylogenetic network is a DAG, such traver-
sals will visit all the vertices of the network exactly
once. (Refer to [18] for more details on existence on
such traversals on DAGs). For the purposes of this
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Figure 1 Phylogenetic Networks. The figure shows two phylogenetic networks; the one on the left has only a single reticulate vertex and the
one on the right has two reticulate vertices that are sisters to each other. Note that removing the edges (7, 9) and (7, 10) from the network on
the right does not result in a tree where vertex 7 is a leaf. This shows that removing one incoming edge each per reticulate vertex does not
necessarily produce a tree with the same leaf set as the network. The post-ordering and the pre-ordering of vertices of the network on the left
are 1, 2, 8, 6, 3, 7, 5, 4, 0 and 0, 5, 6, 1, 8, 2, 7, 3, 4 respectively and for the network on the right, they are 1, 2, 9, 6, 3, 10, 7, 5, 4, 8, 0 and 0, 5, 6,
1, 9, 2, 7, 10, 3, 8, 4 respectively.
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paper, we assume that the vertices of a network are
uniquely labelled by integers. Note that the leaves are
already labelled from the set [n]; and so we use other
integers for other vertices. Whenever the child vertices
of v are extracted, they are also arranged in increasing
order of their integer labelings and the pre- and post-
order traversals are performed in this order. This will
ensure the following: if vertices v and v’ are such that
there is no directed path between them, then the vertex
v is traversed prior to vertex v’ in the pre-order if and
only if the vertex v is traversed prior to the vertex v’ in
the post-order. See the Figure 1 for some examples.
With this property, we notice that the pre- and post-
order traversals from the root of a phylogenetic network
each trace the same spanning tree, which we call here
the traversal tree.
Dynamic Programming solution
Dynamic programming is used to provide efficient solu-
tions for finding the exact parsimony score when the
network is a phylogenetic tree [15,16]. In this section,
we show that the same approach can be generalized to
phylogenetic networks. Sankoff’s algorithm on a tree tra-
verses the vertices of the tree via post-order while com-
puting the minimum costs of each state at each vertex
from the leaves to the root, and then chooses the best
assignments on each vertex by backtracking from the
root to the leaves by traversing the tree vertices via pre-
order. Both the phases are presented for networks in
Algorithms 1 and 2 respectively. We describe them
briefly below. It can be noted that if the network is a
tree, then our algorithms match with the pre-order and
post-order phases of Sankoff’s method for trees.
Given a phylogenetic network N, with leaf vertices

labeled [n] and with state assignment function l over
the alphabet Σ, assign to each vertex v Î V a quantity Sv
(i) for each i Î Σ. In phylogenetic trees, Sv (i) denotes
the minimum sum of costs of all the events from the
vertex v to all the leaves that are reachable from v,
given that v is assigned state i and all the descendant
vertices from v are each assigned a state. In networks,
there is no simple way to compute such a quantity.
Instead, we allow Sv (i) to be a lower-bound of the
above exact score and it is calculated during the post-
order traversal phase.
Post-order traversal phase: If v is a leaf of N, then Sv

(i) is assigned 0 if the observed state is state i, and infi-
nite otherwise. Now all we need is a recursion relation-
ship to calculate Sv (i) for rest of the vertices. For each
child w of v, we say w satisfies the post-order traversal
condition with respect to v, or simply traversal condition
with respect to v in view of the observation in the begin-
ning of this section, if the following hold:

(i) The vertex w is a reticulate vertex and

(ii) if v’ is the parent of w other than v, then the ver-
tex v must be traversed prior to v’ in the post-order
traversal of N.

We now define recursively for each edge (v, w),

s(v,w)(i) =
{
minj[cij + Sw(j)] if w satisfies the traversal condition with respect to v;
minjcij otherwise.

For a phylogenetic tree, s(v, w) (i) always assumes the
first of these quantities, and it thus gives the sum of the
substitution costs along the edges of the tree that lie
below the vertex v, provided the vertex v is assigned the
state i. For phylogenetic networks, in order to account
for the substitution costs along the edges that lie below a
reticulate vertex w just a single time when vertex v is
assigned the state i, we let the ‘parent’ v of w in the tra-
versal tree account for all the substitution costs along all
the edges that lie below v. On the other hand, if v is not a
parent of w in the traversal tree, s(v, w) (i) simply denotes
the substitution cost from state i at vertex v to another
state at w that is least expensive.
We then define

Sv(i) =
∑
w
s(v,w)(i), (1)

where the sum runs for all child(ren) vertex(s) w of v.
As mentioned before, in phylogenetic trees, Sv (i)
denotes the minimum possible sum of substitution costs
along all the edges from the vertex v to all the leaves
that are reachable from v, given that v is assigned state i
and all the vertices reachable from v are each assigned a
state.
In phylogenetic networks, while calculating s(v, w) (i)

where w is a reticulate vertex such that (v, w) is not an
edge in the traversal tree, there is no prior knowledge of
the state that will be later assigned at the reticulate vertex
w. Thus s(v, w) (i) can only be a lower bound of the edges
of the network that lie below the vertex v, if the vertex v
is assigned the state i. The reasoning for this is that s(v, w)
(i) is the substitution cost from state i at vertex v to
another state at w that is least expensive, instead of the
substitution cost from state i at v to the state at w that
will be later assigned. Since the definition of Sv (i)
depends on the definition of s(v, w) (i), and they are
defined recursively, we observe the following: Sv (i) is a
lower bound on the sum of substitution costs along the
edges of the network that are reachable from the vertex
v, provided that v is assigned state i and all the descen-
dant tree vertices are assigned a unique state, and the
reticulate vertices are assigned two states that are not
necessarily the same. The assigned states of the reticulate
vertex contributes to a conflict if the states are not the
same. Let us suppose that state i is assigned to the root
vertex r, and all tree vertices are assigned a unique state,
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while the reticulate vertices are assigned two states. Then
the cost Sr (i) denotes the minimum possible sum of sub-
stitution costs along all the edges of a traversal tree with
one of states assigned for reticulate vertices, plus the sum
of the substitution costs along the remaining reticulate
edges with the alternate assignment state at the reticulate
vertices. Since we seek an assignment on the vertices of
the network with no conflicts in the reticulate vertices, Sr
(i) is a lower bound on the cost of such assignment
where the root vertex is assigned i and all vertices are
assigned with a unique assignment.
During this phase, we also store the states

t(v,w)(i) =

⎧⎨
⎩
argminj[cij + Sw(j)] if w satisfies the traversal

condition with respect to v;
argminjcij otherwise.

(2)

to be able to backtrack the state of w that achieves the
quantity s(v, w) (i) during the pre-order phase. See Algo-
rithm 1.
Pre-order traversal phase: We first choose the mini-

mum

S = min
i

Sr(i)

where r is the root vertex and assign the state that
attains the minimum at the root vertex, i.e., let λ̂(r) = ir
such that Sr (ir) = S. For any other vertex w that is not a
reticulate vertex, whose parent v is already assigned with a
state i, we assign the state t(v, w) (i). For a reticulate vertex
w whose parent vertices are v and v’, let us suppose that v
and v’ are assigned states i and i’ respectively when traver-
sing by the pre-order. The possible states j = t(v, w) (i) and
j’ = t(v’, w) (i’) of w that achieve s(v, w) (i) and s(v’, w) (i’)
respectively, need not be the same. In other words, it is
possible that j ≠ j’. In this case, we have a conflict on the
reticulate vertex w. Thus, the dynamic programming tech-
nique fails to give an extension for l whose parsimony
score is S. In this case, we simply choose between j and j’
for l(w) according to which of the vertices among v and v’
is traversed first in the pre-order. Thus, if the vertex w
satisfies the traversal condition with respect to v we have

λ̂(w) = j .
After completing the pre-order phase, we can get the

score corresponding to the extension λ̂ by first setting S’
= S and updating S’ at each reticulate vertex w as follows:
The upper bound score S’ is updated corresponding to
the assignment j at vertex w as S’ -ci’ j’ +ci’ j. See Algo-
rithm 2. Figure 2 shows an example of how the algorithm
runs on a network. Since Sr (i) is a lower bound on the
optimum assignment where the root vertex is assigned i
and all vertices are assigned with a unique assignment,
and since S = mini Sr (i), we conclude that S is a lower

bound of the optimum we seek to find. See Lemma 1 for
a formal proof.
Lemma 1. The quantity S is a lower bound of the opti-

mum parsimony score on the network N.
Proof. By the construction of S, we have

S =
∑

(v,w)∈E(N):w is a tree vertex

ĉλ(v),̂λ(w) +
∑

(v,w), (v′,w)∈E(N)

[ĉλ(v),̂λ(w)

+ĉλ(v′),t(v′,w)(̂λ(v′))],
(3)

where the second summand is for the reticulate vertex
w with parents are v and v’, such that v satisfies the tra-
versal condition w.r.t. w. Thus the cost ĉλ(v),̂λ(w) is the

substitution cost from the assigned state λ̂(v) at v to

the state λ̂(w) at w. On the other hand, the cost
ĉλ(v′),t(v′ ,w)(̂λ(v′)) is the substitution cost from the assigned

state λ̂(v) at v to the state t(v′,w)(̂λ(v′)) at w. Note that

the state t(v′,w)(̂λ(v′)) is not necessarily same as the

state λ̂(w) , and S is the minimum among all assign-
ments that may result in conflicts at the reticulate
vertices.
Suppose Ŝ is the optimum parsimony score on N

with the function μ: V (N) ® {0, 1, ..., |Σ| - 1} as the
extension of l we have

Ŝ =
∑

(v,w)∈E(N):w is a tree vertex

cμ(v), μ(w) +
∑

(v,w), (v′,w)∈E(N)

[cμ(v),μ(w)

+cμ(v′),μ(w)],

(4)

where in the second summand w is a reticulate vertex
with parents v and v’. Since μ is a conflict-free assign-
ment that is contained in the set of all assignments
among whose costs S is the minimum (compare equa-
tion (3) and (4)) we have S ≤ Ŝ . □
Now for the complexity of the algorithm. Suppose the

network N has n leaves and r reticulate vertices. Then
the number of vertices in N is 2(n + r) -1. At each ver-
tex v and for each state i, the quantity S can be com-
puted in O(k2) time, where k = |Σ|. The pre-order
traversal step involves finding S in O(k) complexity and
assigning the best states for each vertex. Also, fixing
conflicting reticulate vertex states takes O(r) time. Thus
the complexity of the algorithm (presented here) to find
a lower and an upper bound is O((n + r)k2). An alter-
nate upper bound can be obtained in O(nk2) by simply
assigning during the post-order traversal phase, for each
reticulate vertex the state that occurs the maximum
number of times at the leaves reachable from the
respective reticulate vertex; and proceeding via finding
Sv(i) for the remaining vertices. The exact optimum can
also be obtained by restricting the possible states to a
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single state for each reticulate vertex, by running the
dynamic programming algorithm for each of the kr com-
binations of states for the reticulate vertices, and choos-
ing the minimum among all of them. The time-
complexity of this process is O(nkr+2).
Algorithm 1 Post-order traversal phase: Calculate the

cost of each state at each vertex

1: Input: Network N and the observed states from Σ
at the leaves of N, i.e., a state assignment function l
over the alphabet Σ for N.
2: For each leaf v, let Sv (i) = 0 if l(v) = i and ∞
otherwise.

3: Repeat in post-order for each in internal vertex
(root, internal tree vertex or reticulate vertex) v in
N: For each state i, compute Sv (i) given in (1) and t

(v, w) (i) for each child w of v, given in (2).
4: Output: {(Sv(i), [t(v, w)(i): w is a child of v]): v Î V
(N), i Î Σ}.

Minimizing the number of mutations on a phylogenetic
network
The Fitch algorithm [17] counts the number of changes
in a bifurcating phylogenetic tree for any character set,
where the states can change from any state to any other
state. Thus, the cost matrix is such that its diagonal

0    1    2       
3    3    2

02  12  22   

0    1    2       
∞   ∞    0 
-     -     -  

0    1    2       
2    2    2 

00  11  12  

0    1    2       
1    1    2 

00  01  02  

0    1    2       
0    ∞   ∞
-     -     -

0    1    2       
1    0    1 
1    1    1  

0    1    2       
∞    0   ∞
-     -     -   

0    1    2       
1    1    0

02  12  22

0    1    2       
∞   ∞    0 
-     -     -  

0    1    1

1    0    1

1    1    0

1    1    0

0    0    0

1    0    1

1    1    2 1    1    0

2    2    2

Figure 2 Dynamic programming solution. The dynamic programming solution applied to a phylogenetic network. The states are 0, 1 and 2.
The cost matrix used has all 1s except the diagonal elements which are all 0s. The tables shown on each vertex v are the costs, Sv (i) (second
row) of each state, i (first row) that are computed during the post-order traversal. Also shown at the vertices are the states of the child w,
namely the t(v, w) (i) (third row) that correspond to the costs in the second row; when there are two children for a vertex, the entries in the third
row are represented as a pair of states of the left child and the right child respectively. Each edge (v, w) is labelled with s(v, w) (i) for each state i.
During the pre-order traversal, the states for each vertex are selected (shown in bold). The cost of 2 highlighted in bold at the root vertex gives
a lower bound, S. The state assigned at each vertex is highlighted in bold. The algorithm finds a total of three substitutions (highlighted by bold
edges). This is because the states assigned at the parent vertices of the reticulate vertex give conflicting assignments of 1 and 2 respectively, of
which state 1 is assigned at the reticulate vertex. Thus with an extra cost of 1, we get the score of 3 (an upper bound of the optimal score) as
the parsimony score corresponding to the assignment shown. Note that the optimum parsimony score on the network is 2 (equal to the lower
bound), which can be found by exhaustive search and can be realized by changing the assignment from 1 to 2 for the left parent of the
reticulate vertex and from 1 to 2 for the reticulate vertex. Thus the lower bound matches with the optimal score, although the assignment
corresponding to the lower bound is not conflict-free and not the same as the assignment corresponding to the optimum.
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elements are all zeros and the off-diagonal elements are
all ones. In this section, we show how Fitch’s algorithm
extends to finding upper and lower bounds for the
number of evolutionary changes in a given phylogenetic
network. First, we show that the Fitch algorithm can be
extended to give an upper bound for the optimum par-
simony score. As before, the post-order and the pre-
order traversal phases are given in Algorithms 3 and 4
below. See Figure 3 for an example run of the algorithm.
Algorithm 2 Pre-order traversal phase: Calculate

lower and upper bounds of the optimum and the corre-
sponding assignment of the upper bound

1: Input: {(Sv (i), [t(v, w) (i): w is a child of v]): v Î V
(N), i Î Σ}.
2: Let S = mini Sr (i), where r is the root vertex and

let λ̂(r) = argminiSr(i) .
3: Let S’ = S

4: For each vertex w in pre-order whose parent ver-
tex v immediately preceeds w in the pre-order, let

λ̂(ω) = t(v,w)(i), where i = λ̂(v) .

5: Visit each reticulate vertex w with parents v and v’
such that w satisfies the traversal condition with
respect to v, with i = λ̂(v) , i′ = λ̂(v′), j′ = t(v′,w)(i)

and update S’ as follows:

S′ ← S′ − ci′ j′ + ci′ j.

6: Output: (Lower bound, Upper bound) = (S, S’);
extension corresponding to the upper bound score

S′ : λ̂ .

Algorithm 3 Post-order traversal phase: Calculate the
optimum

1: Input: Phylogenetic network N and a state assign-
ment function l over the alphabet Σ for N.

{1,2}
3 

{2}
0 

{1} 
2

{0,1}
1 

{0}   
0

{1}
0 

{1} 
0 

{1,2} 
2  

{2}
0 

Figure 3 Fitch-type solution. The Fitch-type solution applied to the same phylogenetic network and the leaf data in Figure 2. Each vertex is
assigned a set of all possible states, along with a score when the network vertices are traversed in post-order. The score at the root gives a
upper bound for the optimal score. The state assignments are given during the pre-order traversal phase and the number of substitutions
matches with the score at the root.
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2: For every leaf v of N, we are given A(v) = {l(v)}, a
singleton set containing the observed state at the leaf.
3: Set UB = 0.
4: Recurse using post-order: For a vertex v of T with
children w1 and w2, let

A(v) =
{
A(w1) ∩ A(w2) if A(w1) ∩ A(w2) �=� 0;
A(w1) ∪ A(w2) otherwise.

and

UB ←
{
UB ifA(v1) ∩ A(v2) �=� 0;
UB + 1 otherwise.

If the vertex v has a single child w, then

A(v) = A(w),

and

UB ← UB.

5: ({A(v): v Î V (N)}, UB)

Since the pre-order traversal phase gives a conflict-free
assignment on the vertices, UB is an upper bound. This
is a special case of the dynamic algorithm presented for
general cost-matrix. Suppose we restrict N to be a phylo-
genetic network with no sister reticulations, then any
Fitch solution on any tree T in T (N) forms a lower
bound for the optimal score on networks; and adding the
cost on edges not in T gives an upper bound for the opti-
mal score. Thus, it is possible to calculate our lower
bound for counting the number of character changes
only for phylogenetic networks with no sister reticula-
tions, where it is straightforward to find a tree in T (N).
Algorithm 4 Pre-order traversal phase: Assigning the

states

1: Input: Phylogenetic tree N and ({A(v): v Î V (N)},
UB).
2: For every vertex v in the tree that is not already
assigned, the algorithm computes λ̂(v) as follows:

For the root r, λ̂(r) = σ , where s is an arbitrary ele-
ment of A(r). Assign recursively via pre-order: For a
vertex v whose parent u is assigned,

λ̂(v) =
{

λ̂(u) if λ̂(u) ∈ A(v);
σ ∈ A(v) otherwise.

3: Fixing the score: for each reticulate vertex v, if u’

is not the parent in pre-order, and if λ̂(u′) ∈ A(v) ,

but λ̂(u′) �= λ̂(v) , then increment UB by 1.

4: Output: UB and extension function λ̂ of l.

Discussion and conclusion
In the maximum parsimony problem, there are known
character-states for a set of taxa (of the species) or
Operational Taxonomic Units (OTUs). The problem is
to find an order of branching and an ancestral config-
uration of character-states requiring the minimum num-
ber of character-state changes to account for the
descent of the OTUs. Short of searching all possible net-
works, the problem is still in the early stage of being
addressed. A more modest goal is to find maximum par-
simony ancestral character-states for which both the
current character-states and the network are known.
In this paper, we extend the parsimony score defined

on phylogenetic trees to phylogenetic networks. This
score is defined as the sum of all the substitution costs
along all edges of the network. This approach provides
an estimate on the amounts of substitutions along all
edges, and hence later efforts to find networks with opti-
mal score will fetch networks with fewer reticulations.
Although the complexity of finding the exact score on a
given network is unknown, we suspect that the problem
will also be NP-hard as with the definition of the problem
via previously defined criterion. We extended Sankoff
and Fitch algorithms that are well-known for trees to
heuristic algorithms on networks that compute upper
and lower bounds for then optimal parsimony score.
Sankoff’s algorithm works for any general substitution
cost matrix, and our extension also provides a robust
method to calculate heuristic bounds for the optimal
score on networks with non-homogeneous substitution
costs.
We ran our algorithm for networks with fewer than

10 leaves with at most 2 reticulation events and found
that for all these networks, the bounds matched with
the exact optimum, which we were able to compute
using our exact algorithm. Future efforts in this area of
research will involve tightening these bounds for general
phylogenetic networks. This will enable us to proceed to
the next step of the parsimony problem, namely to find
the networks with optimum parsimony score.
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