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Abstract 

Background: Detecting protein complexes within protein–protein interaction (PPI) networks is a major step toward 
the analysis of biological processes and pathways. Identification and characterization of protein complexes in PPI net-
work is an ongoing challenge. Several high-throughput experimental techniques provide substantial number of PPIs 
which are widely utilized for compiling the PPI network of a species.

Results: Here we focus on detecting human protein complexes by developing a multiobjective framework. For this 
large human PPI network is partitioned into modules which serves as protein complex. For building the objective 
functions we have utilized topological properties of PPI network and biological properties based on Gene Ontology 
semantic similarity. The proposed method is compared with that of some state-of-the-art algorithms in the context 
of different performance metrics. For the purpose of biological validation of our predicted complexes we have also 
employed a Gene Ontology and pathway based analysis here. Additionally, we have performed an analysis to associ-
ate resulting protein complexes with 22 key disease classes. Two bipartite networks are created to clearly visualize the 
association of identified protein complexes with the disorder classes.

Conclusions: Here, we present the task of identifying protein complexes as a multiobjective optimization problem. 
Identified protein complexes are found to be associated with several disorders classes like ‘Cancer’, ‘Endocrine’ and 
‘Multiple’. This analysis uncovers some new relationships between disorders and predicted complexes that may take a 
potential role in the prediction of multi target drugs.
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Background
Recent advancement in biotechnology produces lots of 
information about protein–protein interactions. Those 
information act as a potential source to construct the 
protein–protein interaction network (PPIN) for a sin-
gle species. Protein complexes are generally described 
as molecular aggregation of a set of proteins connected 
by multiple protein–protein interactions. Protein com-
plexes play different functions in the cell. It can serve as 
cellular machines, rigid structures, and posttranslational 
modification systems. In general cellular functions and 

biochemical events in cell are coordinately performed by 
a groups of proteins interacting with each other in pro-
tein complexes. Identifying such protein complexes is 
important for understanding the structure and functions 
of these biochemical events. Moreover, changing of inter-
action pattern of proteins is the consequence of many 
diseases. Identifying such interactions through protein 
complexes predominantly lead to applications in disease 
diagnosis.

In usual representation, protein complexes take the 
form of a dense clusters of proteins connected through 
multiple interactions. Different computational methods 
for finding dense regions in the PPI network are available 
in literature. Several techniques based on graph cluster-
ing, finding dense regions, or clique finding have been 
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proposed to discover protein complexes in PPI networks 
[1–4]. In [5] Molecular Complex Detection (MCODE) 
has been proposed to detect protein complexes in PPI 
network. MCODE generally emphasizes on the local 
neighborhood density of nodes and puts weight to all the 
nodes corresponding to the local density. Starting from 
the top weighted node it iteratively adds vertices which 
have weights above a certain threshold.

In [6] a clustering with overlapping neighborhood 
expansion (ClusterONE) is proposed for detecting over-
lapping protein complexes from protein–protein inter-
action data. ClusterONE generally follows a greedy 
procedure to update the partially constructed groups of 
vertices based on high cohesiveness among the vertices. 
The growth process is repeated from different seeds to 
form multiple, possibly overlapping groups. In the sec-
ond step, overlapping groups are merged based on over-
lap scores.

In [7] an algorithm called Affinity Propagation is pro-
posed which is basically an unsupervised algorithm and 
thus the number of clusters is automatically calculated. 
The data points are grouped based on the similarity 
between each pair of data points. Initially all data points 
are considered as potential “exemplars”. The main algo-
rithm is concentrated on finding sub-paths, which allow 
easy message exchanges between nodes. In subsequent 
steps, the exchange of message is continued to happen 
between the nodes until a set of exemplars and corre-
sponding clusters with high quality come out.

In [8] a multiobjective framework is proposed for 
detecting protein complexes in yeast PPI network. Here 
two different types of objectives are utilized for search-
ing over the whole PPI network to predict modules which 
serve as protein complexes. Density of the module and 
Gene Ontology based semantic similarity measures are 
taken into account for building the objectives.

All these methods primarily focus on the detection of 
protein complexes in PPI network of model organism 
yeast (S. cerevisiae). Although, there have been several 
studies on determining and analyzing protein complexes 
in a single organism, computational analysis of human 
protein complexes is not studied in extensive manner. 
Some studies have analyzed human protein complexes 
based on a particular disease association [9–11]. These 
studies are focused on finding protein complexes associ-
ated with some specific disease. Here, we have proposed 
a multiobjective evolutionary technique for detecting 
protein complexes in human PPI network and studied 
their involvement in different disease classes.

In general, it has been observed that the proteins within 
a complex are functionally similar and carry out common 
biological activities. For measuring the functional simi-
larity between two proteins we have computed semantic 

similarity between Gene Ontology terms associated with 
those proteins. In linguistic, to measure the similar-
ity between two concepts, semantic similarity is used. 
This can be extended to measure the similarity between 
GO-terms in the GO database [12]. Here, we have uti-
lized the Relevance [13] semantic similarity measure for 
obtaining semantic similarity between two proteins. This 
serves one of the objective function of our multiobjec-
tive framework. Besides the semantic similarity meas-
ure topological properties of PPI network are also used 
here for building the objective functions. Non dominated 
sorting genetic algorithm II (NSGA-II) [14, 15], a popu-
lar multiobjective Genetic Algorithm (GA) [16] has been 
utilized as the underlying optimization tool. The results 
are collected by applying the proposed algorithm in the 
protein–protein interaction (PPI) data downloaded from 
the Human Protein Reference Database (HPRD) [17]. 
The performance of our method is compared with that of 
some other existing methods such as MCODE [5], clus-
terONE [6], Affinity propagation [7], Core attachment 
method [18], COACH [19], RNSC [20], MCL-Caw [21], 
and PEWCC [22].

Here, we have reported the associations among pre-
dicted complexes with similar type of diseases/disorders. 
Identifying the associations between human protein 
complexes and multiple disorders is essential for under-
standing disease mechanism and is also important to 
assist drug developers for the development of new diag-
nostics and therapeutics. In Goh et  al. [23], a bipartite 
network is formed that shows disorder-gene association 
which lead to the concept of ‘diseaseome’. In this network 
one set of nodes represent all known genetic disorders, 
and the other set corresponds to all known disease genes 
in the human genome. A disorder and a gene is con-
nected by a link if the mutations in that gene is incrimi-
nated by that disorder. They found that genes associated 
with similar diseases have an increased tendency to 
interact with one another, and tend to exhibit high con-
nectivity with each other forming a dense cluster. So it 
is necessary to discover the association of our predicted 
protein complexes with those genes causing similar dis-
eases. For this purpose we have analyzed the predicted 
complexes and associated them with genes causing simi-
lar disease. We have searched the involvement of proteins 
within predicted complexes in 22 type of primary dis-
ease/disorder classes and found most of them are associ-
ated with ‘Cancer’ disease class. We have also formed two 
bipartite networks between all predicted protein com-
plexes and disease/disorder classes. These networks show 
the involvement of protein complexes within disorders/
disease classes. This may uncover interesting association 
or relationship between diseases and protein complexes. 
This can contribute significant effort to develop new 
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strategies in Polypharmacological drug discovery which 
focus on multi-target drugs.

Methods
In this section we describe the proposed multiobjective 
method for detecting protein complexes in human PPI 
network. Non-dominated Sorting GA (NSGA-II) [14] is 
employed as an underlying multiobjective framework.

Chromosome representation
Here a protein complex (or a subgraph of human PPI 
graph) is encoded as a chromosome. It is represented as 
p1, p2 . . . pn where pi is the ith protein in whole human 
protein set. Thus a chromosome represents a protein 
complex containing the nodes p1, p2, . . . pn, and the edges 
among them represent interactions.

Population initialization
For starting from a reasonable position we construct the 
initial population as a set of modules with high density. 
For this purpose we randomly chose some substructure 
consisting of all 1s from adjacency matrix. To find out all 
1s substructures we apply a biclustering technique [24] 
and randomly pick up some of the biclusters consisting of 
all 1s. Here, union of rows and columns of each bicluster 
is treated as a chromosome, which comprise the initial 
population.

Representation of objective functions
Here two categories of objective functions are built, one 
is based on the topological characteristics of the net-
work and the other captures gene ontological similarity 
of proteins. To define the two objective functions belong-
ing to the first one we have incorporated some graph-
based properties of the PPIN. For the other category, we 
employed GO based semantic similarity measure.

Objective functions related to the topological properties
We have defined two objective functions in this category. 
One is based on the density of protein complexes, and 
other is based on closeness centralities. The density of 
a graph is defined as ratio of the number of edges pre-
sent in a graph to the possible number of edges in a com-
plete graph of same size. Protein complexes generally 
represent high dense area in the PPIN. Large number of 
interactions (or edges) among proteins (or nodes) in the 
complex is the possible reason behind that. Thus, using 
density as an objective function and maximizing it for 
individual subgraphs will yield much denser complexes.

For choosing the next objective we calculate the contri-
bution of a node as follows: Contr(ni) =

|Nni
|

degree(ni)
, where 

Nni represents the set of nodes directly connected with 
node ni in a protein cluster C. Now the contribution of 

a protein cluster can be calculated as the summation of 
these values which can be formulated as:

Maximizing this will produce clusters having small num-
ber of outward interaction partners for a node, thus pro-
ducing compact as well as separated clusters.

Closeness centrality of a vertex in a graph is defined as 
the reciprocal of average shortest-path distance to other 
vertices. It can be considered as the efficiency of a node 
(individual) in spreading information to others in the net-
work. Higher value of it indicates that most of the nodes 
are closer to that node. Here we maximize the objective 
function:

where C represents a protein cluster and CC(ni) is the 
closeness centrality of the node ni. Maximizing this 
ensures that the resulting clusters have nodes which are 
more central in the whole protein interaction graph and 
are likely to form a protein complex.

Objective function related to Gene Ontology
Proteins within the protein complexes are functionally 
similar to each other. This suggests that these proteins 
have high semantic similarity among themselves. This is 
measured by computing the semantic similarity between 
GO-terms they are annotated with. As proteins are anno-
tated with multiple GO terms, so, the similarities are 
calculated by averaging the similarities of the GO term 
cross pairs which are associated with them [25]. We have 
calculated the similarities among all pairs of proteins in 
the PPI network and given these as weights of edges in 
semantic similarity network. The average similarity of all 
pairs of proteins corresponding to the edges of a chro-
mosome is treated as fitness value of it. For example, the 
fitness of a chromosome or a subgraph is calculated by 
summing up all the weights of edges and averaging these 
values. This can be written as:

where s is the chromosome consisting of nodes 
n1, n2, . . . np, (ni, nj)ǫE, where E is the set of edges and w 
is a weight function defined as w : E → [0, 1].

Mutation procedure
The usual genetic operators are selection, crossover, and 
mutation. Here crossover operation is not performed as 
it produces large number of disconnected graphs. For 

(1)

∑

niǫC

Contr(ni).

(2)

∑

niǫC

CC(ni),

(3)sim(s) =

∑p
i=1,j=1,i �=j w(ni, nj)

p
,
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selection the conventional crowded binary tournament 
selection in NSGA-II is used here. As whole subgraph is 
encoded as a chromosome, so a perturbation in node is 
performed by means of mutation with a high probability 
(p = 0.9).

If a chromosome n1, n2, . . . , n9 is selected to be mutated 
then the following process is performed:

  • Randomly select some of the nodes.
  • Insertion and deletion are performed with equal 

probability:

 – Insertion: Add the nodes which are directly con-
nected with the selected nodes.

 – Deletion: Delete the selected nodes.

The whole process is shown in Fig. 1.

Results and discussions
Here we illustrate the performance of our proposed 
technique and compare this with three well known algo-
rithms MCODE [5], clusterONE [6] and Affinity propa-
gation [7]. We download human PPI dataset from Human 

Protein Reference Database (HPRD) [17] which contains 
39,240 interactions among 9,589 human proteins (The 
data is given in Additional file  1). Table  1 summarizes 
the topological properties of the network created from 
this database. We compare the results with known pro-
tein complexes downloaded from a database PCDq [26]. 
It consists of both predicted and curated human protein 
complexes and is contains 1,264 complexes with 9,268 
proteins and 32,198 PPIs. To investigate the functional 
enrichment of our predicted complexes we have also per-
formed a Gene Ontology based analysis here. The source 
code of our proposed method is given in Additional file 2.

Performance comparisons with existing methods
Here, for comparing our results with that of some state-
of-the-art algorithms we have utilized some matching 
statistics like Sensitivity, Positive Predictive Value (PPV), 
and Accuracy [27].

We have built a Contingency Table (T) with n rows and 
m columns where rows and columns represent predicted 
and real protein complexes, respectively. The value of 
each cell Ti,j indicates the number of common proteins 
between real and predicted complexes.

a b

c

d
Fig. 1 Figure illustrating the mutation procedure. a A subgraph in which yellow nodes represent chromosome whereas green nodes are the first 
neighbor of these. In b the randomly selected nodes are colored as red. Two process are performed with equal probability: insertion and deletion. c 
and d The resulting chromosomes after insertion and deletion operations.
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Sensitivity
Sensitivity is defined as the fraction of proteins in real 
complex i found in predicted complex j: Sni,j =

Ti,j

Ni
,  

where Ni is the number of proteins belonging to com-
plex i. A complex-wise sensitivity Sncoi is defined as: 
Sncoi = maxmj=1

Sni,j. The General Sensitivity (Sn) is the 
weighted average of complex-wise sensitivity Sncoi over 
all complexes and is defined as:

Positive predictive value
The positive predictive value is the proportion of proteins 
in predicted complex j which belong to the real complex i 
and is defined as: PPVi,j =

Ti,j
∑n

i=1 Ti,j
=

Ti,j

T.j
, where T.j is the 

marginal sum of a column j. Complex-wise-wise positive 
predictive value PPVclj represents the maximal fraction of 
proteins of predicted complex j found in some real com-
plex: PPVclj = maxni=1

PPVi,j. The General PPV(PPV) of a 
clustering result is the weighted average of complex-wise 
PPV(PPVclj) over all predicted complexes, and is defined 
as:

Accuracy
The Geometric Accuracy (Acc) represents a tradeoff 
between sensitivity and the positive predictive value and 
it is defined as:

The advantage of taking the geometric mean is that it 
yields a low score when either the Sn or the PPV metric 
is low. High accuracy value thus requires a high perfor-
mance for both the criteria.

In Table  2 we show the comparative performance of 
different existing algorithms with our proposed method 
using these three metrics. It may be noted that the pro-
posed method performs comparatively well than the 
other algorithms with respect to sensitivity, PPV and 
accuracy.

We have also performed an analysis to compare the 
performance of different existing algorithm with the pro-
posed one. Let B = B1,B2, . . .Bn and C = C1,C2, . . .Cm 

(4)Sn =

∑n
i=1NiSncoi
∑n

i=1Ni
.

(5)PPV =

∑m
j=1 T.jPPVclj
∑m

j=1 T.j
.

(6)Acc =
√

Sn ∗ PPV .

be the sets of benchmark and predicted complexes 
respectively. The Jaccard index J represents the overlap 
between a benchmark complex and predicted complex. 
It is defined as J (Bi,Cj) =

|Bi
⋂

Cj |

|Bi
⋃

Cj |
. A benchmark com-

plex is said to be covered by a predicted complex if the 
value of j is greater than some threshold value. In this 
respect Recall (coverage) and precision (sensitivity) can 
be defined as

where J (Bi,Cj) > t, for some CjǫC, and

where J (Bi,Cj) > t for some BiǫB

We evaluate the performance of the existing methods 
by plotting the precision versus recall curves for the pre-
dicted complexes. These curves are plotted by tuning 
the threshold value t from 0 to 1. This is shown in Fig. 2. 
From this plot we have also computed the AUC score for 
each of the methods. The AUC score is shown in Table 3. 
It is evident from the Fig.  2 and Table  3 that proposed 
method shows best precision and recall compare to the 
other state-of-the-art. The processed data for construct-
ing the ROC plot are given in Additional file 3.

Analysis of predicted complexes
In Table  4 we have shown the resulting protein com-
plexes and compared them against the real one. Most of 

(7)Recall =
|Bi|

|B|
,

(8)precision =
|Cj|

|C|
,

Table 1 Summary of the human PPI network data sets used here

Data set #Proteins #Interactions Avg. degree Max. degree Density Clustering coef-
ficient

#Connected 
components

Network diam-
eter

Avg. number 
of neighbors

HPRD 9,589 39,240 7.924 271 0.001 0.102 262 14 7.703

Table 2 Comparison of  performance of  different algo-
rithms with respect to sensitivity, PPV and accuracy

Method Sensitivity PPV Accuracy

MCODE 0.2134 0.5274 0.3347

ClusterONE 0.1414 0.4562 0.2540

Affinity_propagation 0.1837 0.4443 0.2857

CORE 0.315 0.353 0.333

RNSC 0.379 0.469 0.4216

MCL-Caw 0.331 0.241 0.279

PEWCC 0.435 0.469 0.451

Proposed_Method 0.3061 0.6928 0.4605
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them show a good overlap with real complexes. We plot 
a bar diagram to show this overlap. In Fig. 3 Y-axis rep-
resents proportion of proteins in predicted complexes 
involved in some real one. From this figure it is notice-
able that most of the protein complexes share good pro-
portion of proteins with some real complexes with an 
average proportion of 79.68%. The smallest complex con-
sists of 11 proteins in which 8 proteins are involved in 
some real complexes whereas the largest one comprises 
of 272 proteins out of which 183 proteins are involved in 
some real complexes. We have also preformed a GO and 
pathway based study to biologically validate the predicted 
complexes.

Columns 3 and 4 of Table 4 represent predicted com-
plexes and the list of proteins that are matched with 
some real one, respectively. Columns 5, 6, 7 and 8 of 
this table represent most significant GO-terms with 
three annotations [viz., biological process (BP), cellular 
component (CC), molecular function (MF)] and KEGG 
pathways that are associated with the predicted com-
plexes. Here, we notice that more than one complex are 
grouped in one predicted cluster. For example in row 
4 of Table  4 the predicted cluster captured two com-
plexes: p300–MDM2–p53 protein complex and CDH1–
CTNNB1–PTPN1 complex. It is not quite unexpected 
because the real complexes that have some common 
functionality or have some common signaling pathway 

tend to group in one cluster. In row 1, predicted cluster 
5 captures good proportion proteins of four real com-
plexes viz., CTNNB1–DVL1–DVL3–PPM1A complex 
(80%), HSPB1–PPA1–PPA1–SETDB1–TP53–WIPI1 
complex (66.67%), EEF1A1–MDH2–WARS complex 
(66.67%) and transforming growth factor–SMAD com-
plex (66.67%). The complex CTNNB1–DVL1–DVL3–
PPM1A is composed of genes DVL1, DVL2, CTNNB1, 
PPM1A and DVL3. Protein phosphatase 1A (PPM1A) 
is an enzyme which is encoded by the PPM1A gene. 
The proteins encoded by this gene is a member of PP2C 
family of Ser/Thr protein phosphatases and are gen-
erally known to be a negative regulator of cell stress 
response pathways. Catenin (cadherin-associated 
protein), beta 1 (CTNNB1) is an integral part of the 
canonical Wnt signaling pathway which is a network 
of proteins that passes signals from receptor of the 
surface of cell to the nucleus that leads to the expres-
sion of target genes. Signaling via Wnt signaling path-
way also causes activation of histone methyltransferase 
(SETDB1) and subsequently represses PPARgamma 
transactivation [28]. Moreover SMAD1 indirectly 
enhances Wnt signaling by suppressing the expression 
of Wnt signaling inhibitors [Dickkopf 1 (Dkk1) and 2] 
with interleukin (IL)-11. We can notice from Table  4, 
row-1 that predicted cluster 5 is associated with Colo-
rectal cancer pathway (p-value: 2.9E 11). In different 
literature [29–31] it is established that activation of the 
Wnt signaling pathway via mutation of the adenoma-
tous polyposis coli gene (APC) is the critical reason for 
colon carcinogenesis.

Most of our predicted protein complexes are associated 
with SMAD complexes like transforming growth fac-
tor–SMAD complex, FOXO–SMAD complex, SMAD1–
SMAD4–ECSIT2 containing complex etc. SMADs are 
intracellular proteins that transduce extracellular signals 
from transforming growth factor beta (TGF-β) ligands 
to the nucleus. In the nucleus, SMAD complexes attach 
in some specific areas of DNA and control the activity of 
particular genes and regulate cell proliferation [32].

From Table  4 it is worth-mentioning that most of 
the predicted clusters are enriched with several cancer 
related pathways viz., colorectal cancer, chronic myeloid 
leukemia, prostate cancer etc. This suggests that the pre-
dicted clusters are biologically meaningful and important 
for uncovering different cancer associated modules.

Table 3 AUC score of different methods

MCODE ClusterONE Affinity_Propagation COACH RNSC MCL-Caw PEWCC Proposed method

AUC 0.1096 0.0590 0.2714 0.3572 0.2277 0.0841 0.6595 0.7244

Fig. 2 Precision vs recall curves for all methods at different threshold 
values (t).
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Association of predicted complexes in disorders/diseases
Here, we discuss the involvement of predicted protein 
complexes in different disease/disorder classes. The list 
of disorders/diseases, disorder associated genes and 
association between genes and disorder/disease classes 
are obtained from Goh et al. [23]. In Goh et al., a clas-
sification of disorders can be found depending on the 
physiological system affected by the disorder. They have 
classified all genetic disorders in 22 primary classes and 
associated all the genes corresponding to all the disor-
ders. In each class there is a list of disorders/diseases that 
exhibit similar type of clinical features affected by these 
disorders. Here, we find an association of our predicted 
complexes with these 22 disorder/disease classes. To test 
the biological plausibility of the identified complexes we 
draw a bipartite network between protein complexes and 
22 disorders/diseases to find disease associated com-
plexes. We have also tested the involvement of proteins 
belonging to our predicted complexes in those disorders.

Involvement of identified complexes in 22 primary disorders/
disease classes
To show to what extent the proteins of our predicted 
complexes are involved in specific disorder/disease 

classes we plot a bar diagram showing the proportion 
of protein complexes involved in each of the disorder 
classes. We assume that a protein complex is associated 
with specific type of disorder if all the proteins associated 
with this disorder are belonging to that protein complex. 
The bar diagram is shown in Fig. 4. From this figure we 
can notice that subsequent number of protein complexes 
are associated with ‘cancer’ and ‘multiple’ disease classes. 
‘Cancer’ class consists of 113 disorders whereas ‘multiple’ 
class contains 155 disorders. The disorders are assigned 
in each class based on the similarity of clinical properties 
of these disorders and the observation of physiological 
system mostly affected by those disorders. Disorders hav-
ing multiple clinical features are placed in the ‘multiple’ 
class.

We observe from Fig. 4 that most of the predicted com-
plexes are enriched with proteins that are implicated by 
different disorders involved with ‘cancer’ and ‘multiple’ 
disorder classes. Some proteins of our predicted com-
plexes are also involved in the disorders associated with 
‘connective tissue’, ‘Developmental’ and ‘Endocrine’ 
classes. We have been able to associate the predicted 
complexes with 15 classes of disorders amongst 22 disor-
der classes.

Fig. 3 Bar diagram showing the proportion of proteins in predicted clusters that are involved in some real protein complexes.

Fig. 4 Bar diagram showing the involvement of predicted complexes in 22 primary disease classes.
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Complex–disease bipartite network
To identify the overall association between predicted 
complexes and disease classes we have created a bipar-
tite network between predicted protein complexes and 
the associated disease classes. One partite set consti-
tutes the complexes, whereas other partite set repre-
sents the associated disease classes. Each partite set is 
connected with other by edges depending on the asso-
ciation between predicted complexes and the disorders 
involved in disease classes. The network is shown in 
Fig.  5. The predicted complexes are represented by red 
nodes whereas the disease classes are denoted by yellow 
diamond shaped nodes. It is possible that several proteins 

in one complex are involved in several disorders belong-
ing to different disease classes. So, we have calculated 
the number of disorders associated with each predicted 
complex. We say a disorder is associated with a predicted 
complex if all the proteins associated with that disorder 
is involved in that complex. To show to what extent the 
protein complexes are associated with disorders we vary 
the size of red nodes based on the total number of disor-
ders associated with those complexes. An edge between 
a complex and a disease class indicates the association of 
disorders belonging to the disease class with that com-
plex. Edge width indicates the number of associated dis-
orders with the corresponding complex and disease class 

Fig. 5 Bipartite network showing the association of predicted complexes and 16 disease classes. The red nodes represent predicted complexes and 
yellow diamond shaped nodes denote disease classes. Size of complex nodes are varied according to the number of associated disorders involved 
with that complex. Edge width indicates the number of associated disorders between complex and disease node linked by that edge.
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linked by that edge. It appears from Fig.  5 that most of 
the complexes are associated with significant number of 
disorders belonging to different disease classes. Interest-
ingly it is found that all the complexes are more or less 
associated with ‘cancer’ related disorders. It suggests that 
the predicted complexes are enriched with proteins that 
are involved in different cancer related disorders and may 
be considered as important candidates to uncover differ-
ent associations for understanding disease mechanisms, 
diagnosis and therapy. Other disorders like ‘Connective 
tissue’, ‘multiple’ and ‘Endocrine’ also show reasonable 
amount of association with different complexes. In Addi-
tional file 3 the processed data for constructing the com-
plex–disease bipartite network are given.

We have also performed an analysis to describe the 
association among protein complexes and disease classes. 
For this purpose, we have collected PPI information 
and GO based semantic similarity information of all the 
genes associated with 22 disease classes. The PPI and GO 
semantic similarity informations are subsequently con-
verted into 22 PPI and GO semantic similarity networks.

We have computed density and average semantic simi-
larity scores from these networks and showed in Table 5. 
First and second column of the table represent disease 
category and number of associated genes in it, respec-
tively. The third column shows number interactions 

among the genes, in each category. The last two col-
umns represent density and average semantic similarity 
score of interaction network. It is noticeable that among 
all disease classes cancer associated proteins have better 
score than others. The predicted complexes are function-
ally similar, and it may be a possible reason for the over-
representation of cancer associated genes in predicted 
complexes. For the similar reason, other disorders like 
‘Connective tissue’, ‘multiple’ and ‘Endocrine’ have better 
amount of association with different complexes.

To identify the association among disorders and pro-
tein complexes, we have also created another bi-partite 
network. As depicted in Fig. 6, the network is composed 
of two types of nodes. The big red nodes represent pre-
dicted complexes and small nodes stand for different dis-
orders. Out of 22 disease classes we have found 16 classes 
have different disorders associated with the predicted 
complexes. In Additional file  4: Table S1 we have listed 
all the disorder names associated with specific com-
plexes. 1st column of the Table S1 (Additional file 4) rep-
resents predicted protein complex, whereas the second 
and third columns represent the associated disorders and 
the corresponding disease class. From this table we can 
notice that the proteins in complex 1 is associated with 
11 ‘cancer’ associated disorders, 3 hematological disor-
ders, 1 ‘Endocrine’, ‘Connective tissue’, and ‘Immunology’ 

Table 5 Some useful metrics of disorder associated genes

Disease category No. of associated genes No. of interaction in human PPI Density Semantic similarity

Bone 180 94 0.0163 0.5676

Cancer 869 725 0.0019 0.8931

Cardiovascular 332 457 0.0083 0.7374

Connective_tissue 149 75 0.0068 0.7146

Dermatological 270 154 0.0042 0.6381

Developmental 143 219 0.0216 0.7589

Ear, nose, throat 177 183 0.0117 0.8277

Endocrine 305 572 0.0123 0.8432

Gastrointestinal 110 52 0.0087 0.5819

Hematological 389 755 0.0100 0.6449

Immunological 290 658 0.0157 0.8159

Metabolic 638 2,088 0.0103 0.7458

Muscular 294 1,183 0.0275 0.6421

Neurological 917 898 0.0021 0.7811

Nutritional 51 82 0.0643 0.6536

Ophthalmological 563 555 0.0037 0.7035

Psychiatric 75 49 0.0177 0.7032

Renal 170 131 0.0091 0.6545

Respiratory 79 1 0.00032 0.7023

Skeletal 278 186 0.0048 0.6679

Unclassified 64 6 0.0030 0.5080

Multiple 721 427 0.0016 0.8019
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related disorders. All the proteins implicated by those 
disorders are clustered in complex 1. This suggests that 
these associated disorders of different disease classes 
are loosely related with each other. For example ‘Leuke-
mia, acute promyelocytic disorder’ may be developed 
by a long course of ‘Polycythemia vera’ which is associ-
ated with ‘Hematological’ disorders [33, 34]. From the 
Table S1 (Additional file 4) we can notice that the disor-
der ‘Pilomatricoma’ which belongs to the ‘Cancer’ dis-
ease class and the disorder ‘Rubinstein–Taybi syndrome’ 
related to the ‘multiple’ disease class are involved in com-
plex 1. In [35] an abnormal association between multiple 
perforating and non-perforating pilomatricomas with 
Rubinstein–Taybi syndrome are reported. From Table 
S1 (Additional file 4) it can also be observed that the dis-
order ‘Thrombocythemia, essential’ involved in ‘Hema-
tology’ disease class is grouped with disorder ‘Renal cell 
carcinoma’ belonging to ‘Cancer’ disease class in complex 
1. This suggests that these two disorders are somehow 
related based on topological and ontological properties 

of the proteins that are directly associated with those dis-
orders. It is because all the proteins implicated by these 
two disorders are grouped in the same complex. Inter-
estingly in [36] a statistical correlation is also observed 
between essential Thrombocythemia and the survival of 
surgically treated renal cell carcinoma patients.

From Table S1 (Additional file 4) we can see that com-
plex 4 is associated with 12 cancer related disorders, 3 
endocrine disorders and 1 multiple disorder. The pre-
dicted complex C4 contains all the proteins which are 
related with ‘Hyperparathyroidism’ disorder and ‘Colorec-
tal Cancer’ disorder. ‘Hyperparathyroidism’ is a disorder 
in which parathyroid (PTH) glands are overactivated and 
produces excess PTH hormone in our body. It is reported 
that primary hyperparathyroidism (PHP) is associated 
with malignancy and decreased intracolonic calcium (Ca) 
that plays a role in colorectal carcinogenesis [37]. We can 
notice that disorder ‘Parathyroid adenoma’ is also associ-
ated with complex C4. A ‘parathyroid adenoma’ is a non-
cancerous (benign) tumor of the parathyroid glands but 

Fig. 6 Bipartite network showing direct association between predicted complexes and disorders. The big red node represent predicted complexes 
whereas small nodes denote different disorders. Disorder nodes are colored according to the involvement of associated disease classes.
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in many cases it is reported that it causes ‘Hyperparathy-
roidism’ [38, 39]. ‘Rabson–Mendenhall syndrome’ in ‘mul-
tiple’ disease class is a rare genetic disorder mainly caused 
by mutation of insulin receptor gene ‘INSR’. It appears 
from the Table S1 (Additional file 4) that this disorder is 
associated with about eight predicted complexes. Most of 
these associated complexes also contain other disorders 
which are belonging to different disease classes and are 
linked with extreme insulin resistance due to mutations in 
the insulin receptor gene ‘INSR’. For example complex C7 
is associated with disorder ‘Leprechaunism’ [commonly 
known as Donohue syndrome (OMIM 246200)] which is a 
latent inherited disorder and is caused by defect of insulin 
receptor genes. This suggests that although the disorders 
‘Rabson–Mendenhall syndrome’ and ‘Leprechaunism’ are 
belonging to different disease classes but the genes respon-
sible for these disorders exhibit substantial amount of 
similar functional information. The possible reason behind 
this is that these two disorders show strong inclination in 
being grouped in most of the complexes.

In most of the cases we observe that similar type of 
disorders have a tendency to get involve in same protein 
complexes. So we can conclude that protein complexes 
not only provide a better understanding in molecular 
evolution but it can also unveil several information of 
human disorders and uncover new strategies for thera-
peutic intervention. This may lead to development of new 
potential strategies to deal with key diseases by giving 
more importance in protein complex formation informa-
tion rather than targeting individual proteins.

Conclusions
This study introduces a multiobjective approach for 
detection of protein complexes in human PPI network. 
Integrating topological features along with GO features, 
we are able to group functionally similar proteins in same 
clusters which serve as protein complexes. The algo-
rithm progresses with two primary classes of objectives. 
Graph based objectives preserve the topological proper-
ties of complexes whereas GO based semantic similarity 
between protein pairs control the accumulation of func-
tionally similar proteins in the same cluster. Moreover 
the predicted complexes show consistently better result 
in context of some performance metrics.

We have also built an association between predicted 
protein complexes and 22 primary key disease classes to 
study the relationship between complexes and disorders 
associated with these classes. For finding the associa-
tion of predicted complexes in different disease classes, 
we have extensively searched the involvement of proteins 
implicated by different disorders in the predicted com-
plexes and built two bipartite networks between com-
plexes and disorders. Interestingly, we have found most 

of the predicted complexes are associated with disorders 
belonging to the ‘Cancer’ disease class. Additionally, the 
disorders belonging to ‘Endocrine’ and ‘multiple’ disease 
classes have also shared a significant proportion of pro-
teins involved in multiple predicted complexes.

Protein complexes are now considered as potential tar-
gets for intervention of new therapeutics to treat against 
new diseases. It is possible to integrate the drug–disease 
association information along with the complex–disease 
association. The new paradigm in drug discovery analy-
sis is now given emphasis on the polypharmacological 
properties of drugs. Polypharmacological drugs are gen-
erally targets multiple cellular function for the treatment 
of complex diseases. By incorporating protein complexes 
with drug–disease association, it may be possible to 
uncover some relationship between protein complexes 
and targeted drugs.

Moreover we can potentially merge the time series gene 
expression profiles affected by a specific disease with our 
complex–disease bipartite network structure. This can 
offer a new way to exploit new topological features and 
complex modular structure in protein complex–disease 
and protein complex–disease–drug network. We are now 
working in this direction.
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