
Novak et al. Algorithms Mol Biol  (2017) 12:18 
DOI 10.1186/s13015-017-0109-9

RESEARCH

A graph extension of the positional 
Burrows–Wheeler transform and its applications
Adam M. Novak1* , Erik Garrison2 and Benedict Paten1

Abstract 

We present a generalization of the positional Burrows–Wheeler transform, or PBWT, to genome graphs, which we call 
the gPBWT. A genome graph is a collapsed representation of a set of genomes described as a graph. In a genome 
graph, a haplotype corresponds to a restricted form of walk. The gPBWT is a compressible representation of a set of 
these graph-encoded haplotypes that allows for efficient subhaplotype match queries. We give efficient algorithms 
for gPBWT construction and query operations. As a demonstration, we use the gPBWT to quickly count the number 
of haplotypes consistent with random walks in a genome graph, and with the paths taken by mapped reads; results 
suggest that haplotype consistency information can be practically incorporated into graph-based read mappers. We 
estimate that with the gPBWT of the order of 100,000 diploid genomes, including all forms structural variation, could 
be stored and made searchable for haplotype queries using a single large compute node.
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Background
The PBWT is a compressible data structure for storing 
haplotypes that provides an efficient search operation for 
subhaplotype matches [1]. The PBWT is itself an exten-
sion of the ordinary Burrows–Wheeler transform (BWT), 
a method for compressing string data [2], with some con-
cepts borrowed from the FM-index, an extension of the 
BWT that makes it searchable [3]. Implementations of 
the PBWT, such as BGT [4], can be used to compactly 
store and query the haplotypes of thousands of samples. 
The PBWT can also allow existing haplotype-based algo-
rithms to work on much larger collections of haplotypes 
than would otherwise be practical [5]. The haplotype ref-
erence consortium dataset, for example, contains 64,976 
haplotypes [6], and PBWT-based software allows data 
at this scale to efficiently inform phasing calls on newly 
sequenced samples, with significant speedups over other 
methods [7].

In the PBWT each site (corresponding to a genetic var-
iant) is a binary feature and the sites are totally ordered. 

The input haplotypes to the PBWT are binary strings, 
with each element in the string indicating the state of a 
site. In the generalization we present, each input haplo-
type is a walk in a general bidirected graph, or genome 
graph. Graph-based approaches to genomics problems 
like mapping and variant calling have been shown to 
produce better results than linear-reference-based meth-
ods [8, 9], so adapting the PBWT to a graph context is 
expected to be useful. Other generalizations of BWT-
based technologies to the graph context have been pub-
lished [10–12], but they deal primarily with the substring 
search problem, rather than the problem of storing and 
querying haplotypes.

The PBWT generalization presented here allows hap-
lotypes to be partial (they can start and end at arbitrary 
nodes) and to traverse arbitrary structural variation. It 
does not require the sites (nodes in the graph) to have 
a biologically relevant ordering to provide compression. 
However, despite these generalizations, essential features 
of the PBWT are preserved. The core data structures are 
similar, the compression still exploits genetic linkage, and 
the haplotype matching algorithm is essentially the same. 
It is expected that this generalization of the PBWT will 
allow large embedded haplotype panels to inform read-
to-graph alignment, graph-based variant calling, and 
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graph-based genomic data visualization, bringing the 
benefits of the PBWT to the world of genome graphs.

Definitions
We define G = (V ,E) as a genome graph in a bidi-
rected formulation [13, 14]. Each node in V has a DNA-
sequence label; a left, or 5′, side; and a right, or 3′, side. 
Each edge in E is a pairset of sides. The graph is not a 
multigraph: only one edge may connect a given pair of 
sides and thus only one self-loop, or edge from a side to 
itself, can be present on any given side.

While more powerful algorithms are generally used 
in practice, a simple genome graph can be constructed 
relatively easily from a reference sequence and a set of 
nonoverlapping variants (defined as replacements of a 
nonempty substring of the reference with a nonempty 
alternate string). Start with a single node containing the 
entire reference sequence. For each variant to be added, 
break the nodes in the graph so that the reference allele 
of the variant is represented by a single node. Then create 
a node to represent the alternate allele, and attach the left 
and right sides of the alternate allele to everything that 
is attached to the left and right sides, respectively, of the 
reference allele.

We consider all the sides in the graph to be (arbitrar-
ily) ordered relative to one another. We define the null 
side, 0, as a value which corresponds to no actual side in 
the graph, but which compares less than any actual side. 
We also define the idea of the opposite of a side s, with 
the notation s, meaning the side of s’s node which is not 
s (i.e. the left side of the node if s is the right side, and 
the right side of the node if s is the left side). Finally, we 
use the notation n(s) to denote the node to which a side s 
belongs.

To better connect the world of bidirected graphs, in 
which no orientation is better than any other, and the 
world of algebra, in which integer subscripts are incred-
ibly convenient, we introduce the concept of an amb-
isequence. An ambisequence is like a sequence, but 
the orientation in which the sequence is presented is 
insignificant; a sequence and its reverse are both equal 
and opposite orientations of the same underlying amb-
isequence. An ambisequence is isomorphic to a stick-
shaped undirected graph, and the orientations can be 
thought of as traversals of that graph from one end to the 
other. For every ambisequence s, a canonical orientation 
is chosen arbitrarily, and the subscripted items si are the 
items in that arbitrarily selected sequence. This orienta-
tion is also used for defining concepts like “previous” and 
“next” in the context of an ambisequence.

Within the graph G, we define the concept of a thread, 
which can be used to represent a haplotype or haplotype 

fragment. A thread t on G is a nonempty ambisequence of 
sides, such that for 0 ≤ i < N  sides t2i and t2i+1 are oppo-
sites of each other, and such that G contains an edge con-
necting every pair of sides t2i and t2i+1. In other words, 
a thread is the ambisequence version of a walk through 
the sides of the graph that alternates traversing nodes and 
traversing edges and which starts and ends with nodes. 
Note that, since a thread is an ambisequence, it is impos-
sible to reverse. Instead, the “reverse” of a thread is one of 
its two orientations.

We consider G to have associated with it a collection of 
embedded threads, denoted as T. We propose an efficient 
storage and query mechanism for T given G.

The graph positional Burrows–Wheeler transform
Our high-level strategy is to store T by grouping together 
threads that have recently visited the same sequences 
of sides, and storing in one place the next sides that 
those threads will visit. As with the positional Burrows–
Wheeler transform, used to store haplotypes against a 
linear reference, and the ordinary Burrows–Wheeler 
transform, we consider the recent history of a thread to 
be a strong predictor of where the thread is likely to go 
next [1]. By grouping together the next side data such 
that nearby entries are likely to share values, we can use 
efficient encodings (such as run-length encodings) and 
achieve high compression.

More concretely, our approach is as follows. Within an 
orientation, we call an instance of side in an even-num-
bered position 2i a visit; a thread may visit a given side 
multiple times, in one or both of its orientations. (We 
define it this way because, while a thread contains both 
the left and right sides of each node it touches, we only 
want one visit to stand for the both of them.) Consider all 
visits of orientations of threads in T to a side s. For each 
visit, take the sequence of sides coming before this arrival 
at s in the thread and reverse it, and then sort the visits 
lexicographically by these (possibly empty) sequences 
of sides, breaking ties by an arbitrary global ordering of 
the threads. Then, for each visit, look two steps ahead in 
its thread (past s and s) to the side representing the next 
visit, and append it (or the null side if there is no next 
visit) to a list. After repeating for all the sorted visits to 
s, take that list and produce the array Bs[] for side s. An 
example B[] array and its interpretation are shown in 
Fig. 1. (Note that, throughout, arrays are indexed from 0 
and can produce their lengths trivially upon demand.)

Each unoriented edge {s, s′} in E has two orienta-
tions (s, s′) and (s′, s). Let c() be a function of these ori-
ented edges, such that for an oriented edge (s, s′), c(s, s′) 
is the smallest index in Bs′ [] of a visit of s′ that arrives 
at s′ by traversing {s, s′}. Note that, because of the global 
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ordering of sides and the sorting rules defined for Bs′ [] 
above, c(s0, s′) ≤ c(s1, s

′) for s0 < s1 both adjacent to s′.  
Figure 2 and Table 1 give a worked example of a collec-
tion of B[] arrays and the corresponding c() function 
values.

For a given G and T, we call the combination of the 
c() function and the B[] arrays a graph positional Bur-
rows–Wheeler transform (gPBWT). We submit that 
a gPBWT is sufficient to represent T, and, moreo-
ver, that it allows efficient counting of the number 
of threads in T that contain a given new thread as a 
subthread.

Extracting threads
To reproduce T from G and the gPBWT, consider 
each side s in G in turn. Establish how many threads 
begin (or, equivalently, end) at s by taking the mini-
mum of c(x,  s) for all sides x adjacent to s. If s has 
no incident edges, take the length of Bs[] instead. 
Call this number b. Then, for i running from 0 to b, 
exclusive, begin a new thread orientation at n(s) with 
the sides [s, s]. Next, we traverse from n(s) to the next 
node. Consult the Bs[i] entry. If it is the null side, stop 
traversing, yield the thread orientation, and start 
again from the original node s with the next i value 
less than b. Otherwise, traverse to side s′ = Bs[i]. Cal-
culate the arrival index i′ as c(s, s′) plus the number 
of entries in Bs[] before entry i that are also equal 
to s′ (i.e. the s′-rank of i in Bs[]). This arrival index, 
computed by the where_to function in Algorithm 1, 
gives the index in Bs′ [] of the next visit in the thread 
orientation being extracted. Then append s′ and s′  to 
the growing thread orientation, and repeat the tra-
versal process with i ← i′ and s ← s′, until the termi-
nating null side is reached. 

This process will enumerate both orientations of each 
thread in the graph. The collection of observed orienta-
tions can trivially be converted to the collection of under-
lying ambisequence threads T, accounting for the fact 
that T may contain duplicate threads. Pseudocode for 
thread extraction is shown in Algorithm 1. The algorithm 
checks each side for threads, and traces each thread one 
at a time, doing a constant amount of work at each step 
(assuming a constant maximum degree for the graph). 
Therefore, the algorithm runs in O(M · N + S) time for 
extracting M threads of length N from a graph with S 

Fig. 1 An illustration of the B1[] array for a single side numbered 
1. (Note that a similar, reverse view could be constructed for the 
B2[] array and the opposite orientations of all the thread orienta-
tions shown here, but it is omitted for clarity). The central rectangle 
represents a node, and the pairs of solid lines on either side delimit 
edges attached to either the left or right side of the node, respec-
tively. These edges connect the node to other parts of the graph, 
which have been elided for clarity. The dashed lines within the 
edges represent thread orientations traveling along each edge in a 
conserved order, while the solid lines with triangles at the ends within 
the displayed node represent thread orientations as they cross over 
one another within the node. The triangles themselves represent 
“terminals”, which connect to the corresponding dashed lines within 
the edges, and which are wired together within the node in a con-
figuration determined by the B1[] array. Thread orientations entering 
this node by visiting side 1 may enter their next nodes on sides 3, 5, 
or 7, and these labels are displayed near the edges leaving the right 
side of the diagram. (Note that we are following a convention where 
nodes’ left sides are assigned odd numbers, and nodes’ right sides 
are assigned even numbers). The B1[] array records, for each thread 
orientation entering through side 1, the side on which it enters its 
next node. This determines through which of the available edges it 
should leave the current node. Because threads tend to be similar to 
each other, their orientations are likely to run in “ribbons” of multiple 
thread orientations that both enter and leave together. These ribbons 
cause the Bs[] arrays to contain runs of identical values, which may be 
compressed.
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sides. Beyond the space used by the gPBWT itself, the 
algorithm uses O(M · N ) memory, assuming the results 
are stored.

This algorithm works because the thread orientations 
embedded in the graph run through it in “ribbons” of 
several thread orientations with identical local history 
and a conserved relative ordering. The reverse prefix sort 
specified in the B[] array definition causes thread orienta-
tions’ visits to a side s that come after the same sequence 
of immediately prior visits to co-occur in a block in Bs[]. 
For any given next side s′, or, equivalently, any edge (s, s′) , 
the visits to s′ that come after visits in that block in Bs[] 
will again occur together and in the same relative order 
in a block in Bs′ []. This is because the visits at side s′ will 
share all the same history that the previous visits shared 
at side s, plus a new previous visit to s that no other visits 
to s′ can share. By finding a visit’s index among the vis-
its to s that next take the edge from s to s′, and by using 
the c() function to find where in Bs′ [] the block of visits 
that just came from s starts, one can find the entry in Bs′ [] 

corresponding to the next visit, and thus trace out the 
whole thread orientation from beginning to end.

Succinct storage
For the case of storing haplotype threads specifically, 
we can assume that, because of linkage, many threads 
in T are identical local haplotypes for long runs, diverg-
ing from each other only at relatively rare crossovers or 
mutations. Because of the reverse prefix sorting of the 
visits to each side, successive entries in the B[] arrays are 
thus quite likely to refer to locally identical haplotypes, 
and thus to contain the same value for the side to enter 
the next node on. Thus, the B[] arrays should benefit 
from run-length compression. Moreover, since (as will 
be seen below) one of the most common operations on 
the B[] arrays will be expected to be rank queries, a suc-
cinct representation, such as a collection of bit vectors 
or a wavelet tree [15], would be appropriate. To keep the 
alphabet of symbols in the B[] arrays small, which is ben-
eficial for such representations, it is possible to replace 

Algorithm 1 Algorithm for extracting threads from a graph.
function starting at(Side, G, B[], c())

Count instances of threads starting at Side.
Replace by an access to a partial sum data structure if appropriate.

if Side has incident edges then
return c(s, Side) for minimum s over all sides adjacent to Side.

else
return length(BSide[])

function rank(b[], Index, Item)
Count instances of Item before Index in b[].
Replace by rank of a rank-select data structure if appropriate.

Rank ← 0
for all index i in b[] do

if b[i] = Item then
Rank ← Rank + 1

return Rank
function where to(Side, Index, B[], c())

For a thread orientation visiting Side with Index in the reverse prefix sort order, get the
corresponding sort index of the next visit in that thread orientation in the side it visits.

Works by accounting for all thread orientations starting at the next side or entering the next
side via edges before the edge being traversed, and then accounting for the thread orientation’s rank
among all thread orientations that similarly go from Side to the same next side.

return c(Side,BSide[Index]) +Rank(BSide[], Index,BSide[Index])
function extract(G, c(), B[])

Extract all oriented threads from graph G.
for all Side s in G do

TotalStarting ← starting at(s,G,B[], c())
for all i in [0, T otalStarting) do

Side ← s
Index ← i
Orientation ← [s, s]
NextSide ← BSide[Index]
while NextSide = 0 do

Orientation ← Orientation+ [NextSide,NextSide]
Index ← where to(Side, Index,B[], c())
Side ← NextSide
NextSide ← BSide[Index]

yield Orientation
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the stored sides for each Bs[] with numbers referring to 
the edges traversed to access them, out of the edges inci-
dent to s.

We note that, for contemporary variant collections (e.g. 
the 1000 Genomes Project), the underlying graph G may 
be very large, while there may be relatively few threads 
(of the order of thousands) [16]. Implementers should 
thus consider combining multiple B[] arrays into a single 
data structure to minimize overhead.

Embedding threads
A trivial construction algorithm for the gPBWT is to 
independently construct Bs[] and c(s, s′) for all sides s and 
oriented edges (s, s′) according to their definitions above. 
However, this would be very inefficient. Here we present 
an efficient algorithm for gPBWT construction, in which 
the problem of constructing the gPBWT is reduced to 
the problem of embedding an additional thread.

Each thread is embedded by embedding its two orien-
tations, one after the other. To embed a thread orienta-
tion t = [t0, t1, . . . t2N , t2N+1], we first look at node n(t0) , 
entering by t0. We insert a new entry for this visit into 
Bt0 [], lengthening the array by one. The location of the 

new entry is near the beginning, before all the entries 
for visits arriving by edges, with the exact location deter-
mined by the arbitrary order imposed on thread orien-
tations. If no other order of thread orientations suggests 
itself, the order created by their addition to the graph will 
suffice, in which case the new entry can be placed at the 
beginning of Bt0 []. The addition of this entry necessitates 
incrementing c(s, t0) by one for all oriented edges (s, t0) 
incident on t0 from sides s in G. We call the location of 
this entry k. The value of the entry will be t2, or, if t is not 
sufficiently long, the null side, in which case we have fin-
ished the orientation.

If we have not finished the orientation, we first incre-
ment c(s, t2) by one for each side s adjacent to t2 and 
after t1 in the global ordering of sides. This updates the 
c() function to account for the insertion into Bt2 [] we 
are about to make. We then find the index at which the 
next visit in t ought to have its entry in Bt2 [], given that 
the entry of the current visit in t falls at index k in Bt0 [].  
This is given by the same procedure used to calculate 
the arrival index when extracting threads, denoted as 
where_to (see Algorithm 1). Setting k to this value, we 
can then repeat the preceding steps to embed t2, t3, etc. 

Fig. 2 A diagram of a graph containing two embedded threads. The graph consists of nodes with sides {1, 2, 3, . . . , 10}, connected by edges {2, 5}, 
{4, 5}, {6, 7}, {6, 9}, {8, 8}, and {10, 9}. Note that, once again, odd numbers are used for left sides and even numbers are used for right sides. As in Fig. 1, 
nodes are represented by rectangles, and thread orientations running from node to node are represented by dashed lines. The actual edges con-
necting the nodes are omitted for clarity; only the thread orientations are shown. Because each side’s B[] array defines a separate permutation, each 
node is divided into two parts by a central double yellow line (like on a road). The top half of each node shows visits to the node’s right side, while 
the bottom half shows visits to the node’s left side. Within the appropriate half of each node, the B[] array entries for the entry side are shown. The 
special 0 value is used to indicate that a thread stops and does not continue on to another node. When moving from the entry side to the exit side 
of a node, threads cross over each other so that they become sorted, stably, by the side of their next visit. Threads’ order of arrival at a node is deter-
mined by the relative order of the edges incident on the side they arrive at, which is in turn determined by the ordering of the sides on the other 
ends of the edges. The threads shown here are [1, 2, 5, 6, 9, 10, 9, 10] and [3, 4, 5, 6, 7, 8, 8, 7]. See Table 1 for a tabular representation of this example.
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until t is exhausted and its embedding terminated with a 
null-side entry. Pseudocode for this process is shown in 
Algorithm 2. 

As this algorithm proceeds, the B[] arrays are always 
maintained in the correctly sorted order, because each 
insertion occurs at the correct location in the array. After 
each B[] array insertion, the appropriate updates are 
made to the c() function to keep it in sync with what is 
actually in the array. Thus, after each thread’s insertion, 
the data structure correctly contains that thread, and so 
after the insertions of all the relevant threads, a properly 
constructed gPBWT is produced.

Assuming a dynamic succinct representation, where the 
B[] array information is both indexed for O(log(n)) rank 
queries and stored in such a way as to allow O(log(n)) 
insertion and update (in the length of the array n), 1 this 
insertion algorithm is O(N · log(N + E)) in the length of 
the thread to be inserted (N) and the total length of existing 
threads (E). Inserting M threads of length N will take 
O(M · N · log(M · N )) time, and inserting each thread will 
take O(N) memory in addition to the size of the gPBWT.

Batch embedding threads
The embedding algorithm described above, Algorithm 2, 
requires a dynamic implementation for the succinct data 
structure holding the B[] array information, which can 

1 Dynamic data structures at least this good are available as part of the 
DYNAMIC library, from https://github.com/xxsds/DYNAMIC.

Algorithm 2 Algorithm for embedding a thread in a graph.
procedure insert(b[], Index, Item)

Insert Item at Index in b[].
Replace by insert of a rank-select-insert data structure if appropriate.

length(b[]) ← length(b[]) + 1 Increase length of the array by 1
for all i in (Index, length(b[])− 1], descending do

b[i] ← b[i− 1]
b[Index] = Item

procedure increment c(Side, NextSide, c())
Modify c() to reflect the addition of a visit to the edge (Side,NextSide).

for all side s adjacent to NextSide in G do
if s > Side in side ordering then

c(s,NextSide) ← c(s,NextSide) + 1
procedure embed(t, G, B[], c())

Embed a thread orientation t in graph G.
Call this twice to embed a thread for search in both directions.

k ← 0 Index we are at in Bt2i []
increment c(0, t0, c())
Increment c() for all edges to t0, to note a thread start.

for all i in [0, length(t)/2) do
if 2i+ 2 < length(t) then

The thread has somewhere to go next.
insert(Bt2i [], k, t2i+2) Fill in the B[] array slot for this visit.
increment c(t2i+1, t2i+2, c()) Record the traversal of the edge to the next visit.
k ← where to(t2i, k, B[], c())

else
insert(Bt2i [], k, 0) End the thread.

Table 1 Bs[] and  c() values for  the embedding of  threads 
illustrated in Fig. 2.
Side Bs[] array

1 [5]

2 [0]

3 [5]

4 [0]

5 [9, 7]

6 [4, 2]

7 [8, 8]

8 [6, 0]

9 [9, 0]

10 [10, 6]

Edge c(s, t) count

{2, 5} 0

{4, 5} 1

{6, 7} 1

{6, 9} 0

{8, 8} 0

{10, 9} 1

{5, 2} 0

{5, 4} 0

{7, 6} 0

{9, 6} 1

https://github.com/xxsds/DYNAMIC
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Algorithm 3 Algorithm for embedding all threads at once into a directed acyclic graph.
function batch embed into dag(T , G)

Construct the gPBWT for threads T embedded in directed acyclic graph G.
The forward orientation of each t must flow forwards through the forward orientation of G.

Create empty Bs[] for each side s in G
Create empty c()
for all o in [FORWARD, REVERSE] do

Messages ← []
ThreadsByStart ← []
for all t in T do

t ← t in orientation o
ThreadsByStart[t0] ← t
increment c(0, t0, c())
Increment c() for all edges to t0, to note a thread start.

for all leading side s in G traversed in orientation o do
ThreadsHere ← []
for all t in ThreadsByStart[s] do

ThreadsHere ← ThreadsHere+ [(t , 0)]
for all edge (s , s) in G, in order do

Collect messages coming along edges to s.
ThreadsHere ← ThreadsHere+Messages[(s , s)]
Messages[(s , s)] ← []

for all (t , n) at index i in ThreadsHere do
n ← n+ 1
if length(t ) > n ∗ 2 then

NextSide ← t [n ∗ 2]
Messages[(s,NextSide)] ← Messages[(s,NextSide)] + [(t , n)]
increment c(s,NextSide, c())

else
NextSide ← 0

Bs[i] ← NextSide

return B[], c()

make it quite slow in practice due to the large constant 
factors involved. In order to produce a more practical 
implementation, it may be preferable to use a batch con-
struction algorithm, which handles all threads together, 
instead of one at a time. For the case of directed acyclic 
graphs (DAGs), such an algorithm is presented here as 
Algorithm 3. 

This algorithm works essentially like the naïve trivial 
algorithm of independently constructing every Bs[] for 
every side s and every c(s, s′) for every oriented edge (s, s′) 
from the definitions. However, because of the directed, 
acyclic structure of the graph, it is able to save redundant 
work on the sorting steps. Rather than sorting all the 
threads at each side, it sorts them where they start, and 
simply combines pre-sorted lists at each side to produce 
the B[] array ordering, and then stably buckets threads 
into new sorted lists to pass along to subsequent nodes. 
The directed, acyclic structure allows us to impose a full 
ordering on the sides in the graph, so that the sorted lists 
required by a side all come from “previous” sides and are 
always available when the side is to be processed.

Although this algorithm requires that all threads be 
loaded into memory at once in a difficult-to-compress 
representation (giving it a memory usage of O(M · N ) on 
M threads of length N), and although it requires that the 

graph be a directed acyclic graph, it allows the B[] arrays 
to be generated for each side in order, with no need to 
query or insert into any of them. This means that no 
dynamic succinct data structure is required. Since the 
graph is acyclic, each thread can visit a side only once, 
and so the worst case is that a side is visited by every 
thread. Assuming a constant maximum degree for the 
graph, since the algorithm visits each side only once, 
the worst-case running time is O(M · S) for inserting M 
threads into a graph with S sides.

This algorithm produces the same gPBWT, in the form 
of the B[] arrays and the c() function, as the single-thread 
embedding algorithm would.

Counting occurrences of subthreads
The generalized PBWT data structure presented here 
preserves some of the original PBWT’s efficient haplo-
type search properties [1]. The algorithm for counting all 
occurrences of a new thread orientation t as a subthread 
of the threads in T runs as follows.

We define fi and gi as the first and past-the-last indexes 
for the range of visits of orientations of threads in T to 
side t2i, ordered as in Bt2i [].

For the first step of the algorithm, f0 and g0 are initial-
ized to 0 and the length of Bt0 [], respectively, so that they 
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select all visits to node n(t0), seen as entering through t0 . 
On subsequent steps, fi+1 and gi+1, are calculated from 
fi and gi merely by applying the where_to function (see 
Algorithm  1). We calculate fi+1 =where_to(t2i, fi) and 
gi+1 =where_to(t2i, gi).

This process can be repeated until either fi+1 ≥ gi+1, in 
which case we can conclude that the threads in the graph 
have no matches to t in its entirety, or until t2N , the last 
entry in t, has its range fN and gN calculated, in which 
case gN − fN gives the number of occurrences of t as a 
subthread in threads in T. Moreover, given the final range 
from counting the occurrences for a thread t, we can 
count the occurrences of any longer thread that begins 
(in its forward orientation) with t, merely by continuing 
the algorithm with the additional entries in the longer 
thread.

This algorithm works because the sorting of the B[] 
array entries by their history groups entries for thread 
orientations with identical local histories together into 
contiguous blocks. On the first step, the block for just the 
orientations visiting the first side is selected, and on sub-
sequent steps, the selected block is narrowed to just the 
orientations that visit the current side and which share 
the sequence of sides we have previously used in their 
history. The where_to function essentially traces where 
the first and last possible consistent thread orientations 
would be inserted in the next B[] array, and so produces 
the new bounds at every step.

Assuming that the B[] arrays have been indexed for 
O(1) rank queries (which is possible using available suc-
cinct data structure libraries such as [17], when insert 
operations are not required), the algorithm is O(N) in 
the length of the subthread t to be searched for, and has 
a runtime independent of the number of occurrences of 
t. It can be performed in a constant amount of memory 
(O(1)) in addition to that used for the gPBWT. Pseudoc-
ode is shown in Algorithm 4. 

Algorithm 4 Algorithm for searching for a subthread in the graph.
function count(t, G, B[], c())

Count occurrences of subthread t in graph G.
f ← 0
g ← length(Bt0 [])
for all i in [0, length(t)/2− 1) do

f ← where to(t2i, f, B[], c())
g ← where to(t2i, g, B[], c())
if f ≥ g then

return 0
return g − f

Results
The gPBWT was implemented within xg, the succinct 
graph indexing component of the vg variation graph 
toolkit [18]. The primary succinct self-indexed data struc-
ture used, which compressed the gPBWT’s B[] arrays, 
was a run-length-compressed wavelet tree, backed by 

sparse bit vectors and a Huffman-shaped wavelet tree, all 
provided by the sdsl-lite library used by xg [17]. The 
B[] arrays, in this implementation, were stored as small 
integers referring to edges leaving each node, rather 
than as full next-side IDs. The c() function was imple-
mented using two ordinary integer vectors, one stor-
ing the number of threads starting at each side, and one 
storing the number of threads using each side and each 
oriented edge. Due to the use of sdsl-lite, and the 
poor constant-factor performance of dynamic alterna-
tives, efficient integer vector insert operations into the 
B[] arrays were not possible, and so the batch construc-
tion algorithm (Algorithm 3), applicable only to directed 
acyclic graphs, was implemented. A modified release 
of vg, which can be used to replicate the results shown 
here, is available from https://github.com/adamnovak/
vg/releases/tag/gpbwt2.

The modified vg was used to create a genome graph for 
human chromosome 22, using the 1000 Genomes Phase 
3 VCF on the GRCh37 assembly, embedding informa-
tion about the correspondence between VCF variants 
and graph elements [16]. Note that the graph constructed 
from the VCF was directed and acyclic; it described only 
substitutions and indels, with no structural variants, and 
thus was amenable to the batch gPBWT construction 
algorithm. Next, haplotype information for the 5008 hap-
lotypes stored in the VCF was imported and stored in 
a gPBWT-enabled xg index for the graph, using the 
batch construction algorithm mentioned above. In some 
cases, the VCF could not be directly translated into self-
consistent haplotypes. For example, a G to C SNP and a 
G to GAT insertion might be called at the same position, 
and a haplotype might claim to contain the alt alleles 
of both variants. A naïve interpretation might have the 
haplotype visit the C and then the GAT, which would be 
invalid, because the graph would not contain the C to G 
edge. In cases like this, an attempt was made to seman-
tically reconcile the variants automatically (in this case, 
as a C followed by an AT), but this was only possible for 
some cases. In other cases, invalid candidate haplotype 
threads were still generated. These were then split into 
valid pieces to be inserted into the gPBWT. Threads were 
also split to handle other exceptional cases, such as hap-
loid calls in the input. Overall, splitting for causes other 
than loss of phasing occurred 203,145  times across the 
5008 haplotypes, or about 41 times per haplotype.

The xg indexing and gPBWT construction process 
took 9 h and 19 min using a single indexing thread on an 
Intel Xeon X7560 running at 2.27  GHz, and consumed 
278 GB of memory. The high memory usage was a result 
of the decision to retain the entire data set in memory in 
an uncompressed format during construction. However, 
the resulting xg index was 436  MB on disk, of which 

https://github.com/adamnovak/vg/releases/tag/gpbwt2
https://github.com/adamnovak/vg/releases/tag/gpbwt2
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Fig. 3 Distribution (top) and cumulative distribution (bottom) of the 
number of 1000 Genomes Phase 3 haplotypes consistent with short 
paths in the GRCh37 chromosome 22 graph. Primary mappings of 
101 bp reads with scores of 90 out of 101 or above (n = 1, 500, 271

) are the solid blue line. Secondary mappings meeting the same 
score criteria (n = 43, 791) are the dashed green line. Simulated 
100 bp random walks in the graph without consecutive N characters 
(n = 686, 590) are the dotted red line. Consistent haplotypes were 
counted using the gPBWT support added to vg [18].

321  MB was used by the gPBWT. Information on the 
5008  haplotypes across the 1,103,547  variants was thus 
stored in about 0.93 bits per diploid genotype in the suc-
cinct self-indexed representation, or 0.010 bits per haplo-
type base.2 Extrapolating linearly from the 51 megabases 
of chromosome 22 to the entire 3.2 gigabase human ref-
erence genome, a similar index of the entire 
1000  Genomes dataset would take 27  GB, with 20  GB 
devoted to the gPBWT. This is well within the storage 
and memory capacities of modern computer systems.

Random walks
The query performance of the gPBWT implementation 
was evaluated using random walk query paths. 1 mil-
lion random walks of 100  bp each were simulated from 
the graph. To remove walks covering ambiguous regions, 
walks that contained two or more N bases in a row were 
eliminated, leaving 686,590  random walks. The number 
of haplotypes in the gPBWT index consistent with each 
walk was then determined, taking 61.29  s in total using 
a single query thread on the above-mentioned Xeon sys-
tem. The entire operation took a maximum of 458  MB 
of memory, indicating that the on-disk index did not 
require significant expansion during loading to be usable. 
Overall, the gPBWT index required 89.3  μs per count 
operation on the 100 bp random walks. It was found that 
316,078 walks, or 46%, were not consistent with any hap-
lotype in the graph. The distribution of of the number of 
haplotypes consistent with each random walk is visible in 
Fig. 3.

Read alignments
To further evaluate the performance of the query imple-
mentation, we evaluated read alignments to measure 
their consistency with stored haplotypes. 1000 Genomes 
Low Coverage Phase 3 reads for NA12878 that were 
mapped in the official alignment to chromosome 22 were 
downloaded and re-mapped to the chromosome 22 
graph, using the xg/GCSA2-based mapper in vg, allow-
ing for up to a single secondary mapping per read. (The 
vg aligner was chosen because of its ease of integration 
with our xg-based gPBWT implementation, but in prin-
ciple any aligner that supports aligning to a graph could 
be used.) The mappings with scores of at least 90 points 
out of a maximum of 101 points (for a perfectly-mapped 
101 bp read) were selected (thus filtering out alignments 
highly like to be erroneous) and broken down into pri-
mary and secondary mappings. The number of 

2 The improved size results here relative to the results in our conference 
paper are related to the use of a new run-length-compressed storage back-
end for the B[] arrays, replacing one that was previously merely succinct 
[19].

haplotypes in the gPBWT index consistent with each 
read’s path through the graph was calculated (Fig. 3). For 
1,500,271  primary mappings, the count operation took 
150.49  seconds in total, or 100  microseconds per map-
ping, using 461 MB of memory. (Note that any approach 
that depended on visiting each haplotype in turn, such as 
aligning each read to each haplotype, would have to do its 
work for each read/haplotype combination in less than 20 
μs, or about 45 clock cycles, in order to beat this time.) It 
was found that 2521 of these primary mappings, or 
0.17%, and 320 of 43,791 secondary mappings, or 0.73%, 
were not consistent with any haplotype path in the 
graph.3 These read mappings, despite having reasonable 
edit based scores, may represent rare recombinations, 
but the set is also likely to be enriched for spurious 
mappings.

Scaling characteristics
To evaluate the empirical space usage scaling characteris-
tics of our gPBWT implementation, a scaling experiment 
was undertaken. The 1000 Genomes Phase 3 VCFs for the 

3 These numbers are expected to differ from those reported in our confer-
ence paper due to improvements to the vg mapping algorithms since the 
conference paper was prepared [19].
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GRCh38 assembly were downloaded, modified to express 
all variants on the forward strand in the GRCh38 assem-
bly, and used together with the assembly data to produce 
a graph for chromosome  22 based on the newer assem-
bly. This graph was then used to construct a gPBWT with 
progressively larger subsets of the available samples. Sam-
ples were selected in the order they appear in the VCF file. 
For each subset, an xg serialization report was generated 
using the xg tool, and the number of bytes attributed to 
“threads” was recorded. The number of bytes used versus 
the number of samples stored is displayed in Fig. 4.

After empirical size data was obtained, a log-plus-
linear curve, consisting of a log component and a linear 
component, was fit to the data. This curve was used to 
extrapolate an estimated size of 5.34 GB on disk for the 
storage of 100,000 samples’ worth of data on chromo-
some 22. We choose 100,000 because it is representative 
of the scale of large contemporary sequencing projects, 
such as Genomics England’s 100,000 Genomes Project 
(https://www.genomicsengland.co.uk/the-100000-ge-
nomes-project/) [20] and the NHLBI’s TOPMed pro-
gram (https://www.nhlbi.nih.gov/research/resources/
nhlbi-precision-medicine-initiative/topmed). Linear 
extrapolation from the 51  megabase chromosome  22 to 
the 3.2  gigabase human genome yields a size estimate 
of 336  GB for the storage of 100,000 diploid genomes, 
in addition to the space usage of the underlying graph. 
Although this extrapolation does not account for the 
dependence of graph complexity on the number of sam-
ples sequenced, it suggests that the gPBWT is capable of 
scaling to the anticipated size of future sequencing data 
sets, while using currently available computing resources.

Discussion
We have introduced the gPBWT, a graph based gener-
alization of the PBWT. We have demonstrated that a 
gPBWT can be built for a substantial genome graph (all 

of human chromosome 22 and the associated chromo-
some 22 substitutions and indels in 1000  Genomes). 
Using this data structure, we have been able to quickly 
determine that the haplotype consistency rates of ran-
dom walks and primary and secondary read mappings 
differ substantially from each other, and based on the 
observed distributions we hypothesize that consistency 
with very few haplotypes can be a symptom of a poor 
alignment.

Such poor alignments could arise by a variety of means, 
including similarity between low complexity sequence, or 
paralogy, the latter representing true sequence homology 
but not true sequence orthology. Paralogous alignments 
are often difficult to distinguish from truly orthologous 
alignments, and can lead to the reporting of false or mis-
placed variants. Using haplotype consistency information 
is one way we might better detect paralogy, because par-
alogous sequence is not expected to be consistent with 
linkage relationships at a paralogous site. A more sophis-
ticated analysis of haplotype consistency rate distribu-
tions could thus improve alignment scoring.

In the present experiment, we have examined only rela-
tively simple variation: substitutions and short indels. 
Instances of more complex variation, like large inver-
sions and translocations, which would have induced 
cycles in our genome graphs, were both absent from the 
1000 Genomes data set we used and unsupported by the 
optimized DAG-based construction algorithm which we 
implemented. We expect that complex structural varia-
tion is well suited to representation as a genome graph, 
so supporting it efficiently should be a priority for a seri-
ous practical gPBWT construction implementation.

Extrapolating from our results on chromosome 22, 
we predict that a whole-genome gPBWT could be con-
structed for all 5008 haplotypes of the 1000  Genomes 
data on GRCh37 and stored in the main memory of a 
reasonably apportioned computer, using about 27  GB 
of memory for the final product. On the GRCh38 data 
set, we extrapolate a space usage of 21 GB for the 2504 
samples of the 1000  Genomes Project; a whole-genome 
gPBWT for 100,000  samples on GRCh38, we predict, 
could be stored in about 336  GB. Computers with this 
amount of memory, though expensive, are readily avail-
able from major cloud providers. (The wasteful all-
threads-in-memory construction implementation we 
present here, however, would not be practical at such a 
scale, requiring on the order of 50 TB of memory to han-
dle 100,000 samples when constructing chromosome 1; a 
disk-backed implementation or other low-memory con-
struction algorithm would be required.) The relatively 
modest growth from 5008 haplotypes (2504 samples) to 
200,000 haplotypes (100,000 samples) is mostly attribut-
able to the run-length compression used to store the B 

Fig. 4 Disk space usage for the gPBWT versus sample count 
for GRCh38 chromosome 22. Points are sampled at pow-
ers of two up to 128, and intervals of 128 thereafter up to 
1024. The trend line shown corresponds to the function 
y(x) = 3.16× 106bytes · ln(x/samples)+ 5.12× 104

bytes
sample

· x+

1.84× 108bytes.

https://www.genomicsengland.co.uk/the-100000-genomes-project/
https://www.genomicsengland.co.uk/the-100000-genomes-project/
https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed
https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed
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arrays in our implementation. Each additional sample is 
representable as a mere increase in run lengths where it 
agrees with previous samples, and contributes an expo-
nentially diminishing number of new variants and novel 
linkage patterns. While further empirical experimenta-
tion will be necessary to reasonably extrapolate further, it 
does not escape our notice that the observed scaling pat-
terns imply the practicality of storing cohorts of a million 
or more individuals, such as those envisaged by the Pre-
cision Medicine Initiative [21] and other similar national 
efforts, within an individual powerful computer. Looking 
forward, this combination of genome graph and gPBWT 
could potentially enable efficient mapping not just to one 
reference genome or collapsed genome graph, but simul-
taneously to an extremely large set of genomes related by 
a genome graph.

Abbreviations
BWT:  Burrows–Wheeler transform; PBWT:  positional Burrows–Wheeler trans-
form; gPBWT:  graph positional Burrows–Wheeler transform; GRC:  genome 
reference consortium; GRCh37:  GRC human genome assembly, build 37; 
GRCh38:  GRC human genome assembly, build 38; DAG:  directed acyclic 
graph.

Authors’ contributions
AMN wrote most of the gPBWT implementation presented here, conducted 
the experiments, and composed the majority of the manuscript. EG managed 
the vg project, wrote the read simulation and mapping code used here, and 
collaborated on the gPBWT implementation. BP developed the mathemat-
ics of the gPBWT and collaborated on the manuscript. All authors read and 
approved the final manuscript.

Author details
1 Genomics Institute, University of California Santa Cruz, CBSE, 501C Engineer-
ing 2, MS: CBSE, 1156 High St., Santa Cruz, CA 95064, USA. 2 Wellcome Trust 
Sanger Institute, Cambridge CB10 1SA, UK. 

Acknowledgements
We would like to thank Richard Durbin for inspiration, David Haussler for 
his extremely helpful comments on the manuscript, and Jordan Eizenga for 
additional helpful comments on manuscript revisions.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets analyzed during the current study are available in the 
1000 Genomes repository, at ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_inte-
grated_v5a.20130502.genotypes.vcf.gz (md5 ad7d6e0c05edafd-
7faed7601f7f3eaba), ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_
v5a.20130502.genotypes.vcf.gz.tbi (md5 4202e9a481aa8103b4715
31a96665047), ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/
phase2_reference_assembly_sequence/hs37d5.fa.gz (md5 a07c7647c4f2
e78977068e9a4a31af15), and ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/supporting/GRCh38_positions/ALL.chr22.phase3_shapeit2_
mvncall_integrated_v3plus_nounphased.rsID.genotypes.GRCh38_dbSNP_
no_SVs.vcf.gz (md5 cf7254ef5bb6f850e3ae0b48741268b0), and 
in the GRCh38 assembly repository, at ftp://ftp.ncbi.nlm.nih.gov/genomes/
all/GCA/000/001/405/GCA_000001405.15_GRCh38/GCA_000001405.15_
GRCh38_assembly_structure/Primary_Assembly/assembled_chromosomes/
FASTA/chr22.fna.gz (md5 915610f5fb9edfcc9ce477726b9e72c6).

Ethics approval and consent to participate
 All human data used in this study comes from already published, fully 
public sources, namely the 1000 Genomes Project and the human reference 
assembly. We believe that the work performed in this study is consistent with 
the purpose for which these data resources were created, and that the original 
ethical reviews of the creation and publication of these data resources, and 
the consent assertions given to the original projects, are sufficient to cover 
this new work.

Funding
This work was supported by the National Human Genome Research Institute 
of the National Institutes of Health under Award Number 5U54HG007990, 
the W.M. Keck foundation under DT06172015, the Simons Foundation under 
SFLIFE# 351901, the ARCS Foundation, and Edward Schulak. The content is 
solely the responsibility of the authors and does not necessarily represent the 
official views of the National Institutes of Health or any other funder.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 20 December 2016   Accepted: 17 June 2017

References
 1. Durbin R. Efficient haplotype matching and storage using the positional 

Burrows–Wheeler transform (PBWT). Bioinformatics. 2014;30(9):1266–72.
 2. Burrows M, Wheeler D. A block-sorting lossless data compression algo-

rithm. Technical report. Maynard: Digital Equipment Corporation; 1994.
 3. Ferragina P, Manzini G. Opportunistic data structures with applications. In: 

Proceedings of the 41st symposium on foundations of computer science 
(FOCS), IEEE; 2000. p. 390–98.

 4. Li H. BGT: efficient and flexible genotype query across many samples. 
Bioinformatics. 2015;613.

 5. Lunter G. Fast haplotype matching in very large cohorts using 
the Li and Stephens model. 2016. http://biorxiv.org/content/
early/2016/04/12/048280.full.pdf.

 6. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang 
HM, Fuchsberger C, Danecek P, Sharp K, et al. A reference panel of 64,976 
haplotypes for genotype imputation. Nat Genet. 2016.

 7. Loh P-R, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, Finucane HK, 
Schoenherr S, Forer L, McCarthy S, Abecasis GR, et al. Reference-based 
phasing using the haplotype reference consortium panel. Nat Genet. 
2016;48(11):1443–8.

 8. Dilthey A, Cox C, Iqbal Z, Nelson MR, McVean G. Improved genome 
inference in the MHC using a population reference graph. Nat Genet. 
2015;47(6):682–8.

 9. Novak AM, Hickey G, Garrison E, Blum S, Connelly A, Dilthey A, Eizenga 
J, Elmohamed MS, Guthrie S, Kahles A, et al. Genome graphs. bioRxiv. 
2017;101378.

 10. Sirén, J.: Indexing variation graphs. In: Proceedings of the ninteenth work-
shop on algorithm engineering and experiments (ALENEX), SIAM; 2017. 
p. 13–27.

 11. Maciuca S, del Ojo Elias C, McVean G, Iqbal Z. A natural encoding of 
genetic variation in a Burrows–Wheeler transform to enable mapping 
and genome inference. In: International workshop on algorithms in 
bioinformatics (WABI), Springer; 2016. p. 222–33.

 12. Huang L, Popic V, Batzoglou S. Short read alignment with populations of 
genomes. Bioinformatics. 2013;29(13):361–70.

 13. Medvedev P, Brudno M. Maximum likelihood genome assembly. J Com-
put Biol. 2009;16(8):1101–16.

 14. Paten B, Novak A, Haussler D. Mapping to a reference genome structure. 
ArXiv e-prints. 2014;1404.5010.

 15. Grossi R, Gupta A, Vitter JS. High-order entropy-compressed text indexes. 
In: Proceedings of the fourteenth annual ACM-SIAM symposium on 
discrete algorithms (SODA), SIAM; 2003. p. 841–50.

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3%5fshapeit2%5fmvncall%5fintegrated%5fv5a.20130502.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3%5fshapeit2%5fmvncall%5fintegrated%5fv5a.20130502.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3%5fshapeit2%5fmvncall%5fintegrated%5fv5a.20130502.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3%5fshapeit2%5fmvncall%5fintegrated%5fv5a.20130502.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3%5fshapeit2%5fmvncall%5fintegrated%5fv5a.20130502.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3%5fshapeit2%5fmvncall%5fintegrated%5fv5a.20130502.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2%5freference%5fassembly%5fsequence/hs37d5.fa.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2%5freference%5fassembly%5fsequence/hs37d5.fa.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38%5fpositions/ALL.chr22.phase3%5fshapeit2%5fmvncall%5fintegrated%5fv3plus%5fnounphased.rsID.genotypes.GRCh38%5fdbSNP%5fno%5fSVs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38%5fpositions/ALL.chr22.phase3%5fshapeit2%5fmvncall%5fintegrated%5fv3plus%5fnounphased.rsID.genotypes.GRCh38%5fdbSNP%5fno%5fSVs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38%5fpositions/ALL.chr22.phase3%5fshapeit2%5fmvncall%5fintegrated%5fv3plus%5fnounphased.rsID.genotypes.GRCh38%5fdbSNP%5fno%5fSVs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38%5fpositions/ALL.chr22.phase3%5fshapeit2%5fmvncall%5fintegrated%5fv3plus%5fnounphased.rsID.genotypes.GRCh38%5fdbSNP%5fno%5fSVs.vcf.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA%5f000001405.15%5fGRCh38/GCA%5f000001405.15%5fGRCh38%5fassembly%5fstructure/Primary%5fAssembly/assembled%5fchromosomes/FASTA/chr22.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA%5f000001405.15%5fGRCh38/GCA%5f000001405.15%5fGRCh38%5fassembly%5fstructure/Primary%5fAssembly/assembled%5fchromosomes/FASTA/chr22.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA%5f000001405.15%5fGRCh38/GCA%5f000001405.15%5fGRCh38%5fassembly%5fstructure/Primary%5fAssembly/assembled%5fchromosomes/FASTA/chr22.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA%5f000001405.15%5fGRCh38/GCA%5f000001405.15%5fGRCh38%5fassembly%5fstructure/Primary%5fAssembly/assembled%5fchromosomes/FASTA/chr22.fna.gz
http://biorxiv.org/content/early/2016/04/12/048280.full.pdf
http://biorxiv.org/content/early/2016/04/12/048280.full.pdf


Page 12 of 12Novak et al. Algorithms Mol Biol  (2017) 12:18 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 16. 1000 Genomes Project Consortium. A global reference for human 
genetic variation. Nature. 2015;526(7571):68–74.

 17. Gog S, Beller T, Moffat A, Petri M. From theory to practice: plug and 
play with succinct data structures. In: 13th international symposium on 
experimental algorithms (SEA), Springer; 2014. p. 326–37.

 18. Garrison E. vg: the variation graph toolkit. 2016. https://github.com/
vgteam/vg/blob/80e823f5d241796f10b7af6284e0d3d3d464c18f/doc/
paper/main.tex.

 19. Novak AM, Garrison E, Paten B. A graph extension of the positional Bur-
rows–Wheeler transform and its applications. In: International workshop 
on algorithms in bioinformatics (WABI), Springer; 2016. p. 246–56.

 20. Nothaft FA, Massie M, Danford T, Zhang Z, Laserson U, Yeksigian C, 
Kottalam J, Ahuja A, Hammerbacher J, Linderman M, et al. Rethinking 
data-intensive science using scalable analytics systems. In: Proceedings 
of the 2015 ACM SIGMOD international conference on management of 
data, ACM; 2015. p. 631–46.

 21. Hudson K, Lifton R, Patrick-Lake B, et al. The precision medicine initiative 
cohort program—building a research foundation for 21st century medi-
cine. Washington, DC: National Institutes of Health. 2015.

https://github.com/vgteam/vg/blob/80e823f5d241796f10b7af6284e0d3d3d464c18f/doc/paper/main.tex
https://github.com/vgteam/vg/blob/80e823f5d241796f10b7af6284e0d3d3d464c18f/doc/paper/main.tex
https://github.com/vgteam/vg/blob/80e823f5d241796f10b7af6284e0d3d3d464c18f/doc/paper/main.tex

	A graph extension of the positional Burrows–Wheeler transform and its applications
	Abstract 
	Background
	Definitions
	The graph positional Burrows–Wheeler transform
	Extracting threads
	Succinct storage
	Embedding threads
	Batch embedding threads
	Counting occurrences of subthreads
	Results
	Random walks
	Read alignments

	Scaling characteristics

	Discussion
	Authors’ contributions
	References




