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Abstract 

Background: Genome sequences and genome annotation data have become available at ever increasing rates in 
response to the rapid progress in sequencing technologies. As a consequence the demand for methods supporting 
comparative, evolutionary analysis is also growing. In particular, efficient tools to visualize-omics data simultaneously 
for multiple species are sorely lacking. A first and crucial step in this direction is the construction of a common coor-
dinate system. Since genomes not only differ by rearrangements but also by large insertions, deletions, and duplica-
tions, the use of a single reference genome is insufficient, in particular when the number of species becomes large.

Results: The computational problem then becomes to determine an order and orientations of optimal local 
alignments that are as co-linear as possible with all the genome sequences. We first review the most prominent 
approaches to model the problem formally and then proceed to showing that it can be phrased as a particular variant 
of the Betweenness ProBlem. It is NP hard in general. As exact solutions are beyond reach for the problem sizes of practi-
cal interest, we introduce a collection of heuristic simplifiers to resolve ordering conflicts.

Conclusion: Benchmarks on real-life data ranging from bacterial to fly genomes demonstrate the feasibility of com-
puting good common coordinate systems.

Keywords: Comparative genomics, Comparative transcriptomics, Big data, Graph theory, Betweenness ordering, 
Colored multigraph, Combinatorial optimization
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Background
The past decade has seen rapid progress of sequencing 
technologies [1]. The dramatic decrease of sequencing 
costs has enabled an ever-accelerating flood of genomic 
and transcriptomic data [2] that in turn have lead to the 
development of a wide array of methods for data analysis. 
Despite recent efforts to study transcriptome evolution at 
large scales [3–7] the capability to analyze and integrate 
-omics data in large-scale phylogenetic comparisons lags 
far behind data generation. One key aspect of this short-
coming is the current lack of powerful tools for visualiz-
ing comparative -omics data. Available tools such as [8, 9] 
have been designed with closely related species or strains 
in mind. The visualizations become difficult to read for 
multiple species and larger evolutionary distances, where 
homologous genomic regions may differ substantially in 
their lengths, an issue that becomes more pressing the 

larger regions of interest become. A common coordinate 
system for multiple genomes is not only a convenience 
for graphical representations of -omics data, however. 
It would also greatly facilitate the systematic analysis of 
all those genomic features that are not sufficiently local 
to be completely contained within individual blocks of a 
genome-wide multiple sequence alignment (gMSA).

Still, gMSAs are the natural starting point. Sev-
eral pipelines to construct such alignments have been 
deployed over the past two decades, most prominently 
the tba/multiz pipeline [10, 11] employed by the UCSC 
genome browser and the Enredo/Pecan/Ortheus 
(EPO) pipeline [12] featured in the ensembl system. For 
the ENCODE project data, in addition alignments gener-
ated with MAVID [13] and M-LAGAN [13] have become 
available, see [14] for a comparative assessment. A com-
mon feature of gMSAs is that they are composed of a 
large number of alignment blocks. At least in the case of 
MSAs of higher animals and plants the individual blocks 
are typically (much) smaller than individual genes. As a 
consequence, they are not ready-to-use for detailed com-
parative studies e.g. of transcriptome or epigenome [15] 
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structure. In the gMSA-based splice site maps of [16], for 
example, it is easy to follow the evolution of individual 
splice junctions as they are localized within a block. At 
the same time it is difficult to collate the global differ-
ences of extended transcripts, which may span hundreds 
of blocks and to relate changes in transcript structure 
with genomic rearrangements, insertions of repetitive 
elements or deletion of chunks of sequence.

To a certain extent this problem is alleviated by con-
sidering the blocks arranged w.r.t. a reference genome. 
For many applications, however, this does not appear to 
be sufficient. For sufficiently similar genomes with only 
few rearrangements gMSA blocks are large or can at least 
be arranged so that large syntenic regions can be repre-
sented as a single aligned block. Any ordering of these 
large syntenic blocks, termed a supergenome in [17], then 
yields an informative common coordinate system. So far, 
this approach has been applied only to closely related 
procaryotic genomes. Prime examples are a detailed 
comparative analysis of the transcriptome of multiple 
isolates of Campylobacter jejuni [18] or the reconstruc-
tion of the phylogeny of mosses from the “nucleotide 
pangenome” of mitogenomic sequences [19]. We remark 
that some approaches to “pangenomes” are concerned 
with gMSAs of (usually large numbers of ) closely related 
isolates; most of this literature, however, treats pange-
nomes as sets of orthologous genes [20].

Here we are concerned with the coordinatization of 
supergenomes, i.e., the question how gMSA blocks can 
be ordered in a way that facilitates comparative studies of 
genome annotation data. In contrast to previous work on 
supergenomes we are in particular interested in large ani-
mal and plant genomes and in large phylogenetic ranges. 
We therefore assume that we have short alignment blocks 
and abundant genome rearrangement, leaving only short 
sequences of alignment blocks that are perfectly syntenic 
between all genomes involved. The problem of optimally 
sorting the MSA blocks can, as we shall see, be regarded 
as a quite particular variant of a vertex ordering prob-
lem, a class of combinatorial problems that recently has 
received increasing attention in computer science [21–
24]. In the computational biology literature, furthermore, 
several graph-based methods have been proposed to 
solve the problem of sorting sequence blocks for superge-
nomes, see e.g. [12, 25–29].

This contribution is organized as follows: In the follow-
ing section we first analyze the concept of the superge-
nome and its relationship to gMSAs in detail. We then 
review combinatorial optimization problems that are 
closely related to the “supergenome sorting problem”, 
and argue that the most appropriate modeling leads to a 
special type of betweenness ordering problem. Next, we 
introduce a heuristic solution that is geared towards very 

large input alignments and proceeds by step-wise simpli-
fication of the supergenome multigraph. Finally, we out-
line a few computational results.

Theory
Genome‑wide multiple sequence alignments
Our starting point is a set of genome assemblies. For our 
purposes an assembly is simply a set of sequences rep-
resenting chromosomes, scaffolds, reftigs, contigs, etc. 
In the following, we will use contig to refer to any such 
sequence. On each of these constituent sequences we 
assume the usual coordinate system defining sequence 
positions. Since DNA is double stranded, a piece of 
genomic sequence is either contained directly ( σ = + 1 ) 
in the assembly or it is represented by its reverse com-
plement ( σ = − 1 ). We write (G, c, i, j, σ) to identify the 
sequence interval from positions i to j on contig c of 
genome assembly G with reading direction σ . We assume, 
w.l.o.g., i ≤ j.

Most comparative methods require multiple sequence 
alignments (MSAs) as input. An MSA A is com-
posed of alignment blocks, each of which consists 
of an alignment of sequence intervals. For the pur-
poses of this paper it its sufficient to characterize an 
alignment block by the coordinates of its constituent 
sequence intervals. That is, a block B ∈ A has the form 
B = {(Gu, cu, iu, ju, σu)|u ∈ rows of B} where the index 
u runs over the rows of the alignment block. It will be 
convenient to allow alignment blocks also to consist of a 
single interval only, thus referring to a piece of sequence 
that has not been aligned. Note that at this stage we do 
not assume that an alignment block contains only one 
interval from each assembly.

The projection πG(B) extracts from an alignment block 
the union of its constituent sequence intervals belonging 
to assembly G . If the assembly G is not represented in the 
alignment block B we set πG(B) = ∅.

The projection operation collapses pairs of overlapping 
sequence intervals ( i ≤ i′ ≤ j ≤ j′ ) in to a single inter-
val: (G, c, i, j, σ) ∪ (G, c, i′, j′, σ ′) = (G, c, i, j′,+1) without 
regard for the orientation, which is set to +1 and will have 
no bearing on the algorithm we develop further down.

The projection πG of A onto one of its constitu-
ent assemblies G is the union of the sequence intervals 
from G that are contained in its alignment blocks, i.e., 
πG(A) =

⋃

B∈A πG(B).

Definition 1 Let A be an MSA.

  • A is complete if πG(A) = G , i.e., if each position in 
each assembly is represented in at least one align-
ment block.



Page 3 of 19Gärtner et al. Algorithms Mol Biol  (2018) 13:15 

  • A is irredundant πG(B
′) ∩ πG(B

′′) = ∅ for any two 
distinct blocks B′ and B′′ , i.e., if every sequence inter-
val from assembly G is contained in at most one 
alignment block.

  • A is injective if no alignment block comprises more 
than one interval from each of its constituent assem-
blies.

Clearly, every given MSA can easily be completed by 
simply adding all unaligned sequence intervals as addi-
tional blocks.

Just like a contig c in a (genome) assembly G , each 
block B ∈ A has an internal coordinate system defined 
by its columns. We write (B, k) for column k in block B. 
We write ℓ(B) for the number of columns in block B. If 
A is irredundant, then there are functions fG,c that map 
position i within (G, c) to a corresponding MSA coor-
dinate (B,  k). If A is complete, the individual fG,c can 
be combined to a single function f : (G, c, i) �→ (B, k) . 
Completeness implies that every position (G, c, i) is rep-
resented in the MSA, and irredundancy guarantees that 
the relation between assembly and alignment coordinates 
is a function by ensuring that (G, c, i) corresponds to at 
most one alignment column. The following definition 
is therefore equivalent to the notion of a supergenome 
introduced in [17].

Definition 2 An MSA A is a supergenome if it is com-
plete, irredundant, and injective.

The most commonly used genome-wide MSAs cannot 
be completed to supergenomes. The MSAs produced by 
the multiz pipeline are usually not irredundant: differ-
ent intervals of the “reference sequence” may be aligned 
to the same interval of another assembly. While multiz 
[11] alignments are injective this is in general not the 
case with the EPO [12] alignments. In these, multiple par-
alogous sequences from the same genome may appear in 
one alignment block.

Now consider an MSA A and an arbitrary order < of 
the alignment blocks of A . Then there is a (unique) func-
tion φ that maps the pairs (B, k) injectively to the interval 
[1, n], where n =

∑

B∈A ℓ(B) is the total number of col-
umns in A such that φ(B, i) < φ(B′, i′) whenever B < B′ 
or B = B′ and i < i′ . If A is a supergenome, then φ(f ) is 
clearly an injective function from a genome assembly G 
to [1,  n]. We call φ(f (G, c, i)) the coordinate of position 
i of contig c of assembly G in the ordered supergenome 
(A,<).

As pointed out in [17], the existence of a coordinate 
system for the supergenome A is independent of the 
block order <. However, the order < is crucial for the 
practical use of the coordinate system.

Adjacency and betweenness of MSA blocks
The natural starting point for considering adjacency 
and betweenness of alignment blocks are their constitu-
ent intervals (G, c, i, j, σ) on a fixed assembly G and con-
tig c. Intervals have a natural partial order defined by 
(G, c, i, j, σ) ≺ (G, c, k , l, σ) whenever i < k and j < l . Two 
intervals are incomparable in this interval order if and 
only if one is contained in the other. Note that the inter-
val order allows comparable intervals to overlap. We also 
consider intervals incomparable that belong to different 
contigs and/or assemblies.

Given three intervals α = (G, c, i′, j′, σ ′) , 
β = (G, c, i′′, j′′, σ ′′) , and γ = (G, c, i, j, σ) (on the same 
genome assembly and contig), we say that γ is between the 
two distinct intervals α and β if α ≺ γ ≺ β or β ≺ γ ≺ α.

Given a collection Q of intervals on the same assem-
bly G and contig c, we say that α = (G, c, i′, j′, σ ′) and 
β = (G, c, i′′, j′′, σ ′′) are adjacent if there is no interval γ 
between α and β . We say that α is a predecessor of β if α 
and β are adjacent and α ≺ β . Analogously, α is a a suc-
cessor of β if α and β are adjacent and β ≺ α.

Lemma 1 Let A be a supergenome and consider the the 
collection {πG(B)|B ∈ A} of intervals on a given G. Then (i) 
no two intervals overlap, (ii) the interval order ≺ is a total 
order on every contig c, (iii) every interval has at most one 
predecessor and one successor, and hence is adjacent to at 
most two intervals, and (iv) if γ is adjacent to both α and 
β , then γ is between α and β.

Proof Property (i) follows directly from the condi-
tion. (ii) As a consequence, any two intervals on a fixed 
contig c are comparable, i.e., the restriction of ≺ to c is a 
total order. Since only intervals on the same contig can 
be adjacent, (iii) is an immediate consequence of (ii) and 
the fact that the number intervals is finite. Property (iv) is 
now a trivial consequence of the fact that by (iii) α and β 
must be the predecessor and successor of γ.

A key construction in this contribution is the notion of 
betweenness relations for alignment blocks.

Definition 3 Given three blocks A,B,C ∈ A , we say 
that C is between A and B with respect to G if πG(C) is 
between πG(A) and πG(B) . The ternary relation C (A) is 
the defined by (A,C ,B) ∈ C (A) whenever C is between 
A and B for some assembly G.

We note that contradicting betweenness relations 
resulting from different genome assemblies G are to be 
expected, i.e., the relation C (A) will in general not satisfy 
the properties of a well-formed betweenness relation. We 
will return to this issue below.



Page 4 of 19Gärtner et al. Algorithms Mol Biol  (2018) 13:15 

Definition 4 Two blocks A,B ∈ A are adjacent if there 
is an assembly G such that πG(A) and πG(B) are adjacent 
w.r.t. {πG(C)|C ∈ A}.

It is useful to regard A with its adjacency relation as a 
graph. In order to keep track of the individual contigs, we 
use an edge-colored multigraph, with G serving as edge 
color.

Definition 5 The supergenome graph Ŵ(A) of an MSA 
A is the directed, edge-colored multigraph whose vertices 
are the alignment blocks of A and whose directed edges 
(A,  B) connect an alignment block A to an alignment 
block B with color G whenever there are sequence inter-
vals α ∈ A is a predecessor of β ∈ B in assembly G.

An example how the prejection Ŵ(A) is done is shown 
in Fig. 1. The projection of Ŵ(A) to a constituent assembly 
G is a (not necessarily induced) subgraph. As an imme-
diate consequence of Lemma 1, each projection is a dis-
joint union of directed paths, each of which represents 
a contig. Conversely, every colored directed multigraph 

whose restriction to a single color is a set of vertex-dis-
joint directed paths is a supergenome graph. It therefore 
makes sense to talk about a supergenome graph Ŵ with-
out explicit reference to an underlying alignment A.

The structure of the supergenome graph strongly 
depends on the evolutionary history of the genomes that 
it represents. In the absence of genome rearrangements 
(i.e., when the only genetic changes are substitutions, 
insertions (including duplications), and deletions) then 
all genomes remain colinear with their common ancestor. 
In other words, a single, canonical [30] global alignment 
describes a common coordinate system that is unique up 
to the (arbitrary) order of contigs and each trace [31] of 
insertions and deletions. In terms of the block adjacency 
relation, each block has at most two adjacent neighbors 
in this scenario.

Genome rearrangements are by no means infrequent 
events [32–35], and thus cannot be neglected. Every 
breakpoint introduced by a genome rearrangement oper-
ation, be it a local reversal or a cut-and-join type disloca-
tion, introduces an ambiguous adjacency, i.e., a block that 
has two or more predecessors or successors. The task of 

Fig. 1 Projections of a supergenome graph. An example how the projection of an artificial MSA A to a supergenome graph Ŵ(A) can be done. 
Starting point is the MSA A shown in (i), which comprises five blocks ( B1 , ..., B5 ), each consisting of up to four intervals from the four genome 
assemblies (distinguished by colors: G1 blue, G2 green, G3 orange, G4 purple) with one contig each ( c1 , ..., c4 ). The intervals are designated as 
βk,l = (Gl , cl , ik,l , jk,l ,+1) ∈ Bk and β̄k,l = (Gl , cl , ik,l , jk,l ,−1) ∈ Bk .       To construct the supergenome graph first the predecessor of each interval is 
determined by sorting the intervals separately for each assembly. By assumption, intervals do not overlap. The ordered set of each assembly is 
shown in panel (ii). Only these orders are relevant in subsequent steps, hence we suppress the positional information from now on. The interval 
order implies a separate predecessor relation among blocks (iii), with a colored arrow from B1 to B2 implying that B1 is a predecessor of B2 w.r.t. the 
assembly indicated by the color. The supergenome graph Ŵ(A) has all blocks of A as its vertices (iv). The predecessor relations among the blocks 
define the colored, directed edges (v) 
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identifying an appropriate ordering of the MSA blocks 
therefore is a non-trivial one for realistic data, even in the 
absence of alignment errors.

Modeling the “Supergenome Sorting Problem”
Informally, we may consider the “supergenome sort-
ing problem” (SSP) as the task of finding an order < (or, 
equivalently, a permutation ρ ) of the alignment blocks of 
A such that the orders of the constituent assemblies are 
preserved as much as possible. Somewhat more precisely, 
we are to find an order < on the vertex set of the super-
genome graph Ŵ(A) that as many of its directed edges as 
possible are “consistent” with the order <. It is not clear 
from the outset, however, how “consistency” should be 
defined for our application. A large number of related 
models have been proposed and analyzed in the literature 
that make this condition precise in different ways, lead-
ing to different combinatorial optimization problems. We 
therefore proceed with a brief review of some paradig-
matic approaches. A reader primarily interested in our 
proposed approach to the problem might want to skip 
this section.

Hamiltonian paths
A plausible attempt is to view the SSP as a variant of the 
Hamiltonian path problem on the supergenome graph Ŵ . 
A Hamiltonian path defines a total order of the vertices 
and therefore a solution to the SSP. This is idea is simi-
lar to the use of Hamiltonian graphs for genome assem-
bly from read overlap graphs [36]. There are several quite 
obvious difficulties, however. First, it is not sufficient to 
consider only paths that are entirely confined to pass 
through the adjacencies. The simplest counterexample 
consists of only 4 MSA blocks B1 , B2 , B3 , B4 and three 
assemblies G1 , G2 , G3 . Given eight sequence intervals 
βk ,l = (Gl , ck ,l , ik ,l , jk ,l ,+1) ∈ Bk we construct the follow-
ing alignment:

This situation arises in practice e.g. when B2 and B3 are 
two independent, unrelated inserts between B1 and B4 . 
The block adjacency graph is the graph

which violates the desired betweenness relation 
(β1,3,β3,3,β4,3).

In this case there are only two biologically correct 
solutions: B1 < B2 < B3 < B4 (or the inverse order) and 
B1 < B3 < B2 < B4 (or its inverse). In either case, the 
solution contains two consecutive blocks ( B2 and B3 ) that 

B1 B2 B3 B4

g1 = β1,1 β4,1
g2 = β1,2 β2,2 β4,2
g3 = β1,3 β3,3 β4,3

B2 − B1 − B4 − B3,

are not adjacent in the block graph. This example also 
serves to demonstrate that the block graph alone does 
not contain the complete information on the superge-
nome. It appears that in addition we will need to know 
the betweenness relation among the blocks i.e., that both 
B2 and B3 are between B1 and B4.

Feedback arc sets and topological sorting
An other possibility to determine a well-defined order of 
the vertices of the supergenome graph Ŵ is to first extract 
a maximum acyclic subgraph and then to compute a 
topological sorting of this subgraph. An equivalent for-
mulation asks for the removal of a minimum set of edges 
that close cycles. This Maximum Acyclic Subgraph or 
Minimum Feedback Arc Set problem (MFAS) is well-
known to be NP-hard [37]. Nevertheless fast, practica-
ble heuristics have been devised, see e.g. [38, 39]. From 
the resulting directed acyclic graph (DAG) an admissible 
ordering of blocks can be obtained efficiently by topolog-
ical sorting [40]. A closely related approach is the Linear 
Ordering Problem (LOP): given a complete weighted 
directed graph, find a tournament with maximum total 
edge weights [41]. It yields essentially the same model 
since LOP and MFAS can be transformed into each other 
quite easily [42]. Cost functions designed to define con-
sensus orderings for sets of total and partial orders have 
been considered in different fields starting with the work 
of Spearman [43] and Kendall [44], see also e.g. [45–47]. 
The reconciliation of partial orders in investigated in 
detail e.g. in [48].

The key problem of modeling the SSP in terms of 
MFAS is highlighted in Fig.  2. It shows that even when 
undirected adjacencies would allow for a perfect solution, 
it may not be uncovered directly by the MFAS approach.

Simultaneous consecutive ones and matrix banding
Instead of adjacencies we may consider the incidence 
matrix A of the supergenome graph Ŵ and try to sort 
both the alignment blocks and their adjacencies in such 
a way that, to the extent that this is possible, (i) adjacent 
blocks are consecutive and (ii) adjacencies that have a 
block in common are consecutive. In more formal terms, 
we wish to sort both the rows (alignment blocks) and 
columns (adjacencies) of the incidence matrix in such 
a way that rows and columns show all non-zero entries 
consecutively. A rectangular matrix A that admits such a 
pair of row and column permutations is said to have the 
simultaneous consecutive ones property (C1S) [49]. This is 
possible if Ŵ is a union of paths. Note that instead of adja-
cencies we could also cover the graph with short paths 
℘k . In this case column k identifies the vertices incident 
with path k. Again, if Ŵ is a union of paths, the path-inci-
dence matrix satisfies (C1S). It is not difficult to see [49] 
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that A satisfies (C1S) if and only if A has the well-studied 
consecutive ones property [50, 51] for both its rows and 
columns. Thus (C1S) can be checked in linear time [50]. 
Furthermore, Tucker’s characterization of (C1S) in terms 
of forbidden sub-matrices [52] also carries over. Some 
direct connection between the consecutive ones property 
and the Betweenness Problem, which we will consider 
below, are discussed in [53].

In general, A will now have the consecutive ones prop-
erty. The problem of identifying a minimal number of 
columns (adjacencies) whose removal leaves a (C1S) 
matrix is NP-complete [49]. In practise it may be desir-
able to quantify the extent of the violation of (C1S) in 
terms of intervals of consecutive zeros enclosed by the 
two 1s. For instance, one may want to use ω =

∑

i h(ℓi) , 
where the sum runs over all intervals i of consecutive 
zeros enclosed by the two 1s, and h(ℓi) ≥ 0 is some con-
tribution that monotonically grows with the length ℓi of 
the 0-interval. For a given ordering of the rows and col-
umns, the total violation is quantified as the sum of the ω 
values. It should be noted, however, that (C1S) does not 
imply Ŵ is a union of disjoint paths, i.e., that Ŵ is a valid 
supergenome graph.

A related set of optimization problems is concerned 
with reducing the bandwidth of matrices, i.e., the maxi-
mal distance of non-zero entries from the diagonal (in 
a symmetric case) or the parameter min(l,u)+ l + u 
(for rectangular matrices); here u = maxAij �=0(i − j) and 
l = maxAij �=0(j − i) [54]. In the symmetric case, several 
good heuristics are known, starting with the Cuthill-
McKee [55] and GPS [56] algorithms even though the 
problem is NP-hard [57], while the general case has 
received much less attention [54]. Bandwidth reduction 
methods do not eliminate “bad” adjacencies that eventu-
ally determine bandwidth. The resulting ordering of rows 
and columns thus may be very inaccurate locally.

Bidirected graphs
Several specialized graph structures have been intro-
duced recently to tackle the problem of ordering 
sequence blocks, which is a problem very similar to SSP. 
Among these constructions are A-Bruijn graphs, Enredo 
graphs, and Cactus graphs, see [58] for a review. A key 
insight of [58] is that these graph representations are 
equivalent in the sense that they can be transformed into 
each other. They differ, however, in additional informa-
tion extracted from the input alignment that is stored as 
vertex and edge labels, see Fig. 3. For instance, the bidi-
rected graphs of [28] have the same underlying graph as 
our supergenome graph. While the supergenome graph 
used a standard directed graph structure, bidirected 
graphs encode directional information independently for 
the endpoint of each edge, distinguishing three cases: (i) 
adjacent alignment blocks have the same orientation, (ii) 
the connected blocks switch from minus to plus orien-
tation, or (iii) vice versa. The latter two cases indicate a 
change of orientation between two changes. In [28], this 
basic structure is extended by additional transitive edges 
given by a legal path through the graph with an exponen-
tial weight function. The task is then to find a consist-
ent (non-conflicting) set of edges with maximal weight. 
This form of the weight function takes into account that, 
due to genetic linkage, the more closely positioned on a 
genome two blocks are, the less likely it is that the edge 
between these blocks is broken. This gives higher weight 
to locally correct block positions and orientations.

While this sorting problem is (NP-) hard in general, the 
sets of genomes considered by the authors are particu-
larly suitable for this kind of calculations. The genomes 
considered for pangenome construction are typically 
closely related, or even of the same species. Thus one can 
expect many paths with high weights of the conserved 
consensus [29]. This approach also fits well to the analysis 
of genomic regions that are under constraint to maintain 

Fig. 2 Minimum feedback arc set (MFAS) does not necessarily yield an optimial solution of the SSP. Due to the arbitrariness of the orientation of the 
edges, the best solution of the SSP may contain cycles, which by definition is excluded in MFAS. Top: supergenome graph representation Ŵ(A) of an 
artificial alignment A . Bottom: simplified solution of the (uniformly weighted) MFAS. To turn Ŵ(A) into an acyclic graph, at least one edge has to be 
deleted. Two such solutions exist, differing only by the orientation of the gray arrow. The corresponding topological sorting breaks the genome into 
two distinct colinear pieces with opposite orientation. There is, however, a consistent order of the entire graph—the linear left-to-right or right-to-
left order is consistent
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syntenic order for functional reasons, such as the MHC 
locus used as an example in [28]. In distantly related 
genomes, however, synteny tends not to be well pre-
served. In addition, we are interested in particular in data 
sets that contain genomes in preliminary draft forms, i.e., 
linkage information that is at least partially limited to 
short contigs or scaffolds. As a consequence we have less 
confidence in linkage and orientation information than 
one can expect in a typical pangenome scenario.

Sequence graphs
The sequence graphs of Haussler et  al. [29] are also 
closely related to the supergenome graph representa-
tion Ŵ(A) of a multiple alignment A . The key differ-
ence is that the the orientation of the blocks is used to 

determine the direction of the edge. Two adjacent inter-
vals with negative orientation thus imply an edge that is 
reversed compared to the supergenome graph. This situ-
ation is problematic in the case where the orientation of 
the intervals is switched. In [29] a preprocessing step is 
performed to minimize the number of such edges. The 
sequence graph approach was designed for the compari-
son of human genomes of different individuals. In such a 
scenario, the resulting information loss is small and does 
not present a practical problem. It is likely to become an 
issue, however, for large phylogenetic distances with fre-
quent genome rearrangements.

The natural formulation of SSP on a sequence graph is 
to find a vertex ordering that minimizes weighted feed-
back edges and the average cut width. These optimization 

Fig. 3 Comparison of different graph definitions. Consider an alignment comprising of five MSA blocks ( B1 , B2 , B3 , B4 , B5 ) in four assem-
blies (indicated by different edge colors: G1 blue, G2 green, G3 orange, G4 purple), consisting of a total of sequence intervals denoted by 
βk,l = (Gl , ck,l , ik,l , jk,l ,+1) ∈ Bk and β̄k,l = (Gl , ck,l , ik,l , jk,l ,−1) ∈ Bk for positive and negative orientation, respectively. In the drawings, block Bi is 
simply denoted by i. Most of the edges in the different graphs represent the adjacency of two intervals in one of the constituent assemblies. These 
edges are displayed in the corresponding color. (i) Genome order and orientation of the intervals. Every line shows one assembly and the order 
on this assembly. (ii) The supergenome graph. (iii) The bidirected graph. Note that the edges are the same as in the supergenome graph except 
for the shown direction. (iv) The sequence graph of Haussler et al. [29]. Note that the edges (3,4) and (5,2) are not part of the graph because of the 
change in orientation. (v) The enredo graph. An example of the other special graph structures discussed in Kehr et al. [58]
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criteria ensure that the successor relations are mostly 
kept intact and at the same time successors are placed 
close to each other in the solution. Both problems the 
Minimum Feedback Arc Set Problem [37] and 
the Average Cut-Width Minimization Problem 
[59–61] are known to be NP-hard. Cutwidth minimiza-
tion problems ask for a linear ordering of the vertices 
of a graph such that the average or maximum number 
of edges spanning across the gap between a pair of con-
secutive vertices is minimized. Conceptually, cutwidth 
problems are quite similar to bandwidth problems [62]. 
In [29] a heuristic is presented that first extracts a totally 
ordered “backbone” and then inserts the remaining verti-
ces into the backbone order that is kept intact in the pro-
cess. While the presence of a global common backbone 
order is a well founded assumption for pangenomes of 
a single or very closely related species, it is violated sub-
stantially for phylogenetically diverse data.

Betweenness problems
In this work we interpret SSP as a betweenness (order-
ing) problem rather than a vertex ordering problem on a 
directed graph. Instead of (oriented) adjacencies, which 
are defined on pairs of blocks, one considers the relative 
order of three blocks:

Betweenness Problem [63, 64]: Given a finite set X 
and a collection C of triples from X, is there a total order 
on X such that ∀(i, j, k) ∈ C either i < j < k or i > j > k?

This decision problem is NP-complete [63, 64]. A triple 
(i, j, k) ∈ C is called a betweenness triple.

The Betweenness Problem can be adapted to 
model the SSP by means of a suitable cost function b 
designed to penalize violations of the betweenness rela-
tion. Consider an order ρ used to coordinatize the super-
genome. We may think of ρ as a bijective function from 
[1, . . . , |A|] → A . In other words, we number the blocks 
contained in A and work on this set of block indices.

For i < j < k we set bρ,G(i, j, k) = 1 if the projections of 
the three alignment blocks ρ(i) , ρ(j) , and ρ(k) exist and 
violate the betweenness relation for a given assembly G , 
i.e., if πG(ρ(i)) , πG(ρ(j)) and πG(ρ(k)) are located on the 
same contig and πG(ρ(j)) is not located between πG(ρ(i)) 
and πG(ρ(k)) . Otherwise we set bρ,G(i, j, k) = 0 . A natu-
ral cost function is now the total number of betweenness 
violations

where G(A) is the set of genome assemblies that are 
contained in A . If genome evolution were to preserve 
gene order, i.e., only local duplications and deletions are 
allowed, the betweenness relation of the ancestral state 

(1)b(ρ) :=
∑

G∈G(A)

∑

i<j<k

bρ,G(i, j, k) ,

would be preserved, guaranteeing a perfect solution ρ 
with b(ρ) = 0.

Since this decision problem is NP-complete [63, 64], so 
is the problem of optimizing b(ρ) NP-hard. The proof is 
shown in Additional file  1: Section  1 The cost function 
b(ρ) involves the sum over all triples of alignment blocks 
and thus is fairly expensive to evaluate. It is interesting 
in practice, therefore, to consider a modified cost func-
tion that restricts the sum in Eq. (1) to local information. 
This idea leads us to the rather natural extension of the 
Betweenness Problem to colored multigraphs.

Definition 6 Given an (undirected) colored multi-
graph Ŵ̂ = (V ,E) , the triple (i,  j, k) is part of the collec-
tion C (Ŵ̂) , iff there are edges {i, j} ∈ E and {j, k} ∈ E with 
color G.

Colored Multigraph Betweenness Decision 
Problem: given the colored multigraph Ŵ̂ = (V ,E) , is 
there a total order on V such that ∀(i, j, k) ∈ C (Ŵ̂) either 
i < j < k or i > j > k?

The reformulation as an optimization problem that 
maximizes the number of edges is straightforward: 
Colored Multigraph Betweenness Problem: Given 
a colored multigraph Ŵ̂ = (V ,E) , find a total order on V 
such that E∗ ⊆ E is maximal under the condition that 
∀(i, j, k) ∈ C (V ,E∗) either i < j < k or i > j > k.

This problem can be viewed as an analog of the Mini-
mum Feedback Arc Set problem [38] for betweenness 
data. To our knowledge is has not been studied so far.

Lemma 2 The (decision version of the) Colored Mul-
tigraph Betweenness Problem is NP-complete.

Proof Every set C (Ŵ̂) of triples can be obtained from 
an edge-colored multigraph Ŵ̂ (with vertices correspond-
ing to alignment blocks and colored edges correspond-
ing to adjacencies deriving from a genome identified by 
the color). Thus, the total order on the vertices of Ŵ̂ is a 
solution of the Colored Multigraph Betweenness 
Problem if and only if the answer to the NP-complete 
Betweenness Problem is positive. In Additional file  1: 
Section 1 the reduction in both directions is shown.

In the example of Fig.  2 the optimal solution of the 
Colored Multigraph Betweenness Problem 
retains all unordered adjacencies and creates a unique 
coordinatization (up to orientation) that leaves all align-
ment blocks ordered as drawn.

Seriation
An alternative framework for solving the SSP by con-
struction of a preferred ordering is seriation. The 
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Robinson seriation problem [65] starts from a dissimilar-
ity measure d : X × X → R , and seeks a linear order ρ on 
X that satisfies the inequality

A dissimilarity d for which an ordering ρ exists that sat-
isfies Eq. (2) for all ρ(i) < ρ(j) < ρ(k) is called Robinso-
nian. It is worth noting that Robinsonian dissimilarities 
are intimately related with pyramidal clustering problems 
[66, 67].

The seriation problem [65, 68] consists of finding a 
total order for which the given pairwise distances vio-
lates the Robinson conditions as little as possible. To link 
this seriation problem with the Colored Multigraph 
Betweenness Problem or Betweenness Problem we 
consider a collections C of triples such that

Clearly, if the dissimilarity is Robinsonian, then ρ defines 
a total order on X that solves the Betweenness Prob-
lem for (X ,C ).

The relevant optimization task in our context is there-
fore to minimize the number of ordered triples that vio-
late Eq. (2). A variety of heuristics for this problem have 
been developed, see e.g. [69]. It is important to note, 
however, that in our setting the distance between align-
ment blocks is not defined directly. In order to obtain a 
seriation problem that approximates the Supergenome 
Sorting Problem we will have to resort to a heuristic 
that summarizes the distances between two blocks in all 
genomes and reflects the betweenness relationships. For 
pangenome-like models, the cost function advocated in 
[28] is a very plausible choice.

Graph simplification
Each of the plausible models for the “Supergenome Sort-
ing Problem” discussed in the previous sections leads 
to NP-hard computational problems. The size of typi-
cal genome-wide alignments by far exceeds the range 
where exact solutions can be hoped for, except possibly 
for the smallest and most benign examples such as the 
ones used as examples in [17]. We therefore will have to 
resort to fast heuristics. In this section we focus on the 
conceptual ideas behind the simplification steps. More 
detailed implementation details are given in the "Meth-
ods" section.

Nevertheless it is possible to isolate certain sub-prob-
lems that can be solved exactly and independently of the 
remainder of the input graph. Since “linearized” portions 
of the vertex set can be contracted to a single vertex set, 
this leads to a reduction of problem size.

(2)max{d(ρ(i), ρ(j)), d(ρ(j), ρ(k))} ≤ d(ρ(i), ρ(k)) .

(3)
(ρ(i), ρ(j), ρ(k)) ∈ C impliesmax

{d(ρ(i), ρ(j)), d(ρ(j), ρ(k))} < d(ρ(i), ρ(k))

Lemma 3 If the supergenome graph Ŵ is a directed acy-
clic graph then topological sorting of Ŵ solves the Colored 
Multigraph Betweenness Problem.

Proof In this case betweenness is established exactly 
by the directed paths in the DAG. Hence any topologi-
cal sorting preserves all betweenness triples of G and 
thus presents a perfect solution to the Colored Multi-
graph Betweenness Problem as well.

This simple observation suggests to identify subgraphs 
with DAG structure and to replace them with a rep-
resentative for each replaced DAG. These can later be 
replaced by the solution that is created with topological 
sorting. We note that this does not necessarily preserve 
optimality. It is conceivable that a local DAG structure 
has to be broken up into two disjoint subsets that are 
integrated in larger surrounding structures in a way that 
requires reversal of the edge directions in one or even 
both parts. Nevertheless, if the local DAG structures are 
sufficiently isolated they are likely to be part of the opti-
mal solution as a unit. The motif that describes such a 
local DAG structure has been introduced as “superbub-
ble” in the context of graph structures arising in sequence 
assembly problems [70, 71].

Source and sink vertices s in the supergenome graph 
with only a single neighbor t are conceptually a special 
case of superbubbles. These can be sorted together with 
their unique neighbor t. Ŵ is thus simplified by contract-
ing s and t, i.e., placing the source s immediately before t 
and sink s immediate after t. An example of such a source 
and a sink can be seen in Fig. 4.

In some cases it is helpful to reverse the direction of 
the coordinate system of a single species. This is in par-
ticular the case when a single genome is reversed com-
pared to all others. The inversion of an entire path does 
not change the solution of the Colored Multigraph 

B

A

Fig. 4 A Sink and Source Example are shown here. In this part of a 
bigger supergenome graph a sink and a source exists. The source is 
in field A. It has only one successor and thus can be merged with this 
successor. The sink is in field B. It has only one predecessor and thus 
can be merged with this predecessor
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Betweenness Problem but can make it easier to apply 
some of the reduction heuristics discussed above. In par-
ticular, if the relative orientation of the coordinatizations 
could be fixed in an optimal manner, the betweenness 
problem reduces to a much easier topological sorting 
problem. Finding this optimum, however, is equivalent to 
the Betweenness Problem, which is a NP-hard. Hence, 
we again have to resort to local heuristics.

Definition 7 Let Ŵ = (V ,E) be a supergenome graph. 
A pair of vertices v,w ∈ V  such that there are edges (v, w) 
and (w, v) in E is a mini cycle.

Mini-cycles are naturally removed by removing one of 
the two edge directions between v and w. More precisely, 
the less supported direction of an edge is dropped. The 
estimate for support is evaluated in a region around a 
mini-cycle since adjacent mini-cycles may yield contra-
dictory majority votes.

Definition 8 Two mini-cycles are connected with each 
other if they share a vertex. A mini-cycle complex C is a 
maximal connected set of mini-cycles.

Lemma 4 The mini-cycle complexes of a supergenome 
graph Ŵ form a unique partition of the set of all minicy-
cles. Any two classes of this partition are vertex and edge 
disjoint.

Proof Consider the the graph H whose vertices are 
the mini-cycles, and there are edges between any two 
mini-cycles that share at least one vertex. Then every 
mini-cycle complex C is a connected component of H. 
Since the connected components of a graph are uniquely 
defined, disjoint, and form a cover, they partition the 
vertex set of H. Every minicycle, furthermore, forms a 
connected subgraph of Ŵ by construction. Since any two 
minicycles that contain a common vertex belong to the 
same mini-cycle complex, two mini-cycle complexes can-
not have a vertex in common. This implies that they are 
also edge disjoint.

The mini-cycle complexes therefore can be resolved 
independently of each other. The target is to remove 
edges that create cycles in order to obtain a DAG that 
can then be subjected to topological sorting. However, 
this topological sorting is a solution of the Colored 
Multigraph Betweenness Problem for a subgraph. 
This is still a hard problem, so that we again utilize a heu-
ristic approach. In this step we only attempt to remove 
mini-cycles. Cycles that connect mini-cycle complexes 
with each other or with other vertices in the graph are 

therefore left untouched and have to be dealt with in a 
subsequent step.

The local sorting within a complex C is achieved by con-
sidering adjacencies. To this end we annotate each adja-
cency with the number of edges and the ratio of the edges 
in the two directions. We identify the best supported 
edges as those with a high multiplicity and a strong bias 
for one direction over the other. This choice of a direction 
is then propagated. If a directed edge has more than one 
possible successor, we first propagate along the one with 
the largest support for the proposed direction. The issue 
now is when exactly to stop propagating this information. 
Clearly, it is forbidden to orient an edge that would close 
a directed cycle. Any such edge is instead seeded with the 
reverse directional information.

As part of this procedure it is possible that parts of a 
directed path from a given genome received contradic-
tory orientations in different regions. If this is the case, 
the edge crossing the boundary between the differently 
oriented regions must be removed. Finally, the heuris-
tic may terminate and still leave some edges unoriented. 
This indicates that the orientations are contradictory and 
need to be reversed. An example of the mini-cycle reso-
lution process is shown in Fig. 5.

Methods
Curation of input data sets
We investigate here three genome-wide data sets. The 
smallest set, referred to as B (bacteria) below, is an 
alignment of four Salmonella enterica serovars. This 
alignment was produced with Cactus [27] using the Sal-
monella enterica Newport genome as reference and com-
prises 13,  416 blocks, 50,  932 sequence fragments, and 
18, 047, 456 nucleotides. The medium-size set, termed Y 
(yeast), is an alignment of seven yeast species that uses 
the Saccharomyces cerevisiae genome as references. 
It comprises 49,  795 alignment blocks composed of 
275, 484 sequences fragments that contains 71, 517, 259 
nucleotides. The third, much larger set F (fly) is a align-
ment of 27 insect species that uses the Drosophila mela-
nogaster genome as references. It comprises 2,  112,  962 
blocks composed of 36, 139, 620 sequence fragments hat 
contains 2, 172, 959, 429 nucleotides. For more detailed 
information of the data sets refer to Additional file  1: 
Section 2.

The two large genome-wide multiple sequence align-
ments were produced by the multiz pipeline and were 
downloaded from the UCSC genome browser [72]. They 
are, as discussed above, injective but not irredundant. In 
order to remove spurious alignment blocks we filter the 
input blocks with respect to first length, then score, and 
finally mutual overlap. Very short alignment blocks are 
almost certainly either spurious matches or they were 
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inserted to bridge gaps between larger blocks. Conse-
quently, they convey little or no useful information for 
our purposes. We therefore remove all blocks with a 
length ≤ 10 nt.

Since genome-wide alignments tend to contain also 
very poorly aligned regions we require a minimum 
similarity, expressed here in the form of sum-of-pairs 
blastz scores [73]. Since these scale linearly with the 
number of columns ℓ(B) of the alignment block B and 

the number 
(

r
2

)

 of pairwise alignments formed by the r 

rows in B, we normalize with 
(

r
2

)

ℓ(B) to obtain a simi-

larity measure that is independent of the size of the align-
ment block. Based on the parametrization of blastz, 
we set the threshold at a normalized score of − 30 , which 
corresponds to the gap extension penalty.

The coordinatization of the supergenome depends 
on the uniqueness of coordinate projections. There are 
three major reasons to observe overlaps, i.e., genomic 
regions that appear in more than one alignment: (i) the 
sequence is duplicated in some species. Then multiz 
tends to align the corresponding unduplicated sequence 
to both duplicates. (ii) Spurious similarities in particular 
in poorly conserved regions may lead to alignments con-
taining a sequence element twice at the expense of the 
second copy. (iii) Short overlaps at the end of blocks may 
appear due to difficulties in determining the exact ends 
of alignable regions. The first two causes introduce unde-
sirable noise and uncertainties. Therefore, we remove all 

such overlapping blocks in which sequences from the 
species overlap. Since there is no easy way to determine 
which one of two overlapping blocks is likely correct, we 
opt to remove both copies. The third case, in contrast, 
does not disturb the relative order of alignment blocks 
and thus can be ignored. The overlap filter is applied after 
low quality alignments already have been removed from 
the data set.

We tolerate an overlap of 20 nt at the borders of align-
ment blocks. This cutoff is designed to remove ambigu-
ous alignments, while avoiding the removal of alignment 
blocks that overlap by a few nucleotides owing to over-
lapping extensions of local blastz seeds. In addition 
we remove sequences that completely overlap other 
sequences regardless of their size to further reduce the 
noise introduced by spurious alignments. We opt here for 
a stringent procedure and remove all alignment blocks 
that contain sequences tagged for removal. In practice, 
this step removes only a tiny fraction of the blocks and 
thus does not significantly influence the coverage of the 
retained data.

The initial data filtering steps removed almost 35% 
( 40% , 30% ) of the blocks from data set F , ( Y , B ). The 
majority were eliminated because of their minimal 
length. About 8.5% ( 27% , 0% ) of the blocks were removed 
because they contained non-unique sequences. The 
sequences in the blocks that are removed with all filters 
contain less then 15% ( 26% , 0.4% ) of the nucleotides in 
the alignment. Hence more than 85% ( 74% , 99% ) of the 

Fig. 5 Step-wise resolution of a complex of mini-cylces. (i) Starting point. (ii) The mini-cycle complex is highlighted. The complex is created from 
the mini-cylces {1, 2} , {2, 3} , and {2, 5} . Note that the edges (1, 3) and (5, 3) are not contained in the complex. The best supported directions are 
between (1, 2). (iii) This direction between (1, 2) is then set. The orange edges are therefore reversed (marked by dashed lines). The adjacency {1, 2} 
is decided and is no longer considered (marked with dark grey). (iv) In this step the best supported direction is (2, 3) and the graph is updated cor-
respondingly. (v) Adjacency {2, 5} is left. No direction is superior. Since vertex 2 was solved for previously it is now used. This leads to direction (2, 5). 
(vi) Then the completed complex is decided and the edges that are contradictionary with the decisions are removed. Note that the circle 3, 4, 5, 3 
that was not part of the complex is not removed
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sequence information of the alignment is intact and the 
quality of the data is significant better. A more detailed 
summary of the filtering is compiled in Additional file 1: 
Section 2.

Graph simplification and DAG construction
The algorithmic ideas and their justifications for the 
graph reduction steps have already been discussed in 
"Theory" section. Here we briefly address implementa-
tion issues as well as particular choices of cost functions 
and parameters that were discussed in a more general 
setting above.

The filtered data is used to create an initial superge-
nome graph. Then we iterate the three different graph 
simplifiers until no further reduction steps can be 
applied: the mini-cycle remover, the source/sink sim-
plifier, and the superbubble simplifier. The individual 
simplifiers are straightforward implementations of the 
basic ideas outlined above. The mini-cycle remover first 
identifies the mini-cycles, aggregates them into non-
overlapping complexes, and then proceeds to remove 
contradictory edges in a greedy manner. The other two 
simplifiers first check for each vertex in the input graph 
whether it is a valid sink, source, or starting vertex of a 
superbubble. Pseudocode of the simplifiers is given in 
Additional file 1: Section 4.

The mini-cycle remover works more effectively on a 
single big complex than on many small ones separated 

by narrow gaps. The other two simplifiers therefore are 
applied until a fixed point is reached to close some of 
these gaps. The entire procedure is then iterated until the 
minicycle remover cannot change the graph any further.

Once a fixed point is reached we attempt to remove 
directed cycles. This amounts to solving the Minimum 
Feedback Arc Set Problem, which is known to be 
NP-hard [37]. Given the size of our input graphs we have 
to resort to linear-time heuristics. We use Algorithm 
GR [38] because it is known to work particularly well on 
sparse graphs. Cycle removal typically creates new pos-
sibilities to simplify the graph. For instance, a sink is 
created whenever the last outgoing edge of a vertex is 
removed. The new sink can then be simplified further. 
The graph simplifiers are therefore applied again after the 
cycle removal step.

The minicycle remover is not used in this second pass 
because it is not applicable to DAGs by construction. 
Instead, we use a generalized version of the source/sink 
simplifier in which a source s may have more than a sin-
gle successor v, provided v is a predecessor of all other 
successors of s. The position of source s in the DAG is 
determined by v and thus s can be placed immediately 
before v. The corresponding arrangements for a sink and 
its predecessor is treated analogously.

The running time and the minimization of the data set 
while this process is applied is shown in Figs. 6, 7 and 8.
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processes are shown as color-coded bars
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Seriation
Finally, the common coordinate system is created by seri-
ation of the DAG. The resulting supergenome, i.e. linear 
order of the vertices of the graphs corresponds to a lin-
ear order of all blocks. In particular, vertices resulting 
from a simplifier may contain more than one block. Those 
blocks, however, are already sorted and thus are inserted 
as a single block. Seriation is naturally divided into two 
steps. First, topological sorting is used to calculate an ini-
tial linear ordering from the DAG. Kahn’s algorithm [40] 
is a classical solution to the topological sorting problem. 
For our purposes it is desirable that, if possible, two nodes 
v and w are placed consecutively whenever there is an 
edge (v, w) in the final DAG. To this end we modify Kahn’s 
algorithm by sorting the successors of a node in the order 
of evidence for their adjacency in the original data.

The order obtained in this manner may not be optimal 
w.r.t. its agreement with the order of the blocks in the 
genomes. It provides a good starting point, however, for 
the final optimization step, which we phrase as minimiz-
ing the number τ of triplets (i,  j,  k) for which the Rob-
inson condition, Eq. (2), page 12, is violated. We use the 
distance measure

(4)
d(i, k) =







1
|(i,k)|

if an edge (i, k) exists,

mini<j<k{d(i, j)+ d(j, k)} if a path from i to k through j exists,
∞ if no path from i to k exists,

where |(i, k)| is the number of edges from i to k. Since d 
is a good measure of co-linearity only for short distances, 
we limit the path length in Eq. 4 to a small number of l 
edges. We set l = 10 in our implementation. In addition 
this reduces the effort of computing the distances from 
O(|V |2) to O(|V|) as a consequence of the sparsity of the 
input graph.

We use a gradient descent-like optimization algorithm 
to minimize τ . We say that two nodes are siblings if they 
either share a predecessor in the DAG or if they are both 
sources. The move set for the gradient descent consists 
of swaps of siblings only. In addition, we allow to move a 
node directly in front of its sibling. The discrete gradient 
is computed exhaustively by generating and evaluating 
each potential move. Since non-overlapping swaps do not 
influence each other, we greedily execute a maximal set 
of non-overlapping swaps in a single optimization step.

Assessment of the quality of supergenome coordinate 
systems
Since no ground truth is available for this problem and 
the construction of simulated benchmarks for genome 
wide multiple sequence alignments would be a research 
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project in its own right, we have to resort to measuring 
quantities that are informative about the final choice of 
the coordinate system.

A straightforward measure is the distribution of dis-
tances in the output coordinate system of alignment 

blocks that are contiguous in at least one input genome. 
Since we are not interested in the length of align-
ment blocks, distance is measured here not in terms of 
sequence length but in terms of the number of align-
ment blocks, so that adjacent blocks have distance 0. It 
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is important here to keep track of the reading directions: 
contiguity with the same reading direction corresponds 
to preservation of the original genomic coordinates, 
while a change in reading direction indicates change of 
the order. Thus we distinguish preserved and inverted 
reading direction in our quantitative analysis.

Open reading frames (ORFs) are among the best-con-
served features in the genome due to the strong selection 
pressures acting to preserve the corresponding proteins. 
As an immediate consequence we expect that ORFs are 
almost always preserved. This should be reflected also by 
the supergenome coordinates, i.e., blocks belonging to the 
same ORF should have only a small number (smaller then 
5) of other blocks between them and retain their relative 
order. For higher eukaryotes, we cannot expect near perfect 
adjacency of coding blocks, however, because larger introns 
are subject to local rearrangements. To quantify the prox-
imity of blocks of an ORF, the distances between all adja-
cent blocks are determined as described above and their 
absolute values are added up to yield a single characteristic 
value. In addition we count the number of exons that are 
“broken up” in the sense that consecutive pieces do not 
have consecutive coordinates or are placed in reverse order 
in the supergenome. Coding genes and exons are taken as 
annotated for the corresponding genomes. We note that in 
particular for large, intron-rich genomes such as the insect 
data set F this is an additional source of errors.

Results and discussion
We have devised a heuristic algorithm to extract a com-
mon coordinate system for a supergenome from a 
genome-wide multiple sequence alignment. The proce-
dure has been tested on three alignments of very differ-
ent size and difficulty: an easy instance comprising four 
closely related bacterial species, an intermediate size 
problem composed of seven yeast genomes, and the align-
ment of 27 insect genomes as the most difficult instance.

Performance of individual components
The heuristic algorithm outlined above is composed of 
several largely independent components. It is of inter-
est, therefore to consider their relative impact on the 
final results. We find that most edges are removed by the 
mini-cycle remover, with a small contribution of Algo-
rithm GR. On the other hand, the largest reduction 
of the vertex set is due to the merges identified by the 
closed DAG simplifier. More quantitative information is 
compiled in Figs. 6,  7 and 8 and in Additional file 1: Sec-
tion 8. The simplifiers reduce the graph size by about an 
order of magnitude in both the number of vertices and 
edges, reducing it in size and complexity to a point where 
the seriation heuristic operates efficiently. The relative 
improvement is smallest for the bacterial data set.

Since the Colored Multigraph Betweenness 
Problem cannot be solved exactly in reasonable time for 
instances with sizes that are of interest for our applica-
tion at hand, we cannot measure performance relative 
to the exact solution. The multigraphs obtained from 
real-life alignments contain a large number of conflicting 
edges. In the most difficult data set, F , for instance, the 
final order keeps more than 95% of the initial edges.

Quality of supergenome coordinate systems
The quality of the coordinate systems strongly depends 
on the quality of the input alignments. A detailed discus-
sion of issues with the input alignments can be found in 
Additional file 1: Section 8. Here, we focus on an assess-
ment of the coordinate systems themselves.

In order to check the overall quality of the solution 
we compute a betweenness graph from the superge-
nome coordinate systems. This is done by starting with 
a graph without edges. First, all edges that are supported 
by the total order of the supergenome are added. This is 
followed by edges that contradict the total order but do 
not create contradicting betweenness triples. Note that 
this graph is not necessary optimal but a good approxi-
mation that can easily be computed. The edge set of this 
graph is compared to the edge set of the initial graph. 
Good solutions are expected to retain most of the edges. 
For the three data sets we find that 95.3%, 97.5%, and 
99.4% of the edges are retained in data sets B , Y , and F , 
respectively.

The distribution of block-wise distances in the super-
genome of alignment blocks that are consecutive in 
the original genome serves as a simple measure of pre-
served synteny. The results are summarized in Fig. 9 and 
presented in full detail in Additional file  1: Section  8. 
Another measure is how many of the input orders are 
preserved. To measure this we consider every alignment 
block and all successors from the different genomes. For 
the bacterial data set B 89% of the successors preserve the 
order and 80% also preserve the adjacency. For the yeast 
data set Y we observe that 93% of the successors pre-
serve the order and 84% also preserve adjacency. This is 
a very encouraging result, taking in mind that every true 
genome rearrangement necessarily introduces at least 
one non-adjacency. Even in the much larger and more 
difficult insect set F we still find 70% of the successors 
preserve the order and 66% also preserve adjacency. The 
overwhelming majority of non-contiguous successors 
are placed in the adjacent but order-reversed position, 
reflecting the level of local rearrangements in the insect 
data set. This is entirely reasonable given the much larger 
number of species and their larger phylogenetic depth 
compared to the yeast data. Taken together, these num-
bers already indicate that the supergenome coordinates 
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are meaningful and indeed are likely a useful starting 
point for large-scale multi-genome comparisons.

Restricting our attention to coding sequences yields a 
more stringent quality measure, as shown in Fig. 10. As 
bacteria have essentially no introns, we expect that nearly 
all blocks belonging to the same ORF retain both adja-
cency and order. In the bacterial data set B 96% of the 
ORFs are in one stretch with no interruption and less 
then 1% of the ORFs are broken. Since yeasts have few 
and short introns [74] we expect that data set Y is also 
very well-behaved in this respect. It contains 6062 ORFs 
annotated for Saccharomyces cerevisiae. Of these, 5474, 
i.e., 90% , are consistently represented in the coordinate 
system. An additional 272 ORFs, about 5% , have a dis-
tance of less then 100 blocks between them. Only 73, i.e., 

a bit more than 1% of the ORFs are broken. For Drosoph-
ila melanogaster are 167, 051 exons annotated, and part 
of the alignment F . Due to large and abundant introns the 
analysis is based on individual exons rather than com-
plete ORFs for set F . We observe that 95% of the ORFs/
exons are consistently represented. Only 779, about 0.5% , 
are broken. Overall, thus, the supergenome coordinates 
behave very well for all three data sets.

As a specific example we consider the genes of the yeast 
TCA cycle [75] in more detail. It is one of the best-stud-
ied enzyme systems and known to be essential in S. cer-
evisiae. There, it comprises 20 genes [76–79], all of which 
are contained at least partially in the initial set of align-
ment blocks in the yeast data set Y . Only nine genes are 
included in their entirety, however. Seven of these nine 
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are represented colinearly in single blocks. The align-
ments for KGD2 and SDH2 cover multiple MSA blocks 
and there is intervening genomic sequence in the input 
alignment, leading to non-contiguous placement in the 
final coordinate system. The alignment blocks referring 
to the remaining 11 genes are difficult to analyze and may 
contain misassigned sequences. This example, similar to 
several other loci, suggests that the quality of the input 
alignment rather than the complexity of the between-
ness problem is the limiting factor for the construction of 
supergenome coordinate systems.

Conclusion
In this contribution we have shown that the problem of 
computing a common coordinate system for superge-
nomes with the Colored Multigraph Betweenness 
Problem is NP-hard. It belongs to a class of relatively 
poorly studied betweenness problems for which few effi-
cient heuristics have been developed so far. We intro-
duced here several local simplification rules that can be 
applied iteratively to reduce the problem. It is important 
to note these reduction steps are only heuristics and do 
not guarantee optimal solutions. In conjunction with a 
simple serialization approach for the residual graph, they 
nevertheless yield practically useful results with accept-
able computational efforts.

The most immediate application of the supergenome 
sorting problem is the direct comparison of genome 
annotations for multiple genomes. Hence it constitutes a 
prerequisite for comparative genome browsers. We have 
applied our approach to three real-life data sets of differ-
ent sizes and difficulties. Our results indicate that prac-
tically useful coordinatizations can be computed. The 
computational requirement of the method scales favora-
bly so that in principle even the largest genome-wide 
multiple sequence alignments could be processed.

The present study, however, also highlights the short-
comings of currently available genome-wide multiple 
sequence alignments [80, 81]. The issue is not only the 
relatively moderate coverage with alignment blocks that 
contain at least most of the species under consideration, 
but also the substantial fractions of alignment blocks that 
have been removed from our data set due to likely arte-
factual sequences. We have therefore not attempted to 
analyze the UCSC 100-way vertebrate alignments, since 
these data are even more complex than the insect data 
due to the very large number of paralogs introduced by 
genome duplications.

Synteny, i.e., the preservation of relative genome order, 
is in general a good predictor for homology. This fact 
suggests to use the common coordinate system to iden-
tify likely homologous regions that are not included in 
the initial alignment blocks. These could then be (re)

aligned at sequence level and included in a revised mul-
tiple sequence alignment. This, in turn, could yield an 
improved common coordinate system. The systematic 
improvement of genome-wide alignments, albeit an 
interesting and extremely useful endeavor, is beyond the 
scope of this contribution.

Possible improvements of the approach taken here 
are conceivable in at least two directions. First, one may 
consider a hybrid algorithm that solves subgraphs with 
a dominant backbone use the method discussed in [29]. 
As discussed, we assume that large parts of the global 
graph structure are not amenable to such a solution, but 
it is also reasonable to assume that gene regions under 
strong conservation pressures can be solved fairly easily 
using a local backbone-based approach. A second venue 
of research is concerned with the determination of the 
final backbone order. Depending on the phylogenetic 
range under investigation, the ancestral gene order would 
provide a useful backbone based on the phylogeny of the 
species involved in the alignment.
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