
Gärtner et al. Algorithms Mol Biol (2018) 13:15
https://doi.org/10.1186/s13015-018-0133-4

RESEARCH

Coordinate systems for supergenomes
Fabian Gärtner1,2* , Christian Höner zu Siederdissen2,3, Lydia Müller1,3,4 and Peter F. Stadler1,2,3,5,6,7,8

Abstract

Background: Genome sequences and genome annotation data have become available at ever increasing rates in
response to the rapid progress in sequencing technologies. As a consequence the demand for methods supporting
comparative, evolutionary analysis is also growing. In particular, efficient tools to visualize-omics data simultaneously
for multiple species are sorely lacking. A first and crucial step in this direction is the construction of a common coor-
dinate system. Since genomes not only differ by rearrangements but also by large insertions, deletions, and duplica-
tions, the use of a single reference genome is insufficient, in particular when the number of species becomes large.

Results: The computational problem then becomes to determine an order and orientations of optimal local
alignments that are as co-linear as possible with all the genome sequences. We first review the most prominent
approaches to model the problem formally and then proceed to showing that it can be phrased as a particular variant
of the Betweenness ProBlem. It is NP hard in general. As exact solutions are beyond reach for the problem sizes of practi-
cal interest, we introduce a collection of heuristic simplifiers to resolve ordering conflicts.

Conclusion: Benchmarks on real-life data ranging from bacterial to fly genomes demonstrate the feasibility of com-
puting good common coordinate systems.

Keywords: Comparative genomics, Comparative transcriptomics, Big data, Graph theory, Betweenness ordering,
Colored multigraph, Combinatorial optimization

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The past decade has seen rapid progress of sequencing
technologies [1]. The dramatic decrease of sequencing
costs has enabled an ever-accelerating flood of genomic
and transcriptomic data [2] that in turn have lead to the
development of a wide array of methods for data analysis.
Despite recent efforts to study transcriptome evolution at
large scales [3–7] the capability to analyze and integrate
-omics data in large-scale phylogenetic comparisons lags
far behind data generation. One key aspect of this short-
coming is the current lack of powerful tools for visualiz-
ing comparative -omics data. Available tools such as [8, 9]
have been designed with closely related species or strains
in mind. The visualizations become difficult to read for
multiple species and larger evolutionary distances, where
homologous genomic regions may differ substantially in
their lengths, an issue that becomes more pressing the

larger regions of interest become. A common coordinate
system for multiple genomes is not only a convenience
for graphical representations of -omics data, however.
It would also greatly facilitate the systematic analysis of
all those genomic features that are not sufficiently local
to be completely contained within individual blocks of a
genome-wide multiple sequence alignment (gMSA).

Still, gMSAs are the natural starting point. Sev-
eral pipelines to construct such alignments have been
deployed over the past two decades, most prominently
the tba/multiz pipeline [10, 11] employed by the UCSC
genome browser and the Enredo/Pecan/Ortheus
(EPO) pipeline [12] featured in the ensembl system. For
the ENCODE project data, in addition alignments gener-
ated with MAVID [13] and M-LAGAN [13] have become
available, see [14] for a comparative assessment. A com-
mon feature of gMSAs is that they are composed of a
large number of alignment blocks. At least in the case of
MSAs of higher animals and plants the individual blocks
are typically (much) smaller than individual genes. As a
consequence, they are not ready-to-use for detailed com-
parative studies e.g. of transcriptome or epigenome [15]

Open Access

Algorithms for
Molecular Biology

*Correspondence: fabian@bioinf.uni-leipzig.de
2 Bioinformatics Group, Department of Computer Science, Universität
Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1128-3408
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-018-0133-4&domain=pdf

Page 2 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

structure. In the gMSA-based splice site maps of [16], for
example, it is easy to follow the evolution of individual
splice junctions as they are localized within a block. At
the same time it is difficult to collate the global differ-
ences of extended transcripts, which may span hundreds
of blocks and to relate changes in transcript structure
with genomic rearrangements, insertions of repetitive
elements or deletion of chunks of sequence.

To a certain extent this problem is alleviated by con-
sidering the blocks arranged w.r.t. a reference genome.
For many applications, however, this does not appear to
be sufficient. For sufficiently similar genomes with only
few rearrangements gMSA blocks are large or can at least
be arranged so that large syntenic regions can be repre-
sented as a single aligned block. Any ordering of these
large syntenic blocks, termed a supergenome in [17], then
yields an informative common coordinate system. So far,
this approach has been applied only to closely related
procaryotic genomes. Prime examples are a detailed
comparative analysis of the transcriptome of multiple
isolates of Campylobacter jejuni [18] or the reconstruc-
tion of the phylogeny of mosses from the “nucleotide
pangenome” of mitogenomic sequences [19]. We remark
that some approaches to “pangenomes” are concerned
with gMSAs of (usually large numbers of) closely related
isolates; most of this literature, however, treats pange-
nomes as sets of orthologous genes [20].

Here we are concerned with the coordinatization of
supergenomes, i.e., the question how gMSA blocks can
be ordered in a way that facilitates comparative studies of
genome annotation data. In contrast to previous work on
supergenomes we are in particular interested in large ani-
mal and plant genomes and in large phylogenetic ranges.
We therefore assume that we have short alignment blocks
and abundant genome rearrangement, leaving only short
sequences of alignment blocks that are perfectly syntenic
between all genomes involved. The problem of optimally
sorting the MSA blocks can, as we shall see, be regarded
as a quite particular variant of a vertex ordering prob-
lem, a class of combinatorial problems that recently has
received increasing attention in computer science [21–
24]. In the computational biology literature, furthermore,
several graph-based methods have been proposed to
solve the problem of sorting sequence blocks for superge-
nomes, see e.g. [12, 25–29].

This contribution is organized as follows: In the follow-
ing section we first analyze the concept of the superge-
nome and its relationship to gMSAs in detail. We then
review combinatorial optimization problems that are
closely related to the “supergenome sorting problem”,
and argue that the most appropriate modeling leads to a
special type of betweenness ordering problem. Next, we
introduce a heuristic solution that is geared towards very

large input alignments and proceeds by step-wise simpli-
fication of the supergenome multigraph. Finally, we out-
line a few computational results.

Theory
Genome‑wide multiple sequence alignments
Our starting point is a set of genome assemblies. For our
purposes an assembly is simply a set of sequences rep-
resenting chromosomes, scaffolds, reftigs, contigs, etc.
In the following, we will use contig to refer to any such
sequence. On each of these constituent sequences we
assume the usual coordinate system defining sequence
positions. Since DNA is double stranded, a piece of
genomic sequence is either contained directly (σ = + 1)
in the assembly or it is represented by its reverse com-
plement (σ = − 1). We write (G, c, i, j, σ) to identify the
sequence interval from positions i to j on contig c of
genome assembly G with reading direction σ . We assume,
w.l.o.g., i ≤ j.

Most comparative methods require multiple sequence
alignments (MSAs) as input. An MSA A is com-
posed of alignment blocks, each of which consists
of an alignment of sequence intervals. For the pur-
poses of this paper it its sufficient to characterize an
alignment block by the coordinates of its constituent
sequence intervals. That is, a block B ∈ A has the form
B = {(Gu, cu, iu, ju, σu)|u ∈ rows of B} where the index
u runs over the rows of the alignment block. It will be
convenient to allow alignment blocks also to consist of a
single interval only, thus referring to a piece of sequence
that has not been aligned. Note that at this stage we do
not assume that an alignment block contains only one
interval from each assembly.

The projection πG(B) extracts from an alignment block
the union of its constituent sequence intervals belonging
to assembly G . If the assembly G is not represented in the
alignment block B we set πG(B) = ∅.

The projection operation collapses pairs of overlapping
sequence intervals (i ≤ i′ ≤ j ≤ j′) in to a single inter-
val: (G, c, i, j, σ) ∪ (G, c, i′, j′, σ ′) = (G, c, i, j′,+1) without
regard for the orientation, which is set to +1 and will have
no bearing on the algorithm we develop further down.

The projection πG of A onto one of its constitu-
ent assemblies G is the union of the sequence intervals
from G that are contained in its alignment blocks, i.e.,
πG(A) =

⋃

B∈A πG(B).

Definition 1 Let A be an MSA.

 • A is complete if πG(A) = G , i.e., if each position in
each assembly is represented in at least one align-
ment block.

Page 3 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

 • A is irredundant πG(B
′) ∩ πG(B

′′) = ∅ for any two
distinct blocks B′ and B′′ , i.e., if every sequence inter-
val from assembly G is contained in at most one
alignment block.

 • A is injective if no alignment block comprises more
than one interval from each of its constituent assem-
blies.

Clearly, every given MSA can easily be completed by
simply adding all unaligned sequence intervals as addi-
tional blocks.

Just like a contig c in a (genome) assembly G , each
block B ∈ A has an internal coordinate system defined
by its columns. We write (B, k) for column k in block B.
We write ℓ(B) for the number of columns in block B. If
A is irredundant, then there are functions fG,c that map
position i within (G, c) to a corresponding MSA coor-
dinate (B, k). If A is complete, the individual fG,c can
be combined to a single function f : (G, c, i) �→ (B, k) .
Completeness implies that every position (G, c, i) is rep-
resented in the MSA, and irredundancy guarantees that
the relation between assembly and alignment coordinates
is a function by ensuring that (G, c, i) corresponds to at
most one alignment column. The following definition
is therefore equivalent to the notion of a supergenome
introduced in [17].

Definition 2 An MSA A is a supergenome if it is com-
plete, irredundant, and injective.

The most commonly used genome-wide MSAs cannot
be completed to supergenomes. The MSAs produced by
the multiz pipeline are usually not irredundant: differ-
ent intervals of the “reference sequence” may be aligned
to the same interval of another assembly. While multiz
[11] alignments are injective this is in general not the
case with the EPO [12] alignments. In these, multiple par-
alogous sequences from the same genome may appear in
one alignment block.

Now consider an MSA A and an arbitrary order < of
the alignment blocks of A . Then there is a (unique) func-
tion φ that maps the pairs (B, k) injectively to the interval
[1, n], where n =

∑

B∈A ℓ(B) is the total number of col-
umns in A such that φ(B, i) < φ(B′, i′) whenever B < B′
or B = B′ and i < i′ . If A is a supergenome, then φ(f) is
clearly an injective function from a genome assembly G
to [1, n]. We call φ(f (G, c, i)) the coordinate of position
i of contig c of assembly G in the ordered supergenome
(A,<).

As pointed out in [17], the existence of a coordinate
system for the supergenome A is independent of the
block order <. However, the order < is crucial for the
practical use of the coordinate system.

Adjacency and betweenness of MSA blocks
The natural starting point for considering adjacency
and betweenness of alignment blocks are their constitu-
ent intervals (G, c, i, j, σ) on a fixed assembly G and con-
tig c. Intervals have a natural partial order defined by
(G, c, i, j, σ) ≺ (G, c, k , l, σ) whenever i < k and j < l . Two
intervals are incomparable in this interval order if and
only if one is contained in the other. Note that the inter-
val order allows comparable intervals to overlap. We also
consider intervals incomparable that belong to different
contigs and/or assemblies.

Given three intervals α = (G, c, i′, j′, σ ′) ,
β = (G, c, i′′, j′′, σ ′′) , and γ = (G, c, i, j, σ) (on the same
genome assembly and contig), we say that γ is between the
two distinct intervals α and β if α ≺ γ ≺ β or β ≺ γ ≺ α.

Given a collection Q of intervals on the same assem-
bly G and contig c, we say that α = (G, c, i′, j′, σ ′) and
β = (G, c, i′′, j′′, σ ′′) are adjacent if there is no interval γ
between α and β . We say that α is a predecessor of β if α
and β are adjacent and α ≺ β . Analogously, α is a a suc-
cessor of β if α and β are adjacent and β ≺ α.

Lemma 1 Let A be a supergenome and consider the the
collection {πG(B)|B ∈ A} of intervals on a given G. Then (i)
no two intervals overlap, (ii) the interval order ≺ is a total
order on every contig c, (iii) every interval has at most one
predecessor and one successor, and hence is adjacent to at
most two intervals, and (iv) if γ is adjacent to both α and
β , then γ is between α and β.

Proof Property (i) follows directly from the condi-
tion. (ii) As a consequence, any two intervals on a fixed
contig c are comparable, i.e., the restriction of ≺ to c is a
total order. Since only intervals on the same contig can
be adjacent, (iii) is an immediate consequence of (ii) and
the fact that the number intervals is finite. Property (iv) is
now a trivial consequence of the fact that by (iii) α and β
must be the predecessor and successor of γ.

A key construction in this contribution is the notion of
betweenness relations for alignment blocks.

Definition 3 Given three blocks A,B,C ∈ A , we say
that C is between A and B with respect to G if πG(C) is
between πG(A) and πG(B) . The ternary relation C (A) is
the defined by (A,C ,B) ∈ C (A) whenever C is between
A and B for some assembly G.

We note that contradicting betweenness relations
resulting from different genome assemblies G are to be
expected, i.e., the relation C (A) will in general not satisfy
the properties of a well-formed betweenness relation. We
will return to this issue below.

Page 4 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

Definition 4 Two blocks A,B ∈ A are adjacent if there
is an assembly G such that πG(A) and πG(B) are adjacent
w.r.t. {πG(C)|C ∈ A}.

It is useful to regard A with its adjacency relation as a
graph. In order to keep track of the individual contigs, we
use an edge-colored multigraph, with G serving as edge
color.

Definition 5 The supergenome graph Ŵ(A) of an MSA
A is the directed, edge-colored multigraph whose vertices
are the alignment blocks of A and whose directed edges
(A, B) connect an alignment block A to an alignment
block B with color G whenever there are sequence inter-
vals α ∈ A is a predecessor of β ∈ B in assembly G.

An example how the prejection Ŵ(A) is done is shown
in Fig. 1. The projection of Ŵ(A) to a constituent assembly
G is a (not necessarily induced) subgraph. As an imme-
diate consequence of Lemma 1, each projection is a dis-
joint union of directed paths, each of which represents
a contig. Conversely, every colored directed multigraph

whose restriction to a single color is a set of vertex-dis-
joint directed paths is a supergenome graph. It therefore
makes sense to talk about a supergenome graph Ŵ with-
out explicit reference to an underlying alignment A.

The structure of the supergenome graph strongly
depends on the evolutionary history of the genomes that
it represents. In the absence of genome rearrangements
(i.e., when the only genetic changes are substitutions,
insertions (including duplications), and deletions) then
all genomes remain colinear with their common ancestor.
In other words, a single, canonical [30] global alignment
describes a common coordinate system that is unique up
to the (arbitrary) order of contigs and each trace [31] of
insertions and deletions. In terms of the block adjacency
relation, each block has at most two adjacent neighbors
in this scenario.

Genome rearrangements are by no means infrequent
events [32–35], and thus cannot be neglected. Every
breakpoint introduced by a genome rearrangement oper-
ation, be it a local reversal or a cut-and-join type disloca-
tion, introduces an ambiguous adjacency, i.e., a block that
has two or more predecessors or successors. The task of

Fig. 1 Projections of a supergenome graph. An example how the projection of an artificial MSA A to a supergenome graph Ŵ(A) can be done.
Starting point is the MSA A shown in (i), which comprises five blocks (B1 , ..., B5), each consisting of up to four intervals from the four genome
assemblies (distinguished by colors: G1 blue, G2 green, G3 orange, G4 purple) with one contig each (c1 , ..., c4). The intervals are designated as
βk,l = (Gl , cl , ik,l , jk,l ,+1) ∈ Bk and β̄k,l = (Gl , cl , ik,l , jk,l ,−1) ∈ Bk . To construct the supergenome graph first the predecessor of each interval is
determined by sorting the intervals separately for each assembly. By assumption, intervals do not overlap. The ordered set of each assembly is
shown in panel (ii). Only these orders are relevant in subsequent steps, hence we suppress the positional information from now on. The interval
order implies a separate predecessor relation among blocks (iii), with a colored arrow from B1 to B2 implying that B1 is a predecessor of B2 w.r.t. the
assembly indicated by the color. The supergenome graph Ŵ(A) has all blocks of A as its vertices (iv). The predecessor relations among the blocks
define the colored, directed edges (v)

Page 5 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

identifying an appropriate ordering of the MSA blocks
therefore is a non-trivial one for realistic data, even in the
absence of alignment errors.

Modeling the “Supergenome Sorting Problem”
Informally, we may consider the “supergenome sort-
ing problem” (SSP) as the task of finding an order < (or,
equivalently, a permutation ρ) of the alignment blocks of
A such that the orders of the constituent assemblies are
preserved as much as possible. Somewhat more precisely,
we are to find an order < on the vertex set of the super-
genome graph Ŵ(A) that as many of its directed edges as
possible are “consistent” with the order <. It is not clear
from the outset, however, how “consistency” should be
defined for our application. A large number of related
models have been proposed and analyzed in the literature
that make this condition precise in different ways, lead-
ing to different combinatorial optimization problems. We
therefore proceed with a brief review of some paradig-
matic approaches. A reader primarily interested in our
proposed approach to the problem might want to skip
this section.

Hamiltonian paths
A plausible attempt is to view the SSP as a variant of the
Hamiltonian path problem on the supergenome graph Ŵ .
A Hamiltonian path defines a total order of the vertices
and therefore a solution to the SSP. This is idea is simi-
lar to the use of Hamiltonian graphs for genome assem-
bly from read overlap graphs [36]. There are several quite
obvious difficulties, however. First, it is not sufficient to
consider only paths that are entirely confined to pass
through the adjacencies. The simplest counterexample
consists of only 4 MSA blocks B1 , B2 , B3 , B4 and three
assemblies G1 , G2 , G3 . Given eight sequence intervals
βk ,l = (Gl , ck ,l , ik ,l , jk ,l ,+1) ∈ Bk we construct the follow-
ing alignment:

This situation arises in practice e.g. when B2 and B3 are
two independent, unrelated inserts between B1 and B4 .
The block adjacency graph is the graph

which violates the desired betweenness relation
(β1,3,β3,3,β4,3).

In this case there are only two biologically correct
solutions: B1 < B2 < B3 < B4 (or the inverse order) and
B1 < B3 < B2 < B4 (or its inverse). In either case, the
solution contains two consecutive blocks (B2 and B3) that

B1 B2 B3 B4

g1 = β1,1 β4,1
g2 = β1,2 β2,2 β4,2
g3 = β1,3 β3,3 β4,3

B2 − B1 − B4 − B3,

are not adjacent in the block graph. This example also
serves to demonstrate that the block graph alone does
not contain the complete information on the superge-
nome. It appears that in addition we will need to know
the betweenness relation among the blocks i.e., that both
B2 and B3 are between B1 and B4.

Feedback arc sets and topological sorting
An other possibility to determine a well-defined order of
the vertices of the supergenome graph Ŵ is to first extract
a maximum acyclic subgraph and then to compute a
topological sorting of this subgraph. An equivalent for-
mulation asks for the removal of a minimum set of edges
that close cycles. This Maximum Acyclic Subgraph or
Minimum Feedback Arc Set problem (MFAS) is well-
known to be NP-hard [37]. Nevertheless fast, practica-
ble heuristics have been devised, see e.g. [38, 39]. From
the resulting directed acyclic graph (DAG) an admissible
ordering of blocks can be obtained efficiently by topolog-
ical sorting [40]. A closely related approach is the Linear
Ordering Problem (LOP): given a complete weighted
directed graph, find a tournament with maximum total
edge weights [41]. It yields essentially the same model
since LOP and MFAS can be transformed into each other
quite easily [42]. Cost functions designed to define con-
sensus orderings for sets of total and partial orders have
been considered in different fields starting with the work
of Spearman [43] and Kendall [44], see also e.g. [45–47].
The reconciliation of partial orders in investigated in
detail e.g. in [48].

The key problem of modeling the SSP in terms of
MFAS is highlighted in Fig. 2. It shows that even when
undirected adjacencies would allow for a perfect solution,
it may not be uncovered directly by the MFAS approach.

Simultaneous consecutive ones and matrix banding
Instead of adjacencies we may consider the incidence
matrix A of the supergenome graph Ŵ and try to sort
both the alignment blocks and their adjacencies in such
a way that, to the extent that this is possible, (i) adjacent
blocks are consecutive and (ii) adjacencies that have a
block in common are consecutive. In more formal terms,
we wish to sort both the rows (alignment blocks) and
columns (adjacencies) of the incidence matrix in such
a way that rows and columns show all non-zero entries
consecutively. A rectangular matrix A that admits such a
pair of row and column permutations is said to have the
simultaneous consecutive ones property (C1S) [49]. This is
possible if Ŵ is a union of paths. Note that instead of adja-
cencies we could also cover the graph with short paths
℘k . In this case column k identifies the vertices incident
with path k. Again, if Ŵ is a union of paths, the path-inci-
dence matrix satisfies (C1S). It is not difficult to see [49]

Page 6 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

that A satisfies (C1S) if and only if A has the well-studied
consecutive ones property [50, 51] for both its rows and
columns. Thus (C1S) can be checked in linear time [50].
Furthermore, Tucker’s characterization of (C1S) in terms
of forbidden sub-matrices [52] also carries over. Some
direct connection between the consecutive ones property
and the Betweenness Problem, which we will consider
below, are discussed in [53].

In general, A will now have the consecutive ones prop-
erty. The problem of identifying a minimal number of
columns (adjacencies) whose removal leaves a (C1S)
matrix is NP-complete [49]. In practise it may be desir-
able to quantify the extent of the violation of (C1S) in
terms of intervals of consecutive zeros enclosed by the
two 1s. For instance, one may want to use ω =

∑

i h(ℓi) ,
where the sum runs over all intervals i of consecutive
zeros enclosed by the two 1s, and h(ℓi) ≥ 0 is some con-
tribution that monotonically grows with the length ℓi of
the 0-interval. For a given ordering of the rows and col-
umns, the total violation is quantified as the sum of the ω
values. It should be noted, however, that (C1S) does not
imply Ŵ is a union of disjoint paths, i.e., that Ŵ is a valid
supergenome graph.

A related set of optimization problems is concerned
with reducing the bandwidth of matrices, i.e., the maxi-
mal distance of non-zero entries from the diagonal (in
a symmetric case) or the parameter min(l,u)+ l + u
(for rectangular matrices); here u = maxAij �=0(i − j) and
l = maxAij �=0(j − i) [54]. In the symmetric case, several
good heuristics are known, starting with the Cuthill-
McKee [55] and GPS [56] algorithms even though the
problem is NP-hard [57], while the general case has
received much less attention [54]. Bandwidth reduction
methods do not eliminate “bad” adjacencies that eventu-
ally determine bandwidth. The resulting ordering of rows
and columns thus may be very inaccurate locally.

Bidirected graphs
Several specialized graph structures have been intro-
duced recently to tackle the problem of ordering
sequence blocks, which is a problem very similar to SSP.
Among these constructions are A-Bruijn graphs, Enredo
graphs, and Cactus graphs, see [58] for a review. A key
insight of [58] is that these graph representations are
equivalent in the sense that they can be transformed into
each other. They differ, however, in additional informa-
tion extracted from the input alignment that is stored as
vertex and edge labels, see Fig. 3. For instance, the bidi-
rected graphs of [28] have the same underlying graph as
our supergenome graph. While the supergenome graph
used a standard directed graph structure, bidirected
graphs encode directional information independently for
the endpoint of each edge, distinguishing three cases: (i)
adjacent alignment blocks have the same orientation, (ii)
the connected blocks switch from minus to plus orien-
tation, or (iii) vice versa. The latter two cases indicate a
change of orientation between two changes. In [28], this
basic structure is extended by additional transitive edges
given by a legal path through the graph with an exponen-
tial weight function. The task is then to find a consist-
ent (non-conflicting) set of edges with maximal weight.
This form of the weight function takes into account that,
due to genetic linkage, the more closely positioned on a
genome two blocks are, the less likely it is that the edge
between these blocks is broken. This gives higher weight
to locally correct block positions and orientations.

While this sorting problem is (NP-) hard in general, the
sets of genomes considered by the authors are particu-
larly suitable for this kind of calculations. The genomes
considered for pangenome construction are typically
closely related, or even of the same species. Thus one can
expect many paths with high weights of the conserved
consensus [29]. This approach also fits well to the analysis
of genomic regions that are under constraint to maintain

Fig. 2 Minimum feedback arc set (MFAS) does not necessarily yield an optimial solution of the SSP. Due to the arbitrariness of the orientation of the
edges, the best solution of the SSP may contain cycles, which by definition is excluded in MFAS. Top: supergenome graph representation Ŵ(A) of an
artificial alignment A . Bottom: simplified solution of the (uniformly weighted) MFAS. To turn Ŵ(A) into an acyclic graph, at least one edge has to be
deleted. Two such solutions exist, differing only by the orientation of the gray arrow. The corresponding topological sorting breaks the genome into
two distinct colinear pieces with opposite orientation. There is, however, a consistent order of the entire graph—the linear left-to-right or right-to-
left order is consistent

Page 7 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

syntenic order for functional reasons, such as the MHC
locus used as an example in [28]. In distantly related
genomes, however, synteny tends not to be well pre-
served. In addition, we are interested in particular in data
sets that contain genomes in preliminary draft forms, i.e.,
linkage information that is at least partially limited to
short contigs or scaffolds. As a consequence we have less
confidence in linkage and orientation information than
one can expect in a typical pangenome scenario.

Sequence graphs
The sequence graphs of Haussler et al. [29] are also
closely related to the supergenome graph representa-
tion Ŵ(A) of a multiple alignment A . The key differ-
ence is that the the orientation of the blocks is used to

determine the direction of the edge. Two adjacent inter-
vals with negative orientation thus imply an edge that is
reversed compared to the supergenome graph. This situ-
ation is problematic in the case where the orientation of
the intervals is switched. In [29] a preprocessing step is
performed to minimize the number of such edges. The
sequence graph approach was designed for the compari-
son of human genomes of different individuals. In such a
scenario, the resulting information loss is small and does
not present a practical problem. It is likely to become an
issue, however, for large phylogenetic distances with fre-
quent genome rearrangements.

The natural formulation of SSP on a sequence graph is
to find a vertex ordering that minimizes weighted feed-
back edges and the average cut width. These optimization

Fig. 3 Comparison of different graph definitions. Consider an alignment comprising of five MSA blocks (B1 , B2 , B3 , B4 , B5) in four assem-
blies (indicated by different edge colors: G1 blue, G2 green, G3 orange, G4 purple), consisting of a total of sequence intervals denoted by
βk,l = (Gl , ck,l , ik,l , jk,l ,+1) ∈ Bk and β̄k,l = (Gl , ck,l , ik,l , jk,l ,−1) ∈ Bk for positive and negative orientation, respectively. In the drawings, block Bi is
simply denoted by i. Most of the edges in the different graphs represent the adjacency of two intervals in one of the constituent assemblies. These
edges are displayed in the corresponding color. (i) Genome order and orientation of the intervals. Every line shows one assembly and the order
on this assembly. (ii) The supergenome graph. (iii) The bidirected graph. Note that the edges are the same as in the supergenome graph except
for the shown direction. (iv) The sequence graph of Haussler et al. [29]. Note that the edges (3,4) and (5,2) are not part of the graph because of the
change in orientation. (v) The enredo graph. An example of the other special graph structures discussed in Kehr et al. [58]

Page 8 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

criteria ensure that the successor relations are mostly
kept intact and at the same time successors are placed
close to each other in the solution. Both problems the
Minimum Feedback Arc Set Problem [37] and
the Average Cut-Width Minimization Problem
[59–61] are known to be NP-hard. Cutwidth minimiza-
tion problems ask for a linear ordering of the vertices
of a graph such that the average or maximum number
of edges spanning across the gap between a pair of con-
secutive vertices is minimized. Conceptually, cutwidth
problems are quite similar to bandwidth problems [62].
In [29] a heuristic is presented that first extracts a totally
ordered “backbone” and then inserts the remaining verti-
ces into the backbone order that is kept intact in the pro-
cess. While the presence of a global common backbone
order is a well founded assumption for pangenomes of
a single or very closely related species, it is violated sub-
stantially for phylogenetically diverse data.

Betweenness problems
In this work we interpret SSP as a betweenness (order-
ing) problem rather than a vertex ordering problem on a
directed graph. Instead of (oriented) adjacencies, which
are defined on pairs of blocks, one considers the relative
order of three blocks:

Betweenness Problem [63, 64]: Given a finite set X
and a collection C of triples from X, is there a total order
on X such that ∀(i, j, k) ∈ C either i < j < k or i > j > k?

This decision problem is NP-complete [63, 64]. A triple
(i, j, k) ∈ C is called a betweenness triple.

The Betweenness Problem can be adapted to
model the SSP by means of a suitable cost function b
designed to penalize violations of the betweenness rela-
tion. Consider an order ρ used to coordinatize the super-
genome. We may think of ρ as a bijective function from
[1, . . . , |A|] → A . In other words, we number the blocks
contained in A and work on this set of block indices.

For i < j < k we set bρ,G(i, j, k) = 1 if the projections of
the three alignment blocks ρ(i) , ρ(j) , and ρ(k) exist and
violate the betweenness relation for a given assembly G ,
i.e., if πG(ρ(i)) , πG(ρ(j)) and πG(ρ(k)) are located on the
same contig and πG(ρ(j)) is not located between πG(ρ(i))
and πG(ρ(k)) . Otherwise we set bρ,G(i, j, k) = 0 . A natu-
ral cost function is now the total number of betweenness
violations

where G(A) is the set of genome assemblies that are
contained in A . If genome evolution were to preserve
gene order, i.e., only local duplications and deletions are
allowed, the betweenness relation of the ancestral state

(1)b(ρ) :=
∑

G∈G(A)

∑

i<j<k

bρ,G(i, j, k) ,

would be preserved, guaranteeing a perfect solution ρ
with b(ρ) = 0.

Since this decision problem is NP-complete [63, 64], so
is the problem of optimizing b(ρ) NP-hard. The proof is
shown in Additional file 1: Section 1 The cost function
b(ρ) involves the sum over all triples of alignment blocks
and thus is fairly expensive to evaluate. It is interesting
in practice, therefore, to consider a modified cost func-
tion that restricts the sum in Eq. (1) to local information.
This idea leads us to the rather natural extension of the
Betweenness Problem to colored multigraphs.

Definition 6 Given an (undirected) colored multi-
graph Ŵ̂ = (V ,E) , the triple (i, j, k) is part of the collec-
tion C (Ŵ̂) , iff there are edges {i, j} ∈ E and {j, k} ∈ E with
color G.

Colored Multigraph Betweenness Decision
Problem: given the colored multigraph Ŵ̂ = (V ,E) , is
there a total order on V such that ∀(i, j, k) ∈ C (Ŵ̂) either
i < j < k or i > j > k?

The reformulation as an optimization problem that
maximizes the number of edges is straightforward:
Colored Multigraph Betweenness Problem: Given
a colored multigraph Ŵ̂ = (V ,E) , find a total order on V
such that E∗ ⊆ E is maximal under the condition that
∀(i, j, k) ∈ C (V ,E∗) either i < j < k or i > j > k.

This problem can be viewed as an analog of the Mini-
mum Feedback Arc Set problem [38] for betweenness
data. To our knowledge is has not been studied so far.

Lemma 2 The (decision version of the) Colored Mul-
tigraph Betweenness Problem is NP-complete.

Proof Every set C (Ŵ̂) of triples can be obtained from
an edge-colored multigraph Ŵ̂ (with vertices correspond-
ing to alignment blocks and colored edges correspond-
ing to adjacencies deriving from a genome identified by
the color). Thus, the total order on the vertices of Ŵ̂ is a
solution of the Colored Multigraph Betweenness
Problem if and only if the answer to the NP-complete
Betweenness Problem is positive. In Additional file 1:
Section 1 the reduction in both directions is shown.

In the example of Fig. 2 the optimal solution of the
Colored Multigraph Betweenness Problem
retains all unordered adjacencies and creates a unique
coordinatization (up to orientation) that leaves all align-
ment blocks ordered as drawn.

Seriation
An alternative framework for solving the SSP by con-
struction of a preferred ordering is seriation. The

Page 9 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

Robinson seriation problem [65] starts from a dissimilar-
ity measure d : X × X → R , and seeks a linear order ρ on
X that satisfies the inequality

A dissimilarity d for which an ordering ρ exists that sat-
isfies Eq. (2) for all ρ(i) < ρ(j) < ρ(k) is called Robinso-
nian. It is worth noting that Robinsonian dissimilarities
are intimately related with pyramidal clustering problems
[66, 67].

The seriation problem [65, 68] consists of finding a
total order for which the given pairwise distances vio-
lates the Robinson conditions as little as possible. To link
this seriation problem with the Colored Multigraph
Betweenness Problem or Betweenness Problem we
consider a collections C of triples such that

Clearly, if the dissimilarity is Robinsonian, then ρ defines
a total order on X that solves the Betweenness Prob-
lem for (X ,C).

The relevant optimization task in our context is there-
fore to minimize the number of ordered triples that vio-
late Eq. (2). A variety of heuristics for this problem have
been developed, see e.g. [69]. It is important to note,
however, that in our setting the distance between align-
ment blocks is not defined directly. In order to obtain a
seriation problem that approximates the Supergenome
Sorting Problem we will have to resort to a heuristic
that summarizes the distances between two blocks in all
genomes and reflects the betweenness relationships. For
pangenome-like models, the cost function advocated in
[28] is a very plausible choice.

Graph simplification
Each of the plausible models for the “Supergenome Sort-
ing Problem” discussed in the previous sections leads
to NP-hard computational problems. The size of typi-
cal genome-wide alignments by far exceeds the range
where exact solutions can be hoped for, except possibly
for the smallest and most benign examples such as the
ones used as examples in [17]. We therefore will have to
resort to fast heuristics. In this section we focus on the
conceptual ideas behind the simplification steps. More
detailed implementation details are given in the "Meth-
ods" section.

Nevertheless it is possible to isolate certain sub-prob-
lems that can be solved exactly and independently of the
remainder of the input graph. Since “linearized” portions
of the vertex set can be contracted to a single vertex set,
this leads to a reduction of problem size.

(2)max{d(ρ(i), ρ(j)), d(ρ(j), ρ(k))} ≤ d(ρ(i), ρ(k)) .

(3)
(ρ(i), ρ(j), ρ(k)) ∈ C impliesmax

{d(ρ(i), ρ(j)), d(ρ(j), ρ(k))} < d(ρ(i), ρ(k))

Lemma 3 If the supergenome graph Ŵ is a directed acy-
clic graph then topological sorting of Ŵ solves the Colored
Multigraph Betweenness Problem.

Proof In this case betweenness is established exactly
by the directed paths in the DAG. Hence any topologi-
cal sorting preserves all betweenness triples of G and
thus presents a perfect solution to the Colored Multi-
graph Betweenness Problem as well.

This simple observation suggests to identify subgraphs
with DAG structure and to replace them with a rep-
resentative for each replaced DAG. These can later be
replaced by the solution that is created with topological
sorting. We note that this does not necessarily preserve
optimality. It is conceivable that a local DAG structure
has to be broken up into two disjoint subsets that are
integrated in larger surrounding structures in a way that
requires reversal of the edge directions in one or even
both parts. Nevertheless, if the local DAG structures are
sufficiently isolated they are likely to be part of the opti-
mal solution as a unit. The motif that describes such a
local DAG structure has been introduced as “superbub-
ble” in the context of graph structures arising in sequence
assembly problems [70, 71].

Source and sink vertices s in the supergenome graph
with only a single neighbor t are conceptually a special
case of superbubbles. These can be sorted together with
their unique neighbor t. Ŵ is thus simplified by contract-
ing s and t, i.e., placing the source s immediately before t
and sink s immediate after t. An example of such a source
and a sink can be seen in Fig. 4.

In some cases it is helpful to reverse the direction of
the coordinate system of a single species. This is in par-
ticular the case when a single genome is reversed com-
pared to all others. The inversion of an entire path does
not change the solution of the Colored Multigraph

B

A

Fig. 4 A Sink and Source Example are shown here. In this part of a
bigger supergenome graph a sink and a source exists. The source is
in field A. It has only one successor and thus can be merged with this
successor. The sink is in field B. It has only one predecessor and thus
can be merged with this predecessor

Page 10 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

Betweenness Problem but can make it easier to apply
some of the reduction heuristics discussed above. In par-
ticular, if the relative orientation of the coordinatizations
could be fixed in an optimal manner, the betweenness
problem reduces to a much easier topological sorting
problem. Finding this optimum, however, is equivalent to
the Betweenness Problem, which is a NP-hard. Hence,
we again have to resort to local heuristics.

Definition 7 Let Ŵ = (V ,E) be a supergenome graph.
A pair of vertices v,w ∈ V such that there are edges (v, w)
and (w, v) in E is a mini cycle.

Mini-cycles are naturally removed by removing one of
the two edge directions between v and w. More precisely,
the less supported direction of an edge is dropped. The
estimate for support is evaluated in a region around a
mini-cycle since adjacent mini-cycles may yield contra-
dictory majority votes.

Definition 8 Two mini-cycles are connected with each
other if they share a vertex. A mini-cycle complex C is a
maximal connected set of mini-cycles.

Lemma 4 The mini-cycle complexes of a supergenome
graph Ŵ form a unique partition of the set of all minicy-
cles. Any two classes of this partition are vertex and edge
disjoint.

Proof Consider the the graph H whose vertices are
the mini-cycles, and there are edges between any two
mini-cycles that share at least one vertex. Then every
mini-cycle complex C is a connected component of H.
Since the connected components of a graph are uniquely
defined, disjoint, and form a cover, they partition the
vertex set of H. Every minicycle, furthermore, forms a
connected subgraph of Ŵ by construction. Since any two
minicycles that contain a common vertex belong to the
same mini-cycle complex, two mini-cycle complexes can-
not have a vertex in common. This implies that they are
also edge disjoint.

The mini-cycle complexes therefore can be resolved
independently of each other. The target is to remove
edges that create cycles in order to obtain a DAG that
can then be subjected to topological sorting. However,
this topological sorting is a solution of the Colored
Multigraph Betweenness Problem for a subgraph.
This is still a hard problem, so that we again utilize a heu-
ristic approach. In this step we only attempt to remove
mini-cycles. Cycles that connect mini-cycle complexes
with each other or with other vertices in the graph are

therefore left untouched and have to be dealt with in a
subsequent step.

The local sorting within a complex C is achieved by con-
sidering adjacencies. To this end we annotate each adja-
cency with the number of edges and the ratio of the edges
in the two directions. We identify the best supported
edges as those with a high multiplicity and a strong bias
for one direction over the other. This choice of a direction
is then propagated. If a directed edge has more than one
possible successor, we first propagate along the one with
the largest support for the proposed direction. The issue
now is when exactly to stop propagating this information.
Clearly, it is forbidden to orient an edge that would close
a directed cycle. Any such edge is instead seeded with the
reverse directional information.

As part of this procedure it is possible that parts of a
directed path from a given genome received contradic-
tory orientations in different regions. If this is the case,
the edge crossing the boundary between the differently
oriented regions must be removed. Finally, the heuris-
tic may terminate and still leave some edges unoriented.
This indicates that the orientations are contradictory and
need to be reversed. An example of the mini-cycle reso-
lution process is shown in Fig. 5.

Methods
Curation of input data sets
We investigate here three genome-wide data sets. The
smallest set, referred to as B (bacteria) below, is an
alignment of four Salmonella enterica serovars. This
alignment was produced with Cactus [27] using the Sal-
monella enterica Newport genome as reference and com-
prises 13, 416 blocks, 50, 932 sequence fragments, and
18, 047, 456 nucleotides. The medium-size set, termed Y
(yeast), is an alignment of seven yeast species that uses
the Saccharomyces cerevisiae genome as references.
It comprises 49, 795 alignment blocks composed of
275, 484 sequences fragments that contains 71, 517, 259
nucleotides. The third, much larger set F (fly) is a align-
ment of 27 insect species that uses the Drosophila mela-
nogaster genome as references. It comprises 2, 112, 962
blocks composed of 36, 139, 620 sequence fragments hat
contains 2, 172, 959, 429 nucleotides. For more detailed
information of the data sets refer to Additional file 1:
Section 2.

The two large genome-wide multiple sequence align-
ments were produced by the multiz pipeline and were
downloaded from the UCSC genome browser [72]. They
are, as discussed above, injective but not irredundant. In
order to remove spurious alignment blocks we filter the
input blocks with respect to first length, then score, and
finally mutual overlap. Very short alignment blocks are
almost certainly either spurious matches or they were

Page 11 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

inserted to bridge gaps between larger blocks. Conse-
quently, they convey little or no useful information for
our purposes. We therefore remove all blocks with a
length ≤ 10 nt.

Since genome-wide alignments tend to contain also
very poorly aligned regions we require a minimum
similarity, expressed here in the form of sum-of-pairs
blastz scores [73]. Since these scale linearly with the
number of columns ℓ(B) of the alignment block B and

the number
(

r
2

)

 of pairwise alignments formed by the r

rows in B, we normalize with
(

r
2

)

ℓ(B) to obtain a simi-

larity measure that is independent of the size of the align-
ment block. Based on the parametrization of blastz,
we set the threshold at a normalized score of − 30 , which
corresponds to the gap extension penalty.

The coordinatization of the supergenome depends
on the uniqueness of coordinate projections. There are
three major reasons to observe overlaps, i.e., genomic
regions that appear in more than one alignment: (i) the
sequence is duplicated in some species. Then multiz
tends to align the corresponding unduplicated sequence
to both duplicates. (ii) Spurious similarities in particular
in poorly conserved regions may lead to alignments con-
taining a sequence element twice at the expense of the
second copy. (iii) Short overlaps at the end of blocks may
appear due to difficulties in determining the exact ends
of alignable regions. The first two causes introduce unde-
sirable noise and uncertainties. Therefore, we remove all

such overlapping blocks in which sequences from the
species overlap. Since there is no easy way to determine
which one of two overlapping blocks is likely correct, we
opt to remove both copies. The third case, in contrast,
does not disturb the relative order of alignment blocks
and thus can be ignored. The overlap filter is applied after
low quality alignments already have been removed from
the data set.

We tolerate an overlap of 20 nt at the borders of align-
ment blocks. This cutoff is designed to remove ambigu-
ous alignments, while avoiding the removal of alignment
blocks that overlap by a few nucleotides owing to over-
lapping extensions of local blastz seeds. In addition
we remove sequences that completely overlap other
sequences regardless of their size to further reduce the
noise introduced by spurious alignments. We opt here for
a stringent procedure and remove all alignment blocks
that contain sequences tagged for removal. In practice,
this step removes only a tiny fraction of the blocks and
thus does not significantly influence the coverage of the
retained data.

The initial data filtering steps removed almost 35%
(40% , 30%) of the blocks from data set F , (Y , B). The
majority were eliminated because of their minimal
length. About 8.5% (27% , 0%) of the blocks were removed
because they contained non-unique sequences. The
sequences in the blocks that are removed with all filters
contain less then 15% (26% , 0.4%) of the nucleotides in
the alignment. Hence more than 85% (74% , 99%) of the

Fig. 5 Step-wise resolution of a complex of mini-cylces. (i) Starting point. (ii) The mini-cycle complex is highlighted. The complex is created from
the mini-cylces {1, 2} , {2, 3} , and {2, 5} . Note that the edges (1, 3) and (5, 3) are not contained in the complex. The best supported directions are
between (1, 2). (iii) This direction between (1, 2) is then set. The orange edges are therefore reversed (marked by dashed lines). The adjacency {1, 2}
is decided and is no longer considered (marked with dark grey). (iv) In this step the best supported direction is (2, 3) and the graph is updated cor-
respondingly. (v) Adjacency {2, 5} is left. No direction is superior. Since vertex 2 was solved for previously it is now used. This leads to direction (2, 5).
(vi) Then the completed complex is decided and the edges that are contradictionary with the decisions are removed. Note that the circle 3, 4, 5, 3
that was not part of the complex is not removed

Page 12 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

sequence information of the alignment is intact and the
quality of the data is significant better. A more detailed
summary of the filtering is compiled in Additional file 1:
Section 2.

Graph simplification and DAG construction
The algorithmic ideas and their justifications for the
graph reduction steps have already been discussed in
"Theory" section. Here we briefly address implementa-
tion issues as well as particular choices of cost functions
and parameters that were discussed in a more general
setting above.

The filtered data is used to create an initial superge-
nome graph. Then we iterate the three different graph
simplifiers until no further reduction steps can be
applied: the mini-cycle remover, the source/sink sim-
plifier, and the superbubble simplifier. The individual
simplifiers are straightforward implementations of the
basic ideas outlined above. The mini-cycle remover first
identifies the mini-cycles, aggregates them into non-
overlapping complexes, and then proceeds to remove
contradictory edges in a greedy manner. The other two
simplifiers first check for each vertex in the input graph
whether it is a valid sink, source, or starting vertex of a
superbubble. Pseudocode of the simplifiers is given in
Additional file 1: Section 4.

The mini-cycle remover works more effectively on a
single big complex than on many small ones separated

by narrow gaps. The other two simplifiers therefore are
applied until a fixed point is reached to close some of
these gaps. The entire procedure is then iterated until the
minicycle remover cannot change the graph any further.

Once a fixed point is reached we attempt to remove
directed cycles. This amounts to solving the Minimum
Feedback Arc Set Problem, which is known to be
NP-hard [37]. Given the size of our input graphs we have
to resort to linear-time heuristics. We use Algorithm
GR [38] because it is known to work particularly well on
sparse graphs. Cycle removal typically creates new pos-
sibilities to simplify the graph. For instance, a sink is
created whenever the last outgoing edge of a vertex is
removed. The new sink can then be simplified further.
The graph simplifiers are therefore applied again after the
cycle removal step.

The minicycle remover is not used in this second pass
because it is not applicable to DAGs by construction.
Instead, we use a generalized version of the source/sink
simplifier in which a source s may have more than a sin-
gle successor v, provided v is a predecessor of all other
successors of s. The position of source s in the DAG is
determined by v and thus s can be placed immediately
before v. The corresponding arrangements for a sink and
its predecessor is treated analogously.

The running time and the minimization of the data set
while this process is applied is shown in Figs. 6, 7 and 8.

time in s

#
in

gr
ap

h

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
40

00
60

00
80

00
10

00
0

S
MFAS
Mini-Cycle Remover

Edges
Vertices

Fig. 6 Simplification process for data set B . The size of the graph (number of edges and vertices in the graph) is shown while the simplifier and
the MFAS are applied. The running time is computed on a Intel(R) Xeon(R) CPU E7-8860 processor with 32 Gb RAM. At the bottom, the different
processes are shown as color-coded bars

Page 13 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

Seriation
Finally, the common coordinate system is created by seri-
ation of the DAG. The resulting supergenome, i.e. linear
order of the vertices of the graphs corresponds to a lin-
ear order of all blocks. In particular, vertices resulting
from a simplifier may contain more than one block. Those
blocks, however, are already sorted and thus are inserted
as a single block. Seriation is naturally divided into two
steps. First, topological sorting is used to calculate an ini-
tial linear ordering from the DAG. Kahn’s algorithm [40]
is a classical solution to the topological sorting problem.
For our purposes it is desirable that, if possible, two nodes
v and w are placed consecutively whenever there is an
edge (v, w) in the final DAG. To this end we modify Kahn’s
algorithm by sorting the successors of a node in the order
of evidence for their adjacency in the original data.

The order obtained in this manner may not be optimal
w.r.t. its agreement with the order of the blocks in the
genomes. It provides a good starting point, however, for
the final optimization step, which we phrase as minimiz-
ing the number τ of triplets (i, j, k) for which the Rob-
inson condition, Eq. (2), page 12, is violated. We use the
distance measure

(4)
d(i, k) =

1
|(i,k)|

if an edge (i, k) exists,

mini<j<k{d(i, j)+ d(j, k)} if a path from i to k through j exists,
∞ if no path from i to k exists,

where |(i, k)| is the number of edges from i to k. Since d
is a good measure of co-linearity only for short distances,
we limit the path length in Eq. 4 to a small number of l
edges. We set l = 10 in our implementation. In addition
this reduces the effort of computing the distances from
O(|V |2) to O(|V|) as a consequence of the sparsity of the
input graph.

We use a gradient descent-like optimization algorithm
to minimize τ . We say that two nodes are siblings if they
either share a predecessor in the DAG or if they are both
sources. The move set for the gradient descent consists
of swaps of siblings only. In addition, we allow to move a
node directly in front of its sibling. The discrete gradient
is computed exhaustively by generating and evaluating
each potential move. Since non-overlapping swaps do not
influence each other, we greedily execute a maximal set
of non-overlapping swaps in a single optimization step.

Assessment of the quality of supergenome coordinate
systems
Since no ground truth is available for this problem and
the construction of simulated benchmarks for genome
wide multiple sequence alignments would be a research

0 1 2 3 4

0
50

00
0

10
00

00
15

00
00

time in s

#
in

gr
ap

h

Edges
Vertices

MFAS
Mini-Cycle Remover

Fig. 7 Simplification process for data set Y . The size of the graph (number of edges and vertices in the graph) is shown while the simplifier is
applied and the MFAS are solved. The running time is computed on a Intel(R) Xeon(R) CPU E7-8860 processor with 32 Gb RAM. At the bottom, the
different processes are shown as color-coded bars.

Page 14 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

project in its own right, we have to resort to measuring
quantities that are informative about the final choice of
the coordinate system.

A straightforward measure is the distribution of dis-
tances in the output coordinate system of alignment

blocks that are contiguous in at least one input genome.
Since we are not interested in the length of align-
ment blocks, distance is measured here not in terms of
sequence length but in terms of the number of align-
ment blocks, so that adjacent blocks have distance 0. It

time in s
7900 8000 8100 8200

0
20

00
00

0
40

00
00

0
60

00
00

0
80

00
00

0
10

00
00

00
12

00
00

00

#
in

 g
ra

ph

0 2000 4000 6000 8000

time in s

0
50

00
00

0
10

00
00

00
15

00
00

00
20

00
00

00
25

00
00

00

#
in

gr
ap

h

S
MFAS
Mini-Cycle Remover

Edges
Vertices

Fig. 8 Simplification process for data set F . The size of the graph (number of edges and vertices in the graph) is shown while the simplifier is
applied and the MFAS is solved. The running time is computed on a Intel(R) Xeon(R) CPU E7-8860 processor with 32gb ram. At the bottom, the dif-
ferent processes are shown as color-coded bars

Page 15 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

is important here to keep track of the reading directions:
contiguity with the same reading direction corresponds
to preservation of the original genomic coordinates,
while a change in reading direction indicates change of
the order. Thus we distinguish preserved and inverted
reading direction in our quantitative analysis.

Open reading frames (ORFs) are among the best-con-
served features in the genome due to the strong selection
pressures acting to preserve the corresponding proteins.
As an immediate consequence we expect that ORFs are
almost always preserved. This should be reflected also by
the supergenome coordinates, i.e., blocks belonging to the
same ORF should have only a small number (smaller then
5) of other blocks between them and retain their relative
order. For higher eukaryotes, we cannot expect near perfect
adjacency of coding blocks, however, because larger introns
are subject to local rearrangements. To quantify the prox-
imity of blocks of an ORF, the distances between all adja-
cent blocks are determined as described above and their
absolute values are added up to yield a single characteristic
value. In addition we count the number of exons that are
“broken up” in the sense that consecutive pieces do not
have consecutive coordinates or are placed in reverse order
in the supergenome. Coding genes and exons are taken as
annotated for the corresponding genomes. We note that in
particular for large, intron-rich genomes such as the insect
data set F this is an additional source of errors.

Results and discussion
We have devised a heuristic algorithm to extract a com-
mon coordinate system for a supergenome from a
genome-wide multiple sequence alignment. The proce-
dure has been tested on three alignments of very differ-
ent size and difficulty: an easy instance comprising four
closely related bacterial species, an intermediate size
problem composed of seven yeast genomes, and the align-
ment of 27 insect genomes as the most difficult instance.

Performance of individual components
The heuristic algorithm outlined above is composed of
several largely independent components. It is of inter-
est, therefore to consider their relative impact on the
final results. We find that most edges are removed by the
mini-cycle remover, with a small contribution of Algo-
rithm GR. On the other hand, the largest reduction
of the vertex set is due to the merges identified by the
closed DAG simplifier. More quantitative information is
compiled in Figs. 6, 7 and 8 and in Additional file 1: Sec-
tion 8. The simplifiers reduce the graph size by about an
order of magnitude in both the number of vertices and
edges, reducing it in size and complexity to a point where
the seriation heuristic operates efficiently. The relative
improvement is smallest for the bacterial data set.

Since the Colored Multigraph Betweenness
Problem cannot be solved exactly in reasonable time for
instances with sizes that are of interest for our applica-
tion at hand, we cannot measure performance relative
to the exact solution. The multigraphs obtained from
real-life alignments contain a large number of conflicting
edges. In the most difficult data set, F , for instance, the
final order keeps more than 95% of the initial edges.

Quality of supergenome coordinate systems
The quality of the coordinate systems strongly depends
on the quality of the input alignments. A detailed discus-
sion of issues with the input alignments can be found in
Additional file 1: Section 8. Here, we focus on an assess-
ment of the coordinate systems themselves.

In order to check the overall quality of the solution
we compute a betweenness graph from the superge-
nome coordinate systems. This is done by starting with
a graph without edges. First, all edges that are supported
by the total order of the supergenome are added. This is
followed by edges that contradict the total order but do
not create contradicting betweenness triples. Note that
this graph is not necessary optimal but a good approxi-
mation that can easily be computed. The edge set of this
graph is compared to the edge set of the initial graph.
Good solutions are expected to retain most of the edges.
For the three data sets we find that 95.3%, 97.5%, and
99.4% of the edges are retained in data sets B , Y , and F ,
respectively.

The distribution of block-wise distances in the super-
genome of alignment blocks that are consecutive in
the original genome serves as a simple measure of pre-
served synteny. The results are summarized in Fig. 9 and
presented in full detail in Additional file 1: Section 8.
Another measure is how many of the input orders are
preserved. To measure this we consider every alignment
block and all successors from the different genomes. For
the bacterial data set B 89% of the successors preserve the
order and 80% also preserve the adjacency. For the yeast
data set Y we observe that 93% of the successors pre-
serve the order and 84% also preserve adjacency. This is
a very encouraging result, taking in mind that every true
genome rearrangement necessarily introduces at least
one non-adjacency. Even in the much larger and more
difficult insect set F we still find 70% of the successors
preserve the order and 66% also preserve adjacency. The
overwhelming majority of non-contiguous successors
are placed in the adjacent but order-reversed position,
reflecting the level of local rearrangements in the insect
data set. This is entirely reasonable given the much larger
number of species and their larger phylogenetic depth
compared to the yeast data. Taken together, these num-
bers already indicate that the supergenome coordinates

Page 16 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

are meaningful and indeed are likely a useful starting
point for large-scale multi-genome comparisons.

Restricting our attention to coding sequences yields a
more stringent quality measure, as shown in Fig. 10. As
bacteria have essentially no introns, we expect that nearly
all blocks belonging to the same ORF retain both adja-
cency and order. In the bacterial data set B 96% of the
ORFs are in one stretch with no interruption and less
then 1% of the ORFs are broken. Since yeasts have few
and short introns [74] we expect that data set Y is also
very well-behaved in this respect. It contains 6062 ORFs
annotated for Saccharomyces cerevisiae. Of these, 5474,
i.e., 90% , are consistently represented in the coordinate
system. An additional 272 ORFs, about 5% , have a dis-
tance of less then 100 blocks between them. Only 73, i.e.,

a bit more than 1% of the ORFs are broken. For Drosoph-
ila melanogaster are 167, 051 exons annotated, and part
of the alignment F . Due to large and abundant introns the
analysis is based on individual exons rather than com-
plete ORFs for set F . We observe that 95% of the ORFs/
exons are consistently represented. Only 779, about 0.5% ,
are broken. Overall, thus, the supergenome coordinates
behave very well for all three data sets.

As a specific example we consider the genes of the yeast
TCA cycle [75] in more detail. It is one of the best-stud-
ied enzyme systems and known to be essential in S. cer-
evisiae. There, it comprises 20 genes [76–79], all of which
are contained at least partially in the initial set of align-
ment blocks in the yeast data set Y . Only nine genes are
included in their entirety, however. Seven of these nine

- + -
A

+ -
AC B A A B C C B A B C C B A B C

0
50

00
15

00
0

25
00

0

0
50

00
0

10
00

00
15

00
00

0
50

00
00

0
15

00
00

00

+
B Y F

Fig. 9 Distribution of block-wise distances of consecutive alignment blocks in the original genomes. Data are shown separated for inverted (−) and
preserved (+) orientation of consecutive blocks (light gray). As expected, the number of inverted blocks increases with the difficulty of the input
alignment. In particular, there is a substantial number of local inversions in the insect data set F . Both the inverted (−) and preserved (+) bin are
subdivided further into a bin of adjacent blocks (A), blocks with a distance of 1–5 blocks (B), and more distantly placed blocks (C), in the superge-
nome

Fig. 10 Distribution of block-wise distances between alignment blocks that contain ORFs for the bacteria and yeast data set. For the insect data
invidual exons are considered since rearrangements as well as alignment errors within introns are not infrequent. The black bar indicates the num-
ber of broken ORFs/exons. The data is binned in three distance ranges: a distance of 0 (A), a distance of 1–100 (B), and a distance larger than 100 (C)

Page 17 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

are represented colinearly in single blocks. The align-
ments for KGD2 and SDH2 cover multiple MSA blocks
and there is intervening genomic sequence in the input
alignment, leading to non-contiguous placement in the
final coordinate system. The alignment blocks referring
to the remaining 11 genes are difficult to analyze and may
contain misassigned sequences. This example, similar to
several other loci, suggests that the quality of the input
alignment rather than the complexity of the between-
ness problem is the limiting factor for the construction of
supergenome coordinate systems.

Conclusion
In this contribution we have shown that the problem of
computing a common coordinate system for superge-
nomes with the Colored Multigraph Betweenness
Problem is NP-hard. It belongs to a class of relatively
poorly studied betweenness problems for which few effi-
cient heuristics have been developed so far. We intro-
duced here several local simplification rules that can be
applied iteratively to reduce the problem. It is important
to note these reduction steps are only heuristics and do
not guarantee optimal solutions. In conjunction with a
simple serialization approach for the residual graph, they
nevertheless yield practically useful results with accept-
able computational efforts.

The most immediate application of the supergenome
sorting problem is the direct comparison of genome
annotations for multiple genomes. Hence it constitutes a
prerequisite for comparative genome browsers. We have
applied our approach to three real-life data sets of differ-
ent sizes and difficulties. Our results indicate that prac-
tically useful coordinatizations can be computed. The
computational requirement of the method scales favora-
bly so that in principle even the largest genome-wide
multiple sequence alignments could be processed.

The present study, however, also highlights the short-
comings of currently available genome-wide multiple
sequence alignments [80, 81]. The issue is not only the
relatively moderate coverage with alignment blocks that
contain at least most of the species under consideration,
but also the substantial fractions of alignment blocks that
have been removed from our data set due to likely arte-
factual sequences. We have therefore not attempted to
analyze the UCSC 100-way vertebrate alignments, since
these data are even more complex than the insect data
due to the very large number of paralogs introduced by
genome duplications.

Synteny, i.e., the preservation of relative genome order,
is in general a good predictor for homology. This fact
suggests to use the common coordinate system to iden-
tify likely homologous regions that are not included in
the initial alignment blocks. These could then be (re)

aligned at sequence level and included in a revised mul-
tiple sequence alignment. This, in turn, could yield an
improved common coordinate system. The systematic
improvement of genome-wide alignments, albeit an
interesting and extremely useful endeavor, is beyond the
scope of this contribution.

Possible improvements of the approach taken here
are conceivable in at least two directions. First, one may
consider a hybrid algorithm that solves subgraphs with
a dominant backbone use the method discussed in [29].
As discussed, we assume that large parts of the global
graph structure are not amenable to such a solution, but
it is also reasonable to assume that gene regions under
strong conservation pressures can be solved fairly easily
using a local backbone-based approach. A second venue
of research is concerned with the determination of the
final backbone order. Depending on the phylogenetic
range under investigation, the ancestral gene order would
provide a useful backbone based on the phylogeny of the
species involved in the alignment.

Authors’ contributions
CHzS and PFS designed the study, FG and LM implemented the software and
performed the computational analysis. All authors collaborated on the design
of the algorithms and the overall work flow, the interpretation of results,
and the writing of the manuscript. All authors read and approved the final
manuscript.

Author details
1 Competence Center for Scalable Data Services and Solutions Dresden/
Leipzig, Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany.
2 Bioinformatics Group, Department of Computer Science, Universität Leipzig,
Härtelstraße 16–18, 04107 Leipzig, Germany. 3 Interdisciplinary Center for Bio-
informatics, Universität Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany.
4 Automatic Language Processing Group, Department of Computer Science,
Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany. 5 Max Planck
Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Ger-
many. 6 Department of Theoretical Chemistry, University of Vienna, Währinger
Straße 17, 1090 Vienna, Austria. 7 Center for non-coding RNA in Technology
and Health, Grønegårdsvej 3, 1870 Frederiksberg C, Denmark. 8 Santa Fe
Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA.

Acknowledgements
This work was funded by the German Federal Ministry of Education and
Research within the project Competence Center for Scalable Data Services
and Solutions (ScaDS) Dresden/Leipzig (BMBF 01IS14014B). We acknowledge
support for APCs from the German Research Foundation (DFG) and Universität
Leipzig within the program of Open Access Publishing.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Additional file

Additional file 1. Additional Text covering some proofs, details on the
data set used for evaluation, pseudocode of the algorithms described in
the main text, and additional benchmark data.

https://doi.org/10.1186/s13015-018-0133-4

Page 18 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 14 June 2017 Accepted: 7 September 2018

References
 1. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state

of the science. Nat Rev Genet. 2016;17(3):175–88.
 2. Genomes Project Consortium. A global reference for human genetic vari-

ation. Nature. 2015;526(7571):68–74.
 3. Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I. Princi-

ples of long noncoding RNA evolution derived from direct comparison
of transcriptomes in 17 species. Cell Rep. 2015;11:1110–22. https ://doi.
org/10.1016/j.celre p.2015.04.023.

 4. Lin S, Lin Y, Nery JR, Urich MA, Breschi A, Davis CA, Dobin A, Zaleski C, Beer
MA, Chapman WC, Gingeras TR, Ecker JR, Snyder MP. Comparison of the
transcriptional landscapes between human and mouse tissues. Proc Natl
Acad Sci USA. 2014;111:17224–9. https ://doi.org/10.1073/pnas.14136
24111 .

 5. Necsulea A, Kaessmann H. Evolutionary dynamics of coding and non-
coding transcriptomes. Nat Rev Genet. 2014;15:734–48. https ://doi.
org/10.1038/nrg38 02.

 6. Neme R, Tautz D. Fast turnover of genome transcription across evolution-
ary time exposes entire non-coding DNA to de novo gene emergence.
Elife. 2016;5:e09977.

 7. Washietl S, Kellis M, Garber M. Evolutionary dynamics and tissue speci-
ficity of human long noncodingRNAs in six mammals. Genome Res.
2014;24:616–28.

 8. Nguyen N, Hickey G, Raney BJ, Armstrong J, Clawson H, Zweig A,
Karolchik D, Kent WJ, Haussler D, Paten B. Comparative assembly hubs:
web-accessible browsers for comparative genomics. Bioinformatics.
2014;30(23):3293–301.

 9. Darling AE, Mau B, Perna NT. progressivemauve: multiple genome align-
ment with gene gain, loss and rearrangement. PloS ONE. 2010;5(6):11147.

 10. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler
D, Miller W. Human-mouse alignments with blastz. Genome Res.
2003;13(1):103–7.

 11. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM,
Baertsch R, Rosenbloom K, Clawson H, Green ED. Aligning multiple
genomic sequences with the threaded blockse aligner. Genome Res.
2004;14(4):708–15.

 12. Paten B, Herrero J, Beal K, Fitzgerald S, Birney E. Enredo and pecan:
genome-wide mammalian consistency-based multiple alignment with
paralogs. Genome Res. 2008;18:1814–28.

 13. Bray N, Pachter L. MAVID: constrained ancestral alignment of multiple
sequences. Genome Res. 2004;14:693–9. https ://doi.org/10.1101/gr.19604
04.

 14. Chen X, Tompa M. Comparative assessment of methods for aligning
multiple genome sequences. Nat Biotech. 2010;28:567–72. https ://doi.
org/10.1038/nbt.1637.

 15. Xiao S, Cao X, Zhong S. Comparative epigenomics: defining and utilizing
epigenomic variations across species, time-course, and individuals. Wiley
Interdiscip Rev Syst Biol Med. 2014;6:345–52. https ://doi.org/10.1002/
wsbm.1274.

 16. Nitsche A, Rose D, Fasold M, Reiche K, Stadler PF. Comparison of splice
sites reveals that long non-coding RNAs are evolutionarily well con-
served. RNA. 2015;21:801–12. https ://doi.org/10.1261/rna.04634 2.114.

 17. Herbig A, Jäger G, Battke F, Nieselt K. GenomeRing: alignment visualiza-
tion based on SuperGenome coordinates. Bioinformatics. 2012;28:7–15.

 18. Dugar G, Herbig A, Förstner KU, Heidrich N, Reinhardt R, Nieselt K,
Sharma CM. High-resolution transcriptome maps reveal strain-specific

regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet.
2013;9:1003495. https ://doi.org/10.1371/journ al.pgen.10034 95.

 19. Goryunov DV, Nagaev BE, Nikolaev MY, Alexeevski AV, Troitsky AV. Moss
phylogeny reconstruction using nucleotide pangenome of complete
mitogenome sequences. Biochemistry (Mosc). 2015;80:1522–7. https ://
doi.org/10.1134/S0006 29791 51101 52.

 20. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. The micro-
bial pan-genome. Curr Op Genet Dev. 2005;15:589–94. https ://doi.
org/10.1016/j.gde.2005.09.006.

 21. Bodlaender HL, Fomin FV, Koster AMCA, Kratsch D, Thilikos DM. A note on
exact algorithms for vertex ordering problems on graphs. Theory Comput
Syst. 2012;50:420–32.

 22. Li K, Tang X, Veeravalli B, Li K. Scheduling precedence constrained
stochastic tasks on heterogeneous cluster systems. IEEE Trans Comput.
2015;64(1):191–204.

 23. Fellows MR, Hermelin D, Rosamond F, Shachnai H. Tractable param-
eterizations for the minimum linear arrangement problem. ACM Trans
Comput Theory. 2016;8(2):6.

 24. Pardo EG, Martí R, Duarte A. Linear layout problems. Berlin: Springer;
2016. p. 1–25.

 25. Kececioglu J. The maximum weight trace problem in multiple sequence
alignment. Combinatorial pattern matching. Berlin: Springer; 1993. p.
106–19.

 26. Pevzner PA, Tang H, Tesler G. De novo repeat classification and fragment
assembly. Genome Res. 2004;14(9):1786–96.

 27. Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, Haussler D. Cactus:
algorithms for genome multiple sequence alignment. Genome Res.
2011;21(9):1512–28.

 28. Nguyen N, Hickey G, Zerbino DR, Raney B, Earl D, Armstrong J, Kent WJ,
Haussler D, Paten B. Building a pan-genome reference for a population. J
Comput Biol. 2015;22(5):387–401.

 29. Haussler D, Smuga-Otto M, Paten B, Novak AM, Nikitin S, Zueva M,
Miagkov D. A flow procedure for the linearization of genome sequence
graphs. In: International conference on research in computational
molecular biology. Berlin: Springer; 2017, p. 34–49.

 30. Giegerich R. Explaining and controlling ambiguity in dynamic program-
ming. Annual symposium on combinatorial pattern matching. Berlin:
Springer; 2000. p. 46–59.

 31. Sankoff D. Time warps, string edits, and macromolecules. The theory
and practice of sequence comparison, reading. Boston: Addison-Wesley;
1983.

 32. Belda E, Moya A, Silva FJ. Genome rearrangement distances and gene
order phylogeny in γ-proteobacteria. Mol Biol Evol. 2005;22:1456–67.
https ://doi.org/10.1093/molbe v/msi13 4.

 33. Drillon G, Fischer G. Comparative study on synteny between yeasts
and vertebrates. C R Biol. 2011;334:629–38. https ://doi.org/10.1016/j.
crvi.2011.05.011.

 34. Fischer G, Rocha EPC, Brunet F, Vergassola M, Dujon B. Highly variable
rates of genome rearrangements between hemiascomycetous yeast line-
ages. PLoS Genet. 2006;2:32. https ://doi.org/10.1371/journ al.pgen.00200
32.

 35. Friedberg R, Darling AE, Yancopoulos S. Genome rearrangement by the
double cut and join operation. Methods Mol Biol. 2008;452:385–416.

 36. El-Metwally S, Hamza T, Zakaria M, Helmy M. Next-generation sequence
assembly: four stages of data processing and computational challenges.
PLoS Comput Biol. 2013;9:1003345. https ://doi.org/10.1371/journ
al.pcbi.10033 45.

 37. Karp RM. Reducibility among combinatorial problems. Complexity of
computer computations. Berlin: Springer; 1972. p. 85–103.

 38. Eades P, Lin X, Smyth WF. A fast and effective heuristic for the feedback
arc set problem. Inf Process Lett. 1993;47:319–23.

 39. Saab Y. A fast and effective algorithm for the feedback arc set problem. J
Heuristics. 2001;7:235–50. https ://doi.org/10.1023/A:10113 15014 322.

 40. Kahn AB. Topological sorting of large networks. Commun ACM.
1962;5(11):558–62.

 41. Martí R, Reinelt G. The linear ordering problem: exact and heuristic meth-
ods in combinatorial optimization, vol. 175. Berlin: Springer; 2011.

 42. Grötschel M, Jünger M, Reinelt G. A cutting plane algorithm for the linear
ordering problem. Oper Res. 1984;32:1195–220.

 43. Spearman C. The proof and measurement of association between two
things. Am J Psychol. 1904;15:72–101.

https://doi.org/10.1016/j.celrep.2015.04.023
https://doi.org/10.1016/j.celrep.2015.04.023
https://doi.org/10.1073/pnas.1413624111
https://doi.org/10.1073/pnas.1413624111
https://doi.org/10.1038/nrg3802
https://doi.org/10.1038/nrg3802
https://doi.org/10.1101/gr.1960404
https://doi.org/10.1101/gr.1960404
https://doi.org/10.1038/nbt.1637
https://doi.org/10.1038/nbt.1637
https://doi.org/10.1002/wsbm.1274
https://doi.org/10.1002/wsbm.1274
https://doi.org/10.1261/rna.046342.114
https://doi.org/10.1371/journal.pgen.1003495
https://doi.org/10.1134/S0006297915110152
https://doi.org/10.1134/S0006297915110152
https://doi.org/10.1016/j.gde.2005.09.006
https://doi.org/10.1016/j.gde.2005.09.006
https://doi.org/10.1093/molbev/msi134
https://doi.org/10.1016/j.crvi.2011.05.011
https://doi.org/10.1016/j.crvi.2011.05.011
https://doi.org/10.1371/journal.pgen.0020032
https://doi.org/10.1371/journal.pgen.0020032
https://doi.org/10.1371/journal.pcbi.1003345
https://doi.org/10.1371/journal.pcbi.1003345
https://doi.org/10.1023/A:1011315014322

Page 19 of 19Gärtner et al. Algorithms Mol Biol (2018) 13:15

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

 44. Kendall MG. A new measure of rank correlation. Biometrika.
1938;30:81–93.

 45. Fagin R, Kumar R, Sivakumar D. Comparing top k lists. SIAM J Discrete
Math. 2003;17:134–60. https ://doi.org/10.1137/S0895 48010 24128 56.

 46. Fried C, Hordijk W, Prohaska SJ, Stadler CR, Stadler PF. The footprint sort-
ing problem. J Chem Inf Comput Sci. 2004;44:332–8.

 47. Collier JH, Konagurthu AS. An information measure for comparing top k
lists. In: 2014 IEEE 10th international conference on e-science, vol. 1. 2014,
p. 127–34. https ://doi.org/10.1109/eScie nce.2014.39.

 48. Bertrand D, Blanchette M, El-Mabrouk N. Genetic map refinement using a
comparative genomic approach. J Comput Biol. 2009;16:1475–86.

 49. Oswald M, Reinelt G. The simultaneous consecutive ones problem. Theor
Comput Sci. 2009;410:21–3.

 50. Booth KS, Lueker GS. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J Comput Syst Sci.
1976;13:335–79.

 51. Meidanis J, Porto O, Telles GP. On the consecutive ones property. Discrete
Appl Math. 1998;88:325–54.

 52. Tucker A. A structure theorem for the consecutive 1’s property. J Comb
Theory B. 1972;12:153–62.

 53. Christof T, Oswald M, Reinelt G. Consecutive ones and a betweenness
problem in computational biology. In: Bixby RE, Boyd EA, Ríos-Mercado
RZ, eds. Integer programming and combinatorial optimization, vol. 1412.
1998, p. 213–28.

 54. Reid JK, Scott JA. Reducing the total bandwidth of a sparse unsymmetric
matrix. SIAM J Matrix Anal Appl. 2006;28:805–21.

 55. Cuthill E, McKee J. Reducing the bandwidth of sparse symmetric matri-
ces. In: Proceedings of 24th National Conference ACM. New York: ACM;
1969, p. 157–72. https ://doi.org/10.1145/80019 5.80592 8.

 56. Gibbs NE, Poole WG Jr, Stockmeyer PK. An algorithm for reducing
bandwidth and profile reduction algorithms. SIAM J Numer Anal.
1976;13:236–50.

 57. Feige U. Coping with the NP-hardness of the graph bandwidth problem.
In: Algorithm Theory—SWAT 2000, vol. 1851. 2000, p. 129–45.

 58. Kehr B, Trappe K, Holtgrewe M, Reinert K. Genome alignment with graph
data structures: a comparison. BMC Bioinf. 2014;15(1):99.

 59. Gavril F. Some NP-complete problems on graphs. In: Proceedings of the
11th Conference on Information Sciences and Systems. Baltimore: Johns
Hopkins University; 1977, p. 91–5.

 60. Makedon FS, Papadimitriou CH, Sudbourough IH. Topological bandwidth.
SIAM J Algebraic Discrete Methods. 1985;6:418–44.

 61. Martí R, Pantrigo JJ, Duarte A, Pardo EG. Branch and bound for the
cutwidth minimization problem. Comput Oper Res. 2013;40:137–49.

 62. Barth D, Pellegrini F, Raspaud A, Roman J. On bandwidth, cutwidth,
and quotient graphs. Informatique théorique et applications.
1995;29:487–508.

 63. Opatrny J. Total ordering problem. SIAM J Comput. 1979;8:111–4.
 64. Chor B, Sudan M. A geometric approach to betweenness. SIAM J Discr

Math. 1998;11:511–23.
 65. Robinson WS. A method for chronologically ordering archaeological

deposits. Amer Antiquity. 1951;16:293–301.
 66. Bertrand P. Systems of sets such that each set properly intersects at

most one other set—application to cluster analysis. Discrete Appl Math.
2008;156:1220–36.

 67. Bertrand P, Diatta J. Multilevel clustering models and interval convexi-
ties. Discrete Appl Math. 2017;222:54–66. https ://doi.org/10.1016/j.
dam.2016.12.019.

 68. Liiv I. Seriation and matrix reordering methods: an historical overview.
Stat Anal Data Min. 2010;3:70–91.

 69. Hahsler M, Hornik K, Buchta C. Getting things in order: an introduction to
the R package seriation. J Stat Softw. 2008;25:3.

 70. Onodera T, Sadakane K, Shibuya T. Detecting superbubbles in assembly
graphs. In: International workshop on algorithms in bioinformatics. Berlin:
Springer; 2013, p. 338–48.

 71. Paten B, Novak AM, Garrison E, Hickey G. Superbubbles, ultrabubbles and
cacti. In: International conference on research in computational molecu-
lar biology. Berlin: Springer; 2017, p. 173–89.

 72. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,
Haussler D. The human genome browser at ucsc. Genome Res.
2002;12(6):996–1006.

 73. Chiaromonte F, Yap V, Miller W. Scoring pairwise genomic sequence align-
ments. Pac Symp Biocomput. 2001;7:115.

 74. Spingola M, Grate L, Haussler D, Ares M Jr. Genome-wide bioinformatic
and molecular analysis of introns in Saccharomyces cerevisiae. RNA.
1999;5:221–34.

 75. Krebs H, Gurin S, Eggleston L. The pathway of oxidation of acetate in
Baker’s yeast. Biochem J. 1952;51(5):614.

 76. Saccharomyces Genome Database Community: SGD Yeast Pathway: Sac-
charomyces cerevisiae TCA cycle, aerobic respiration. http://pathw ay.yeast
genom e.org/YEAST /NEW-IMAGE ?objec t=TCA-EUK-PWY. Accessed 18
May 2017.

 77. Haselbeck RJ, McAlister-Henn L. Function and expression of yeast mito-
chondrial nad-and nadp-specific isocitrate dehydrogenases. J Biol Chem.
1993;268(16):12116–22.

 78. Oyedotun KS, Lemire BD. The carboxyl terminus of the Saccharomy-
ces cerevisiae succinate dehydrogenase membrane subunit, sdh4p, is
necessary for ubiquinone reduction and enzyme stability. J Biol Chem.
1997;272(50):31382–8.

 79. Yasutake Y, Watanabe S, Yao M, Takada Y, Fukunaga N, Tanaka I. Crystal
structure of the monomeric isocitrate dehydrogenase in the presence of
nadp+ insight into the cofactor recognition, catalysis, and evolution. J
Biol Chem. 2003;278(38):36897–904.

 80. Earl D, Nguyen N, Hickey G, Harris RS, Fitzgerald S, Beal K, Seledtsov I,
Molodtsov V, Raney BJ, Clawson H, Kim J, Kemena C, Chang JM, Erb
I, Poliakov A, Hou M, Herrero J, Kent WJ, Solovyev V, Darling AE, Ma J,
Notredame C, Brudno M, Dubchak I, Haussler D, Paten B. Alignathon: a
competitive assessment of whole-genome alignment methods. Genome
Res. 2014;24:2077–89. https ://doi.org/10.1101/gr.17492 0.114.

 81. Ezawa K. Characterization of multiple sequence alignment errors
using complete-likelihood score and position-shift map. BMC Bioinf.
2016;17:133. https ://doi.org/10.1186/s1285 9-016-0945-5.

https://doi.org/10.1137/S0895480102412856
https://doi.org/10.1109/eScience.2014.39
https://doi.org/10.1145/800195.805928
https://doi.org/10.1016/j.dam.2016.12.019
https://doi.org/10.1016/j.dam.2016.12.019
http://pathway.yeastgenome.org/YEAST/NEW-IMAGE?object=TCA-EUK-PWY
http://pathway.yeastgenome.org/YEAST/NEW-IMAGE?object=TCA-EUK-PWY
https://doi.org/10.1101/gr.174920.114
https://doi.org/10.1186/s12859-016-0945-5

	Coordinate systems for supergenomes
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Theory
	Genome-wide multiple sequence alignments
	Adjacency and betweenness of MSA blocks
	Modeling the “Supergenome Sorting Problem”
	Hamiltonian paths
	Feedback arc sets and topological sorting
	Simultaneous consecutive ones and matrix banding
	Bidirected graphs
	Sequence graphs

	Betweenness problems
	Seriation

	Graph simplification

	Methods
	Curation of input data sets
	Graph simplification and DAG construction
	Seriation
	Assessment of the quality of supergenome coordinate systems

	Results and discussion
	Performance of individual components
	Quality of supergenome coordinate systems

	Conclusion
	Authors’ contributions
	References

