
Dondi et al. Algorithms Mol Biol (2019) 14:7
https://doi.org/10.1186/s13015-019-0139-6

RESEARCH

Reconciling multiple genes trees
via segmental duplications and losses
Riccardo Dondi1, Manuel Lafond2* and Celine Scornavacca3

Abstract

Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families.
Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of
gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with
a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are
associated with cost δ and � , respectively. We show that the problem is polynomial-time solvable when δ ≤ � (via
LCA-mapping), while if δ > � the problem is NP-hard, even when � = 0 and a single gene tree is given, solving a long
standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-param-
eter algorithm for the problem, where the parameters are δ/� and the number d of segmental duplications, of time
complexity O

(

⌈ δ
�
⌉d · n · δ

�

)

 . Finally, we demonstrate the usefulness of this algorithm on two previously studied real
datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplica-
tions on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.

Keywords: Phylogenetics, Gene trees, Species trees, Reconciliation, Segmental duplications, Fixed-parameter
tractability, NP-hardness, Whole genome duplications

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
It is nowadays well established that the evolution of a
gene family can differ from that of the species contain-
ing these genes. This can be due to quite a number of
different reasons, including gene duplication, gene loss,
horizontal gene transfer or incomplete lineage sorting,
to only name a few [22]. While this discongruity between
the gene phylogenies (the gene trees) and the species
phylogeny (the species tree) complicates the process of
reconstructing the latter from the former , every cloud
has a silver lining: “plunging” gene trees into the species
tree and analyzing the differences between these topolo-
gies, one can infer the macro-evolutionary events that
shaped gene evolution. This is the rationale behind the
species tree-gene tree reconciliation, a concept introduced
in [13] and first formally defined in [24]. Understand-
ing these macro-evolutionary events allows us to better

understand the mechanisms of evolution with applica-
tions ranging from orthology detection [9, 18, 19, 30] to
ancestral genome reconstruction [11], and recently in
dating phylogenies [5, 7].

It is well-known that the evolution of gene families is
interconnected. However, in current pipelines, each gene
tree is reconciled independently with the species tree,
even when posterior to the reconciliation phase the genes
are considered as related, e.g. [11]. A more pertinent
approach would be to reconcile the set of gene trees at
once and consider segmental macro-evolutionary events,
i.e. events that concern a chromosome segment instead
of a single gene.

Some work has been done in the past to model seg-
mental gene duplications and three models have been
considered: the ec (Episode Clustering) problem, the me
(Minimum Episodes) problem [1, 14], and the mgd (Mul-
tiple Gene Duplication) problem [12]. The ec and mgd
problems both aim at clustering duplications together by
minimizing the number of locations in the species tree
where at least one duplication occurred, with the addi-
tional requirement that a cluster cannot contain two gene

Open Access

Algorithms for
Molecular Biology

*Correspondence: manuel.lafond@USherbrooke.ca
2 Department of Computer Science, Universitè de Sherbrooke,
Sherbrooke, Canada
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5305-7372
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0139-6&domain=pdf

Page 2 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

duplications from a same gene tree in the mgd problem.
The me problem is more biologically-relevant, because
it aims at minimizing the actual number of segmental
duplications (more details in "Reconciliation with seg-
mental duplications" section). Most of the exact solutions
proposed for the me problem [1, 20, 26] deal with a con-
strained version, since the possible mappings of a gene
tree node are limited to given intervals, see for example
[1, Def. 2.4]. In [26], a simple O∗(2k) time algorithm is
presented for the unconstrained version (here O∗ hides
polynomial factors), where k is the number of speciation
nodes that have descending duplications under the LCA-
mapping. This shows that the problem is fixed-parameter
tractable (FPT) in k. But since the LCA-mapping maxi-
mizes the number of speciation nodes, there is no reason
to believe that k is a small parameter, and so more prac-
tical FPT algorithms are needed. Recently, Delabre et al.
[8] studied the problem of reconstructing the evolution
of syntenic blocks. Their model allows segmental dupli-
cations, but is more constrained since it requires every
gene family of every block to have evolved along the same
tree.

In this paper, we extend the unconstrained ME model
to gene losses and provide a variety of new algorithmic
results. We allow weighing segmental duplication events
and loss events by separate costs δ and � , respectively. We
show that if δ ≤ � , then an optimal reconciliation can be
obtained by reconciling each gene tree separately under
the usual LCA-mapping, even in the context of segmen-
tal duplications. On the other hand, we show that if δ > �
and both costs are given, reconciling a set of gene trees
while minimizing segmental gene duplications and gene
losses is NP-hard. The hardness also holds in the particu-
lar case that we ignore losses, i.e. when � = 0 . This solves
a long standing open question on the complexity of the
reconciliation problem under this model (in [1], the
authors already said “it would be interesting to extend the
[...] model of Guigó et al. (1996) by relaxing the constraints
on the possible locations of gene duplications on the spe-
cies tree”. The question is stated as still open in [26]).
The hardness holds also when only a single gene tree is
given. On the positive side, we describe an algorithm
that is practical when δ and � are not too far apart. More
precisely, we show that multi-gene tree reconciliation is
fixed-parameter tractable in the ratio δ/� and the number
d of segmental duplications, and can be solved in time
O
(

⌈ δ
�
⌉d · n · δ

�

)

 . The algorithm has been implemented
and tested and is freely available1 at https ://githu b.com/
AEVO-lab/MultR ec. We first evaluate the potential of

multi-gene reconciliation on a set of 16 eukaryotes, and
show that our method can find scenarios with less dupli-
cations than other approaches. While some previously
identified segmental duplications are confirmed by our
results, it casts some doubt on others as they do not
occur in our optimal scenarios. We then show how the
algorithm can be used to detect whole genome duplica-
tions in yeast genomes. Further work includes incorpo-
rating in the model segmental gene losses and segmental
horizontal gene transfers, with a similar flavor than the
heuristic method discussed in [10].

Preliminaries
Basic notions
For our purposes, a rooted phylogenetic tree
T = (V (T),E(T)) is an oriented tree, where V(T) is
the set of nodes, E(T) is the set of arcs, all oriented
away from r(T), the root. Unless stated otherwise, all
trees in this paper are rooted phylogenetic trees. A for-
est F = (V (F),E(F)) is a directed graph in which every
connected component is a tree. Denote by t(F) the set of
trees of F that are formed by its connected components.
Note that a tree is itself a forest. In what follows, we shall
extend the usual terminology on trees to forests.

For an arc (x, y) of F, we call x the parent of y, and y a
child of x. If there exists a path that starts at x and ends
at y, then x is an ancestor of y and y is a descendant of x.
We say y is a proper descendant of x if y �= x , and then
x is a proper ancestor of y. This defines a partial order
denoted by y ≤F x , and y <F x if x �= y (we may omit the
F subscript if clear from the context). If none of x ≤ y and
y ≤ x holds, then x and y are incomparable. The set of
children of x is denoted ch(x) and its parent x is denoted
par(x) [which is defined to be x if x itself is a root of a
tree in t(F)]. For some integer k ≥ 0 , we define park(x)
as the k-th parent of x. Formally, par0(x) = par(x) and
park(x) = par(park−1(x)) for k > 0 . The number of chil-
dren |ch(x)| of x is called the out-degree of x. Nodes with
no children are leaves, all others are internal nodes. The
set of leaves of a tree F is denoted by L(F). The leaves of
F are bijectively labeled by a set L(F) of labels. A forest is
binary if |ch(x)| = 2 for all internal nodes x. Given a set of
nodes X that belong to the same tree T ∈ t(F) , the lowest
common ancestor of X, denoted LCAF (X) , is the node z
that satisfies x ≤ z for all x ∈ X and such that no child of
z satisfies this property. We leave LCAF (X) undefined if
no such node exists (when elements of X belong to dif-
ferent trees of t(F)). We may write LCAF (x, y) instead of
LCAF ({x, y}) . The height of a forest F, denoted h(F), is the
number of nodes of a longest directed path from a root
to a leaf in a tree of F (note that the height is sometimes
defined as the number of arcs on such a path—here we

1 To our knowledge, this is the first publicly available reconciliation software
for segmental duplications.

https://github.com/AEVO-lab/MultRec
https://github.com/AEVO-lab/MultRec

Page 3 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

use the number of nodes instead). Observe that since a
tree is a forest, all the above notions also apply on trees.

Reconciliations
A reconciliation usually involves two rooted phylogenetic
trees, a gene tree G and a species tree S, which we always
assume to be both binary. In what follows, we will instead
define reconciliation between a gene forest G and a spe-
cies tree. Here G can be thought of as a set of gene trees.
Each leaf of G represents a distinct extant gene, and G
and S are related by a function s : L(G) → L(S) , which
means that each extant gene belongs to an extant species.
Note that s does not have to be injective (in particular,
several genes from a same gene tree G of G can belong
to the same species) or surjective (some species may not
contain any gene of G). Given G and S, we will implicitly
assume the existence of the function s.

In a DL reconciliation, each node of G is associated to
a node of S and an event—a speciation (S), a duplica-
tion (D) or a contemporary event (C)—under some con-
straints. A contemporary event C associates a leaf u of
G with a leaf x of S such that s(u) = x . A speciation in a
node u of G is constrained to the existence of two sepa-
rated paths from the mapping of u to the mappings of its
two children, while the only constraint given by a dupli-
cation event is that evolution of G cannot go back in time.
More formally:

Definition 1 (Reconciliation) Given a gene forest G
and a species tree S, a reconciliation between G and
S is a function α that maps each node u of G to a pair
(αr(u),αe(u)) where αr(u) is a node of V(S) and αe(u) is
an event of type S,D or C , such that:

1 if u is a leaf of G , then αe(u) = C and αr(u) = s(u);
2 if u is an internal node of G with children u1,u2 , then

exactly one of following cases holds:

• αe(u) = S , αr(u) = LCAS(αr(u1),αr(u2)) and
αr(u1),αr(u2) are incomparable;

• αe(u) = D , αr(u1) ≤ αr(u) and αr(u2) ≤ αr(u)

Note that if G consists of one tree, this definition coin-
cides with the usual one given in the literature (first for-
mally defined in [24]). We say that α is an LCA-mapping
if, for each internal node u ∈ V (G) with children u1,u2 ,
αr(u) = LCAS(αr(u1),αr(u2)) . Note that there may be
more than one LCA-mapping, since the S and D events
on internal nodes can vary. The number of duplications
of α , denoted by d(α) is the number of nodes u of G such
that αe(u) = D . For counting the losses, first define for
y ≤ x the distance dist(x, y) as the number of arcs on the

path from x to y. Then, for every internal node u with
children {u1,u2} , the number of losses associated with
u in a reconciliation α , denoted by lα(u) , is defined as
follows:

• if αe(u) = S , then lα(u) = dist(αr(u),αr(u1))+

dist(αr(u),αr(u2))− 2;
• if αe(u) = D , then lα(u) = dist(αr(u),αr(u1))+

dist(αr(u),αr(u2)).

The number of losses of a reconciliation α , denoted by
l(α) , is the sum of lα(·) for all internal nodes of G . The
usual cost of α , denoted by cost(α) , is d(α) · δ + l(α) · �
[21], where δ and � are respectively the cost of a dupli-
cation and a loss event (it is usually assumed that
speciations do not incur cost). A most parsimonious rec-
onciliation, or MPR, is a reconciliation α of minimum
cost. It is not hard to see that finding such an α can be
achieved by computing a MPR for each tree in t(G) sepa-
rately. This MPR is the unique LCA-mapping α in which
αe(u) = S whenever it is allowed according to Defini-
tion 1 [3].

Reconciliation with segmental duplications
Given a reconciliation α for G in S, and given s ∈ V (S) ,
write D(G,α, s) = {u ∈ V (G) : αe(u) = D and αr(u) = s}
for the set of duplications of G mapped to s. We define
G[α, s] to be the subgraph of G induced by the nodes in
D(G,α, s) . Note that G[α, s] is a forest.

Here we want to tackle the problem of reconciling sev-
eral gene trees at the same time and counting segmental
duplications only once. Given a set of duplications nodes
D ∈ V (G) occurring in a given node s of the species tree,
it is easy to see that the minimum number of segmental
duplications associated with s is the minimal number of
parts in a partition of D in which each part does not con-
tain comparable nodes. See Fig. 1(4) for an example. This
number coincides [1] with hα(s) := h(G[α, s]) , i.e. the
height of the forest of the duplications in s. Now, denote
d̂(α) =

∑

s∈V (S) hα(s) . For instance in Fig. 1, under the
mapping µ in (2), we have d̂(µ) = 6 , because hµ(s) = 1
for s ∈ {A,B,C ,E} and hµ(F) = 2 . But under the map-
ping α in (3), d̂(α) = 4 , since hα(A) = 1 and hα(F) = 3 .
Note that this does not consider losses though—the α
mapping has more losses than µ.

The cost of α is costSD(G, S,α) = δ · d̂(α)+ � · l(α) . If G
and S are unambiguous, we may write costSD(α) . We have
the following problem:

Problem 1 Most parsimonious reconciliation of a set of
trees with segmental duplications (MPRST-SD)

Page 4 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

Instance: a species tree S, a gene forest G , costs δ for dupli-
cations and � for losses.

Output: a reconciliation α of G in S such that
costSD(G, S,α) is minimum.

Note that, when � = 0 , costSD coincides with the
unconstrained ME score defined in [26] (where it is called
ME under the FHS model).

Properties of multi‑gene reconciliations
We finish this section with some additional terminology
and general properties of multi-gene reconciliations that
will be useful throughout the paper. The next basic result
states that in a reconciliation α , we should set the events
of internal nodes to S whenever it is allowed.

Lemma 1 Let α be a reconciliation for G in S, and
let u ∈ V (G) such that αe(u) = D . Let α′ be identical
to α , with the exception that α′

e(u) = S , and suppose
that α′ satisfies the requirements of Definition 1. Then
costSD(α′) ≤ costSD(α).

Proof Observe that changing αe(u) from D to S can-
not increase d̂(α) . Moreover, as dist(α′

r(u),α
′
r(u1)) and

dist(α′
r(u),α

′
r(u2)) are the same as in α for the two chil-

dren u1 and u2 of u, by definition of duplications and
losses this decreases the number of losses by 2. Thus
costSD(α′) ≤ costSD(α) , and this inequality is strict when
� > 0 . �

Since we are looking for a most parsimonious rec-
onciliation, by Lemma 1 we may assume that for an
internal node u ∈ V (G) , αe(u) = S whenever allowed,
and αe(u) = D otherwise. Therefore, αe(u) is implicitly
defined by the αr mapping. To alleviate notation, we will
treat α as simply as a mapping from V (G) to V(S) and
thus write α(u) instead of αr(u) . We will assume that
the events αe(u) can be deduced from this mapping α by
Lemma 1.

Therefore, treating α as a mapping, we will say that
α is valid if for every v ∈ V (G) , α(v) ≥ α(v′) for all
descendants v′ of v. We denote by α[v → s] the mapping
obtained from α by remapping v ∈ V (G) to s ∈ V (S) ,
i.e. α[v → s](w) = α(w) for every w ∈ V (G) \ {v} , and
α[v → s](v) = s . Since we are assuming that S and D
events can be deduced from α , the LCA-mapping is
now unique: we denote by µ : V (G) → V (S) the LCA-
mapping, defined as µ(v) = s(v) if v ∈ L(G) , and other-
wise µ(v) = LCAS(µ(v1),µ(v2)) , where v1 and v2 are the
children of v. Note that for any valid reconciliation α ,
we have α(v) ≥ µ(v) for all v ∈ V (G) . We also have the
following, which will be useful to establish our results.

Lemma 2 Let α be a mapping from G to S. If
α(v) > µ(v) , then v is a D node under α.

Proof Let v1 and v2 be the two children of v. If
α(v) �= LCAS(α(v1),α(v2)) , then v must be a duplica-
tion, by the definition of S events. The same holds if
α(v1) and α(v2) are not incomparable. Thus assume
α(v) = LCAS(α(v1),α(v2)) > µ(v) and that α(v1) and
α(v2) are incomparable. This implies that one of α(v1)
or α(v2) is incomparable with µ(v) , say α(v1) w.l.o.g.
But µ(v1) ≤ α(v1) , implying that µ(v1) is also incom-
parable with µ(v) , a contradiction to the definition of
µ = LCAS(µ(v1),µ(v2)) . �

Lemma 3 Let α be a mapping from G to S, and let
v ∈ V (G) . Suppose that there is some proper descendant v′
of v such that α(v′) ≥ µ(v) . Then v is a duplication under
α.

Proof If α(v) = µ(v) , we get µ(v) ≤ α(v′) ≤ α(v) = µ(v) ,
and so α(v′) = µ(v) . We must then have α(v′′) = µ(v) for
every node v′′ on the path between v′ and v. In particular, v
has a child v1 with α(v) = α(v1) and thus v is a duplication.
If instead α(v) > µ(v) , then v is a duplication by Lemma 2.
 �

Fig. 1 (1) A species tree S. (2) A gene forest G with two gene trees reconciled under the MPR that we denote µ . The nodes are labeled by the same
name of the species they are mapped to but in lowercase. Black squares indicate duplication nodes. Losses are not shown. (3) The same forest G but
with another reconciliation α for the internal nodes. (4) The forest G[α, f] , along with a partition into (possible) segmental duplications

Page 5 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

The Shift-down lemma will prove very useful to argue
that we should shift mappings of duplications down
when possible, as it saves losses (see Fig. 2). For future
reference, do note however that this may increase the
height of some duplication forest G[α, s].

Lemma 4 (Shift-down lemma) Let α be a mapping from
G to S, let v ∈ V (G) , let s ∈ V (S) and k > 0 be such that
park(s) = α(v) . Suppose that α[v → s] is a valid map-
ping. Then l(α[v → s]) ≤ l(α)− k.

Proof Let v1 and v2 be the children of v, and denote
t := α(v), t1 := α(v1) and t2 := α(v2) . Moreover denote
α′ := α[v → s] . Let P be the set of nodes that appear
on the path between s and t, excluding s but including t
(note that s is a proper descendant of t but an ancestor of
both t1 and t2 , by the validity of α′). For instance in Fig. 2,
P = {x, t} . Observe that |P| = k . Under α , there is a loss
for each node of P on both the (v, v1) and (v, v2) branches.
(noting that v is a duplication by Lemma 2). These 2k
losses are not present under α′ . On the other hand, there
are at most k losses that are present under α′ but not
under α , which consist of one loss for each node of P on
the (par(v), v) branch (in the case that v is not the root of
its tree—otherwise, no such loss occurs). This proves that
l(α′) ≤ l(α)− k . �

A “proof-by-picture” of the above Lemma appears
in Fig. 2. When shifting down the mapping of v, some
losses that appear left and right of v get “combined” on
the branch above it.

The computational complexity of the mprst‑sd
problem
We separate the study of the complexity of the mprst-sd
problem into two subcases: when � ≥ δ and when � < δ.

The case of � ≥ δ

The following theorem states that, when � ≥ δ , the MPR
(ie the LCA-mapping) is a solution to the mprst-sd
problem.

Theorem 1 Let G and S be an instance of mprst-sd,
and suppose that � ≥ δ , Then the LCA-mapping µ is a
reconciliation of minimum cost for G and S. Moreover if
� > δ , µ is the unique reconciliation of minimum cost.

Proof Let α be a mapping of G into S of minimum cost.
Let v ∈ V (G) be a minimal node of G with the property
that α(v) �= µ(v) (i.e. all proper descendants v′ of v satisfy
α(v) = µ(v)). Note that v must exists since, for every leaf
l ∈ L(G) , we have α(l) = µ(l) . Because α(v) ≥ µ(v) , it
follows that α(v) > µ(v) . Denote s = µ(v) and t = α(v) .
Then there is some k ≥ 1 such that t = park(s) . Consider
the mapping α′ = α[v → s] . This possibly increases the
sum of duplications by 1, so that d̂(α′) ≤ d̂(α)+ 1 . But by
the Shift-down lemma, l(α′) ≤ l(α)− 1 . Thus we have at
most one duplication but save at least one loss.

If � > δ , this contradicts the optimality of α , implying
that v cannot exist and thus that α = µ . This proves the
uniqueness of µ in this case.

If δ = � , then δd̂(α′)+ �l(α′) ≤ δd̂(α)+ �l(α) . By
applying the above transformation successively on the
minimal nodes v that are not mapped to µ(v) , we even-
tually reach the LCA-mapping µ with an equal or better
cost than α . �

The case of δ > �

We show that, in contrast with the � ≥ δ case, the mprst-
sd problem is NP-hard when δ > � and the costs are
given as part of the input. More specifically, we show that
the problem is NP-hard when one only wants to mini-
mize the sum of duplication heights, i.e. � = 0 . Note that

Fig. 2 The Shift-down lemma in action. Here t = par2(s) , and from α to α′ , we remap v from t to s and save 2 losses—4 losses are saved below v
and 2 are added above

Page 6 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

if � > 0 but is small enough, the effect will be the same
and the hardness result also holds—for instance, putting
δ = 1 and say � < 1

2|V (G)||V (S)| ensures that even if a maxi-
mum number of losses appears on every branch of G , it
does not even amount to the cost of one duplication.

We briefly outline the main ideas of the reduction. We
start from the Vertex Cover problem, where we are given
a graph G and must find a subset of vertices V ′ ⊆ V (G) of
minimum size such that each edge has at least one end-
point in V ′ . The species tree S and the forest G are con-
structed so that, for each vertex vi ∈ V (G) , there is a gene
tree Ai in G with a long path of duplications, all of which
could either be mapped to a species called yi or another
species zi . We make it so that mapping to yi introduces
one more duplication than mapping to zi , hence we have
to “pay” for each yi . On the other hand, we construct a
tree Ch in G for each edge in eh = vivj ∈ E(G) such that
if, in Ai or Aj , we chose to map to either yi or yj , then Ch
can “reuse” these yi or yj duplications with no extra cost.
However if we did not choose either yi or yj , Ch will intro-
duce a large number of new duplications. We are there-
fore forced to pick a minimum number of yi ’s to “cover”
all the Ch trees.

The construction
We will first need particular trees as described by the fol-
lowing Lemma. These trees guarantee that a prescribed
set of leaves L are at distance exactly k from the root,
and any two of the leaves in L have their LCA at distance
at least k / 2. Recall that for a tree T and u, v ∈ V (T) ,
distT (u, v) denotes the number of edges on the path
between u and v in T (we write dist(u, v) for short). A
caterpillar is a binary rooted tree in which each internal
node has one child that is a leaf, with the exception of one
internal node which has two such children.

Lemma 5 Let k ≥ 8 be an integer, and let L be a given
set of at most k labels. Then there exists a rooted tree
Twith leaf set L′ with L ⊆ L′ such that for any l ∈ L ,
dist(l, r(T)) = k and for any two distinct l1, l2 ∈ L ,
dist(l1, LCAT (l1, l2)) ≥ k/2 . Moreover, T can be con-
structed in polynomial time with respect to k.

Proof Let p be the smallest integer such that k ≤ 2p . First
consider a fully balanced binary tree T on 2p leaves, so
that each leaf is at distance p from the root. Then replace
each leaf by the root of a caterpillar of height k − p+ 1
(hence in the caterpillars the longest root-to-leaf path has
k − p edges). The resulting tree is T. Choose k of these
caterpillars, and in each of them, assign a distinct label of
L to a deepest leaf (any of the two). Thus dist(l, r(T)) = k
for each l ∈ L , and clearly T can be built in polynomial
time. We also have dist(l1, LCAS(l1, l2)) ≥ k − p for each

distinct l1, l2 ∈ L . As 2p ≤ 2k , we have p ≤ log(2k) . This
implies k − p ≥ k − log(2k) ≥ k/2 for k ≥ 8 . �

In the following, we will assume that � = 0 and δ = 1 .
We reduce the Vertex Cover problem to that of finding a
mapping of minimum cost for given G and S. Recall that
in the decision version of Vertex Cover, we are given a
graph G = (V ,E) and an integer β < n and are asked if
there exists a subset V ′ ⊆ V with |V ′| ≤ β such that every
edge of E has at least one endpoint in V ′ . For such a given
instance, denote V = {v1, . . . , vn} and E = {e1, . . . , em} (so
that n = |V | and m = |E|). The ordering of the vi ’s and ej ’s
can be arbitrary, but must remain fixed for the remainder
of the construction.

Let K := (n+m)10 , and observe in particular that
β < n ≪ K . We construct a species tree S and a gene
forest G from G. The construction is relatively technical,
but we will provide the main intuitions after having fully
described it. For convenience, we will describe G as a set
of gene trees instead of a single graph. Figure 3 illustrates
the constructed species tree and gene trees. The con-
struction of S is as follows: start with S being a caterpillar
on 3n+ 2 leaves. Let

be the path of this caterpillar consisting of the internal
nodes, ordered by decreasing depth (i.e. x1 is the deep-
est internal node, and xn+1 is the root). For each i ∈ [n] ,
call pi, qi and ri , respectively, the leaf child of xi, yi and zi .
Note that x1 has two leaf children: choose one to name
p1 arbitrarily among the two. Then for each edge uv of S,
graft a large (but polynomial) number, say K 100 , of leaves
on the uv edge (grafting t leaves on an edge uv consists
of subdividing uv t times, thereby creating t new inter-
nal nodes of degree 2, then adding a leaf child to each
of these nodes, see Fig. 3). We will refer to these grafted
leaves as the special uv leaves, and the parents of these
leaves as the special uv nodes. These special nodes are the
fundamental tool that lets us control the range of dupli-
cation mappings.

Finally, for each i ∈ {1, . . . , n} , replace the leaf pi by a
tree Pi that contains K distinguished leaves ci,1, . . . , ci,K
such that dist(ci,j , r(Pi)) = K for all j ∈ [K] , and such
that dist(ci,j , lca(ci,j , ci,k)) ≥ K/2 for all distinct j, k ∈ [K] .
By Lemma 5, each Pi can be constructed in polynomial
time. Note that the edges inside a Pi subtree do not have
special leaves grafted onto them. This concludes the con-
struction of S.

We proceed with the construction of the set of gene
trees G . Most of the trees of G consist of a subset of
the nodes of S, to which we graft additional leaves to
introduce duplications—some terminology is needed
before proceeding. For w ∈ V (S) , deleting w consists in

(x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn, xn+1)

Page 7 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

removing w and all its descendants from S, then con-
tracting the possible resulting degree two vertex (which
was the parent of w if p(w) �= r(S)). If this leaves a root
with only one child, we contract the root with its child.
For X ⊆ L(S) , keeping X consists of successively delet-
ing every node that has no descendant in X until none
remains (the tree obtained by keeping X is sometimes
called the restriction of S to X).

The forest G is the union of three sets of trees A, B, C, so
that G = A ∪ B ∪ C . Roughly speaking A is a set of trees
corresponding to the choice of vertices in a vertex cover,
B is a set of trees to ensure that we “pay” a cost of one
for each vertex in the cover, and C is a set of trees cor-
responding to edges. For simplicity, we shall describe the
trees of G as having leaves labeled by elements of L(S) —a
leaf labeled s ∈ L(S) in a gene tree T ∈ G is understood to
be a unique gene that belongs to species s.

• The A trees Let A = {A1, . . . ,An} , one tree for each
vertex of G. For each i ∈ [n] , obtain Ai by first taking
a copy of S, then deleting all the special yizi leaves.
Then on the resulting ziyi branch, graft 10K leaves
labeled qi . Then delete the child of zi that is also an
ancestor of ri (removing zi in the process). Figure 3
bottom-left might be helpful.

 As a result, under the LCA-mapping µ , Ai has a path
of 10K duplications mapped to yi . One can choose
whether to keep this mapping in Ai , or to remap
these duplications to zi.

• The B trees Let B = {B1, . . . ,Bn} . For i ∈ [n] , Bi is
obtained from S by deleting all except 10K − 2 of the
special rizi leaves, and grafting a leaf labeled ri on the
edge between ri and its parent, thereby creating a sin-
gle duplication mapped to ri under µ.

Fig. 3 The species tree S, and the Ai , Bi and Ch trees. The internal nodes are labeled by their LCA-mapping µ , and black squares on the gene trees
represent duplication nodes under µ

Page 8 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

• The C trees Let C = {C1,C2, . . . ,Cm} , where for
h ∈ [m] , Ch corresponds to edge eh . Let vi, vj be the
two endpoints of edge eh = {vi, vj} , where i < j . To
describe Ch , we list the set of leaves that we keep
from S. Keep all the leaves of the Pi subtree of S, and
keep a subset of the special leaves defined as follows:

– Keep 9K of the special xiyi leaves;
– Keep (j − i − 1)10K + K of the special yizi leaves;
– Keep 9K of the special xjyj leaves;
– Keep all the special yjzj leaves.
 No other leaves are kept. Next, in the tree obtained

by keeping the aforementioned list of leaves, for
each k ∈ [K] we graft, on the edge between ci,k and
its parent, another leaf labeled ci,k . Thus Ch has K
duplications, all located at the bottom of the Pi sub-
tree. This concludes our construction.

Let us pause for a moment and provide a bit of intuition
for this construction. We will show that G has a vertex
cover of size β if and only if there exists a mapping α of G
of cost at most 10Kn+ β . As we will show later on, two
Ai trees cannot have a duplication mapped to the same
species of S, so these trees alone account for 10Kn dupli-
cations. The ri duplications in the Bi trees account for n
more duplications, so that if we kept the LCA-mapping,
we would have 10Kn+ n > 10Kn+ β duplications. But
some of these ri duplications could be remapped to zi , at
the cost of creating a path of 10K duplications to zi . This
is fine if Ai also has a path of 10K duplications to zi , as
this does not incur additional height. In this case, the
Ai,Bi pairs introduces 10K duplications. If instead this
path in Ai is mapped to yi , we will show that remapping
ri is forbidden, summing up to 10K + 1 duplications for
such a particular Ai,Bi pair. The disadvantage of remap-
ping every to zi will become apparent when we consider
the Ch trees. The idea is that mapping the duplications of
Ai to yi represents including vertex vi in the vertex cover,
and mapping them to zi represents not including vi .
Because each time we map the Ai duplications to yi , we
have the additional ri duplication in Bi , we cannot do that
more than β times.

Now consider a Ch tree, eh = {vi, vj} . Under the LCA-
mapping, the ci,k duplications at the bottom enforce an
additional K duplications. This can be avoided by, say,
mapping all these duplications to the same species. For
instance, we could remap all these duplications to some
yk species of S. But in this case, because of Lemma 3,
every node v of Ch above a ci,k duplication for which
µ(v) ≤ yk will become a duplication. This will create a
duplication subtree D in Ch with a large height, and our
goal will be to “reuse” the duplications we chose in the Ak ′
and Bk ′ trees. As it turns out, this “reuse” of duplications

will be feasible only if some yi or yj has duplication height
10K. If this does not occur, any attempt at mapping the
ci,k nodes to a common species will induce a chain reac-
tion of too many duplications created above.

The complete proof is somewhat technical. The inter-
ested reader can find it in Appendix.

Theorem 2 The mprst-sd problem is NP-hard for
� = 0 and for given δ > �.

The above hardness supposes that δ and � can be arbi-
trarily far apart. This leaves open the question of whether
MPRST-SD is NP-hard when δ and � are fixed con-
stants—in particular when δ = 1+ ǫ and � = 1 , where
ǫ < 1 is some very small constant. We end this section by
showing that the above hardness result persists event if
only one gene tree is given. The idea is to reduce from the
MPRST-SD shown hard just above. Given a species tree
S and a gene forest G , we make G a single tree by incor-
porating a large number of speciations (under µ) above
the root of each tree of G (modifying S accordingly), then
successively joining the roots of two trees of G under a
common parent until G has only one tree.

Theorem 3 The mprst-sd problem is NP-hard for
� = 0 and for given δ > � , even if only one gene tree is
given as input.

Proof We reduce from the mprst-sd problem in which
multiple trees are given. We assume that δ = 1 and � = 0
and only consider duplications—we use the same argu-
ment as before to justify that the problem is NP-hard for
very small � . Let S be the given species tree and G be the
given gene forest. As we are working with the decision
version of mprst-sd, assume we are given an integer t
and asked whether costSD(G, S,α) ≤ t for some α . Denote
n = |L(G)| and let G1, . . . ,Gk be the k > 1 trees of G .
We construct a corresponding instance of a species tree
S′ and a single gene tree T as follows (the construction
is illustrated in Fig. 4). Let S′ be a species tree obtained
by adding 2(t + k) nodes “above” the root of S. More
precisely, first let C be a caterpillar with 2(t + k) internal
nodes. Let l be a deepest leaf of C. Obtain S′ by replacing
l by the root of S. Then, obtain the gene tree T by tak-
ing k copies C1, . . . ,Ck of C, and for each leaf l′ of each Ci
other than l, put s(l′) as the corresponding leaf in S′ . Then
for each i ∈ [k] , replace the l leaf of Ci by the tree Gi (we
keep the leaf mapping s of Gi), resulting in a tree we call
Ti . Finally, let T ′ be a caterpillar with k leaves h1, . . . , hk ,
and replace each hi by the Ti tree. The resulting tree is T.
We show that cost(G, S,α) ≤ t for some α if and only if
cost(T , S′,α′) ≤ t + k − 1 for some α′.

Page 9 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

Notice the following: in any mapping α of T, the k − 1
internal nodes of the T ′ caterpillar must be duplications
mapped to r(S′) , so that hα(r(S′)) ≥ k − 1 . Also note that
under the LCA mapping µ for T and S′ , the only duplica-
tions other than those k − 1 mentioned above occur in the
Gi subtrees. The (⇒) is then easy to see: given α such that
cost(G, S,α) ≤ t , we set α′(v) = α(v) for every node v of T
that is also in G (namely the nodes of G1, . . . ,Gk), and set
α′(v) = µ(v) for every other node. This achieves a cost of
t + k − 1.

As for the (⇐) direction, suppose that
costSD(T ′, S′,α′) ≤ t + k − 1 for some mapping α′ .
Observe that under the LCA-mapping in T, each root of
each Gi subtree has a path of 2(t + k) speciations in its ances-
tors. If any node in a Gi subtree of T is mapped to r(S′) , then
all these speciations become duplications (by Lemma 3),
which would contradict costSD(T ′, S′,α′) ≤ t + k − 1 . We
may thus assume that no node belonging to a Gi subtree is
mapped to r(S′) . Since hα′(r(S′)) ≥ k − 1 , this implies that
the restriction of α′ to the Gi subtrees has cost at most t.

More formally, consider the mapping α′′ from G to S′
in which we put α′′(v) = α′(v) for all v ∈ V (G) . Then
costSD(G, S′,α′′) ≤ costSD(T , S′,α′)− (k − 1) ≤ t ,
because α′′ does not contain the top k − 1 duplications of
α′ , and cannot introduce longer duplication paths than in α′.

We are not done, however, since α′′ is a mapping from G to
S′ , and not from G to S. Consider the set Q ⊆ V (G) of nodes
v of G such that α′′(v) ∈ V (S) := V (S′) \ V (S) . We will
remap every such node to r(S) and show that this cannot
increase the cost. Observe that if v ∈ Q , then every ancestor
of v in G is also in Q. Also, every node in Q is a duplication
(by invoking Lemma 2).

Consider the mapping α∗ from G to S′ in which we put
α∗(v) = α′′(v) for all v /∈ Q , and α∗(v) = r(S) for all v ∈ Q .
It is not difficult to see that α∗ is valid.

Now, hα∗(s) = 0 for all s ∈ V (S) and hα∗(s) = hα′′(s) for
all s ∈ V (S) \ {r(S)} . Moreover, the height of the r(S) dupli-
cations under α∗ cannot be more than the height of the for-
est induced by Q and the duplications mapped to r(S) under
α′′ . In other words,

Therefore, the sum of duplication heights cannot have
increased. Finally, because α∗ is a mapping from G to S,
we deduce that costSD(G, S,α∗) ≤ costSD(G, S′,α′′) ≤ t ,
as desired. �

An FPT algorithm
In this section, we show that for costs δ > � and a
parameter d > 0 , if there is an optimal reconciliation α
of cost costSD(G, S) satisfying d̂(α) ≤ d , then α can be
found in time O(⌈ δ

�
⌉d · n · δ

�
).

In what follows, we allow mappings to be partially
defined, and we use the ⊥ symbol to indicate undeter-
mined mappings. The idea is to start from a mapping in
which every internal node is undetermined, and gradu-
ally determine those in a bottom-up fashion. We need
an additional set of definitions. We will assume that
δ > � > 0 (although the algorithm described in this sec-
tion can solve the � = 0 case by setting � to a very small
value).

We say that the mapping α : V (G) → V (S) ∪ {⊥}
is a partial mapping if α(l) = s(l) for every leaf
l ∈ L(G) , and it holds that whenever α(v) �= ⊥ , we have
α(v′) �= ⊥ for every descendant v′ of v. That is, if a node
is determined, then all its descendants also are. This
also implies that every ancestor of a ⊥-node is also a

hα∗(r(S)) ≤ max
Gi



hα′′(r(S))+
�

s′∈V (S)

h(Gi[α
′′, s′])





= hα′′(r(S))+max
Gi





�

s′∈V (S)

h(Gi[α
′′, s′])





≤ hα′′(r(S))+
�

s′∈V (S)

max
Gi

�

h(Gi[α
′′, s′])

�

= hα′′(r(S))+
�

s′∈V (S)

h
�

G[α′′, s′]
�

= hα′′(r(S))+
�

s′∈V (S)

hα′′(s
′)

Fig. 4 The construction of S′ and T from S and the set of gene trees G1, . . . ,Gk (here k = 3). The black squares indicate the path of k − 1 duplications
that must be mapped to r(S′)

Page 10 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

⊥-node. A node v ∈ V (G) is a minimal ⊥-node (under
α) if α(v) = ⊥ and α(v′) �= ⊥ for each child v′ of v. If
α(v) �= ⊥ for every v ∈ V (G) , then α is called complete.
Note that if α is partial and α(v) �= ⊥ , one can already
determine whether v is an S or a D node, and hence we
may say that v is a speciation or a duplication under
α . Also note that the definitions of d̂(α), l(α) and hα(s)
extend naturally to a partial mapping α by considering
the forest induced by the nodes not mapped to ⊥.

If α is a partial mapping, we call α′ a comple-
tion of α if α′ is complete, and α(v) = α′(v) whenever
α(v) �= ⊥ . Note that such a completion always exists,
as in particular one can map every ⊥-node to the root
of S (such a mapping must be valid, since all ances-
tors of a ⊥-node are also ⊥-nodes, which ensures that
r(S) = α′(v) ≥ α′(v′) for every descendant v′ of a newly
mapped ⊥-node v). We say that α′ is an optimal comple-
tion of α if costSD(α′) is minimum among every possible
completion of α . For a minimal ⊥-node v with children
v1 and v2 , we denote µα(v) = LCAS(α(v1),α(v2)) , i.e. the
lowest species of S to which v can possibly be mapped
to in any completion of α . Observe that µα(v) ≥ µ(v) .
Moreover, if v is a minimal ⊥-node, then in any com-
pletion α′ of α , α′[v → µα(v)] is a valid mapping. A
minimal ⊥-node v is called a lowest minimal ⊥-node
if, for every minimal ⊥-node w distinct from v, either
µα(v) ≤ µα(w) or µα(v) and µα(w) are incomparable.

The following Lemma forms the basis of our FPT
algorithm, as it allows us to bound the possible map-
pings of a minimal ⊥-node.

Lemma 6 Let α be a partial mapping and let v be a
minimal ⊥-node. Then for any optimal completion α∗ of
α , α∗(v) ≤ par⌈δ/�⌉(µα(v)).

Proof Let α∗ be an optimal completion of α and let
α′ := α∗[v → µα(v)] . Note that d̂(α′) ≤ d̂(α∗)+ 1 .
Now suppose that α∗(v) > par⌈δ/�⌉(µα(v)) . Then by the
Shift-down lemma, l(α∗)− l(α′) > ⌈δ/�⌉ ≥ δ/� . Thus
costSD(α∗)− costSD(α′) > −δ + �(δ/�) = 0 . This contra-
dicts the optimality of α∗ . �

A node v ∈ V (G) is a required duplication (under α) if,
in any completion α′ of α , v is a duplication under α′ . We
first show that required duplications are easy to find.

Lemma 7 Let v be a minimal ⊥-node under α , and let
v1 and v2 be its two children. Then v is a required duplica-
tion under α if and only if α(v1) ≥ µ(v) or α(v2) ≥ µ(v).

Proof Suppose that α(v1) ≥ µ(v) , and let α′ be a com-
pletion of α . If α′(v) = α′(v1) , then v is a duplication by
definition. Otherwise, α′(v) > α′(v1) = α(v1) ≥ µ(v) ,

and v is a duplication by Lemma 2. The case when
α(v2) ≥ µ(v) is identical.

Conversely, suppose that α(v1) < µ(v) and
α(v2) < µ(v) . Then α(v1) and α(v2) must be incom-
parable descendants of µ(v) (because other-
wise if e.g. α(v1) ≤ α(v2) , then we would have
µ(v) = LCAS(µ(v1),µ(v2)) ≤ LCAS(α(v1),α(v2)) = α(v2),
whereas we are assuming that α(v2) < µ(v)). Take
any completion α′ of α such that α′(v) = µ(v) . To
see that v is a speciation under α′ , it remains to
argue that α′(v) = µ(v) = LCAS(α(v1),α(v2)) .
Since µ(v) is an ancestor of both α(v1) and α(v2) ,
we have LCAS(α(v1),α(v2)) ≤ µ(v) . We also have
µ(v) = LCAS(µ(v1),µ(v2)) ≤ LCAS(α(v1),α(v2)) , and
equality follows. �

Lemmas 8 and 9 allow us to find minimal ⊥-nodes of
G that are the easiest to deal with, as their mapping in an
optimal completion can be determined with certainty.

Lemma 8 Let v be a minimal ⊥-node under α . If v is not
a required duplication under α , then α∗(v) = µα(v) for
any optimal completion α∗ of α.

Proof Let v1, v2 be the children of v, and let α∗ be an
optimal completion of α . Since v is not a required duplica-
tion, by Lemma 7 we have α(v1) < µ(v) and α(v2) < µ(v)
and, as argued in the proof of Lemma 7, α(v1) and α(v2)
are incomparable. We thus have that µα(v) = µ(v) . Then
α∗[v → µ(v)] is a valid mapping, and v is a speciation
under this mapping. Hence d̂(α∗[v → µ(v)]) ≤ d̂(α∗) .
Then by the Shift-down lemma, this new mapping has
fewer losses, and thus attains a lower cost than α∗ . �

Lemma 9 Let v be a minimal ⊥-node under α , and let
αv := α[v → µα(v)] . If d̂(α) = d̂(αv) , then α∗(v) = µα(v)

for any optimal completion α∗ of α.

Proof Let α∗ be an optimal completion of α . Denote
s := µα(v) , and assume that α∗(v) > s (as otherwise, we
are done). Let α′ = α∗[v → s] . We have that l(α′) < l(α∗)
by the Shift-down lemma. To prove the Lemma, we
then show that d̂(α′) ≤ d̂(α∗) . Suppose otherwise that
d̂(α′) > d̂(α∗) . As only v changed mapping to s to go
from α∗ to α′ , this implies that hα′(s) > hα∗(s) because of
v. Since under α∗ , no ancestor of v is mapped to s, it must
be that under α′ , v is the root of a subtree T of height
hα′(s) of duplications in s. Since T contains only descend-
ants of v, it must also be that hαv (s) = hα′(s) (here αv is
the mapping defined in the Lemma statement). As we
are assuming that hα′(s) > hα∗(s) , we get hαv (s) > hα∗(s) .
This is a contradiction, since hα∗(s) ≥ hα(s) = hαv (s) (the
left inequality because α∗ is a completion of α , and the

Page 11 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

right equality by the choice of αv). Then l(α′) < l(α∗) and
d̂(α′) ≤ d̂(α∗) contradicts the fact that α∗ is optimal. �

We say that a minimal ⊥-node v ∈ V (G) is easy (under
α) if v falls into one of the cases described by Lemma 8
or Lemma 9. Formally, v is easy if either v is a speciation
mapped to µα(v) under any optimal completion of α
(Lemma 8), or d̂(α) = d̂(α[v → µα(v)]) (Lemma 9). Our
strategy will be to “clean-up” the easy nodes, meaning
that we map them to µα(v) as prescribed above, and
then handle the remaining non-easy nodes by branch-
ing over the possibilities. We say that a partial mapping
α is clean if every minimal ⊥-node v satisfies the two
following conditions:

[C1] v is not easy;
[C2] for all duplication nodes w (under α with

α(w) �= ⊥), either α(w) ≤ µα(v) or α(w) is
incomparable with µα(v).

 Roughly speaking, C2 says that all further duplica-
tions that may “appear” in a completion of α will be
mapped to nodes “above” the current duplications in α .
The purpose of C2 is to allow us to create duplication
nodes with mappings from the bottom of S to the top.
Our goal will be to build our α mapping in a bottom-up
fashion in G whilst maintaining this condition. The next
lemma states that if α is clean and some lowest minimal
⊥-node v gets mapped to species s, then v brings with it
every minimal ⊥-node that can be mapped to s.

Lemma 10 Suppose that α is a clean partial mapping,
and let α∗ be an optimal completion of α . Let v be a low-
est minimal ⊥ -node under α , and let s := α∗(v) . Then for
every minimal ⊥ -node w such that µα(w) ≤ s , we have
α∗(w) = s.

Proof Denote α′ := α[v → s] . Suppose first that
s = µα(v) . Note that since α is clean, v is not easy,
which implies that hα′(s) = hα(s)+ 1 . Since v is a low-
est minimal ⊥-node, if w is a minimal ⊥-node such that
µα(w) ≤ s , we must have µα(w) = s , as otherwise v
would not have the ‘lowest’ property. Moreover, because
v and w are both minimal ⊥-nodes under the partial map-
ping α , one cannot be the ancestor of the other and so
v and w are incomparable. This implies that mapping w
to s under α′ cannot further increase hα′(s) (because we
already increased it by 1 when mapping v to s). Thus
d̂(α′) = d̂(α′[w → s]) , and w is easy under α′ and must be
mapped to s by Lemma 9. This proves the α∗(v) = µα(s)
case.

Now assume that s > µα(v) , and let w be a mini-
mal ⊥-node with µα(w) ≤ s . Let us denote s′ := α∗(w) .
If s′ = s , then we are done. Suppose that s′ < s , not-
ing that hα∗(s′) > 0 (because w must be a duplication
node, due to α being clean). If s′ = µα(v) , then w is also
a lowest minimal ⊥-node. In this case, using the argu-
ments from the previous paragraph and swapping the
roles of v and w, one can see that v is easy in α[w → s′]
and must be mapped to s′ < s , a contradiction. Thus
assume s′ > µα(v) . Under α∗ , for each child v′ of v, we
have α∗(v′) ≤ µα(v) < s′ , and for each ancestor v′′ of v,
we have α∗(v′′) ≥ α∗(v) = s > s′ . Therefore, by remap-
ping v to s′ , v is the only duplication mapped to s′ among
its ancestors and descendants. In other words, because
hα∗(s

′) > 0 , we have d̂(α∗[v → s′]) ≤ d̂(α∗) . Moreover by
the Shift-down lemma, l(α∗[v → s′]) < l(α∗) , which con-
tradicts the optimality of α∗.

The remaining case is s′ > s . Note that hα∗(s) > 0
(because v must be a duplication node, due to α being
clean). Since it holds that v is a minimal ⊥-node, that α
is clean and that s > µα(v) , it must be the case that α has
no duplication mapped to s (by the second property of
cleanness). In particular, w has no descendant that is a
duplication mapped to s under α (and hence under α∗).
Moreover, as s′ = α∗(w) > s , w has no ancestor that is a
duplication mapped to s. Thus d̂(α∗[w → s]) ≤ d̂(α∗) ,
and the Shift-down lemma contradicts the optimality of
α∗ . This concludes the proof. �

We are finally ready to describe our algorithm. We start
from a partial mapping α with α(v) = ⊥ for every internal
node v of G . We gradually “fill-up” the ⊥-nodes of α in a
bottom-up fashion, maintaining a clean mapping at each
step and ensuring that each decision leads to an optimal
completion α∗ . To do this, we pick a lowest minimal ⊥
-node v, and “guess” α∗(v) among the ⌈δ/�⌉ possibilities.
This increases some hα(s) by 1. For each such guess s, we
use Lemma 10 to map the appropriate minimal ⊥-nodes
to s, then take care of the easy nodes to obtain another
clean mapping. We repeat until we have either found a
complete mapping or we have a duplication height higher
than d. An illustration of a pass through the algorithm is
shown in Fig. 5.

Notice that the algorithm assumes that it receives a
clean partial mapping α . In particular, the initial map-
ping α that we pass to the first call should satisfy the two
properties of cleanness. To achieve this, we start with a
partial mapping α in which every internal node is a ⊥-
node. Then, while there is a minimal ⊥-node v that is not
a required duplication, we set α(v) = µα(v) , which makes
v a speciation. It is straightforward to see that the result-
ing α is clean: C1 is satisfied because we cannot make any

Page 12 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

more minimal ⊥-nodes become speciations, and we can-
not create any duplication node without increasing costSD
because α has no duplication. C2 is met because there are
no duplications at all.

an optimal completion α∗ of α having d̂(α∗) ≤ d , or ∞ if
no such completion exists—assuming that the algorithm
receives a clean mapping α as input. Thus in order to use
induction, we must also show that at each recursive call

Fig. 5 An illustration of one pass through the algorithm. The species tree S is left and G has two trees (middle) and partial mapping α (labels are the
lowercase of the species). Here α is in a clean state, and the algorithm will pick a lowest minimal ⊥-node (white circle) and try to map it to, say, H.
The forest on the right is the state of α after applying this and cleaning up

2 There is a subtlety to consider here. What we have shown is that if there
exists a mapping α of minimum cost costSD(G , S) with d̂(α) ≤ d , then the
algorithm finds it. It might be that a reconciliation α satisfying d̂(α) ≤ d
exists, but that the algorithm returns no solution. This can happen in the case
that α is not of cost costSD(G , S).

The complexity follows from the fact that the algorithm
creates a search tree of degree ⌈δ/�⌉ of depth at most d.
The main technicality is to show that the algorithm main-
tains a clean mapping before each recursive call.2

Theorem 4 Algorithm 1 is correct and finds a mini-
mum cost mapping α∗ satisfying d̂(α∗) ≤ d , if any, in time
O(⌈ δ

�
⌉d · n · δ

�
).

Proof We show by induction over the depth of the
search tree that, in any recursive call made to Algorithm 1
with partial mapping α , the algorithm returns the cost of

done on line 15, α′ is a clean mapping. We additionally
claim that the search tree created by the algorithm has
depth at most d. To show this, we will also prove that
every α′ sent to a recursive call satisfies d̂(α′) = d̂(α)+ 1.

The base cases of lines 3–5 are trivial. For the induc-
tion step, let v be the lowest minimal ⊥-node chosen on
line 7. By Lemma 6, if α∗ is an optimal completion of α
and s = α∗(v) , then µα(v) ≤ s ≤ par⌈δ/�⌉(µα(v)) . We try
all the ⌈δ/�⌉ possibilities in the for-loop on line 9. The for-
loop on line 11 is justified by Lemma 10, and the for-loop
on line 13 is justified by Lemmas 8 and 9. Assuming that
α′ is clean on line 15, by induction the recursive call will
return the cost of an optimal completion α∗ of α′ having
d̂(α∗) ≤ d , if any such completion exists. It remains to
argue that for every α′ sent to a recursive call on line 15,
α′ is clean and d̂(α′) = d̂(α)+ 1 .

Page 13 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

Let us first show that such a α′ is clean, for each choice
of s on line 9. There clearly cannot be an easy node under
α′ after line 13, so we must show C2, i.e. that for any
minimal ⊥-node w under α′ , there is no duplication z
under α′ satisfying α′(z) > µα′(w) . Suppose instead that
α′(z) > µα′(w) for some duplication node z. Let w0 be a
descendant of w that is a minimal ⊥-node in α (note that
w0 = w is possible). We must have µα′(w) ≥ µα(w0) . By
our assumption, we then have α′(z) > µα′(w) ≥ µα(w0) .
Then z cannot be a duplication under α , as otherwise α
itself could not be clean (by C2 applied on z and w0). Thus
z is a newly introduced duplication in α′ , and so z was a ⊥
-node under α . Note that Algorithm 1 maps ⊥-nodes of G
one after another, in some order (z1, z2, . . . , zk) . Suppose
without loss of generality that z is the first duplication
node in this ordering that gets mapped to α′(z) . There are
two cases: either α′(z) �= s , or α′(z) = s.

Suppose first that α′(z) �= s . Lines 10 and 11 can only
map ⊥-nodes to s, and line 13 either maps speciation
nodes, or easy nodes that become duplications. Thus
when α′(z) �= s , we may assume that z falls into the latter
case, i.e. z is easy before being mapped, so that mapping
z to α′(z) does not increase hα′(α′(z)) . Because z is the
first ⊥-node that gets mapped to α′(z) , this is only pos-
sible if there was already a duplication z0 mapped to α′(z)
in α . This implies that α(z0) = α′(z) > µα(w0) , and that
α was not clean (by C2 applied on z0 and w0). This is a
contradiction.

We may thus assume that α′(z) = s . This implies
µα′(w) < α′(z) = s . If w was a minimal ⊥-node in α , it
would have been mapped to s on line 11, and so in this
case w cannot also be a minimal ⊥-node in α′ , as we sup-
posed. If instead w was not a minimal ⊥-node in α , then
w has a descendant w0 that was a minimal ⊥-node under
α . We have µα(w0) ≤ µα′(w) < s , which implies that
w0 gets mapped to s on line 11. This makes µα′(w) < s
impossible, and we have reached a contradiction. We
deduce that z cannot exist, and that α′ is clean.

It remains to show that d̂(α′) = d̂(α)+ 1 . Again, let s be
the chosen species on line 9. Suppose first that s = µα(v) .
Then hα[v→s](s) = hα(s)+ 1 , as otherwise v would be
easy under α , contradicting its cleanness. In this situa-
tion, as argued in the proof of Lemma 10, each node w
that gets mapped to s on line 11 or on line 13 is easy, and
thus cannot further increase the height of the duplica-
tions in s. If s > µα(v) , then hα[v→s](s) = 1 = hα(s)+ 1 ,
since by cleanness no duplication under α maps to s.
Here, each node w that gets mapped on line 11 has no
descendant nor ancestor mapped to s, and thus the height
does not increase. Noting that remapping easy nodes on
line 13 cannot alter the duplication heights, we get in

both cases that d̂(α[v → s]) = d̂(α)+ 1 . This proves the
correctness of the algorithm.

As for the complexity, the algorithm creates a search
tree of degree ⌈δ/�⌉ and of depth at most d. Each pass can
easily seen to be feasible in time O(δ/� · n) (with appro-
priate pre-parsing to compute µα(v) in constant time,
and to decide if a node is easy or not in constant time as
well), and so the total complexity is O(⌈δ/�⌉dn · δ

�
) . �

Experiments
We used our software to reanalyze a data set of 53 gene
trees for 16 eukaryotes presented in [14] and already
reanalyzed in [1, 25]. In [1], the authors showed that, if
segmental duplications are not accounted for, we get a
solution having d̂ equal to 9, while their software (Exact-
MGD) returns a solution with d̂ equal to 5. We were able
to retrieve the solution with maximum height of 5 fix-
ing δ ∈ [28, 61] and � = 1 , but, as soon as δ > 61 , we got
a solution with maximum height of 4 where no duplica-
tions are placed in the branch leading to the Tetrapoda
clade. The result is shown in Fig. 6 (also see [25, Fig. 1]).
In [14], the Tetrapoda duplication was only supported
by 6 trees (11.3%), whereas in our solution all these

Aves

Reptilia

Mammalia

Amphibia

Tetrapoda

Osteichtyes

Chondrichthyes

Agnata

Echinodermata

Mollusca

Anneldia

Arthropoda

Acoelemates

Embryophita

Clorophycea

Protozoa

Fungi

Fig. 6 The species tree phylogeny for the 16 eukaryotes studied
by Guigó et al. Black nodes indicate the location of segmental
duplications detected by our algorithm (the 2 black circles suggest
two consecutive segmental duplications)

Page 14 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

duplications were remapped to the common ancestor of
Chlorophyceae and Mammalia. The other locations of
segmental duplications inferred in [14] are confirmed.3
This may sow some doubt on the actual existence of a
segmental duplication in the LCA of the Tetrapoda clade.

We also reanalyzed the data set of yeast species
described in [2]. First, we selected from the data set the
2379 gene trees containing all 16 species and refined
unsupported branches using the method described in
[16] and implemented in ecceTERA [15] with a bootstrap
threshold of 0.9 and δ = � = 1 . Using our method with
δ = 1.5 , � = 1 we were able to detect the ancient genome
duplication in Saccharomyces cerevisiae already estab-
lished using synteny information [17], with 216 gene fam-
ilies supporting the event. Other nodes with a signature
of segmental duplication are nodes 7, 6, 13 and 2 (refer to
Fig. 7) with respectively 190, 157, 148 and 136 gene fami-
lies supporting the event. It would be interesting to see if
the synteny information supports these hypotheses.

Note on the costs: As for any other parsimony method,
the costs associated to the events in Algorithm 1 (i.e. δ
and �) have to be fixed by the user and cannot be esti-
mated. Several possibilities exist to estimate these costs.
A method for cost estimation for DL reconciliation,
based on reducing large fluctuations in ancient genome

sizes, has been proposed in [6]. Another possibility is to
use costs estimated by a maximum likelihood method, as
done in [23], where the costs estimated in [27, 28] were
used. Uncertainty in the input costs can also be tackled
by considering several cost vectors and pareto-optimal
reconciliations, or even via sampling; examples of these
approach can be found respectively in [29] in the context
of DTL reconciliations (i.e. DL reconciliations where hor-
izontal gene transfers are also allowed) and in [4], where
Boltzmann sampling is used in the context of evolution
of gene adjacencies, a problem related to reconciliations.

Conclusion
We have presented an approach for the reconciliation of
a set of gene trees and a species tree, based on segmental
macro-evolutionary events, where segmental duplication
events and losses are associated with cost δ and � , respec-
tively. We have shown that the problem is polynomial-
time solvable when δ ≤ � , since LCA-mapping is already
an optimal solution. When δ > � the problem is NP-hard,
even when � = 0 and a single gene tree is given. This
result solves a long standing open problem on the com-
plexity of the reconciliation of a set of gene trees with a
species tree. Moreover, we have given a fixed-parameter
algorithm of time complexity O

(

⌈ δ
�
⌉d · n · δ

�

)

 , where d
is the number of segmental duplications, that has been
tested on real data, showing its effectiveness.

This work poses a variety of questions that deserve fur-
ther investigation. The complexity of the problem when
δ/� is a constant remains an open problem. Moreover,
our FPT algorithm can handle data sets with a sum of
duplication height of about d = 30 , but in the future,
one might consider whether there exist fast approxima-
tion algorithms for MPRST-SD in order to attain better
scalability. Other future directions include a multivariate
complexity analysis of the problem, in order to under-
stand whether it is possible to identify other parameters
that are small in practice. Finally, we plan to extend the
experimental analysis to other data sets, for instance for
the detection of whole genome duplications in plants.

Authors’ contributions
RD, ML and CS all participated in writing the manuscript and establishing the
theoretical results. ML implemented the algorithm, CS ran the experiments. All
authors read and approved the final manuscript.

Author details
1 Dipartimento di Filosofia, Lettere, Comunicazione, Università degli Studi di
Bergamo, Bergamo, Italy. 2 Department of Computer Science, Universitè de
Sherbrooke, Sherbrooke, Canada. 3 ISEM, CNRS, IRD, EPHE, Universit de Mont-
pellier, Montpellier, France.

Acknowledgements
The authors would like to thank Mukul Bansal for providing the eukaryotes
data set for the experiments section.

Fig. 7 The species tree phylogeny for the yeast data set described in
[2]. Numbers at the internal nodes are meaningless and are only used
to refer to the nodes in the main text

3 Note that for this data set we used a high value for δ
�
 since, because of the

sampling strategy, we expect that all relevant genes have been sampled (recall
that in ExactMGD, � is implicitly set to 0).

Page 15 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The implementation is available at https ://githu b.com/AEVO-lab/MultR ec. The
data used in the experiments is available on demand.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
The work of ML was supported by a postdoctoral fellowship from the Natural
Sciences and Engineering Research Council (NSERC), Canada.

Appendix: Proof of Theorem 2
See Figs. 8 and 9.

We now prove the hardness of the MPRST-SD prob-
lem. For convenience, we repeat the illustration of the
construction.

Let G and β be a given instance of vertex cover, and let
G and S be constructed as described before. Call a node
v ∈ V (G) an original duplication if v is a duplication
under µ . If µ(v) = s , we might call v an original s-duplica-
tion for more precision. For T ∈ G and t ∈ V (S) , suppose
there is a unique node w ∈ V (T) such that µ(w) = s . We
then denote w by T[t]. In particular, any special node that
is present in a tree T ∈ G satisfies the property, so when
we mention the special uv nodes of T, we refer to the
special nodes that are mapped to the corresponding spe-
cial uv nodes in S under µ . For example in the Ch tree of
Fig. 3, the indicated set of (j − i − 1)10K + K nodes are

Fig. 8 The species tree S, and the Ai , Bi and Ch trees. The internal nodes are labeled by their LCA-mapping µ , and black squares on the gene trees
represent duplication nodes under µ

https://github.com/AEVO-lab/MultRec

Page 16 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

called special yizi nodes as they are mapped to the special
yizi nodes of S under µ.

We now show that G has a vertex cover of size β if
and only if G and S admit a mapping α of cost at most
10Kn+ β.

(⇒) Suppose that V ′ = {va1 , . . . , vaβ } is a vertex cover
of G. We describe a mapping α such that for each i ∈ [n]:

• If vi ∈ V ′ , then hα(yi) = 10K , hα(ri) = 1 and
hα(zi) = 0;

• If vi /∈ V ′ , then hα(zi) = 10K , hα(ri) = 0 and
hα(yi) = 0

and hα(w) = 0 for every other node w ∈ V (S).
Summing over all i ∈ [n] , a straightforward verification

show that this mapping α attains a cost of

It remains to argue that each tree can be reconciled using
these duplications heights. In the remainder, we shall
view these duplication heights as “free to use”, meaning
that we are allowed to create a duplication path of nodes
mapped to s ∈ V (S) , as long as this path has at most hα(s)
nodes, using hα defined above.

Let Ai ∈ A be one of the A trees, i ∈ [n] . If vi ∈ V ′ is in
the vertex cover, then we have put hα(yi) = 10K . In this
case, setting α(w) = µ(w) for every node w in Ai is a valid

∑

s∈V (S)

hα(s) =
∑

vi∈V ′

(10K + 1)+
∑

vi /∈V ′

10K = 10Kn+ β

mapping in which hα(s) described above is respected
for all s ∈ V (S) (the only duplications in Ai are those
10K mapped to yi). If instead vi /∈ V ′ , then we may set
α(w) = zi for all the 10K original yi-duplications of Ai ,
and set α(w) = µ(w) for every other node. This is eas-
ily seen to be valid since the ancestors of the original
yi-duplications in Ai are all proper ancestors of zi.

Let Bi ∈ B be a Bi tree, i ∈ [n] . If vi ∈ V ′ , then
hα(ri) = 1 , and so setting α(w) = µ(w) for all w ∈ V (Bi)
is valid and respects hα(s) for all s ∈ V (S) (since the ri
duplication is mapped to ri and there are no other dupli-
cations). If vi /∈ V ′ , then set α(w) = zi for every node
between the original ri-duplication in Bi and Bi[zi] and set
α(w) = µ(w) for every other node w. This creates a path
of 10K duplications mapped to zi , which is acceptable
since hα(zi) = 10K . This case is illustrated in Fig. 9.

Let Ch ∈ W be a C tree, h ∈ [m] . Let vi, vj be the two
endpoints of edge eh = {vi, vj} , with i < j . Since V ′ is a
vertex cover, we know that one of vi or vj is in V ′ . Suppose
first that vi ∈ V ′ . In this case, we have set hα(yi) = 10K .
Let w be the highest special xiyi node of Ch (i.e. the clos-
est to the root). We set α(w) = yi for each internal node
descending from w. All of these nodes become duplica-
tions, but the number of nodes of a longest path from w
to an internal node descending from w is 10K (K for the
Ri subtree, plus 9K for the special xiyi nodes). Thus hav-
ing hα(yi) is sufficient to cover the whole subtree rooted

Fig. 9 Mapping for the Bi tree when vi /∈ V ′ , and the Ch tree when vi /∈ V ′ but vj ∈ V ′

Page 17 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

at w with duplications. All the proper ancestors of w
can retain the LCA mapping and be speciations, since
µ(w′) > yi for all these proper ancestors w′.

Now, let us suppose that vi /∈ V ′ , implying vj ∈ V ′ . Note
that hα(yl)+ hα(zl) = 10K for all l ∈ [n] . This time, let
w be highest special xjyj node of Ch . Again, we will make
w and all its internal node descendants duplications. We
map them to the set {yj} ∪

⋃j−1
l=i {yl , zl} . This case is illus-

trated in Fig. 9.
More specifically, the longest path from w to a descend-

ing internal node contains 9K + (j − i − 1)10K + K
+9K + K = (j − i + 1)10K , where we have counted the
special xjyj nodes, the special yizi nodes, the spe-
cial xiyi nodes and the Pi subtree nodes. We have
hα(yj) +

∑j−1

l=i (hα(yl) + hα(zl)) = 10K + (j − i)10K =

(j − i + 1)10K , just enough to map the whole subtree
rooted at w to duplications. It is easy to see that such a
mapping can be made valid by first mapping the 9K spe-
cial xjyj nodes to yj , then the other nodes descending
from w to the rest of {yj} ∪

⋃j−1
l=i {yl , zl} . This is because

all these nodes are ancestors of the special yizi nodes, the
special xiyi nodes and the Pi nodes (except yi , but we have
hα(yi) = 0 anyway).

We have constructed a mapping α with the desired
duplication heights, concluding this direction of the
proof. Let us proceed with the converse direction.
(⇐) : suppose that there exists a mapping α of the G

trees of cost at most 10Kn+ β . We show that there exists
a vertex cover of size at most β in G. For some X ⊆ V (S) ,
define hα(X) =

∑

x∈X hα(x) . For each i ∈ [n] , define the
sets

and

Our goal is to show that the Yi ’s for which hα(Yi) > 9K
correspond to a vertex cover. The proof is divided into a
series of claims.

Claim 1 For eachi ∈ [n] , hα(Yi)+ hα(Zi) ≥ 10K .

Proof Consider the Ai tree of A, and let y∗i be an origi-
nal yi-duplication in Ai . If α(y∗i) ≥ xi+1 , then every node
of Ai on the path from y∗i to Ai[xi+1] is a duplication.
This includes all the K 100 special zixi+1 nodes, contra-
dicting the cost of α . Thus yi ≤ α(y∗i) < xi+1 . That is,
α(yi) ∈ Yi ∪ Zi . As this is true for all the original yi-dupli-
cations of Ai , and because Yi and Zi are disjoint sets, this
shows that hα(Yi)+ hα(Zi) ≥ 10K . �

Yi = {s ∈ V (S) : yi ≤ s < zi}

Zi = {s ∈ V (S) : zi ≤ s < xi+1}

Ri = {s ∈ V (S) : ri ≤ s < zi}

The above claim shows that we already need a dupli-
cation height of 10Kn just for the union of the Yi and Zi
nodes. This implies the following.

Claim 2 There are at most β duplication in G that are
not mapped to a node in

⋃

i∈[n](Yi ∪ Zi) . Moreover, for any
subset I ⊆ [n] ,

∑

i∈I (hα(Yi)+ hα(Zi)) ≤ 10K |I | + β.

Proof The first statement follows from Claim 1 and the
cost of α . As for the second statement, suppose it does not
hold for some I ⊆ [n] . Then

∑

i∈[n](hα(Yi)+ hα(Zi))

=
∑

i∈I (hα(Yi)+ hα(Zi))+
∑

i∈[n]\I (hα(Yi) + hα(Zi)) >

10Kn+ β , a contradiction to the cost of α.

Now, let c be an original duplication in some tree of
T ∈ G . The c-duplication path P(c) is the maximal path
of T (treated as an undirected graph) that starts at c and
contains only ancestors of c that are duplication nodes
under α (in other words, we start at c and include it in
P(c) , traverse the ancestors one after another and include
every duplication node encountered, and then stop when
reaching a speciation or the root—every node in P(c) is a
duplication). We will treat P(c) as a set of nodes. We say
that P(c) ends at node p if p ∈ P(c) and p ≥ p′ for every
p′ ∈ P(c).

Claim 3 Let Ch ∈ C and let vi, vj be the two endpoints of edge
eh , with i < j . Then there is an original duplication c ∈ V (Ch)
such that P(c) ends at a node p with α(p) ≥ yi.

Proof Let c1, . . . , cK be the original duplication nodes in
the Ch tree, which belong to the Pi subtree of Ch . Assume
the claim is false, and that α(ck) < yi for every k ∈ [K] .
First observe that if α(ck) �= α(ck ′) for every pair ck , ck ′ of
original duplications in Ch , then

∑

k∈[K] hα(α(ck)) ≥ K .
Note that α(ck) ∈ Yl ∪ Zl is impossible for l < i , by
the placement of the ci,k leaves in Pi in the species tree
S. As we further assume that α(ck) < yi for every k,
none of the ck duplications is mapped to a member of
⋃n

l=i(Yl ∪ Zl) either. Therefore, none of the ck duplica-
tions is counted in Claim 1, so this implies a cost of at
least 10nK + K > 10nK + β , a contradiction. So we may
assume that α(ck) = α(ck ′) for some distinct original
duplications ck , ck ′ . Notice that α(ck) = α(ck ′) must be a
common ancestor of µ(ck) and µ(ck ′) . This implies that
every node on the path between ck and LCACh

(ck , ck ′)
is a duplication (by Lemma 3), which in turn implies
|P(ck)| ≥ K/2 , by the construction of Pi . By assump-
tion, no duplication of P(ck) is mapped to a member of
⋃n

l=1(Yl ∪ Zl) , and again due to Claim 1, the total cost of
α is at least 10nK + K/2 > 10nK + β , a contradiction. �

Page 18 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

We can now show that the sets Yi for which
hα(Yi) > 9K correspond to a vertex cover.

Claim 4 Let eh ∈ E , and let vi, vj be the two endpoints
of eh , with i < j . Then at least one of hα(Yi) > 9K or
hα(Yj) > 9K holds.

Proof Assume that hα(Yi) ≤ 9K . By Claim 3, there is an
original duplication c in Ch such that P(c) ends at a node
p satisfying α(p) ≥ yi . This implies that every special xiyi
node in Ch is a duplication (by Lemma 3). Thus P(c) con-
tains all these 9K nodes, plus K nodes from the Ri subtree.
Since hα(Yi) ≤ 9K , at least K of these nodes are mapped
to a node outside Yi . Call U this set of K nodes that are
not mapped in Yi . By the placement of the Pi subtree,
none of the nodes of U is mapped to an element of Yl ∪ Zl
for l < i . Also by Claim 2, at most β of the U nodes are
mapped to a node outside of W := Zi ∪

⋃n
l=i+1(Yi ∪ Zi) ,

so it follows that at least K − β nodes of U are mapped
to an element of W. Because all the elements of W are
ancestors of the special yizi nodes, this implies that all the
special yizi nodes in Ch are duplications, of which there
are (j − i − 1)10K + K .

So far, this makes at least 10K + 10K (j − i − 1)+ K =

(j − i)10K + K duplications in P(c) . Let us now argue
that at least one of these is mapped to an ancestor of yj
(not necessarily proper). If not, then all the duplications
considered in P(c) so far are mapped to
{X} ∪

⋃j−1
l=i (Yi ∪ Zi) , where X is some subset of V(S) satis-

fying |X | ≤ β . By Claim 2, we know that
hα(X)+

∑j−1

l=i (hα(Yi)+ hα(Zi)) ≤ β + (j − i)10K + β =

(j − i)10K + 2β < (j − i)10K + K . In fact, this means
that at least K − 2β of the duplications considered in
P(c) so far that are unaccounted for, which means that
they are mapped to an ancestor of yj.

Because of this, we now get that the 9K special xjyj
nodes of Ch are duplications (which were not con-
sidered in P(c) so far). That means that at least
K − 2β + 9K = 10K − 2β duplications of P(c) are
mapped to an ancestor of yj . Notice that P(c) cannot
contain a node w with α(w) ≥ zj . Indeed, if this were the
case, then all the special yjzj nodes of Ch would be dupli-
cations, of which there are K 100 . Thus all the aforemen-
tioned 10K − 2β duplications are mapped to an ancestor
of yj but a proper descendant of zj , i.e. they are mapped
in Yj . So hα(Yj) ≥ 10K − 2β > 9K , proving our claim. �

Let V ′ = {vi : hα(vi) > 9K } . Then Claim 4 implies that
V ′ is a vertex cover. It only remains to show that |V ′| ≤ β .
This will follow from our last claim.

Claim 5 Suppose that hα(Yi) > 9K . Then
hα(Yi)+ hα(Zi)+ hα(Ri) ≥ 10K + 1.

Proof Let r∗i be the original ri-duplication in the Ai
tree. We show that α(r∗i) < zi . If α(r∗i) ≥ zi , then all
the 10K nodes on the path from r∗i to Ai[zi] , includ-
ing r∗i itself, are duplications mapped to a node in
Zi (these nodes cannot be mapped to an ancestor
of the Zi nodes, due to the presence of the special
zixi+1 nodes above Ai[zi]). Thus hα(Zi) ≥ 10K , and so
hα(Yi)+ hα(Zi) > 10K + 9K = 19K , contradicting
Claim 2. It follows that α(r∗i) /∈ Zi . Since we cannot have
α(r∗i) ∈ Yi , we now know that α(r∗i) /∈ Yi ∪ Zi . Using
Claim 1 we have hα(Yi)+ hα(Zi)+ hα(Ri) ≥ 10K + 1 . �

To finish the argument, Claim 5 implies that |V ′| ≤ β ,
since each vi ∈ V ′ implies that hα(Yi) > 9K and that
hα(Yi)+ hα(Zi)+ hα(Ri) ≥ 10K + 1 . More formally, if we
had |V ′| > β , letting I = {i : hα(Yi) > 9K } , with |I | > β ,
this would imply

∑

i∈[n](hα(Yi)+ hα(Zi)+ hα(Ri)) ≥
∑

i∈I (hα(Yi)+ hα(Zi)+ hα(Ri))+
∑

i∈[n]\I (hα(Yi)+ hα

(Zi)) > 10Kn+ β . This concludes the proof.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 5 November 2018 Accepted: 23 February 2019

References
 1. Bansal MS, Eulenstein O. The multiple gene duplication problem revisited.

Bioinformatics. 2008;24(13):132–8.
 2. Butler G, Rasmussen MD, Lin MF, Santos Manuel AS, Sakthikumar S,

Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, et al. Evolution
of pathogenicity and sexual reproduction in eight candida genomes.
Nature. 2009;459(7247):657.

 3. Cedric C, Nadia E-M. New perspectives on gene family evolution: losses in
reconciliation and a link with supertrees. In: Annual international confer-
ence on research in computational molecular biology. Springer; 2009. p.
46–58.

 4. Chauve C, Ponty Y, Zanetti JPP. Evolution of genes neighborhood within
reconciled phylogenies: an ensemble approach. In: Brazilian symposium
on bioinformatics. Springer; 2014. p. 49–56.

 5. Chauve C, Rafiey A, Davin AA, Scornavacca C, Veber P, Boussau B, Szollosi
G, Daubin V, Tannier E. Maxtic: fast ranking of a phylogenetic tree by
maximum time consistency with lateral gene transfers. bioRxiv, 2017.
https ://www.biorx iv.org/conte nt/early /2017/11/07/12754 8.

 6. David LA, Alm EJ. Rapid evolutionary innovation during an archaean
genetic expansion. Nature. 2011;469(7328):93.

 7. Davín AA, Tannier E, Williams TA, Boussau B, Daubin V, Szöllősi GJ. Gene
transfers can date the tree of life. Nat Ecol Evol. 2018;2(5):904.

 8. Delabre M, El-Mabrouk N, Huber KT, Lafond M, Moulton V, Noutahi E,
Castellanos MS. Reconstructing the history of syntenies through super-
reconciliation. In: RECOMB international conference on comparative
genomics. Springer; 2018. 179–195.

 9. Dondi R, Lafond M, El-Mabrouk N. Approximating the correction of
weighted and unweighted orthology and paralogy relations. Algorith
Mol Biol. 2017;12(1):1–4. https ://doi.org/10.1186/s1301 5-017-0096-x.

 10. Duchemin W. Phylogeny of dependencies and dependencies of phylog-
enies in genes and genomes. Ph.D. thesis, Universit de Lyon, 2017.

 11. Duchemin W, Anselmetti Y, Patterson M, Ponty Y, Bérard S, Chauve C, Scor-
navacca C, Daubin V, Tannier E. Decostar: reconstructing the ancestral

https://www.biorxiv.org/content/early/2017/11/07/127548
https://doi.org/10.1186/s13015-017-0096-x

Page 19 of 19Dondi et al. Algorithms Mol Biol (2019) 14:7

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

organization of genes or genomes using reconciled phylogenies.
Genome Biol Evol. 2017;9(5):1312–9.

 12. Fellows M, Hallett M, Stege U. On the multiple gene duplication problem.
In: International symposium on algorithms and computation. Springer;
1998. p. 348–357.

 13. Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G.
Fitting the gene lineage into its species lineage, a parsimony strategy
illustrated by cladograms constructed from globin sequences. Syst Biol.
1979;28(2):132–63.

 14. Guigo R, Muchnik I, Smith TF. Reconstruction of ancient molecular phy-
logeny. Mol Phylogenet Evol. 1996;6(2):189–213.

 15. Jacox E, Chauve C, Szllsi GJ, Ponty Y, Scornavacca C. Eccetera: comprehen-
sive gene tree-species tree reconciliation using parsimony. Bioinformat-
ics. 2016;32(13):2056–8. https ://doi.org/10.1093/bioin forma tics/btw10 5.

 16. Jacox E, Weller M, Tannier E, Scornavacca C. Resolution and reconciliation
of non-binary gene trees with transfers, duplications and losses. Bioinfor-
matics. 2017;33(7):980–7.

 17. Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient
genome duplication in the yeast saccharomyces cerevisiae. Nature.
2004;428(6983):617.

 18. Lafond M, Dondi R, El-Mabrouk N. The link between orthology relations
and gene trees: a correction perspective. Algorith Mol Biol. 2016;11:4.
https ://doi.org/10.1186/s1301 5-016-0067-7.

 19. Lafond M, Miardan MM, Sankoff D. Accurate prediction of orthologs
in the presence of divergence after duplication. Bioinformatics.
2018;34(13):i366–75.

 20. Luo CW, Chen MC, Chen YC, Yang RW, Liu HF, Chao KM. Linear-time
algorithms for the multiple gene duplication problems. IEEE/ACM Trans
Comput Biol Bioinf. 2011;8(1):260–5.

 21. Ma B, Li M, Zhang L. From gene trees to species trees. SIAM J Comput.
2000;30(3):729–52.

 22. Maddison WP. Gene trees in species trees. Syst Biol. 1997;46(3):523–36.
 23. Nguyen TH, Ranwez V, Pointet S, Chifolleau AMA, Doyon JP, Berry V. Rec-

onciliation and local gene tree rearrangement can be of mutual profit.
Algorith Mol Biol. 2013;8(1):12.

 24. Page RDM. Maps between trees and cladistic analysis of historical asso-
ciations among genes, organisms, and areas. Syst Biol. 1994;43(1):58–77.

 25. Page RDM, Cotton JA. Vertebrate phylogenomics: reconciled trees and
gene duplications. Pac Symp Biocomput. 2002;7:536–47.

 26. Paszek J, Gorecki P. Efficient algorithms for genomic duplication models.
IEEE/ACM Trans Comput Biol Bioinf. 2017;15(5):1515–24.

 27. Szöllősi GJ, Boussau B, Abby SS, Tannier E, Daubin V. Phylogenetic mod-
eling of lateral gene transfer reconstructs the pattern and relative timing
of speciations. In: Proceedings of the national academy of sciences, 2012.
p. 201202997.

 28. Szöllősi GJ, Daubin V. Modeling gene family evolution and reconciling
phylogenetic discord. In: Evolutionary genomics. Springer; 2012. p. 29–51.

 29. To TH, Jacox E, Ranwez V, Scornavacca C. A fast method for calculating
reliable event supports in tree reconciliations via pareto optimality. BMC
Bioinf. 2015;16(1):384.

 30. Ullah I, Sjöstrand J, Andersson P, Sennblad B, Lagergren J. Integrat-
ing sequence evolution into probabilistic orthology analysis. Syst Biol.
2015;64(6):969–82.

https://doi.org/10.1093/bioinformatics/btw105
https://doi.org/10.1186/s13015-016-0067-7

	Reconciling multiple genes trees via segmental duplications and losses
	Abstract
	Introduction
	Preliminaries
	Basic notions
	Reconciliations
	Reconciliation with segmental duplications
	Properties of multi-gene reconciliations

	The computational complexity of the mprst-sd problem
	The case of
	The case of
	The construction

	An FPT algorithm
	Experiments
	Conclusion
	Authors’ contributions
	References

