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Abstract 

Motivation:  Most modern seed-and-extend NGS read mappers employ a seeding scheme that requires extract-
ing t non-overlapping seeds in each read in order to find all valid mappings under an edit distance threshold of t. 
As t grows, this seeding scheme forces mappers to use more and shorter seeds, which increases the seed hits (seed 
frequencies) and therefore reduces the efficiency of mappers.

Results:  We propose a novel seeding framework, context-aware seeds (CAS). CAS guarantees finding all valid 
mappings but uses fewer (and longer) seeds, which reduces seed frequencies and increases efficiency of mappers. 
CAS achieves this improvement by attaching a confidence radius to each seed in the reference. We prove that all 
valid mappings can be found if the sum of confidence radii of seeds are greater than t. CAS generalizes the existing 
pigeonhole-principle-based seeding scheme in which this confidence radius is implicitly always 1. Moreover, we 
design an efficient algorithm that constructs the confidence radius database in linear time. We experiment CAS with 
E. coli genome and show that CAS significantly reduces seed frequencies when compared with the state-of-the-art 
pigeonhole-principle-based seeding algorithm, the Optimal Seed Solver.
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Introduction
Read mapping is used ubiquitously in bioinformatics. 
With | · | denoting the length of a string; T [·, ·] denoting 
the substring of a string T at a fixed interval; and D(·, ·) 
as the edit distance measurement between a string pair, 
commonly, read mapping is defined as follows:

Problem  1  (Read Mapping) Given read R and ref-
erence T  (usually with |T | ≫ |R| ), and an error toler-
ance threshold t, we say a substring of T at location 
[l1, l2] , i.e., T [l1, l2] , is a valid mapping of R if we have 
D(R,T [l1, l2]) < t.

To efficiently map reads, modern mappers usually 
employ the seed-and-extend mapping strategy  [1–4]: 

a mapper extracts a substring of R as a seed, s; iterates 
through all seed locations of s in T; at each seed location, 
performs sequence alignment of R against the surround-
ing text in T; reports alignments that have edit distances 
below t as valid mappings.

For mappers that use non-overlapping seeds, the num-
ber of seeds to extract from a read R is governed by the 
pigeonhole principle: to find all valid mappings of R, the 
mapper must divide R into at least t non-overlapping 
seeds. Otherwise, the mapper will not be able to consist-
ently find all valid mappings of R in T. As t grows, the 
length of seeds is reduced. Using short seeds significantly 
increases the workload of a mapper [5, 6]. Shorter seeds 
appear more frequently in T, hence increasing the num-
ber of alignments while mapping a read. To improve the 
performance of mappers, it is desirable to use fewer non-
overlapping seeds under a fixed t, which lets a mapper 
not only use fewer seeds, but also use longer seeds.

In this paper, we focus on improving seed-and-extend 
mappers that use non-overlapping seeds. We propose a 
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novel seeding scheme, called context-aware seeds (CAS). 
CAS enables a mapper to use fewer than t seeds without 
missing any valid mappings. CAS attaches each seed s 
with a confidence radius score, cs , with cs ≥ 1 . Let S be a 
set of non-overlapping seeds from R. CAS ensures that 
as long as 

∑

s∈S cs ≥ t , then S is sufficient to find all valid 
mappings of R under an error tolerance threshold of t. 
When S includes any seed s with cs > 1 , then |S| < t and 
all valid mappings are secured with fewer-than-t seeds 
(|S| denotes the number of seeds in S). In the worst case 
where cs = 1 for all s ∈ S , CAS degenerates into the case 
governed by pigeonhole principle with |S| = t.

Fig. 1  Illustration of CAS. The upper part shows a read and a 
reference. Suppose that t = 4 , i.e., we want to find all alignments of 
the read in the reference with fewer than 4 edits. There is only one 
such locally optimal alignment (marked as red). The middle part 
shows the seed extraction result with the pigeonhole principle, 
which splits the read into t = 4 seeds. This gives many seed locations 
and thus many alignments. With CAS (in the lower part), we can 
split the read into 2 long seeds while still guarantee to find all valid 
mappings. The two long seeds together have a total seed frequency 
of 2, drastically reducing the number of alignments

Figure 1 compares CAS and the pigeonhole-principle-
based seeds. In this example, we want to find all map-
pings of a read AAC​CTT​GG under an error tolerance 

threhsold of t = 4 . Assume that we have verified that 
each of the two CAS seeds AACC​ and TTGG​ has confi-
dence radii of cs = 2 . Therefore CAS can be guaranteed 
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to find all valid mappings with just these two seeds, as 
∑

s cs = 4 ≥ t . Using the pigeonhole principle, however, 
a mapper needs to select t = 4 non-overlapping seeds. 
It forces the mapper to pick short and repetitive seeds, 
making the mapper perform more local alignments.

We establish the theoretical foundation of CAS and 
demonstrate that with CAS future mappers can map 
reads more efficiently using fewer, longer and less fre-
quent seeds without losing valid mappings. We also 
propose a suffix-trie-based CAS database construction 
algorithm that builds a CAS database from T in linear 
time, based on which we design a greedy CAS seed-
ing algorithm that extracts CAS from reads. We test the 
greedy CAS seeding algorithm against a state-of-the-art 
pigeonhole-principle-based seeding algorithm, Optimal 
Seed Solver (OSS), on an E. coli dataset.

Context‑aware seeds
CAS reduces seed usage in read mapping by introduc-
ing a novel metric for seeds in T, the confidence radius. 
A seed s in T has a confidence radius cs if all substrings 
in T whose edit distance is smaller than cs must occur 
in T within a small window where s occurs. The size of 
the window equals to extending the length of s by cs − 1 
letter(s) at both ends. For example, seed AACC​ in T from 
Fig.1 has a confidence radius of 2. Any substring in T 
whose edit distance to AACC​ equals 1 (e.g., AAC​, ACC​, 
GAACC​, AACCG​) locates within the 1-letter extended win-
dow of AACC​ (GAA​CCG​). The confidence radius of each 
possible seed in T can be computed by profiling T (see 
the next Section). CAS guarantees that all valid mappings 
of a read R can be located, as long as the seeds s extracted 
from R collectively have a confidence radius of 

∑

s cs ≥ t . 
Below, we give the formal definition of CAS and prove 
the correctness of CAS.

Let s be a string in T and [l1, l2] be a pair of loca-
tions in T. We say string T [l1, l2] is in the vicinity of s 
under an integer c, if s appears in an interval [ls1, ls2] in 
T ( T [ls1, ls2] = s ), where l1 − c < ls1 < ls2 < l2 + c . 
Furthermore, let seed s be a substring of R at [lr1, lr2] 
( s = R[lr1, lr2] ) and let T [l1, l2] be a valid mapping of 
R. We say T [l1, l2] is in the vicinity of s with regard to R 
under c, if string T [l1 + lr1, l1 + lr2] is in the vicinity of s 
under c. If a valid mapping T [l1, l2] is in the vicinity of s 
with respect to R under t, then T [l1, l2] can be discovered 
by locally aligning R against the surrounding text in T at 
each seed location of s.

The pigeonhole principle states that by dividing R into 
a set of t non-overlapping seeds, denoted by S, then for 
all intervals [l1, l2] where T [l1, l2] is a valid mapping of R, 
there must be s ∈ S where T [l1, l2] is in the vicinity of s 
with regard to R.

CAS seeks to retain the seed vicinity guarantee of the 
pigeonhole principle, where all valid mappings of a read 
R are in the vicinity of its seeds with regard to R under t, 
with fewer than t seeds. Given two substrings s and s′ of 
T and an edit-distance threshold t, we say s′ is a neighbor 
of s if D(s, s′) < t . Assume that s′ is a neighbor of s under 
t, CAS defines s′ as a trivial neighbor of s, if and only if 
for any location interval [l1, l2] where T [l1, l2] = s′ and 
T [l1, l2] is in the vicinity of s under D(s, s′) . Otherwise 
CAS defines s′ as a nontrivial neighbor of s. Finally, CAS 
defines the confidence radius cs of s as the minimum edit-
distance between s and all nontrivial neighbors of s. Since 
a seed is trivial to itself and is at least 1-edit-distance 
away from any other string, we have cs ≥ 1 for any seed s.

We now give the central theorem of CAS, the theoreti-
cal foundation that enables seed-and-extend mappers to 
find all valid mappings using fewer than t seeds.

Theorem 1  Let S be a set of non-overlapping seeds of a 
read R. Assume 

∑

s∈S cs ≥ t . Then for any reference string 
T [l1, l2] where D(R,T [l1, l2]) < t , there must be a seed 
s ∈ S , where T [l1, l2] is in the vicinity of s with regard to 
R under t.

Proof   Assume that T [l1
′, l2

′] is a valid mapping of R, 
where D(R,T [l1

′, l2
′]) < t . Further assume that T [l1

′, l2
′] 

is not in the vicinity, with regard to R under t, of any 
s ∈ S . In the minimum-edit-distance alignment between 
R and T [l1

′, l2
′] , assume that the non-overlapping seeds 

s1 , s2 , ..., sn of R are aligned to the non-overlapping seg-
ments sT1 , sT2 , ..., sTn of T [l1

′, l2
′] , with n = |S| . Since 

T [l1
′, l2

′] is not in the vicinity, with regard to R under t, 
of any s ∈ S , none of the seeds si matches exactly to its 
counterpart sequence STi ; and none of the sequences sTi 
is a trivial neighbor under the confidence radius csi of 
its counterpart seed si . Because csi is the minimum edit-
distance between si and any of its nontrivial neighbors, 
we have D(R,T [l1

′, l2
′]) ≥

∑

i D(si, sTi) ≥
∑

s cs ≥ t . 
D(R,T [l1

′, l2
′]) ≥ t contradicts the assumption that 

T [l1
′, l2

′] is a valid mapping of R. Therefore such T [l1
′, l2

′] 
does not exist.

We call Theorem 1 the weighted Pigeonhole principle. The 
confidence radius of each seed serves as the weight of the 
seed in computing the overall error tolerance of the seed 
set.� �

Construction of confidence radius database
The confidence radius cs of each seed s is stored in a table, 
called the confidence radius database. The confidence 
radius database only needs to be constructed once offline 
for a reference T.



Page 4 of 12Xin et al. Algorithms Mol Biol           (2020) 15:10 

Computing cs of seed s involves finding the minimum 
edit distance to its nontrivial neighbors. Below we pro-
pose an algorithm that constructs the confidence radius 
database in O(|�|2 ·M) time, where � is the alphabet set 
of T and M is the total number of neighbors of all strings 
in T (up to length P). Note that cs need not be a tight 
lower bound. Ordinary seeds can be perceived as CAS 
with confidence radii of cs = 1 . As will be discussed later, 
tighter bounds (greater confidence radii) take longer to 
compute. We limit the search space in computing the 
confidence radii of seeds by introducing a maximum 
allowed confidence radius threshold θ . Seeds whose exact 
confidence radii (tight bounds) that are greater than θ are 
set to cs = θ . In this section, we assume both P and θ are 
constants.

The confidence radius database is constructed in two 
steps: first, we construct a neighbor database, which 
stores all neighbors of all seeds  (up to length P) under 
the confidence radius threshold θ ; then, we find the con-
fidence radius of each from its neighbors. We prove that 
both steps can be done in O(|�|2 ·M) time.

Construction of the neighbor database
To find all neighbors of all substrings in T (up to a max-
imum length P), we first build a P-level suffix trie of T, 
then find all neighbors of each seed in Trie by systemati-
cally traversing the suffix trie in a top-down manner. For-
mally, let Trie = (V ,E) be a suffix trie of T of a maximum 
depth of P + θ . Let r ∈ V  be the root of Trie. Each node 
represents a substring in T, i.e., the string obtained by 
concatenating the letters on edges along the path from r 
to v. We denote the edit distance between these two sub-
strings corresponding to u and v as D(u,  v). We aim to 
solve the following problem:

Problem  2  Given a suffix trie Trie = (V ,E) and an 
integer θ , compute all pairs of nodes u, v ∈ V  such that 
D(u, v) ≤ θ.

For any v ∈ V  , p(u) denotes the parent node of v in Trie. 
σ(p(v), v) denotes the letter on the edge between v and 
p(v), i.e., (p(v), v) ∈ E . We have the following lemmas.

Lemma 1  Let u, v ∈ V  . Then D(u, v) ≤ θ only if 
D(p(u), p(v)) ≤ θ.

Proof  Proved in Landau and Vishkin [7] by enumerating 
and validating all possible scenarios.�  �

Lemma 2  Let u, v ∈ V  . We have

where δuv = 1 if σ(p(u),u)  = σ(p(v), v) and δuv = 0 if 
σ(p(u),u) = σ(p(v), v).

Proof   This follows from the dynamic programming 
algorithm for the edit distance problem.�  �

Lemma 1 shows that nodes are neighbors only if their 
parents are neighbors. Hence the neighbors of a child 
node must be the children of the neighbors of its par-
ent node. Lemma 2 further shows that the edit distance 
between two children nodes can be computed in con-
stant time, given the edit distances between one child 
and the parent node of the other child, as well as the edit 
distance between the two parent nodes.

We construct the neighbor database by traversing Trie 
as follows: First, assign each node in V an integral rank 
from {1, 2, · · · , |V |} following a top-down, left-to-right 
order. The root r of Trie has rank of 1, and then the chil-
dren of children of r have ranks of 2, 3, · · · , from the left-
most child to the rightmost child, and so on. Nodes that 
are deeper in Trie rank higher. Among nodes of the same 
depth, children of a higher ranking parent node rank 
higher. A breadth-first-search traversal of Trie ranks all 
nodes.

For any v ∈ V  , we define Xv := {u ∈ V | D(u, v) ≤ θ} 
as the set of neighbors of v, including v itself, and define 
Yv := {D(u, v) | u ∈ Xv} as the accompanying edit-dis-
tance set of Xv . For every neighbor node u in Xv , Yv pro-
vides the edit distance between u and v. We compute Xv 
and Yv for each node v ∈ V  from low ranking nodes to 
high ranking nodes. Both Xv and Yv are implemented as 
arrays.

The algorithm for constructing the neighbor database 
is summarized in Algorithm  1. We iterate through all 
nodes by rank from low to high. For each node v ∈ V  , we 
iterate through all children of v. For each children node 
v′ of v, we compute Xv′ and Yv′ of v′ based on the previ-
ously computed Xv and Yv of v. Figure  2 illustrates the 
process of validating a candidate neighbor u′ of another 

D(u, v) = min







D(p(u), p(v))+ δuv
D(p(u), v)+ 1
D(u, p(v))+ 1

Fig. 2  Illustration of processing a single node v (i.e., line 4 to line 17 
of Algorithm 1)
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node v′ , based on the information of its parent node 
v and the neighbor u of v, where u is also the parent of 
u′  (lines 4–25 in Algorithm 1). We prove that this algo-
rithm maintains the following three invariants: 

1	 For any node v ∈ V  , array Xv is always sorted accord-
ing to their ranks, i.e., nodes that are added to Xv are 
always in ascending order w.r.t. their ranks.

2	 Right before processing node v  (i.e., before line 4 of 
Algorithm  1), Xv and Yv are already computed and 
sorted w.r.t. their ranks.

3	 Right after processing node v  (i.e., after line 17 of 
Algorithm  1), Xv′ and Yv′ are computed and sorted 
w.r.t. their ranks for each child v′ of v.

The initialization step Algorithm 1 (line 2) computes Xr 
and Yr for root node r. Its neighbors include all nodes 
whose depth in Trie is no greater than θ . The edit dis-
tance between r to a neighbor node u is simply the depth 
of u minus 1 (we assume that root r is at depth 1). Root 
r is also in Xr with D(r, r) = 0 . Clearly, the first and the 
second invariant hold for root r.

In the main loop (lines 3–26), for a node v ∈ V  , Algo-
rithm 1 iterates through all of its children. For a child v′ 
of v, lines 4–25 compute Xv′ and Yv′ of v′ . Line 4–6 ini-
tialize the pointers that will be used to fetch the edit 
distances D(v,u′) and D(v′,u) , which are stored in Yv 
and the partially computed Yv′ , respectively. Because u 
ranks higher than u′ , by the time of computing D(v′,u′) , 
D(v′,u) is already computed and stored in Xv′ . D(v′,u′) 
is then computed according to Lemma  2. Specifically, 
pointer k tracks the position of u in array Xv  (i.e., the 
index of u in array Xv ); pointer kv tracks the position of 
u′ in array Xv ; and pointer kv′ tracks the position of u in 
array Xv′ . Line 11 computes D1 := D(v,u)+ δ , in which 
D(v, u) is fetched from Yv indexed by k. Line 12 computes 
D2 := D(v,u′)+ 1 , in which D(v,u′) is fetched from Yv 
indexed by kv . Line 13 computes D3 := D(v′,u)+ 1 , in 
which D(v′,u) is fetched from Yv′ indexed by kv′ . Line 14 
computes D(v′,u′) := min{D1,D2,D3} ; adds u′ to Xv′ and 
adds D(v′,u′) to Yv′ if D(v′,u′) < t.

Algorithm  1 maintains the first invariant. For each 
child v′ of v, assuming Xv is sorted, then neighbors are 
also added to Xv′ in a sorted manner, as Algorithm 1 iter-
ates through neighbors ordered by Xv . Since Xr is sorted 
for root r, given the inductive nature of Algorithm 1, we 
conclude that Xv must be sorted for any v ∈ Trie.

Algorithm  1 maintains the third invariant. According 
to Lemma 1, a node u′ ∈ Xv′ requires u ∈ Xv for their par-
ents u and v. Any node ū′ whose parent ū �∈ Xv results in 
ū′ �∈ Xv′ . Algorithm 1 iterates through all u in Xv . There-
fore, after line 17, all neighbors of child v′ must have been 
found, assuming the second invariant holds. The second 

invariant holds because all neighbors of r are correctly 
defined during initialization. As the algorithm propa-
gates, because of the inductive nature of Algorithm 1, the 
second invariant holds.

Let M denote the member size of set 
{(u, v) | D(u, v) ≤ θ} . The complexity of Algorithm  1 is 
O(|�|2 ·M).

Theorem  2  Algorithm  1 computes Xv and Yv for each 
v ∈ V  in O(|�|2 ·M) time.

Proof  For each v ∈ V  , lines 4–25 compute Xv′ and Yv′ 
for each child v′ of v in O(|Xv| · |�|2 +

∑

v′:p(v′)=v |Xv′ |) 
time. Since pointers of kv and kv′ can only move for-
ward, lines 14–19 cost |Xv| +

∑

v′:p(v′)=v |Xv′ | opera-
tions. Operations in lines 11–22 cost constant time. 
Hence, lines 7–25 cost O(|Xv| · |�|2) operations, as the 
number of children of each node is bounded by |�| . 
The overall run time of Algorithm 1 is thus bounded by 
∑

v∈V O(|Xv| · |�|2 +
∑

v′:p(v′)=v |Xv′ |) = O(|�|2 ·M) . �

With |�| being a small constant (for example 
� = {A,C ,G,T } for DNA analysis), Algorithm 1 finds all 
M neighbor pairs in Trie in O(M) time.

Computing the confidence radius among nontrivial 
neighbors
The neighbor database stores both the trivial and nontriv-
ial neighbors of each seed. However, CAS only requires 
the minimum edit distance to the nontrivial neighbors 
of each seed. In order to derive the confidence radius of 
each seed, we propose an augmentation to Algorithm 1, 
such that it computes the minimum edit distance to non-
trivial neighbors while constructing the neighbor data-
base. We prove that the augmentation does not increase 
the time complexity of Algorithm 1.

Within the neighbor array Xv of a node v, let the 
sub-array X0

v  store all trivial neighbors and X1
v  store 

all nontrivial neighbors, where Xv = X0
v ∪ X1

v  . By 
definition, the confidence radius of v is computed as 
cv := minu∈X1

v
D(u, v) . To compute cv , instead of find-

ing all nontrivial neighbors, X1
v  , we compute a subset 

X2
v ⊂ X1

v  , where minu∈X2
v
D(u, v) = minu∈X1

v
D(u, v).

Let u be a neighbor of v; we say u is an immediate 
neighbor of v if u is a substring, or a superstring, or an 
overlapping string of v; otherwise we say u is a non-
immediate neighbor of v (see Fig. 3 for examples). Imme-
diate neighbors are not necessarily trivial neighbors. If 
u is a trivial neighbor of v, by definition, then u must be 
an immediate neighbor of v. However, the opposite is 
not necessarily true, i.e., u could be a substring of v (an 
immediate neighbor) yet u is nontrivial to v. Substring u 
may appear at more locations in T than v does. It is easier 
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to determine whether u is an immediate neighbor to v 
than whether u is a trivial neighbor to v.

Let X2
v  be the set of non-immediate neighbors of a node 

v. The minimum edit distance from v to nontrivial neigh-
bors of v equals to the minimum edit distance between v 
to neighbors in X2

v  . We prove this in Theorem 4. To prove 
Theorem 4, we first prepare the following two lemmas.

Lemma 3  If u is a superstring of v, then u is a trivial 
neighbor of v.

Proof  Since u is a superstring of v, for any location 
[l1, l2] of u, there exists [l1, l2] where T [l1, l2] = v and 
l1 − D(u, v) ≤ l1 < l2 ≤ l2 + D(u, v) . By definition, u is a 
trivial neighbor of v.�  �

Lemma 4  If u is a substring or an overlapping string 
of v and u is a nontrivial neighbor of v, then there exists 
w ∈ Trie , where w is neither an immediate neighbor nor a 
trivial neighbor of v, with |w| = |v| and D(v,w) ≤ D(v,u).

Proof   Since u is a nontrivial neighbor of v, there 
exists [l1, l2] , where T [l1, l2] = u but T [l1, l2] is not in 
the D(v,  u)-edit vicinity of v. We extract a substring w 
within T [l1 − D(u, v), l2 + D(u, v)] , where w locally and 
optimally aligns to v in T [l1 − D(u, v), l2 + D(u, v)] , with 
|w| = |v| , as shown in Fig. 4. Then w must be a nontriv-
ial neighbor of v since T [l1, l2] is not in the D(u, v)-edit 
vicinity of v. Because w is optimally aligned to v within 
[l1 − D(u, v), l2 + D(u, v)] , we have D(w, v) ≤ D(u, v) . � �

By combining Lemmas 3 and 4 we prove the following 
theorem.

Theorem 3  cv = minu∈X2
v
D(u, v) , where X2

v  is the set of 
non-immediate neighbors of v.

Proof Lemmas  3 and  4 state that for any nontrivial 
immediate neighbor u of seed v, there must exist a 
nontrivial and non-immediate neighbor w of v where 
D(w, v) ≤ D(u, v) . Therefore, by definition, we have 
cv = minu∈X2

v
D(u, v) .�  �

Fig. 3  Examples of trivial neighbors of a seed, including substrings, superstrings, and overlapping strings of this seed

Fig. 4  Illustration of Lemma 4. The figure to the left shows an 
example where u is a substring of v, while the figure to the right 
shows an example where u is an overlapping string of v. Notice that 
in both figures, w is always optimally aligned to v 
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We find the immediate neighbors, X3
v
 , of each node 

v ∈ Trie , by checking if a neighbor u ∈ Xv is a imme-
diate substring, superstring or overlapping string 
of v. We associate with each node v a new vector 
Zv := {F(v,u) | u ∈ Xv} , where F(v, u) stores the informa-
tion of whether u ∈ X3

v  . With X2
v = Xv \ X

3
v  , the updated 

workflow is illustrated in Fig. 5.
Computation of F(v,  u) can be piggybacked on top of 

computing D(v, u) in Algorithm 1. Given u and v, F(v, u) 
stores whether v and u possess any of the below immedi-
ate conditions: 

1	 u is a prefix of v.
2	 u is a suffix of v.
3	 v is a prefix of u.
4	 v is a suffix of u.
5	 u is neither a prefix nor a suffix but a substring of v.
6	 v is neither a prefix nor a suffix but a substring of u.
7	 A prefix of u is a suffix of v.
8	 A suffix of u is a prefix of v.

From above immediate conditions, we deduce the imme-
diate relationship between v and u. With conditions 1–6, 
we can infer the superstring-substring relationship. With 
Condition 7–8, we can infer the overlapping relationship. 
If v and u qualifies none of the above immediate condi-
tions, then they must be non-immediate neighbors.

For simplicity, we initialize each node as satisfying 
immediate conditions 1, 2, 3 and 4 to itself. We initialize 
the root node r as a prefix to any of its neighbors; and any 
neighbors of r as a suffix to r. Finally, r is not an overlap-
ping string or a substring of any neighbor.

F(u, v) can be computed in constant time if F(p(v), p(u)), 
F(p(v), u) and F(v, p(u)) are known. For example, in Fig. 5, 
F(v′,u′) satisfies condition 1, only if (a) v′ = u′ or (b) 
F(v′,u) satisfies condition 1. F(v′,u′) satisfies condition 2, 
only if (a) u′ = v′ or (b) F(v, u) satisfies condition 2 and 
σ(u,u′) = σ(v, v′) . Conditions 3 and 4 are mirror cases 
of conditions 1 and 2, respectively with v and u, v′ and 
u′ trading places. F(v′,u′) satisfies condition 5, only if (a) 
F(v′,u) satisfies condition 5 or (b) F(v′,u) satisfies con-
dition 2, while v′ �= u′ and v is not root. Condition 6 is 
a mirror case of condition 5. F(v′,u′) satisfies condition 
7 only if (a) F(v,u′) satisfies condition 7 or (b) F(v,u′) 

satisfies condition 2, while v  = u′ and v is not root. Con-
dition 8 is a mirror case of condition 7.

The computation of F(·, ·) is piggybacked on top of the 
computation of D(·, ·) , as both methods use dynamic pro-
gramming. Both computations share the same structure: 
To compute D(·, ·) and F(·, ·) between two child nodes, 
we must aquire D(·, ·) and F(·, ·) between all child-parent 
and parent-parent node pairs; and then derive D(·, ·) and 
F(·, ·) between the two child nodes in constant time. As 
a result, piggybacking the computation of immediateness 
does not increase the complexity of Algorithm 1.

Finally, the confidence radius of node v equals 
minD(v,u) where u ∈ X2

v  , where F(v, u) does not satisfy 
any of the immediate conditions. The confidence radius 
of a node can be found by simply scanning its neighbor 
array, which finishes in linear time. The overall complex-
ity of constructing the confidence radius database is still 
O(|�|2 ·M).

Maintaining the confidence radius metadata
The confidence radii of seeds is stored in a |T|-by-P table, 
where P is user-provided. Fig. 6 demonstrates an exam-
ple confidence radius table. The [x, y] entry of the table 
stores the confidence radius of seed T [x, x + y] . Overall, 
the confidence radius table has a space complexity of 
O(|T | · P) , with |T | ≫ P in practice.

In read mapping, it is not always necessary to maintain 
the confidence radii for every seed. Instead, it is often 
sufficient to just maintain the confidence radii of seeds 
at fixed-length intervals. For instance, instead of record-
ing the confidence radii for seeds of all lengths between 
1 to P at every location x in T, the confidence radius 
database can selectively record the confidence radii just 
for seeds of lengths at every 10-bp interval: T [x, x + 10] , 
T [x, x + 20] , ..., T [x, x + 10× ⌈ P

10⌉] . We call this method 
interval sampling. Let I denote the interval length for 
seed sampling, interval sampling reduces the space com-
plexity of the CAS database to O(|T | · ⌈PI ⌉)] . An example 
confidence radius database with a length of I = 4 is pro-
vided in Fig. 7.

For seeds that are not sampled by the confidence radius 
database, their confidence radii may still be indirectly 
inferred during mapping. Given a seed u and its substring 
v, we have the following theorem:

Theorem 4  Let seed v be a substring of seed u. Let occ(u) 
and occ(v) denote the frequency of u and v in T. Then 
cu ≥ cv , if occ(u) = occ(v).

Proof   Assume cu < cv . Then there exists a string 
w ∈ T  where D(u,w) = cu while w is not in the vicin-
ity of u. Since v is a substring of u, there must exist w′ , 
a substring of w, where D(w′, v) ≤ cu . However, since Fig. 5  Illustration of adding Zv := {F(u, v) | u ∈ Xv} to each node
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cv > cu ≥ D(w′, v) , w′ must not be a non-trivial neighbor 
of v. Hence w′ must be in the vicinity of v. Because w is 
not in the vicinity of u but w′ is in the vicinity of v, we 
conclude that v occurs in at least one more location in 
T than u does (in the vicinity of w′ ). This contradicts the 
fact that occ(u) = occ(v) .�  �

Theorem 4 suggests that for a seed s that is not sampled 
by the confidence radius database, as long as there exists 
a confidence-radius-database-covered substring s′ of s 
that shares the same occurrence frequency with s, then 
cs ≥ cs′ . Since the confidence radius is just a lower bound, 
and need not be an exact measurement of the minimum 
edit distance towards the non-trivial neighbors of a seed, 
we can set cs = cs′.

In mapping, upon encountering a seed s with a length 
that is not a multiple of the sampling interval I, the map-
per may enumerate all substrings of s with lengths of 
I · ⌊ |s|I ⌋ . Unlike s, these substrings are supported by the 
confidence radius database. The mapper then checks the 
frequency of each substring in T and removes the sub-
strings whose occurrence frequencies do not match s. 
The confidence radius of s is set to the maximum confi-
dence radius among the remaining frequency-matching 

substrings. This method works only if there exists at 
least one frequency-matching substring of s. When there 
is none, the mapper is recommended to give up s, and 
directly use a database-supported substring of s instead, 
preferably the one with the minimum occurrence fre-
quency or the maximum confidence radius, which maxi-
mizes the mapping efficiency.

A seeding scheme with context‑aware seeds
While the major goal of this paper is to establish the 
theoretical framework of CAS, to test the effectiveness 
of CAS, we propose a greedy seed selection method, 
referred to as greedy CAS seeding. Greedy CAS seed-
ing selects consecutive Maximum Exact Matching sub-
strings (MEMs, which are seeds that cannot be further 
extended without bumping into errors) from a read as 
seeds. At the end of each MEM, greedy CAS seeding 
heuristically skips the next two base pairs, in an effort to 
skip potential errors. Greedy CAS seeding sorts seeds by 
their frequency from low to high, into Sraw . Then selects 
the minimum number of seeds S from Sraw in sequential 
order such that 

∑

s∈S cs ≥ t . In the rare cases where there 
is insufficient number of CAS seeds such that there does 
not exist a set of seeds S with 

∑

s∈S cs ≥ t , greedy CAS 

Fig. 6  An example confidence radius table

Fig. 7  An example confidence radius table with a sampling interval of I = 4
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seeding reverts back to using the pigeonhole principle, by 
dividing the read into t non-overlapping seeds.

Figure 8 compares the seed extraction results of greedy 
CAS seeding against the state-of-the-art, pigeonhole-
principle-based seeding method, the Optimal Seed 
Solver (OSS) [8]. OSS has been previously shown to gen-
erate the least frequent seeds, when compared to other 
pigeonhole-principle-based seeding methods, such as 
flexible-placement k-mers or spaced seeds. Figure 8 dem-
onstrates both seeding methods in action under t = 4 . 
Greedy CAS seeding is shown in the upper half while 
OSS is shown in the lower half. Compared to OSS, which 
uses a total of t = 4 seeds, greedy CAS seeding uses only 
two seeds. As a result, greedy CAS seeding can afford 
longer and less frequent seeds.

When interval sampling is enabled, greedy CAS seed-
ing follows the seeding mechanism introduced above. If 
a seed s has a length that is not supported by the confi-
dence radius database and it has no frequency-matching 
substrings, then s is withdrawn and the database-sup-
ported substring of s with the maximum confidence 
radius is selected as a substitute.

Greedy CAS seeding has a maximum complexity of 
O(|R| + |S| log(|S|)) . We use a Burrows-Wheeler Trans-
formation (BWT) array to index seeds. With the BWT 
array, it takes O(|s|) operations to access the seed data-
base for seed s and locate all seed locations of s. Given 
that 

∑

s∈S |s| ≤ |R| , and |S| ≤ t ≪ |R| , we conclude that 
the maximum complexity of greedy CAS seeding is 
O(|R| + t log(t)).

Experiments
We benchmark greedy CAS seeding against OSS and 
naïve seeding on the E.  coli genome. Naïve seeding 
selects consecutive 12-bp seeds following the Pigeon-
hole principle. We benchmark both seeding schemes on 
a 22-million, 100-bp E.  coli read set from EMBL-EBI, 
ERX008638-1. We build a confidence radius database 

for E.  coli genome with a maximum confidence radius 
threshold θ = 5 and a max seed length P = 60 . We meas-
ure the effectiveness of both approaches by comparing 
the average total seed frequency of selected seeds under 
different edit distance thresholds t = {1, 2, 3, 4, 5} . The 
average total frequency is the sum of seed frequencies 
extracted from each read, averaged over all reads in the 
read set.

Figure 9 shows the average total seed frequency com-
parison between the two approaches. OSS has slightly 
smaller total seed frequency (averaged over all reads) 
under t = 1 , but it quickly increases, exceeding CAS at 
t > 1 . OSS outperforms CAS under t = 1 because greedy 
CAS seeding extracts seeds sequentially; while OSS scans 
through all possible MEM placements in a read and picks 
the least frequent placement. CAS achieves significantly 
lower seed frequencies with t > 1 . When t gets larger, 
OSS is pressured to use more seeds, which leads to using 
shorter and more frequent seeds. To the contrary, greedy 

Fig. 8  An example of drawing context-aware seeds from a read

Fig. 9  Comparison between CAS and OSS in terms of total seed 
frequency, with variate edit distance thresholds t 
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CAS seeding often uses fewer than t seeds, as shown in 
Fig. 10, which lets it use longer and less frequent seeds.

We also benchmarked the performance of CAS with 
variate sampling intervals. The results are summarized 
in Figs. 11, 12. As shown in both figures, while the aver-
age seed frequency increases as the interval increases, 
the magnitude of the increase is very small. Compared 
to CAS without interval sampling, CAS with a sampling 
interval of I = 8 only increases the average seed fre-
quency by 6%, while reducing the storage footprint by 
8 × . Overall, interval sampling significantly reduces the 
space complexity of the CAS database, with minor per-
formance loss.

CAS is expected to perform better on larger genomes. 
The E.  coli genome is a small genome, which has only 

around 4.6 million base pairs. In comparison, the human 
genome has more than 3 billion base pairs. For small 
genomes, seeds become less frequent by nature. There-
fore short seeds become acceptable as they are not as fre-
quent as they are in larger genomes. We therefore expect 
CAS to perform better in larger genomes. However, due 
to practical (not theoretical) limitations in scaling up the 
construction of the confidence radius database on larger 
genomes (further elaborated in the Discussion section), 
we only demonstrate CAS on the E. coli genome.

While the focus of this paper is to establish the theo-
retical foundation of CAS, instead of providing a com-
plete read mapping solution, it is worth mentioning that 
greedy CAS seeding (only the seeding mechanism) is 
more practical than OSS. OSS requires scanning through 
all substrings of R, which has a total size of O(|R|2) , for 
seed frequencies. Combined with BWT, it takes at least 
O(|R|2) operations to collect all seed frequencies with 
OSS. Greedy CAS seeding, to the contrary, finishes in 
O(|R| + t log(t)) time with t ≪ |R|.

Discussion
Although Algorithm  1 finishes in O(|�|2 ·M) time, in 
practice, M could be on the scale of trillions or more, 
for large and complex genomes. This is because for large 
genomes, the suffix trie is close to full in the first ten to 
twenty levels, where almost every permutation of let-
ters exists. Nodes in these levels have large numbers of 
neighbors: the number of neighbors of a node v, equals 
to the number of unique strings formed by editing the 
string of v with up to t edits. After each edit, the result-
ing string is guaranteed to appear in Trie. Figure 13 dem-
onstrates the average number of neighbors (both trivial 

Fig. 10  Comparison between CAS and OSS in terms of average 
number of seeds used, with variate edit distance thresholds t 

Fig. 11  Comparison of CAS with variate sampling intervals, in terms 
of total seed frequency, with variate edit distance thresholds t 

Fig. 12  Comparison of CAS with variate sampling intervals, in 
terms of average number of seeds used, with variate edit distance 
thresholds t 
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and non-trivial) per seed at different depths in a Trie. The 
Trie in Fig. 13 is built with E. coli genome with θ = 4 . As 
the depth grows, the average number of neighbors per 
node first increases, then peaks at 9 and then quickly 
decreases. Such a trajectory is closely related to the trend 
of the average number of children per node in Trie. Fig-
ure 14 presents the average number of children per node 
at variate depths in the E. coli Trie. Between depths 1-9, 
the E.  coli Trie is close to a full 4-nary tree, with most 
nodes having 4 children. Between depths 10-14, the aver-
age number of children per node quickly decreases and 
stabilizes at slightly above 1. As a result, Trie becomes 
increasingly sparse after depth 15. Between depths 
1-9, as Trie is dense, the number of neighbors of a seed 
approaches to the number of unique permutations of the 
seed, with up to t edits. As Trie quickly becomes sparse 
after depth 9, the number of neighbors of a seed quickly 
diminishes. Finally, the average count of neighbors stabi-
lizes at around 25, which is roughly the average number 
of immediate neighbors of a seed. As the depth increases, 

fewer nodes have non-immediate neighbors. Figure  15 
illustrates the average number of non-immediate neigh-
bors of seeds at different depths in Trie. As shown in 
the figure, the average number of non-immediate neigh-
bors per node decreases to slightly above 0 after depth 
20. Hence, the majority of seeds in E.  coli with lengths 
greater than 20 have no non-immediate neighbors and, 
therefore, have confidence radii of 4.

The suffix trie maintains a similar structure in com-
plex genomes. At top, the trie is very dense, close to a 
full 4-nary tree and the suffix trie expands exponentially. 
After a certain depth (9 for E. coli), the suffix trie quickly 
becomes sparse, with the average number of children per 
node stabilizing at a little bit over 1. Similarly, the average 
number of neighbors first expands super-linearly. Then 
it peaks at around the depth where the suffix trie turns 
sparse and quickly decreases to just the average number 
of trivial neighbors per node.

However, unlike E.coli, the suffix tries in complex 
genomes have much greater scales. In human genomes, 
there are more than one billion unique 15-base-pair suf-
fixes, compared to around one million in E.  coli. This 
means that for human genomes, with θ = 4 , there could 
be more than 1 trillion total neighbors just for 15-base-
pair suffixes. Maintaining metadata at such scale vastly 
exceeds the capacity of our currently available computa-
tional power. From our experiment, it takes around 300 
CPU hours to compute the confidence radius database 
for the E. coli genome with θ = 4 and P = 60 on a multi-
CPU, mechanical hard drive system. However, it is worth 
noting that as a theoretical study, the database construc-
tion program is not fully optimized for speed and is cur-
rently I/O-bound due to frequently reading and writing 
neighbor information into neighbor arrays of nodes in 
Trie.

Fig. 13  Average number of neighbors of each node at variate 
depths in the E. coli suffix trie

Fig. 14  Average number of children of each node at variate depths 
in the E. coli suffix trie

Fig. 15  Average number of non-immediate neighbors of each node 
at variate depths in the E. coli suffix trie
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While there are many nodes (long suffixes) with fewer 
neighbors, given that Algorithm  1 traverses Trie in a 
top-down manner, it is unavoidable to track the massive 
number of neighbors for short suffixes. This is an inter-
esting algorithmic problem for future work.

CAS may be applied to situations other than NGS read 
mapping. For example, the idea of context-aware seeds 
may improve long-read mapping. Long reads suffer from 
high error rates [9–11]. Finding error-free seeds for long 
reads is very challenging [12]. CAS can serve as a metric 
measuring the likelihood of seeds having errors: if there 
exists a seed, s, with high confidence radius, it is highly 
likely that s is free of errors. The likelihood of obtaining a 
reference-matching seed through many accidental errors 
is small.

Finally, CAS can be applied to develop probes for 
DNA and RNA identification. When designing probe 
sequences, it is important to make certain that the tar-
get sequence is unique in the genome  [13–15]. It pre-
vents probes from accidentally annealing to a similar 
sequences. CAS checks the existence of similar sequences 
by consulting the confidence radius database.

Conclusion
In this work, we proposed a new seeding framework, 
context-aware seeds (CAS). CAS extends the pigeon-
hole principle and guarantees finding all valid mappings 
with fewer seeds. CAS associates each seed s with a con-
fidence radius cs , defined as a lower bound of edit dis-
tances towards nontrivial neighbors of s. We proved that 
the CAS can find all valid mappings of any read R, as long 
as its seeds s satisfy 

∑

cs ≥ t.
We proposed a linear-time algorithm for constructing 

the confidence radius database. It computes the confi-
dence radii of seeds by traversing the suffix trie of a refer-
ence. We experimented with CAS on the E. coli genome 
and compared it against the state-of-the-art pigeonhole-
principle-based seeding scheme, OSS, and showed that 
CAS outperforms OSS by significantly reducing the sum 
of seed frequencies.

This paper focuses on the theoretical aspects of CAS, 
especially how it extends the pigeonhole principle into 
using fewer seeds. Composing a practical solution of 
Algorithm 1 on larger genomes is an interesting-yet-sep-
arate problem for future work.
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