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A linear‑time algorithm that avoids inverses 
and computes Jackknife (leave‑one‑out) 
products like convolutions or other operators 
in commutative semigroups
John L. Spouge1*  , Joseph M. Ziegelbauer2 and Mileidy Gonzalez3

Abstract 

Background:  Data about herpesvirus microRNA motifs on human circular RNAs suggested the following statisti-
cal question. Consider independent random counts, not necessarily identically distributed. Conditioned on the sum, 
decide whether one of the counts is unusually large. Exact computation of the p-value leads to a specific algorithmic 
problem. Given n elements g0, g1, . . . , gn−1 in a set G with the closure and associative properties and a commutative 
product without inverses, compute the jackknife (leave-one-out) products ḡj = g0g1 · · · gj−1gj+1 · · · gn−1 ( 0 ≤ j < n).

Results:  This article gives a linear-time Jackknife Product algorithm. Its upward phase constructs a standard segment 
tree for computing segment products like g[i,j) = gigi+1 · · · gj−1 ; its novel downward phase mirrors the upward phase 
while exploiting the symmetry of gj and its complement ḡj . The algorithm requires storage for 2n elements of G and 
only about 3n products. In contrast, the standard segment tree algorithms require about n products for construction 
and log2 n products for calculating each ḡj , i.e., about n log2 n products in total; and a naïve quadratic algorithm using 
n− 2 element-by-element products to compute each ḡj requires n(n− 2) products.

Conclusions:  In the herpesvirus application, the Jackknife Product algorithm required 15 min; standard segment 
tree algorithms would have taken an estimated 3 h; and the quadratic algorithm, an estimated 1 month. The Jackknife 
Product algorithm has many possible uses in bioinformatics and statistics.
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Background
A biological question
Circular RNAs (circRNAs) are single-stranded noncod-
ing RNAs that can inhibit another RNA molecule by 
binding to it, mopping it up like a sponge. During herpes-
virus infection, human hosts produce circRNAs with tar-
get sites that may bind herpesvirus microRNA (miRNA) 

[1] (see Fig. 1). Given a sequence motif, e.g., a target site 
for a miRNA, researchers counted how many times the 
motif occurs in each circRNA sequence. They then posed 
a question: is the motif unusually enriched in any of the 
circRNAs, i.e., does any circRNA have too many occur-
rences of the motif to be explained by chance alone? If 
“yes”, the researchers could then focus their further 
experimental efforts on those circRNAs.

A statistical answer
Figure  1 illustrates a set of circRNAs with vary-
ing length, with a single miRNA motif occurring as 
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indicated on each circRNA. Let i = 0, 1 . . . , n− 1 
index the circRNAs; the random variate Xi count the 
motif occurrences in the i-th circRNA; k(i) equal the 
observed count for Xi ; and the sum S =

∑n−1
i=0 Xi count 

the total motif occurrences among the circRNAs, with 
observed total K =

∑n−1
i=0 k(i).

The following set-up provides a general statisti-
cal test for deciding the biological question. Let 
{Xi : i = 0, 1, . . . , n− 1} represent independent random 
counts (i.e., non-negative integer random variates), not 
necessarily identically distributed, with sum S =

∑n−1
i=0 Xi . 

Given observed values 
{

Xi = k(i) : i = 0, 1, . . . , n− 1
}

 
with observed sum K =

∑n−1
i=0 k(i) , consider the com-

putation of the conditional p-values P
{

Xi ≥ k(i)|S = K
}

 
( i = 0, 1, . . . , n− 1 ). The conditional p-values can decide 
the question: “Is any term in the sum unusually large rel-
ative to the others?”

The abstract question in the previous paragraph gen-
eralizes some common tests. For example, the standard 
2 × 2 Fisher exact test [2, p. 96] answers the question in 
the special case of n = 2 categories: each Xi has a bino-
mial distribution with common success probability p , 
conditional on known numbers of trials Ni ( i = 0, 1 ). 
Although the Fisher exact test generalizes directly to a 
single exact p-value for a 2× n table [3], the generaliza-
tion can require prohibitive amounts of computation. 
The abstract question corresponds to a computationally 
cheaper alternative that also decides which columns in 
the 2× n table are unusual [4].

To derive an expression for the conditional p-value, 
therefore, let gi[k] = P

{

Xi = k
}

 be given, so the array 
gi =

(

gi[0], gi[1], . . . , gi[K ]
)

 gives the distribution of Xi , 
truncated at the observed total K =

∑n−1
i=0 k(i) . Because 

gi is a truncated probability distribution, gi ∈ G , the 
set of all real ( K + 1)-tuples 

(

g[0], g[1], . . . , g[K ]
)

 sat-
isfies g[k] ≥ 0 ( k = 0, 1, . . . ,K  ) and 

∑K
k=0 g[k] ≤ 1 . 

The truncation still permits exact calculation of the 
probabilities below. To calculate the distribution of 
the sum S =

∑n−1
i=0 Xi for S ≤ K  , define the trun-

cated convolution operation g = g ′ ◦ g ′′ , for which 
g[k] =

∑k
j=0 g

′[j]g ′′[k − j] ( k = 0, 1, . . . ,K  ). Hereafter, 
the operation “ ◦ ” is often left implicit: g ′ ◦ g ′′ = g ′g ′′.

Let ḡ = g0g1 · · · gn−1 , so ḡ[k] = P
{

S = k
}

 
( k = 0, 1, . . . ,K  ). Define the “jackknife products” 
ḡj = g0g1 · · · gj−1gj+1 · · · gn−1 ( 0 ≤ j < n ) (implic-
itly including the products ḡ0 = g1g2 · · · gn−1 and 
ḡn−1 = g0g1 · · · gn−2 ). The jackknife products contain 
the same products as ḡ  , except that in turn each skips 
over gj ( 0 ≤ j < n ). Like the jackknife procedure in sta-
tistics, therefore, jackknife products successively omit 
each datum in a dataset [5].

With the jackknife products in hand, the conditional 
p-values are a straightforward computation:

With respect to Eq. (1) and the biological question in 
Fig. 1, Appendix B gives the count ḡ[K ] of the ways that 
n circRNAs of known but varying length may contain 
K  miRNA motifs of equal length, the count gi[k] of the 
ways that the i th circRNA may contain k motifs, and 
the count ḡi[K − k] of the ways that all circRNAs but 
the i th may contain K − k motifs. Appendix B derives 
the count gi[k] for circRNAs from the easier count for 
placing motifs on a linear RNA molecule. For combi-
natorial probabilities like P

{

Xi ≥ k(i)|S = K
}

 , Eq.  (1) 
remains relevant, even if 

{

gi[k]
}

 are counts instead of 
probabilities. The biological question therefore exem-
plifies a commonplace computational need in applied 
combinatorial probability.

The Discussion indicates that in our application, 
transform methods can encounter substantial obsta-
cles when computing Eq.  (1) (e.g., see [6]), because 
the quantities in Eq. (1) can range over many orders of 
magnitude. This article therefore pursues direct exact 
calculation of P

{

Xi ≥ k(i)|S = K
}

 . The product forms 
of ḡ  and 

{

ḡj
}

 suggest that any efficient algorithm may be 
abstracted to broaden its applications, as follows.

(1)
P
{

Xi ≥ k(i)|S = K
}

=

K
∑

k=k(i)

gi[k]ḡi[K − k]

ḡ[K ]
.

Fig. 1  A schematic diagram of herpesvirus miRNA motif occurring 
on a human circRNA. As indicated in the legend, each thin circle 
represents a circRNA; each thick line segment, the occurrence of a 
miRNA motif on the corresponding circRNA. Both circRNAs and the 
miRNA motif have nucleotide sequences represented by IUPAC codes 
(A, C, G, U). This figure illustrates occurrences of a single miRNA motif 
(e.g., UUA​CAG​G) on the circRNAs. The biological question is: “does 
any circRNA have too many occurrences of the motif to be explained 
by chance alone?” In the actual application, the n = 3086 circRNAs 
ranged in length from 69 nt to 158565 nt
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Semigroups, groups, and commutative groups
Let (G, ◦) denote a set G with a binary product g ◦ g ′ on 
its elements. Let “ g ∈ G ” denote “ g is an element of G ”, 
and consider the following properties [7].

(1)	 Closure g ◦ g ′ ∈ G for every g , g ′ ∈ G

(2)	 Associative 
(

g ◦ g ′
)

◦ g ′′ = g ◦
(

g ′ ◦ g ′′
)

 for every 
g , g ′, g ′′ ∈ G

(3)	 Identity There exists an identity element e ∈ G , 
such that e ◦ g = g ◦ e = g for every g ∈ G

(4)	 Commutative g ◦ g ′ = g ′ ◦ g for every g , g ′ ∈ G

If the Closure and Associative properties hold, (G, ◦) is 
a semigroup. Without loss of generality, we assume below 
that the Identity property holds. If not, adjoin an ele-
ment e ∈ G , such that e ◦ g = g ◦ e = g for every g ∈ G . 
In addition, if the Commutative property holds for every 
g , g ′ ∈ G , the semigroup (G, ◦) is commutative. Unless 
stated otherwise hereafter, (G, ◦) denotes a commutative 
semigroup. The Jackknife Product algorithm central to 
this article is correct in a commutative semigroup.

(5)	Inverse For every g ∈ G , there exists an inverse 
g−1 ∈ G , such that g ◦ g−1 = g−1 ◦ g = e

As shown later, the Jackknife Product algorithm does 
not require the Inverse property. In passing, note that the 
convolution semigroup relevant to the circRNA–miRNA 
application lacks the Inverse property, as does any convo-
lution semigroup for calculating p-values, e.g., the ones 
relevant to sequence motif matching [6]. To demonstrate, 
let X ,Y ≥ 0 be independent integer random variates. 
The identity e for convolution corresponds to the vari-
ate Z = 0 , because 0+ X = X + 0 = X for every variate 
X . If X + Y = 0 , however, the independence of X and Y  
implies that both are constant and therefore X = Y = 0 . 
In the relevant convolution semigroup, therefore, all ele-
ments except the identity e lack an inverse.

The non-zero real numbers under ordinary multiplica-
tion form a commutative semigroup (G, ◦) with the 
Inverse property. They provide a familiar setting for dis-
cussing some algorithmic issues when computing 

{

ḡj
}

 . 
Let ḡ = g0g1 · · · gn−1 be the usual product of n real num-
bers, and consider the toy problem of computing all jack-
knife products 

{

ḡj
}

 that omit a single factor gj ( 0 ≤ j < n ) 
from ḡ . Inverses 

{

g−1
j

}

 are available, so an obvious algo-
rithm computes ḡ and then 

{

ḡj = ḡg−1
j

}

 with n inverses 
and 2n− 1 = (n− 1)+ n products. If the inverses were 
unavailable, however, the naïve algorithm using n− 2 ele-
ment-by-element products to compute each 

{

ḡj
}

 would 
require n(n− 2) products. The quadratic time renders 
the naïve algorithm impractical for many applications.

Figure  1 illustrates a standard data structure called a 
segment tree, omitting the root at the top of the segment 
tree. Algorithms based solely on a segment tree can cal-
culate the jackknife products 

{

ḡj
}

 in time O
(

n log n
)

 , fast 
enough for many applications. The segment tree com-
putes segment products like g[i,j) = gigi+1 · · · gj−1 with-
out using the commutative property, so it can similarly 
compute jackknife products like 

{

ḡj = g[0,j)g[j+1,n)

}

 . If 
the semigroup (G, ◦) is commutative, however, a Jack-
knife Product algorithm can avoid inverses and reduce 
the computational time further, from O

(

n log n
)

 to O(n) . 
With in-place computations requiring only the space for 
the segment tree, the Jackknife Product algorithm avoids 
inverses yet still requires only about 3n products and 
storage for 2n numbers. It is therefore surprisingly eco-
nomical, even when compared to the obvious algorithm 
using inverses. Indeed, our application to circular RNA 
required some economy, with its convolution of n = 3086 
distributions, some truncated only after K = 997 terms. 
In a general statistical setting, convolutions form a com-
mutative semigroup (G, ◦) without inverses, so our appli-
cation already indicates that the Jackknife Product 
algorithm has broad applicability.

Theory
Appendix A proves the correctness of the Jackknife Prod-
uct algorithm given below.

The Jackknife Product algorithm
Let (G, ◦) be a commutative semigroup. The Jackknife 
Product algorithm has three phases: upward, downward, 
and transposition. Its upward phase simply constructs 
a segment tree (see Fig. 1); its downward phase exploits 
the symmetry of gj and its complement ḡj to mirror the 
upward phase while computing 

{

ḡj
}

 (see Fig. 2); and its 
final transposition phase then swaps successive pairs 
in an array (not pictured). As Figs. 1 and 2 suggest, the 
three phases yield a simpler algorithm if n = n∗ = 2m is 
a binary power. To recover the n∗ = 2m algorithm from 
them, pad 

{

gj
}

 on the right with copies of the identity e 
up to n∗ elements, where n∗ = 2m is the smallest binary 
power greater than or equal to n , i.e., replace 

{

gj
}

 with 
{

g0, g1 . . . , gn−1, e, . . . , e
}

 , with n∗ − n copies of e . The 
n∗ = 2m algorithm can therefore pad any input of n ele-
ments up to n∗ = 2m elements without loss of general-
ity. The algorithm given below is therefore slightly more 
intricate than the n∗ = 2m algorithm, but it may save 
almost a factor of 2 in storage and time by omitting the 
padded copies of e . In any case, the simpler algorithm can 
always be recovered from the phases for general n given 
here, if desired.

We start with notational preliminaries. Define the 
floor function ⌊x⌋ = max

{

j : j ≤ x
}

 and the ceiling 
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function ⌈x⌉ = min
{

j : x ≤ j
}

 (both standard); and the 
binary right-shift function ρ

(

j
)

=
⌊

j/2
⌋

 . Other quan-
tities also smooth our presentation. Given a product 

ḡ = g0g1 · · · gn−1 of interest, define m =
⌈

log2 n
⌉

 and 
nk =

⌈

n2−k
⌉

 for 0 ≤ k < m . Below, the symbol “□” con-
notes the end of a proof.

The upward phase
The upward phase starts with the initial array L0[j] = gj 
( 0 ≤ j < n ) and simply computes a standard (but root-
less) segment tree consisting of segment products Lk [j] 
for j = 0, 1, . . . , nk − 1 and k = 0, 1, . . . ,m− 1.

°

Comments
(1) If n = n∗ = 2m is a binary power, 
ρ
(

nk−1

)

= nk = 2m−k and the final line in the upward 
phase can be omitted. (2) Of some peripheral interest, 
Laaksonen [8] gives the algorithm in a different context, 
embedding a binary tree in a single array of length O(n) . 
If any L0[j] = gj changes, he also shows how to update the 
single array with O

(

log n
)

 multiplications. If the down-
ward phase (next) does not overwrite the segment tree 
{Lk} by using in-place computation, it permits a similar 
update.

The downward phase
The transposition function τ

(

j
)

= j + (−1)j 
transposes adjacent indices, e.g., 
(

Lτ(0), Lτ(1), Lτ(2), Lτ(3)
)

= (L1, L0, L3, L2) . We also 
require αk

(

j
)

= min
{

τρ
(

j
)

, nk − 1
}

 for 0 ≤ j < nk−1 
and 1 ≤ k < m , the index of “aunts”, as illustrated by 
Fig. 2. Just as Fig. 1 illustrates a rootless segment tree in 
the upward phase, Fig.  2 illustrates the corresponding 
rootless complementary segment tree in the downward 
phase.

The downward phase computes complementary 
segment products L̄k [j] for j = 0, 1 . . . , nk − 1 and 
k = m− 1,m− 2, . . . , 0.

Fig. 2  A (rootless) segment tree. This figure illustrates the rootless 
segment tree constructed in the upward phase of the Jackknife 
Product algorithm. The commutative semigroup (G, ◦) illustrated is 
the set of nonnegative integers under addition. The bottom row of 
n∗ = 2m squares ( m = 3 ) contains L0

[

j
]

= gj ( 0 ≤ j < n∗ ). In the next 
row up, as indicated by the arrow pairs leading into each circle, the 
array L1 contains consecutive sums of consecutive disjoint pairs in L0 , 
e.g., L1[0] = 13 = 5+ 8 . The rest of the segment tree is constructed 
recursively upward to Lm−1 , just as L1 was constructed from L0 . Here, 2 
copies of the additive identity e = 0 pad out L0 on the right. Padded 
on the right, the copies contribute literally nothing to the segment 
tree above them. Their non-contributions have dotted outlines

Fig. 3  A (rootless) complementary segment tree. This figure 
illustrates the rootless complementary segment tree constructed 
in the downward phase of the Jackknife Product algorithm from 
the rootless segment tree in Fig. 2. The downward phase starts by 
initializing the topmost row L̄m−1 ( m = 3 ) with the topmost row Lm−1 
of the rootless segment tree. The row L2 in Fig. 2 and the row L̄2 in 
Fig. 3, e.g., contain 22 and 11. For each L̄k−1

[

j
]

 in Fig. 3, downward 
arrows run from L̄k

[

αk(j)
]

 to L̄k−1

[

j
]

 . As they indicate, each node 
in L̄k contributes to its 2 “nieces” in Fig. 2 to produce the next row 
down in Fig. 3, e.g., L̄2[1] = 11 contributes to its nieces L1[0] = 13 
and L1[1] = 9 in the segment, to produce L̄1[0] = 13+ 11 = 24 
and L̄1[1] = 9+ 11 = 20 in the complementary segment tree. The 
rest of the complementary segment tree is constructed recursively 
downward to L̄0 , just as L̄1 was constructed from L̄2 . In Fig. 2, the 
elements of L0 (in squares) total 33. To demonstrate the effect of 
the Jackknife Product algorithm, subtract in turn in Fig. 3 each 
element (25, 28, 30, 27, 26, 29, 33, 33) in the bottom row L̄0 from the 
total 33. The result (8, 5, 3, 6, 7, 4, 0, 0) is the bottom row L0 in Fig. 2 
with successive pairs transposed, so L̄0

[

j
]

= ḡτ (j) , or equivalently 
ḡj = L̄0

[

τ (j)
]
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°

Comments
(1) If n = n∗ = 2m is a binary power, 
ρ
(

nk−1

)

= nk = 2m−k , αk
(

j
)

= τρ
(

j
)

 , and the final line 
in the downward phase can be omitted. (2) The down-
ward phase can be modified in the obvious fashion 
to permit in-place calculation of L̄k−1[j] from Lk−1[j] , 
reducing total memory allocation by about 2.

As Appendix A proves, the final array L̄0 has elements 
L̄0
[

τ
(

j
)]

= ḡj ( 0 ≤ j < 2ρ(n) ), with an additional final 
element L̄0[n− 1] = ḡn−1 if n0 = n is odd, so the Jack-
knife Product algorithm ends with a straightforward 
transposition phase.

Comments
The transposition phase can permit an in-place calcula-
tion of 

{

ḡj
}

 to overwrite L̄0.

Computational time and storage
Note nj =

⌈

n2−j
⌉

 , so 0 ≤ nj − n2−j < 1 . To compute Lk 
from Lk−1 or to compute L̄k from Lk and L̄k+1 , the Jack-
knife Product algorithm requires nk products. For large 
n , therefore, the upward phase computing the segment 

tree requires about 
∑m−1

j=1 nj ≈
∑∞

j=1 n2
−j = n products; 

the downward phase, about 
∑m−2

j=0 nj ≈ 2n products. 
Likewise, if the downward and transposition phases com-
pute in place by replacing Lk with L̄k and L̄0 with 

{

ḡj
}

 , the 
algorithm storage is 

∑m−1
j=0 nj ≈ 2n semigroup elements. 

Each of the three estimates just given for products and 
storage have an error bounded by m =

⌈

log2 n
⌉

 . Although 
the case of general n could be handled by the algorithm 
for binary powers n∗ = 2m by setting m =

⌈

log2 n
⌉

 and 
gn = gn+1 = . . . = gn∗−1 = e , the truncated arrays in the 
Jackknife Product algorithm for general n save about a 
factor of 1 ≤ n∗/n < 2 in both products and storage.

As written, the conditional copy statements at the end 
of the upward and downward phases replicate elements 
already in storage. If the downward phase of the Jackknife 
Product algorithm is implemented with in-place compu-
tation of L̄k−1[j] from Lk−1[j] , the copy statements ensure 
that the algorithm never overwrites any array element it 
needs later. Some statements may copy some elements 
more than once (and therefore unnecessarily), but a neg-
ligible m =

⌈

log2 n
⌉

 copies at most are unnecessary.
The complementary segment tree in Fig.  2 implic-

itly indicates the nodes in the segment tree required to 
compute L0

[

τ
(

j
)]

= ḡj for each ḡj , i.e., exactly one node 
in each row Lk ( k = 0, 1, . . . ,m− 1 ). Alone, the segment 
tree therefore requires at least n log2 n multiplications to 
compute 

{

ḡj
}

.

Results
Appendix B gives the combinatorics relevant to the cir-
cRNA-miRNA application described in “Background” 
section. As is typical in combinatorial probability, the 
quantities 

{

gi[k]
}

 were counts of configurations, here, 
the ways of placing miRNA motifs on circRNAs. The 
length of each motif was m = 7; the largest circRNA (hsa-
circ-0003473) contained I = 158,565 nt, and the most 
abundant motif (CCC​AGC​U, for the m12-9star miRNA 
family) appeared K  = 997 times, so the 

{

gi[k]
}

 spanned 
thousands of orders of magnitude in Eq. (13) of Appendix 
B, from gi[0] = 1 to gI [K ] ≈ 102608 . In Eq. (1), the dimen-
sion K  controls the number of terms in the convolutions. 
In the application, over each miRNA motif examined, the 
maximum number of motif occurrences on the circR-
NAs was K = 997 . An Intel Core i7-3770 CPU computed 
the p-value relevant to the biological application on June 
17, 2015. To compare later with estimated times for 
competing algorithms, the Jackknife Product algorithm 
with n = 3086 computed the relevant p-values in about 
45 min, requiring about 3n products. In the application, 
therefore, n products required about 15 min.

The application of this article to circRNA–miRNA data 
appears elsewhere [1].
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Discussion
This article has presented a Jackknife Product algorithm, 
which applies to any commutative semi-group (G, ◦) . 
The biological application to a circRNA–miRNA system 
exemplifies a general statistical method in combinato-
rial probability. In turn, the application in combinatorial 
probability exemplifies an even more general statistical 
test for whether a term in a sum of independent counting 
variates (not necessarily identically distributed) is unusu-
ally large.

Many biological contexts lead naturally to sums of 
independent counting variates. Domain alignments of 
proteins from cancer patients, e.g., display point muta-
tions in their columns. For a given domain, a column with 
an excess of mutations might be inferred to cause cancer 
[9]. The Background section gives the pattern: let Xi rep-
resent the mutation count in column i = 0, 1, . . . , n− 1 , 
with total mutations S =

∑n−1
i=0 Xi . Given observed 

mutation counts 
{

Xi = k(i) : i = 0, 1, . . . , n− 1
}

 with 
observed sum K =

∑n−1
i=0 k(i) , the conditional p-values 

P
{

Xi ≥ k(i)|S = K
}

 ( i = 0, 1, . . . , n− 1 ) can decide the 
question: “Does any column have an excess of muta-
tions?” The actual application used other, very different 
statistical methods [9]. Unlike those methods, however, 
our methods can incorporate information from control 
(non-cancer) protein sequences to set column-specific 
background distributions for {Xi}.

The Benjamini–Hochberg procedure for controlling 
the false discovery rate in multiple tests requires either 
independent p-values [10] or dependent p-values with a 
positive regression dependency property [11]. Loosely, 
the positive regression dependency property means that 
the p-values tend to be small together, i.e., under the null 
hypothesis, given that one p-value is small, then the other 
p-values tend to be smaller also. Inconveniently, our null 
hypothesis posits a fixed sum of independent counting 
variates, so if one variate is large and has a small p-value, 
it tends to reduce the other variates and increase their 
p-values. The circRNA-miRNA application therefore vio-
lates the statistical hypotheses of the Benjamini–Hoch-
berg procedure. Fortunately, in the circRNA-miRNA 
application, a Bonferroni multiple test correction [12] 
sufficed because empirically, any p-value was either close 
to 1 or extremely small.

The Results state that for n = 3086 , the Jackknifed 
Product algorithm computed the relevant p-values in 
about 45  min, with n products requiring about 15  min 
of computation. In contrast, the naïve algorithm avoid-
ing inverses and requiring n(n− 2) products would 
have taken about 3086 ∗ 15 min, i.e., about 1 month. As 
explained under the “Computational Time and Storage” 
heading in the Theory section, without exploiting the 

special form of the jackknife products 
{

ḡj
}

 , a segment 
tree requires about n products for its construction and at 
least n log2 n products for the computation of the prod-
ucts 

{

ḡj
}

 . Alone, segment tree algorithms would there-
fore have taken a minimum of about 

(

1+ log2 3086
)

∗ 15 
min, i.e., about 3 h.

The convolutions in Eq.  (1) might suggest that jack-
knife products are susceptible to computation with 
Fourier or Laplace transforms, which convert convo-
lutions into products. “Results” section notes that in 
the biological application, however, 

{

gi[k]
}

 in Eq.  (1) 
spanned thousands of orders of magnitude, at least 
from gi[0] = 1 to gI [K ] ≈ 102608 , obstructing the direct 
use of transforms (e.g., see [6]). On one hand, the 
widely varying magnitudes necessitated an internal 
logarithmic representation of 

{

gi[k]
}

 in the computer, 
a minor inconvenience for direct computation with 
the Jackknife Product algorithm. On the other hand, 
they might have presented a substantial obstacle for 
transforms. The famous Feynman anecdote about Paul 
Olum’s tan

(

10100
)

 problem indicates the reason [13]:

So Paul is walking past the lunch place and these 
guys are all excited. “Hey, Paul!” they call out. 
“Feynman’s terrific! We give him a problem that 
can be stated in ten seconds, and in a minute he 
gets the answer to 10 percent. Why don’t you give 
him one?” Without hardly stopping, he says, “The 
tangent of 10 to the 100th.” I was sunk: you have to 
divide by pi to 100 decimal places! It was hopeless.

The Jackknife Product algorithm also abstracts to any 
commutative semigroup (G, ◦) , broadening its applica-
bility enormously. As usual, abstraction eases debug-
ging. Consider, e.g., the commutative semigroup 
consisting of all bit strings of length n under the bitwise 
“or” operation. If the bit string gj has 1 in the j-th posi-
tion and 0  s elsewhere, then the segment product g[i,j) 
equals the bit string with 1  s in positions 
[i, j

)

=
{

i, i + 1, . . . , j − 1
}

 and 0  s elsewhere. Similarly, 
the complementary segment product g

[i,j)
= g[0,i)g[j,n) 

equals the bit string with 0  s in positions 
[i, j

)

=
{

i, i + 1, . . . , j − 1
}

 and 1  s elsewhere. The Jack-
knife Product algorithm is easily debugged with output 
consisting of the segment and complementary segment 
trees for the bit strings.

As a final note, even if a semigroup (G, ◦) lacks the 
Commutative property, the general product algorithm 
for a segment tree can still compute 

{

ḡj = g[0,j)g[j+1,n)

}

 
in time O

(

n log n
)

 . In a commutative semigroup (G, ◦) , 
however, the downward phase of the Jackknife Product 
algorithm exploits the special form of the products 

{

ḡj
}

 
to decrease the time to O(n).
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Conclusions
This article has presented a Jackknife Product algorithm, 
which applies to any commutative semi-group (G, ◦) . The 
biological application to a circRNA–miRNA system uses 
a commutative semigroup of truncated convolutions to 
exemplify a specific application to combinatorial prob-
abilities. In turn, the specific application in combinatorial 
probability exemplifies an even more general statistical 
test for whether a term in a sum of independent count-
ing variates (not necessarily identically distributed) is 
unusually large. The general statistical test can evaluate 
the results of searching for a sequence or structure motif, 
or several motifs simultaneously. As “Discussion” section 
explains, the test violates the hypotheses of the Benja-
mini–Hochberg procedure for estimating false discovery 
rates, but fortunately the Bonferroni and other multiple-
test corrections remain available to control familywise 
errors. Abstraction from convolutions to commutative 
semi-groups broadens the algorithm’s applicability even 
further. If an application only requires jackknife products 
{

ḡj
}

 and their number n is large enough, “Results” and 
“Theory” sections show that the linear time of the Jack-
knife Product algorithm can make it well worth the pro-
gramming effort.
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Appendix A
This appendix proves the correctness of the Jackknife 
Product algorithm in “Theory” section.

Let Lk have length lk ; L̄k , length l̄k . Some obser-
vations about lk , l̄k , and nk facilitate later analysis. 
Because ⌈⌈x⌉/2⌉ = ⌈x/2⌉ , {nk} satisfies the recursion 
nk =

⌈

n2−k
⌉

=
⌈

n2−(k−1)/2
⌉

=
⌈

nk−1/2
⌉

 , with initial 
value n0 = n and final value nm−1 = 2.

Proposition 1  lk = l̄k = nk for 0 ≤ k < m.

Proof (by induction)
l0 = n = n0 . If lk−1 = nk−1 for any 1 ≤ k < m , the 
upward phase of the Jackknife Product algorithm shows: 
(1) if nk−1 is even, lk = ρ

(

nk−1

)

 ; and (2) if nk−1 is odd, 
lk = ρ

(

nk−1

)

+ 1 . In either case, lk =
⌈

nk−1/2
⌉

= nk . 
Thus, lk = nk for 0 ≤ k < m.

Similarly, the downward phase shows: (1) if 
nk−1 is even, l̄k−1 = 2ρ

(

nk−1

)

= nk−1 ; if is odd, 
l̄k−1 = 2ρ

(

nk−1

)

+ 1 = nk−1 . It therefore initializes L̄m−1 
with l̄m−1 = nm−1 = 2 elements and assigns l̄k−1 = nk−1 
( 1 ≤ k < m ) elements to L̄k−1 . � □

Proposition 1 and its proof ensure that with the pos-
sible exception of αk

(

j
)

 in the downward phase, all array 
indices in the Jackknife Product algorithm lie within the 
array bounds of Lk and L̄k . Moreover, case-by-case analy-
sis of the definition of αk shows that αk

(

j
)

 ( 0 ≤ j < nk−1 ) 
always falls within the array bounds 0 ≤ αk

(

j
)

< nk of L̄k . 
Inspection of the upward and downward phases shows 
that they define every array element before using it. With 
array bounds and definitions in hand, to verify the Jack-
knife Product algorithm, it therefore suffices to check 
conditions satisfied by individual elements of Lk and L̄k . 
We examine first the case of binary powers n = n∗ = 2m , 
and afterwards the case of general n.

Proof of Correctness for Binary Powers n∗ = 2m ≥ 2

In this subsection, some entities pertaining to binary 
powers n∗ receive stars (e.g., n∗ , n∗k , L∗k , L̄∗k ), to distinguish 
them later from the corresponding entities for general n.

For convenience in Appendix A only, drop “ g ” in the 
notation g[i,j) , and abbreviate the segment product 
g[i,j) = gigi+1 · · · gj−1 by the corresponding half-open 
interval [i, j

)

 and the complementary segment product 
g0g1 · · · gi−1gj · · · gn∗−1 by [i, j

)

 . The notation provides 
a mnemonic aid, used without comment below: for 
i < j < k , [i, j

)

◦ [j, k
)

= [i, k) , [i, j
)

◦ [i, k) = [j, k
)

 and 
[j, k

)

◦ [i, k) = [i, j
)

 , i.e., the product ◦ on sub-products 
behaves like a set-theoretic union of the correspond-
ing intervals, and complementary sub-products behave 

https://github.com/johnlspouge/jackknife-product
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like the corresponding set-theoretic complements of 
intervals.

The Commutative property is required to justify the 
correspondence between set-theoretic operations and 
products, e.g., the equality [i, j

)

◦ [i, k) = [j, k
)

 commutes 
the segment products: examine, e.g., the second equality 
in the equation

Proposition 2  For 0 ≤ k < m , L∗k [j] =
[

j × 2k ,
(

j + 1
)

× 2k
)

 
( 0 ≤ j < n∗k).

Proof  See Fig. 1. The array L∗0 at generation k = 0 initial-
izes the upward phase, where

Thus, Proposition 2 is true for k = 0 . Given the array 
L∗k−1 at generation k − 1 in the upward phase, the array 
L∗k at level k contains products of successive adjacent 
pairs of elements in L∗k−1:

for 0 ≤ j < n∗k = n∗k−1/2 . The upward phase terminates 
with L∗m−1 =

([

0, 2m−1
)

,
[

2m−1, 2m
))

 , so Proposition 2 is 
true for 0 ≤ k < m . � □

Proposition 3  For 0 ≤ k < m , 
L̄∗k [j] =

[

τ
(

j
)

× 2k ,
(

τ
(

j
)

+ 1
)

× 2k
)

 ( 0 ≤ j < n∗k).

Comment
Propositions 3 and 2 formalize the previously men-
tioned complementary symmetry between the upward 
and downward phases. Because τ

(

τ
(

j
))

= j (i.e., trans-
position is idempotent), L̄∗0

[

τ
(

j
)]

= [j, j + 1
)

= ḡj for 
0 ≤ j < n∗0 = n∗ . Thus, L̄∗0 contains all jackknife products.

Proof  See Fig.  2. For 0 ≤ j < n∗m−1 = 2 , the first two 
lines of pseudo-code in the downward phase and Propo-
sition 2 for k = m− 1 show that for j ∈ {0, 1},

(2)
g[i,j) ◦

(

g[0,i) ◦ g[k ,n∗)
)

=

(

g[i,j) ◦ g[0,i)

)

◦ g[k ,n∗)

=

(

g[0,i) ◦ g[i,j)

)

◦ g[k ,n∗) = g[0,j) ◦ g[k ,n∗).

(3)
L∗0[j] = gj =

[

j × 20,
(

j + 1
)

× 20
)

for 0 ≤ j < n∗.

(4)

L∗k [j] = L∗k−1[2j] ◦ L
∗
k−1[2j + 1]

=

[

2j × 2k−1,
(

2j + 1
)

× 2k−1
)

◦

[

(

2j + 1
)

× 2k−1,
(

2j + 2
)

× 2k−1
)

=

[

j × 2k ,
(

j + 1
)

× 2k
)

so Proposition 3 holds for k = m− 1 . We proceed by 
descending induction on k.

For even j on one hand, 2ρ
(

j
)

= j < j + 1 = τ
(

j
)

< τ
(

j
)

+ 1 = 2
(

ρ
(

j
)

+ 1
)

 . For 0 ≤ j < n∗k−1 , therefore,

For odd j on the other hand, 2ρ
(

j
)

= τ
(

j
)

< τ
(

j
)

+ 1 = j

< j + 1 = 2
(

ρ
(

j
)

+ 1
)

 , so Eq.  (6) holds with the factors 
on the left reversed, an irrelevant difference in a commu-
tative semigroup (G, ◦).

For 0 ≤ j < n∗k−1 , then, if 1 ≤ k < m , Proposition 2 for 
k − 1 and Proposition 3 for k yield

Thus, Proposition 3 for k implies Proposition 3 for k − 1 
( 1 ≤ k < m ). � □

The Jackknife Product algorithm therefore computes 
L̄∗0
[

τ
(

j
)]

= [j, j + 1
)

= ḡj , as desired.
Proof of correctness for general n ≥ 2 : For general n ≥ 2 , 

initialize the upward phase with L0 =
(

g0, g1, . . . , gn−1

)

 . To 
apply the results of the previous subsection, let n∗ = 2m be 
the smallest binary power greater than or equal to n , i.e., let 
m =

⌈

log2 n
⌉

 . If n < n∗ , set gn = gn+1 = · · · = gn∗−1 = e , 
with the arrays L∗k and L̄∗k of length n∗k ( 0 ≤ k < m ) as 
above. For general n ≥ 2 , consider the computation of the 
arrays Lk ( 0 < k < m ) in the upward phase of the pseudoc-
ode above.

We prove Proposition P(k) (next) by induction on the 
level 0 ≤ k < m.

Proposition P(k)  Lk [j] = L∗k [j] for 0 ≤ j < nk , and 
L∗k [j] = e for nk ≤ j < n∗k.

Proof  See Fig.  1. By construction, P(0) holds. With 
P(k − 1) in hand, the upward phase and Eq.  (4) show 
that Lk [j] = L∗k [j] for 0 ≤ j < ρ

(

nk−1

)

 . On one hand, 
if nk−1 is even, ρ

(

nk−1

)

= nk , yielding P(k − 1) 

(5)

L̄
∗
m−1[j] = L

∗
m−1[j] =

[

j × 2m−1,
(

j + 1
)

× 2m−1
)

=
[

τ
(

j
)

× 2m−1,
(

τ
(

j
)

+ 1
)

× 2m−1
)

,

(6)

[

j × 2k−1,
(

j + 1
)

× 2k−1
)

◦

[

τ
(

j
)

× 2k−1,
(

τ
(

j
)

+ 1
)

× 2k−1
)

=

[

ρ
(

j
)

× 2k ,
(

ρ
(

j
)

+ 1
)

× 2k
)

.

(7)

L̄∗k−1[j] = L∗k−1[j] ◦ L̄
∗
k

[

τρ
(

j
)]

=

[

j × 2k−1,
(

j + 1
)

× 2k−1
)

◦

[

ρ
(

j
)

× 2k ,
(

ρ
(

j
)

+ 1
)

× 2k
)

=
[

τ
(

j
)

× 2k−1,
(

τ
(

j
)

+ 1
)

× 2k−1
)

.
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immediately. On the other hand, if nk−1 is odd, 
ρ
(

nk−1

)

=
⌈

nk−1/2
⌉

− 1 = nk − 1 , so

the second equality reflecting the copy of the final ele-
ment of Lk−1 in the pseudocode; the third and fifth, 
P(k − 1) ; and the sixth, Eq.  (4). Equation  (8) com-
pletes the proof that Lk [j] = L∗k [j] for 0 ≤ j < nk . For 
the remaining indices nk ≤ j < n∗k of L∗k , note that 
nk−1 ≤ 2

⌈

nk−1/2
⌉

= 2nk ≤ 2j < 2j + 1 < 2n∗k = n∗k−1   . 
Then, P(k − 1) and Eq.  (4) show that 
L∗k [j] = L∗k−1[2j] ◦ L

∗
k−1[2j + 1] = e ◦ e = e for 

nk ≤ j < n∗k . � □

Note: nm−1 = 2 = n∗m−1 , so P(m− 1) shows that 
Lm−1 = L∗m−1.

In the downward phase, the transposition function 
τ in Eq.  (7) facilitates in-place computation for L̄∗k−1[j] 
in Eq.  (7). Similarly, the minimization in the accessory 
index αk

(

j
)

= min
{

τρ
(

j
)

, nk − 1
}

 within L̄k avoids stor-
ing a superfluous element ḡ of L̄∗k within the penultimate 
element of any truncated complementary array L̄k (see 
L̄∗1[3] , the dotted circle in Fig. 2).

We prove Proposition P̄(k) (next) by descending induc-
tion on the level 0 ≤ k < m.

Proposition P̄(k)  L̄k [j] = L̄∗k [j] for 0 ≤ j < nk , unless nk 
is odd and j = nk − 1 , in which case L̄k [nk − 1] = L̄∗k [nk ].

Proof  The proposition P̄(m− 1) is true, because 
L̄m−1 = Lm−1 = L∗m−1 = L̄∗m−1 , and L̄m−1 has even length 
nm−1 = 2 . We now show that P̄(k) implies P̄(k − 1) for 
0 < k < m.

If 0 ≤ j < nk−1 , then 0 ≤ ρ
(

j
)

<
⌈

nk−1/2
⌉

= nk . For 
every j , either: (1) nk is odd and ρ

(

j
)

= nk − 1 ; (2) nk 
is odd and ρ

(

j
)

< nk − 1 ; or (3) nk is even. In Case 1, 
τρ

(

j
)

= nk but αk
(

j
)

= nk − 1 . Because nk is odd, P̄(k) 
implies L̄k

[

αk
(

j
)]

= L̄k [nk − 1] = L̄∗k [nk ] = L̄∗k
[

τρ
(

j
)]

 . 
In Case 2, 0 ≤ αk

(

j
)

= τρ
(

j
)

< nk − 1 , or in Case 3, 
0 ≤ αk

(

j
)

= τρ
(

j
)

< nk and nk is even. In either case, 
P̄(k) implies L̄k

[

αk
(

j
)]

= L̄k
[

τρ
(

j
)]

= L̄∗k
[

τρ
(

j
)]

 . 
Thus, regardless of whether Case 1, 2, or 3 pertains, 
L̄k

[

αk
(

j
)]

= L̄∗k
[

τρ
(

j
)]

 for every 0 ≤ j < nk−1.

For 0 ≤ j < 2ρ
(

nk−1

)

 , the Jackknife Product algorithm 
in the downward phase and P(k − 1) from the upward 
phase yield

(8)

Lk [nk − 1] = Lk

[

ρ
(

nk−1

)]

= Lk−1[nk−1 − 1]

= L
∗
k−1[nk−1 − 1]

= L
∗
k−1[nk−1 − 1] ◦ e = L

∗
k−1[nk−1 − 1]◦

L
∗
k−1[nk−1] = L

∗
k [nk − 1],

if j < nk−1 . On one hand, if nk−1 is even, 
nk−1 = 2ρ

(

nk−1

)

 , yielding P̄(k − 1) immediately. On the 
other hand, if nk−1 is odd, nk−1 = 2ρ

(

nk−1

)

+ 1 , so L̄k−1 
has an additional, final element copied from L̄k:

P(k − 1) yields L∗k−1[nk−1] = e , so moreover,

Because nk−1 − 1 is even, ρ
(

nk−1 − 1
)

= ρ
(

nk−1

)

 . 
Equations  (10) and (11) therefore yield 
L̄k−1[nk−1 − 1] = L̄∗k−1[nk−1] , so P̄(k − 1) holds. � □

Appendix B
This appendix gives combinatoric calculations for the 
circRNA-miRNA application in “Background” section. It 
therefore has some peripheral interest to this article.

Motifs on a single circle
Consider r points equally spaced around a circle (a 
“ring”). Call a set of m consecutive points on the ring a 
“motif”. The following fixes m , so the notation can leave 
it implicit. Let Cr,k count the ways of choosing k non-
overlapping motifs around the ring (i.e., the motifs have 
no point in common). Note: Cr,k = 0 if r < mk or k < 0 . 
Define the factorial function n! = n(n− 1) · · · 1 and the 
binomial (combinatorial or Pascal) coefficient

for 0 ≤ k ≤ n and 0 otherwise.

Theorem  Clearly, Cr,k = 1 when r = mk . For r > mk,

counts the ways of placing k motifs around the ring. For 
convenience below and for consistency with Eq.  (13), 
Cr,0 = 1 for r ≥ 0.

Proof  Consider a line segment containing r equally 
spaced points, and let Lr,k count the ways of choosing k 
non-overlapping motifs, each of m consecutive points, 
on it. First, Cr,k = Lr−1,k +mLr−m,k−1 , proved as follows. 

(9)
L̄k−1[j] = Lk−1[j] ◦ L̄k

[

αk
(

j
)]

= L̄∗k−1[j] ◦ L̄
∗
k

[

τρ
(

j
)]

= L̄∗k−1[j]

(10)
L̄k−1[nk−1 − 1] = L̄k

[

αk
(

nk−1 − 1
)]

= L̄∗k
[

τρ
(

nk−1 − 1
)]

.

(11)
L̄∗k−1[nk−1] = L∗k−1[nk−1] ◦ L̄

∗
k

[

τρ
(

nk−1

)]

= L̄∗k
[

τρ
(

nk−1

)]

.

(12)
(

n
k

)

=
n!

k!(n− k)!

(13)

Cr,k =

(

r − 1− (m− 1)k

k

)

+m

(

r −m− (m− 1)(k − 1)

k − 1

)

=

(

r − (m− 1)k − 1

k

)

+m

(

r − (m− 1)k − 1

k − 1

)
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Number the ring points arbitrarily as positions 1, 2, . . . , r , 
and place the k motifs as follows. Consider position 1, 
which might have no motif. If so, place the k motifs in a 
line consisting of r − 1 positions 2, 3, . . . , r ( Lr−1,k ways). 
Otherwise, place the first motif in one of the m positions 
in which it covers position 1, and then place the remain-
ing k − 1 motifs in a line consisting of r −m positions 
( mLr−m,k−1 ways). Each such configuration corresponds 
to placing k leftmost end-positions on the line. For each 
of the k motifs, delete m− 1 positions on the ring, all but 
its leftmost end-position. Each of the configurations for 
k motifs therefore corresponds to choosing k positions 
from the r − (m− 1)k positions remaining, yielding the 
remaining factors in Eq. (13).

Motifs on several circles
Now, let Cr(1),r(2),...,r(N );K  count the ways of distributing 
K  non-overlapping motifs (all of m consecutive points) 
around several rings, the rings’ points numbering r(n) 
( n = 1, 2 . . . ,N  ). Without loss of generality, assume 
r(n) ≥ m ( n = 1, 2 . . . ,N  ). (Otherwise, discard all 
rings with r(n) < m .) The following recursion holds: 
Cr(1),r(2),...,r(N );K = 0 for K < 0 or K >

∑N
n=1 ⌊r(n)/m⌋ , 

Cr(1),r(2),...,r(N );0 = 1 , and otherwise

where on the right, the index of summation k runs from 
max

{

0,K −
∑N−1

n=1 ⌊r(n)/m⌋

}

 up to min{K , ⌊r(N )/m⌋} . 
Equation  (13) initializes the convolution recursion in 
Eq. (14) with Cr(1),K .

Relation to the Jackknife Product algorithm
To apply the Jackknife Product algorithm in the circRNA–
miRNA application, let gi =

(

Cr(i),0,Cr(i),1, . . . ,Cr(i),K

)

 
( i = 1, . . . ,N  ) in the (commutative) semigroup (G, ◦) of 

(14)
Cr(1),r(2),...,r(N );K =

∑

Cr(N ),kCr(1),r(2),...,r(N−1);K−k ,

non-negative integer vectors with indices k = 0, 1, . . . ,K  , 
under the convolution operation.
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