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Abstract 

Motivation:  With an increasing number of patient-derived xenograft (PDX) models being created and subsequently 
sequenced to study tumor heterogeneity and to guide therapy decisions, there is a similarly increasing need for 
methods to separate reads originating from the graft (human) tumor and reads originating from the host species’ 
(mouse) surrounding tissue. Two kinds of methods are in use: On the one hand, alignment-based tools require that 
reads are mapped and aligned (by an external mapper/aligner) to the host and graft genomes separately first; the 
tool itself then processes the resulting alignments and quality metrics (typically BAM files) to assign each read or read 
pair. On the other hand, alignment-free tools work directly on the raw read data (typically FASTQ files). Recent studies 
compare different approaches and tools, with varying results.

Results:  We show that alignment-free methods for xenograft sorting are superior concerning CPU time usage and 
equivalent in accuracy. We improve upon the state of the art sorting by presenting a fast lightweight approach based 
on three-way bucketed quotiented Cuckoo hashing. Our hash table requires memory comparable to an FM index 
typically used for read alignment and less than other alignment-free approaches. It allows extremely fast lookups and 
uses less CPU time than other alignment-free methods and alignment-based methods at similar accuracy. Several 
engineering steps (e.g., shortcuts for unsuccessful lookups, software prefetching) improve the performance even 
further.

Availability:  Our software xengsort is available under the MIT license at http://​gitlab.​com/​genom​einfo​rmati​cs/​xengs​
ort. It is written in numba-compiled Python and comes with sample Snakemake workflows for hash table construc-
tion and dataset processing.
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Introduction
To learn about tumor heterogeneity and tumor progres-
sion under realistic in vivo conditions, but without put-
ting human life at risk, one can implant human tumor 
tissue into a mouse and study its evolution. This is called 
a (patient-derived) xenograft (PDX). Over time, several 
samples of the (graft/human) tumor and surrounding 
(host/mouse) tissue are taken and subjected to exome or 
whole genome sequencing in order to monitor the chang-
ing genomic features of the tumor. This information can 

be used to predict the response to different chemother-
apy alternatives and to monitor treatment success or fail-
ure. A key step in such analyses is xenograft sorting, i.e., 
separating the human tumor reads from the mouse reads. 
A recent study [1] showed that if such a step is omitted, 
several mouse reads would be aligned to certain regions 
of the human genome (HAMA: human-aligned mouse 
allele) and induce false positive variant calls for the 
tumor; this especially concerns certain oncogenes.

Several tools have been developed for xenograft sort-
ing, motivated by different goals and using different 
approaches; a summary appears below. Here we improve 
upon the existing approaches in several ways: by using 
carefully engineered k-mer hash tables, our approach is 
both faster and needs less memory than existing tools. By 
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designing a new decision function, we also obtain fewer 
unclassified reads and in some cases even higher classifi-
cation accuracy. Since we use a comprehensive reference 
of the genome and transcriptome, we are in principle able 
to process genome, exome, and transcriptome samples of 
xenografts. Of course, different sources may exhibit dif-
ferent error distributions and require distinct optimized 
parameter sets for classification. Nevertheless, our evalu-
ation shows that we obtain good results on all of exomes, 
genomes and transcriptomes with the same parameter 
set.

Concerning related work, we distinguish alignment-
based methods that work on already aligned reads (BAM 
files), versus alignment-free methods that directly work 
on short subsequences (k-mers) of the raw reads (FASTQ 
files).

Alignment-based methods scan existing alignments in 
BAM files and test whether each read maps better to the 
graft genome or to the host genome. Differences result 
from different parameter settings used for the alignment 
tool (often bwa or bowtie2) and from the way “better 
alignment” is defined by each of these tools. Alignment-
free methods use a large lookup table to associate species 
information with each k-mer.

In Table  1, we list properties of existing tools and of 
xengsort, our implementation of the method we describe 
in this article. These tools support different operations: 
Operation “count” outputs proportions of reads belong-
ing to each category (host, graft, etc.); operation “sort” 
sorts reads or alignments into different files according to 
origin, ideally into five categories: host, graft, both, nei-
ther, ambiguous; a “partial sort” only has three categories: 
host, graft, both/other; operation “filter” writes only an 
output file with graft reads or alignments. The sort opera-
tion is more general than the filter or partial sort opera-
tion and allows full flexibility in downstream processing. 
The count operation, when it is available separately, is 
faster than counting the output of the sort operation, 
because it avoids the overhead of creating output files.

XenofilteR, Xenosplit, Bamcmp and Disambiguate all 
work on aligned BAM files. This means that the reads 
must be mapped and aligned with a supported read map-
per first (typically, ‘bwa mem’) and the resulting BAM 
file must be sorted in a specific way required by the tool. 
The tool is typically a script that reads and compares 
the mapping scores and qualities in the two BAM files 
containing host and graft alignments. In principle, all 
of these tools do the same thing; large differences result 
rather from different alignment parameters than the tool 
itself. We therefore picked XenofilteR as a representative 
of this family, also because it performed well in a recent 
comparison [1].

BBsplit (part of BBTools) is special in the sense that it 
performs the read mapping itself, against multiple refer-
ences simultaneously, based on k-mer seeds. Unfortu-
nately, only up to approximately 1.9 billion k-mers can be 
indexed because of Java’s array indexing limitations (up 
to 231 elements) and a table load limit of 90%; so BBsplit 
was not usable for our human-mouse index that contains 
approximately 4.5 · 109 > 232 k-mers.

The tool xenome [7] is similar to our approach: It is 
based on a large hash table of k-mers and sorts the reads 
into several categories (host, graft, both, neither, ambig-
uous). A read is classified based on its k-mer content 
according to relatively strict rules. We found the thread-
ing code of xenome to be buggy, such that the pure count-
ing mode resulted in a deadlock and produced no output. 
The sorting mode produced the complete output but 
then did not terminate either.

Recent studies [1, 8, 9] have compared the computa-
tional efficiency of several methods, as well as the clas-
sification accuracy of these methods and the effects on 
subsequent variant calling after running vs. not running 
xenograft sorting. The results were contradictory, with 
some studies reporting that alignment-based tools are 
more efficient than alignment-free tools, and different 
tools achieving highest accuracy. Our interpretation of 
the results of [1] is that each of the existing approaches is 
able to sort with good accuracy and the main difference is 
in computational efficiency. Results about efficiency have 
to be interpreted with care because sometimes the time 
for alignment is included and sometimes not.

Methods
Overview
By considering all available host and graft reference 
sequences (both transcripts and genomic sequences of 
mouse and human), we build a large key-value store that 
allows us to look up the species of origin (host, graft or 
both) of each DNA/RNA k-mer that occurs in either spe-
cies. A sequenced dataset (a collection of single-end or 

Table 1  Tools for xenograft sorting and read filtering with key 
properties

See text for definition of operations

Tool Ref. Input Operations Language

XenofilteR [2] Aligned BAM Filter R

Xenosplit [3] Aligned BAM Filter, count Python

Bamcmp [4] Aligned BAM Partial sort C++
Disambiguate [5] Aligned BAM Partial sort Python or C++
BBsplit [6] Raw FASTQ Partial sort Java

Xenome [7] Raw FASTQ Count, sort C++
Xengsort (This) Raw FASTQ Count, sort Python + numba
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paired-end FASTQ files) is then processed by iterating 
over reads or read pairs, looking up the species of origin 
of each k-mer in a read (host, graft, both or none) and 
classifying the read based on a decision rule.

Our implementation of the key-value store as a three-
way bucketed Cuckoo hash table makes k-mer lookup 
faster than in other methods; the associated value can 
often be retrieved with a single random memory access. 
A high load factor of the hash table, combined with the 
technique of quotienting, ensures a low memory foot-
print, without resorting to approximate membership data 
structures, such as Bloom filters.

Key‑value stores of canonical k‑mers
We partition the reference genomes (plus alternative 
alleles and unplaced contigs) and transcriptomes into 
short substrings of a given length k (so-called k-mers); we 
evaluated k ∈ {23, 25, 27} . For each k-mer (“key”) in any 
of the reference sequences, we store whether it occurs 
exclusively in the host reference, exclusively in the graft 
reference, or in both, represented by “values” 1, 2, 3, 
respectively. For the host- and graft-exclusive k-mers, we 
also store whether a closely similar k-mer (at Hamming 
distance  1) occurs in the other species (add value  4); 
such a k-mer is then called a weak (host or graft) k-mer. 
This idea extends the k-mer classification of xenome [7], 
where a k-mer can be host, graft, both, or marginal, the 
latter category comprising both our weak host and weak 
graft k-mers. So we store, for each k-mer, a value from 
the 5-element set “host” (1), “graft” (2), “both” (3), “weak 
host” (5), “weak graft” (6). This value is stored using 
3  bits. While a more compact base-5 representation is 
possible (e.g., storing 3 values with 125 < 128 = 27 com-
binations in 7 bits instead of in 9 bits), we decided to use 
slightly more memory for higher speed.

To be precise, we do not work on k-mers directly, but 
on their canonical integer representations (canonical 
codes), such that a k-mer and its reverse complement map 

to the same number. We use a simple base-4 numeric 
encoding A   → 0 , C   → 1 , G   → 2 , T/U   → 3 , e.g., reading 
the 4-mer AGCG as (0212)4 = 38 and its reverse comple-
ment CGCT as (1213)4 = 103 . The canonical code is then 
the maximum of these two numbers; here the canonical 
code of both AGCG and CGCT is thus 103. (In xenome, 
canonical k-mer codes are implemented with a more 
complex but still deterministic function of the two base-4 
encodings; in other tools, it is often the minimum of the 
two encodings.) For odd k, there are exactly c(k) := 4k/2 
different canonical k-mer codes, so each can be stored 
in 2k − 1 bits in principle. However, implementing a fast 
bijection of the set of canonical codes (which is a subset 
of size c(k) of {0 .. (4k − 1)} ) to {0 .. (c(k)− 1)} seems diffi-
cult, so we use 2k bits to store the canonical code directly, 
which allows faster access. However, we use quotienting, 
described below, to reduce the size of the stored k-mer 
code.

Multi‑way bucketed quotiented Cuckoo hashing
We use multi-way bucketed Cuckoo hash table as the 
data structure for the k-mer key-value store. Let C be 
the set of canonical codes of k-mers; as explained above, 
we take C = {0 .. (4k − 1)} , even though only half of 
the codes are used (for odd k). Let P be the set of loca-
tions (buckets) in the hash table and p their number; we 
set P := {0 .. (p− 1)} . Each key can be stored at up to h 
different locations (buckets) in the table. The possible 
buckets for a code are computed by h different hash func-
tions f1, f2, . . . , fh : C → P . Each bucket can store up to 
a certain number b of key-value pairs. So there is space 
for N := pb key-value pairs in the table overall, and each 
pair can be stored at one of hb locations in h buckets. 
Together with an insertion strategy as described below, 
this framework is referred to as (h,  b) Cuckoo hashing. 
Classical Cuckoo hashing uses h = 2 and b = 1 ; for this 
work, we use h = 3 and b = 4 . A visualization is provided 
in Fig. 1. Using several hash functions and larger buckets 

Fig. 1  Illustration of (3,4) Cuckoo hashing with 3 hash functions and buckets of size 4. Left: Each key-value pair can be stored at one of up to 12 
locations in 3 buckets. For key x, the bucket given by f1(x) is full, so bucket f2(x) is attempted, where a free slot is found. Right: If all hb slots are full, 
key x is placed into one of these slots at random (blue), and the currently present key-value pair is evicted and re-inserted into an alternative slot
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increases the load limit; using h = 3 and b = 4 allows 
a load factor of over 99.9% [10, Table  1], while classical 
Cuckoo hashing only allows to fill 50% of the table.

Search
Searching for a key-value pair works as follows. Given 
key (canonical code)  x, first f1(x) is computed, and this 
bucket is searched for key x and the associated value. If 
it is not found, buckets f2(x) and then f3(x) are searched 
similarly. Each bucket access is a random memory lookup 
and most likely triggers a cache miss. We can ensure 
that each bucket is contained within a single cache line 
(by using additional padding bits if necessary). Then, the 
number of cache misses is limited to h = 3 for one search 
operation.

When we fill the table well below the load limit (at 88% 
of 99.9%), we are able to store many key-value pairs in the 
bucket indicated by the first hash function f1 , and only 
incur a single cache miss when looking for them. Unsuc-
cessful searches (for k-mers that are not present in either 
host or graft genome) need all h memory accesses. How-
ever, optimizations are possible and described below (see 
“Performance engineering” section).

Insert
Insertion of a key-value pair works as follows. First, the 
key is searched as described above. If it is found, the 
value is updated with the new value. For example, if an 
existing host k-mer is to be inserted again as a graft k-
mer, the value is updated to “both”. If the key is not found, 
we check whether any of the buckets f1(x), f2(x), f3(x) (in 
that order) contains a free slot. If this is the case, x and 
its value are inserted there. If all buckets are full, a ran-
dom slot among the hb slots is picked, and the key-value 
pair stored there is evicted (like a cuckoo removes eggs 
from other birds’ nests) to make room for x and its value. 
Then an alternative location for the evicted element is 
searched. This process may continue for several itera-
tions and is called a “random walk” through the table. If 
the walk becomes too long (longer than 5000 steps, say), 
we declare that the table is too full, and construction fails 
and has to be restarted with a larger table or different 
random seed.

Our implementation requires that the size (number of 
buckets p) of the hash table is known in advance, so we 
can pre-allocate it. The genome length is a good (over-) 
estimate of the number of distinct k-mers and can be 
used. We recently presented a practical algorithm [11] to 
optimize the assignment of k-mers to buckets (i.e., their 
hash function choices) such that the average search cost 
of present k-mers is minimized to the provable opti-
mum. This optimization takes significant additional time 
and requires large additional data structures; so we took 

the opportunity here to evaluate whether it significantly 
improves lookup times in comparison to a table filled by 
the above random walk strategy (see “Results”).

Bijective hash functions and quotienting
In principle, we need to store the 2k bits for the canoni-
cal k-mer code  x and the 3  bits for the value at each 
slot. However, by using hash functions of the form 
f (x) := g(x) mod p , where p is the number of buckets 
and g is a bijective (randomized) transformation on the 
full key set {0 .. (4k − 1)} , we can encode part of x in f(x): 
Note that from f(x) and q(x) := g(x)//p (integer divi-
sion), we can recover g(x) = p · q(x)+ f (x) , and since g 
is bijective, we can recover  x itself. This means that we 
only need to store q(x), not x itself in bucket f(x), which 
only takes ⌈2k − log2 p⌉ instead of 2k bits. However, since 
we have h alternative hash functions, we also need to 
store which hash function we used, using 2 bits for h = 3 
(0 indicating that the slot is empty). This technique is 
known as quotienting. It gives higher savings for smaller 
buckets (for constant N = pb , smaller b means larger p), 
but on the other hand the load limit is smaller for small b. 
We find b = 4 to be a good compromise, allowing table 
loads of 99.9%.

For the bijective part g(x), we use affine functions of the 
form

where rotk performs a cyclic rotation of k bits (half the 
width of  x), moving the “random” inner bits to outer 
positions and the less random outer bits (due to the max 
operation when taking canonical codes) inside, b is a 2k-
bit offset, and a is an odd multiplier. Picking a “random” 
hash function means picking random values for a and b.

Lemma 1  For any 2k-bit number b and any odd 
2k-bit number a, the function ga,b is a bijection on 
K := {0 .. (4k − 1)} , and its inverse can be efficiently 
obtained.

Proof  Let y = ga,b(x) . By definition, the range of ga,b 
on K is a subset of K. Because |K| is a power of  2 and 
a is odd, the greatest common divisor of |K| and a is 
1, and so there exists a unique multiplicative inverse 
a′ of a modulo 4k = |K | , such that aa′ = 1 (mod 4k) . 
This inverse a′ can be obtained efficiently using the 
extended Euclidean algorithm. The other operations 
(xor b, rotk ) are inverses of themselves; so we recover 
x = rotk([(a

′ · y) mod 4k ] xor b) . �

In summary, each stored canonical k-mer needs 
2+ 3+ ⌈2k − log2 p⌉ bits to remember the hash function 

ga,b(x) := [a · (rotk(x) xor b)] mod 4k ,
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choice and to store the value (species) and the quotient, 
respectively. For k = 25 and p = 1 276 595 745 buck-
ets, this amounts to 25  bits per k-mer, or 100  bits for 
each bucket of 4 k-mers. To ensure cache line (512 bits) 
aligned buckets, we could use 500 bits for 5 buckets and 
insert 12 padding bits; however, we chose to use less 
memory and let a few buckets cross cache line bounda-
ries, accepting the resulting speed decrease.

Performance engineering
Software prefetching
Prefetching refers to instructing the memory system to 
fetch data from RAM into the cache hierarchy before 
the CPU actually needs the data. This can reduce the 
time spent by the CPU waiting for data, especially in 
lookup-intensive applications such as this one. Hard-
ware prefetching is automatically performed by the CPU 
based on memory access patterns (i.e., a linear scan over 
a large array). Software prefetching refers to application-
controlled prefetching. Our application xengsort sup-
ports three levels of prefetching: none (0), prefetching 
the second choice bucket before searching the first choice 
bucket (1), or prefetching both second and third choice 
buckets before searching the first choice bucket (2). The 
disadvantage is that, if the search of the first bucket is 
successful, the memory system has done unnecessary 
work, possibly slowing down other threads that want to 
access different memory locations at the same time. As 
a consequence, software prefetching should only be ena-
bled if the second and/or third bucket must be examined 
frequently, i.e., at high load factors, or when many unsuc-
cessful lookups can be expected.

Shortcuts for unsuccessful lookups
As described so far, unsuccessful lookups are slow 
because all three buckets must be completely examined, 
even though software prefetching may solve part of the 
problem. In addition, algorithmic optimizations are pos-
sible, with 0 to 2 extra bits of memory per bucket.

The following shortcut is possible without using any 
additional memory: If, say, the first bucket f1(x) contains 
an empty slot, we do not need to search further, because 
the random walk insertion procedure produces a tight 
layout, in the sense that if a single element could have 
been moved to an “earlier” bucket, it would have been 
done.

Using a single additional “shortcut” flag bit per 
bucket, we can store whether there exists any element 
in a “later” choice bucket that could have been inserted 
into this bucket, had there been more space. So a set bit 
(value 1) indicates that later choices must be searched if 
the element is not found in this bucket, while a cleared 
bit (value  0) indicates that a search can be terminated 

unsuccessfully when the element is not found in this 
bucket. The same idea has been proposed by Alain Espi-
nosa as “unlucky buckets trace” [12].

Using a second bit per bucket, the resolution of this 
type of information can be further improved: One bit 
indicates that there exists an element whose first choice 
would have been this bucket, but that is stored at its 
second choice bucket. The other bit indicates that there 
exists an element whose first or second choice would 
have been this bucket, but that is stored at its third choice 
bucket. If the element is not found in the current bucket, 
then, depending on the bit combination, the search can 
be stopped early (0,0), only the second choice needs to be 
checked (1,0), only the third choice needs to be checked 
(0,1), or both (1,1).

These shortcuts work best if (a) there are many unsuc-
cessful lookups and (b) they are evaluated only after the 
search in the first bucket was unsuccessful. The perfor-
mance gains are evaluated in the “Results” section.

No key deletions
In principle, our implementation of Cuckoo hashes 
allows for easy deletion of keys: in the corresponding slot, 
simply set the hash choice bits to zero. However, this will 
destroy the tight layout mentioned in the previous para-
graph and invalidate the shortcut flag bits; therefore sub-
sequent unsuccessful lookups must examine all locations 
and become more expensive. Restoring the tight layout 
may involve many iterations of moving keys throughout 
the table, and hence is an expensive operation. As our 
application never needs to delete an existing key, we fully 
benefit from the above mentioned shortcuts.

Additional memory savings
Theoretically, the two bits indicating the hash func-
tion choice for each slot may be saved by using separate 
tables for each hash function. However, this drastically 
decreases the load limits and overall results in higher 
memory requirements. A better alternative is to exploit 
that the order of slots in a bucket is arbitrary, so we may 
enforce a fixed order: first all keys that are present with 
their final hash function, then in order all keys resulting 
from earlier hash functions, and finally all empty slots. 
Thus the configuration of a bucket is given by a non-neg-
ative (h+ 1)-tuple (ch, . . . , c1, c0) ≥ 0 with sum  b, where 
ci is the number of elements in the bucket which are pre-
sent because of their i-th hash function (for i ≥ 1 ), and 
c0 is the number of empty slots. Especially for large  b, 
there are much fewer possible such tuples than (h+ 1)b . 
For the case of (h, b) = (3, 4) , there are 35  such tuples, 
and the configuration can be encoded in  6 instead of 
8 bits. Encoding more than one bucket jointly results in 
further savings. Similarly, the values for a bucket can be 
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encoded jointly. For example, given a value set of size 5, 
where a value requires 3 bits, there are 54 = 625 different 
value combinations in a bucket, which can be encoded 
in 10  bits instead of 4 · 3 = 12 . In a practical setting 
(human/mouse, k = 25 , load 0.88; see Table 3), combin-
ing both options reduces the hash table size by 0.5  GB 
from 15.9 GB to 15.4 GB. However, these savings come at 
the cost of increased CPU time for decoding the configu-
ration or values. Neither option has been implemented 
yet, but will be added in a future release.

Annotating weak k‑mers
A k-mer that occurs only in the host (graft) reference, but 
has a Hamming-distance-1 neighbor in the graft (host) 
reference, is called a weak host (graft) k-mer. So for a 
weak k-mer, a single nucleotide variation could flip its 
assigned species, while a k-mer that is not weak is more 
robust in this sense. After the hash table has been con-
structed with all k-mers and their values “host”, “graft” or 
“both”, we mark weak k-mers by modifying the value, set-
ting an additional “weak” bit. In principle, we could scan 
over the k-mers and query all 3k neighbors of each k-mer, 
but this is inefficient.

Instead, we extract from the hash table a complete list L 
of k-mers and their reverse complements (not canonical 
codes; approx. 9 · 109 entries for 4.5 · 109 distinct k-mers), 
together with their current values. To save memory, this 
list is created and processed in 16 chunks according 
to the first two nucleotides of the k-mer, thus needing 
approx. 4.5 GB of additional memory temporarily. Since 
we use odd k = 2ℓ+ 1 , we can partition a k-mer into its ℓ
-prefix, its middle base and its ℓ-suffix (Fig. 2). We make 
use of the following observation.

Observation 1  For k = 2ℓ+ 1 , two k-mers x,  y with 
Hamming distance 1 differ either in their ℓ-suffix, in the ℓ
-suffix of their reverse complement or in their middle base.

Consider first the case where the difference is in the ℓ
-suffix. We thus partition the sorted chunk into blocks of 
constant (ℓ+ 1)-prefixes. Different blocks are processed 
independently in parallel threads. The ℓ-suffixes of all 
pairs of k-mers in such a block are queried with a fast 
bit-vector test for Hamming distance 1. If a pair is found 
and the k-mers occur in different species, the “weak bit” 

(value 4) is set on both k-mers of the pair. Now consider 
the case where the difference is in the ℓ-prefix. Because 
reverse complements are included in the full list, this 
case is already covered.

It remains to find pairs of k-mers that differ only in 
their middle base. We thus conceptually re-partition the 
chunk into blocks of constant ℓ-prefixes. We now switch 
the order of ℓ-suffix and middle base (Fig. 2) and re-sort 
each block internally. This is a cache-friendly local opera-
tion on typically relatively small blocks. Now Hamming-
distance-1 groups that differ in their original middle base 
occur consecutively in a block and agree in their 2ℓ-pre-
fix. A scan over the block reveals all relevant pairs.

Finally, the updated values are transferred to the values 
of the canonical k-mers in the hash table.

Reference sequences
To build the k-mer hash table of the human (GRCh38, 
hg38) and mouse (GRCm38, mm10) genome and tran-
scriptome, we obtained the “toplevel DNA” genome 
FASTA files, which include both the primary assem-
bly, unplaced contigs and alternative alleles, and the “all 
cDNA” files, which contain the known transcripts, from 
the ensembl FTP site, release 98.

As the alternative alleles of the human and mouse 
toplevel references contain mostly Ns to keep positional 
alignment of alternative alleles to the consensus refer-
ence, they decompress to huge FASTA files (over 60 GB 
for human, over 12 GB for mouse). Therefore we con-
densed the toplevel reference sequences by replacing 
runs of more than 25 Ns by 25 Ns. This does not change 
the k-mer content, as k-mers containing even a single N 
are ignored. It does provide an efficiency boost to align-
ment-based tools because read mappers build an index of 
every position in the genome and typically replace runs 
of Ns by random sequence.

Fragment classification
Given a sequenced fragment (single read or read pair), 
we query each k-mer of the fragment about its origins; 
k-mers with undetermined bases (Ns) are ignored. Our 
implementation reads large chunks (several MB) of 
FASTQ files and distributes read classification over sev-
eral threads (we found that 8 threads saturate the I/O).

Fig. 2  A k-mer is partitioned into its ℓ-prefix, a middle base and its ℓ-suffix. Efficient local re-sorting of k-mers according to common ℓ-prefix and ℓ
-suffix yields groups of k-mers that differ only in their middle base
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We collect k-mer statistics for each fragment (adding 
the numbers of both reads for a read pair): let n be the 
number of (valid) k-mers in the fragment. Let h be the 
number of (non-weak) host k-mers and h′ the number 
of weak host k-mers, and analogously define g and g ′ for 
the graft species. Further, let b be the number of k-mers 
occuring in both species, and let x be the number of 
k-mers that were not found in either species.

Based on the vector (h, h′, g , g ′, b, x; n) , we use a tree of 
hierarchical rules to classify the fragment into one of five 
categories: “host”, “graft”, “both”, “neither” and “ambigu-
ous”. Categories “host” and “graft” are for reads that can 
be clearly assigned to one of the species. Category “both” 
is for reads that match equally well to both references. 
Category “neither” is for reads that contain many k-mers 
that cannot be found in the key-value store; these could 
point to technical problems (primer dimers) or contami-
nation of the sample with other species. Finally, category 
“ambiguous” is for reads that provide conflicting infor-
mation. Such reads should not usually be seen; they could 
result from PCR hybrids between host and graft during 
library preparation.

The precise rules are shown in Fig.  3. The rules are 
designed to arrive at easy decisions quickly. For exam-
ple, at the root node, if there are no graft k-mers at all 
( g + g ′ = 0 ), then an easy decision can be made between 
the classes “host” (if there is at least a little evidence of 
host k-mers, i.e., Shost ≥ 3 , where Shost := h+ ⌊h′/2⌋ ), 
“both” (if there are sufficiently many such k-mers, i.e. 
b ≥ Tboth := ⌊n/4⌋ , but the “host” class does not apply), 
and “neither” (if there are sufficiently many such k-mers, 

i.e. x ≥ 3n/4 ). If none of these conditions is true, the 
“ambiguous” class is chosen. A symmetric quick deci-
sion rule exists for the case that no host k-mers exist 
( h+ h′ = 0 ). If no quick decision can be made, more 
complex rules are applied: The next test is whether there 
are no (strong) graft k-mers ( g = 0 ), only few weak graft 
k-mers ( g ′ ≤ 6 ), but at least some (strong) host k-mers 
( h ≥ 6 ), in which case the read is classified as “host”. A 
symmetric rule exists for the “graft” class, of course. An 
even more complex rule tests whether there is sufficient 
overall evidence for host but only little strong graft evi-
dence in absolute terms, and little weak graft evidence in 
comparison to the host evidence. For categories “both” 
and “neither”, a relatively large number of correspond-
ing k-mers is required. Category “ambiguous” is always 
chosen if no “else” rule exists and no other rule applies 
in any given node. The thresholds have been iteratively 
hand-tuned on several internal human, mouse and bacte-
rial datasets that were not part of the evaluation datasets. 
The thresholds are optimized for typical high-quality 
short reads (100–150 bp) and may have to be adjusted for 
long reads with higher error rates. For completeness, the 
Python source of the classification function appears in 
Table 6 in Appendix.

Quick mode
Inspired by a feature of the kallisto software [13] for tran-
script expression quantification, we additionally imple-
mented a “quick mode” that initially looks only at the 
type of the third and third-last k-mer in every read. If the 
two (for single-end reads) or four (for paired-end reads) 
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Fig. 3  Decision rule tree for classifying a DNA fragment from k-mer statistics (h, h′ , g, g′ , b, x; n) , meaning number of k-mers of type “host” 
(h), “weak host” ( h′ ), “graft” (g), “weak graft” ( g′ ), “both” (b), and number of k-mers not present in the key-value store (x), respectively; n is the 
total number of (valid) k-mers in the fragment. We also use weighted scores Shost := h+ ⌊h′/2⌋ and Sgraft := g+ ⌊g′/2⌋ and thresholds 
Thost := ⌊n/4⌋, Tgraft := ⌊n/4⌋ and Tboth := ⌊n/4⌋ . A fragment is thus classified as “host”, “graft”, “both”, “neither”, or “ambiguous”. Category 
“ambiguous” is chosen if no other rule applies and no “else” rule is present in a node
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types agree (e.g. all are “graft”), the fragment is classified 
on this sampled evidence alone. This results in quicker 
processing of large FASTQ files, but only considers a 
small sample of the available information.

Results
We evaluate our alignment-free xenograft sorting 
approach and its implementation xengsort for the com-
mon case of human-tumor-in-mouse xenografts, by 
using mouse datasets, human datasets, xenograft datasets 
and datasets from other species, and compare against an 
existing tool with the same purpose, xenome from the 
gossamer suite [7], and against a representative of align-
ment-based filtering tools, XenofilteR [2]. The hardware 
used for the benchmarks was one server with two AMD 
Epyc 7452 CPUs (with 32  cores and 64  threads each), 
1024 GB DDR4-2666 memory and one 12 TB HDD with 
7200 rpm and 256 MB cache.

We first report on statistics and efficiency of index 
construction (“Hash table construction” section), then 
discuss classification accuracy on several datasets (“Clas-
sification results” section), and finally compare running 
times (“Running times” section).

Hash table construction
Table size and uniqueness of k‑mers
We evaluated k ∈ {23, 25, 27} and then decided to use 
k = 25 because it offers a good compromise between 

species specificity and memory requirements. Table  2 
shows several index properties. In particular, moving 
from k = 25 to k = 27 , the small decrease in k-mers that 
map to both genomes and in weak k-mers did not justify 
the additional memory requirements. In addition, shorter 
k-mers lead to better error tolerance against sequenc-
ing errors, as each error affects up to k of the k-mers in 
a read.

Construction time and memory
Table 3 shows time and memory requirements for build-
ing the k-mer hash table or FM index for bwa (for Xeno-
filteR). The main difference is that the BWA index is a 
succinct representation of the suffix array of the refer-
ences and not a k-mer hash table. Our hash table con-
struction is not paralellized; hence CPU times and 
wall clock times agree and are less than one hour. The 
hash construction of xenome is paralellized; we gave it 
8 threads (but 9 were sometimes used); yet it does about 
20 times the CPU work and takes three times as long as 
xengsort, even when using multiple threads.

Marking weak or marginal k-mers is paralellized in 
both approaches; wall clock times are measured using 
8  threads. Again, xengsort finds the weak k-mers faster, 
both in terms of total CPU work and wall clock time.

The indexing method of bwa is not comparable, as it 
builds a complete suffix array (FM  index) that is inde-
pendent of k and does not include marking weak k-mers. 

Table 2  Properties of the k-mer index for different values of k 

Underlying reference sequences are given in “Reference sequences” section

k-mers k = 23 (%) k = 25 (%) k = 27 (%)

Total 4,396,323,491 (100) 4,496,607,845 (100) 4,576,953,994 (100)

Host 1,924,087,512 (43.8) 2,050,845,757 (45.6) 2,105,520,461 (46.0)

Graft 2,173,923,063 (49.4) 2,323,880,612 (51.7) 2,395,147,724 (52.3)

Both 18,701,862 (0.4) 12,579,160 (0.3) 9,627,252 (0.2)

Weak host 132,469,231 (3.0) 52,063,110 (1.2) 32,445,717 (0.7)

Weak graft 147,141,823 (3.4) 57,239,206 (1.3) 34,212,840 (0.7)

Table 3  Index construction

CPU times and wall clock times in minutes and memory in Gigabytes using different tools and different k-mer sizes for xengsort. “Build” times refer to collecting and 
hashing the k-mers according to species, but without marking weak k-mers. “Mark” times refer to marking weak k-mers. “Total” times are the sum of build and mark 
times, plus additional I/O times. “CPU” times measure total CPU work load (as reported by the time command as user time), and “wall” times refer to actually passed 
time. Final size (“mem final”) is measured by index size on disk (GB). Memory peak (“mem peak”) is the highest memory usage during construction (GB)

Tool k Build Build Mark Mark Total Total Mem Mem

CPU Wall CPU Wall CPU Wall Final Peak

Xengsort 23 50 50 591 176 641 226 12.8 17.3

Xengsort 25 53 53 437 158 490 211 15.9 20.4

Xengsort 27 51 51 495 214 546 265 17.3 21.8

Xenome 25 992 151 2338 356 3626 552 31.2 57.1

XenofilteR – – – – – 528 658 13.0 22.0
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Here the CPU time is lower than the wall clock time, 
which indicates an I/O starved process.

We note that xenome uses a large amount of mem-
ory during hash table construction (it was given up to 
64 GB). It works with less if restricted, but at the expense 
of longer running times. BWA indexing also needs sig-
nificant additional memory during construction. The 
additional memory required by xengsort results from the 
additional sorted k-mer list required for detecting weak 
k-mers. Overall, our construction is fast (even though 
serial only) and uses a reasonable amount of memory.

Load factor and hash choice distribution
As explained in “Multi-way bucketed quotiented Cuckoo 
hashing” section, 3-way Cuckoo hash tables support very 
high loads (fill ratios) over 99.9%. However, such loads 
come at the expense of distributing all k-mers almost 
evenly across hash function choices. For faster lookup, 
it is beneficial to leave part of the hash table empty. We 
used a load factor of 88% and thus find 76.7% of the 
k-mers at their first bucket choice, 15.5% at their second 
choice and only 7.8% at their third choice, yielding an 
average of 1.31 lookups for a present k-mer.

Applying assignment optimization [11], which takes 
an additional 5 h (serial CPU time, not parallelized) and 
temporarily needs over 80  GB of RAM, we achieve a 
slightly better average of 1.17 lookups for a present k-mer.

Classification results
We applied our method xengsort, xenome and XenofilteR 
to several datasets with reads of known origin (except 
possible contamination issues or technical artefacts), that 
however present certain particular challenges. Each of 
the following paragraphs discusses one dataset.

Human‑captured mouse exomes
A recent comparative study [1] made five mouse exomes 
accessible, which were captured with a human-exome 
capture kit and hence presents mouse reads that are 
biased towards high similarity with human reads. The 
mouse strains were A/J (two mice), BALB/c (one mouse), 
and C57BL6 (two mice); they were sequenced on the Illu-
mina HiSeq 2500 platform, resulting in 11.8 to 12.7 Gbp. 
The datasets are available under accession numbers 
SRX5904321 (strain A/J, mouse 1), SRX5904320 (strain 
A/J, mouse 2), SRX5904319 (strain BALB/c, mouse 1), 
SRX5904318 (strain C57BL/6, mouse 1) and SRX5904322 
(strain C57BL/6, mouse 2). Ideally, all reads should be 
classified as mouse reads.

Table  4 shows detailed classification results and run-
ning times. Considering the BALB/c and C57BL/6 strains 
first, it is evident that classification accuracy is high 
(over 98.9% mouse for xengsort, over 97.4% for xenome; 

with less than 0.64% human reads for both tools). The 
main difference between the tools is that xenome is more 
conservative, assigning a larger fraction of reads to the 
“ambiguous” (unclassified) category. With xenome, this 
happens for reads that contain two k-mers x, y, where x 
maps uniquely to human and y maps uniquely to mouse. 
The decision rule of xengsort is more permissive and tol-
erant towards small inconsistencies. Therefore, xengsort 
assigns more reads correctly to mouse, and fewer to the 
ambiguous category. Additionally, xengsort assigns fewer 
reads incorrectly to human.

However, the two samples of strain A/J give different 
results. Both xengsort and xenome assign a large fraction 
of reads (around 21% and 3.6% in the two samples) to the 
human genome, while XenofilteR assigns only 10.5% and 
2.7%, respectively. While xengsort does assign more reads 
to mouse, it also assigns more reads to human, following 
its strategy of leaving fewer reads unassigned (ambigu-
ous). Inspection of these reads revealed that almost all 
of them are low-complexity, i.e. consist of repetitive 
sequence, and a check with BLAT [14] revealed no hits 
in mouse and several gapped hits in the human genome. 
So the classification as human reads is not incorrect from 
a technical standpoint, but in fact these reads appear to 
point to techincal problems during then enrichment step 
of the library generation. An additional low-complexity 
filter would remove most problematic reads.

Human genome (GIAB) matepair library
We obtained FASTQ files of an Illumina-sequenced 
6kb matepair library from the Genome In A Bottle 
(GIAB) Ashkenazim trio dataset according to the pro-
vided sequence file index1. The data represents a family 
(mother, father, son). Ideally, we see only human reads.

Figure  4a shows the classification results for xengsort 
and xenome. XenofilteR reported that the BAM files were 
too large to be processed and did not give a result (400 
GB total for human and mouse; each BAM file over 30 
GB in size). We see that almost all reads are correctly 
identified as human, while a small fraction is neither, 
which could be adapter dimers or other technical issues. 
However, xenome classifies a similarly small fraction as 
ambiguous. Both alignment-free tools accurately recog-
nize that this is a pure human dataset.

Chicken genome
We obtained a paired-end (2x101bp) Illumina whole 
genome sequencing run of a chicken genome from a whole 
blood sample (accession SRX6911418) with a total of 251 

1  ftp://​ftp-​trace.​ncbi.​nlm.​nih.​gov/​giab/​ftp/​data_​index​es/​Ashke​nazim​Trio/​
seque​nce.​index.​AJtrio_​Illum​ina_​6kb_​matep​air_​wgs_​08032​015.

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data_indexes/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data_indexes/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015
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million paired-end reads. Ideally, none of these reads are 
recognized as mouse or human reads. Figure  4b shows 
divergent results. For XenofilteR, we can only say that 

almost no reads are extracted as human; the remainder 
is unclassified. Xenome assigns a small number of reads 
to each category and only around 90% into the “neither” 

Table 4  Detailed classification results on five human-captured mouse exomes from different mouse strains ( 2× A/J, 1× BALB/c, 2× 
C57BL/6)

Running times are reported both in CPU minutes (Cm), measuring CPU work, and wall clock minutes (Wm), measuring actual time spent. Times for XenofilteR (XfR) 
do not include alignment or BAM sorting time. Classification results report the number and percentage (in brackets) of fragments classified as mouse (correct), both 
human and mouse (likely correct), human (incorrect), ambiguous (no statement) and neither (likely incorrect). XenofilteR (XfR) only extracts human fragments and 
does not classify the remainder; so only the number of fragments classified as human are reported

A/J-1 xengsort xenome XfR

Time 70 Cm 14 Wm 371 Cm 45 Wm 56 Cm 56 Wm

Fragmets (%) Fragmets (%) Fragmets (%)

Mouse 46,648,014 (78.03) 45,759,814 (76.54)

Both 120,808 (0.20) 65,269 (0.11)

Human 12,813,583 (21.43) 12,500,844 (20.91) 6,315,955 (10.56)

Ambgs. 58,449 (0.10) 1,383,547 (2.31)

Neither 143,775 (0.24) 75,155 (0.13)

A/J-2 xengsort xenome XfR

Time 70 Cm 15 Wm 416 Cm 50 Wm 67 Cm 67 Cm

Fragmets (%) Fragmets (%) Fragmets (%)

Mouse 60,255,189 (95.57) 59,135,489 (93.80)

Both 151,396 (0.24) 89,089 (0.14)

Human 2,301,384 (3.65) 2,271,131 (3.60) 1,718,545 (2.73)

Ambgs. 57,827 (0.09) 1,340,814 (2.13)

Neither 279,556 (0.44) 208,829 (0.33)

BALB/c xengsort xenome XfR

Time 68 Cm 15 Wm 392 Cm 45 Wm 61 Cm 61 Wm

Mouse 62,235,960 (98.99) 61,274,277 (97.46)

Both 118,541 (0.19) 68,949 (0.11)

Human 342,908 (0.55) 348,154 (0.55) 285,556 (0.45)

Ambgs. 45,063 (0.07) 1,098,036 (1.65)

Neither 127,035 (0.20) 80,091 (0.13)

 C57BL/6-1 xengsort xenome XfR

Time 72 Wm 14 Wm 359 Wm 44 Wm 58 Cm 58 Wm

Mouse 57,993,361 (98.93) 57,522,446 (98.13)

Both 118,984 (0.20) 74,325 (0.13)

Human 375,716 (0.64) 376,653 (0.64) 290,894 (0.50)

Ambgs. 27,731 (0.05) 571,542 (0.98)

Neither 103,895 (0.18) 74,721 (0.13)

C57BL/6-2 xengsort xenome XfR

Time 67 Cm 15 Wm 422 Cm 51 Wm 62 Cm 62 Wm

Mouse 62,384,448 (99.00) 61,941,783 (98.30)

Both 107,019 (0.17) 66,163 (0.10)

Human 189,536 (0.30) 208,149 (0.33) 132,535 (0.21)

Ambgs. 27,142 (0.04) 562,659 (0.89)

Neither 304,677 (0.48) 234,068 (0.37)
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Fig. 4  Classification results of different tools (XenofilteR, xenome, xengsort, and partially xengsort with “quick” option) on several datasets: a 
GIAB human matepair dataset (XenofilteR did not run on this dataset); b Chicken genome; c Human lymphocytic leukemia RNA-seq data; d 
Patient-derived xenograft (PDX) RNA-seq data. e CPU times on the PDX RNA-seq dataset with different tools and different xengsort parameters (see 
text)
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category, while xengsort assigns 98.11% of the reads as 
“neither”.

Human lymphocytic leukemia tumor RNA‑seq data
We obtained single-end FASTQ files from RNA-seq data 
of 5  human T-cell large granular lymphocytic leukemia 
samples, where recurrent alterations of TNFAIP3 were 
observed, and 5 matched controls (13.4 Gbp to 27.5 Gbp). 
The files are available from SRA accession SRP059322 
(datasets SRX1055051 to SRX1055060). Surprisingly, not 
all fragments were recognized as originating from human 
tissue (Fig. 4c). While xenome and xengsort agreed that the 
human fraction is close to 75%, XenofilteR assigned fewer 
reads to human origins (less than 70%).

For this and the other RNA-seq datasets, we trimmed the 
Illumina adapters using cutadapt [15] prior to classifica-
tion, as some RNA fragments may be shorter than the read 
length. If this step is omitted, even fewer fragments are 
classified as human (graft): just below 70% for xenome and 
xengsort, and only about 53% for XenofilteR. The number of 
fragments classified as neither increases correspondingly.

We investigated the reads classified by xengsort as nei-
ther human nor mouse. Quality control with FastQC [16] 
revealed nothing of concern, but showed an unusual bio-
modal per-fragment GC content distribution with peaks 
at 45% and 55%. BLASTing the fragments against the non-
redundant nucleotide database [17] yielded no hits at all for 
97% of these fragments. A small number (2%) originated 
from the bacteriophage PhiX, which was to be expected, 
because it is a typical spike-in for Illumina libraries. The 
remaining 1% of fragments showed random hits over 
many species without a distinctive pattern. We therefore 
concluded that the “neither; ; fragments mainly consisted 
of artefacts from library construction, such as ligated and 
then sequenced random primers.

Patient‑derived xenograft (PDX) RNA‑seq samples 
from human pancreatic tumors
We evaluated 174 pancreatic tumor patient-derived 
xenograft (PDX) RNA-seq samples that are available 

internally at University Hospital Essen. Figure 4d shows 
that all three tools classify between 70% and 74% as graft 
(human) fragments. Again, XenofilteR seems to be the 
most conservative tool with about 70%, and xenome clas-
sifies about 72% as human and xengsort 74%. The remain-
ing reads are not classified by XenofilteR, while xenome 
and xengsort both assign about 25% to host (mouse). Fur-
thermore, xenome classifies about 2% and xengsort less 
than 1% as ambiguous.

So we observe that on all datasets, xengsort is more 
decisive than xenome and, judging from the pure human 
and mouse datasets, mostly correct about it. Because this 
is a large dataset, we also applied xengsort’s quick mode 
and found essentially no differences in classification 
results (less than 0.001 percentage points in each class; 
e.g. for graft: quick 74.0111% vs. standard 74.0105% of all 
reads; difference 0.0006%; cf. Fig. 4d).

Running times
A summary of running times for all datasets appears in 
Table 5.

Human‑captured mouse exomes
Our implementation xengsort needs around 70 CPU min-
utes for each of the five human-captured mouse exomes 
(total: 368 min), and less than 15 min of wall clock time 
using 8 threads. The speed-up being less than 8 results 
from serial intermediate I/O steps. While xenome makes 
better use of parallelism, it is slower overall, requiring 
5 to 6 times the CPU work of xengsort. For only scan-
ning already aligned BAM files, XenofilteR is surpris-
ingly slow, and we see that we can sort the reads from 
scratch in almost the same amount of CPU work that 
is required to compare (already computed) alignment 
scores. When adding bwa mem alignment times (even 
without the time required for sorting the resulting BAM 
files), XenofilteR needs an additional 887 to 1424 CPU 
minutes for the human alignments and an additional 424 
to 777 min for the mouse alignments per dataset, making 

Table 5  Dataset sizes (number of fragments; M: millions) and CPU times in minutes spent on different datasets, measured with the 
“time” command (user time) when running with 8 threads [xenome, xengsort, bwa-mem, BAM sorting, except for XenofilteR (XfR), which 
is single-threaded]

N/A: not applicable; tool could not be run on this dataset

Dataset/tool Size XfR+ bwa+ Sort Xenome Xengsort

Mouse exomes 307 M 310+ 8291+ 179 1823 368

Human genome 1258 M N/A+ 222939+ 940 9845 2463

Chicken genome 251 M 76+ 6976+ 118 1273 592

Leukemia RNA 1760 M 778+ 22,111+ 521 5188 1680

PDX RNA 9742 M 16,043+ 2,78,329+ 5862 59,692 13,555
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the alignment-based approach far less efficient than the 
alignment-free approach.

Human genome (GIAB) matepair library
We observe the same wall clock time ratio (about 3.5) 
between xenome and xengsort as for the mouse exome 
dataset.

Because this is a very large dataset (112  GB gzipped 
FASTQ), we additionally evaluated the effects of using 
xengsort’s “quick mode”. We observed a significant 
reduction in processing time (by about 33%) and almost 
unchanged classification results. We also ran the xeng-
sort classification with the optimized hash table (using an 
optimized assignment computed using the methods from 
[11] and found a small reduction (9%) in running time.

Chicken genome
The BAM file scan of XenofilteR here beats the align-
ment-free tools (cf. Table  5) because both BAM files 
are essentially empty, as very few reads align against 
human or mouse. Also, the speed advantage of xeng-
sort over xenome is less on this dataset, mainly because 
most k-mers are not found in the index and require h = 3 
memory lookups and likely cache misses. Such a dataset 
that contains neither graft nor host reads is adversarial 
for our design of xengsort. However, the engineering 
methods introduced in “Performance engineering” sec-
tion are effective on such a dataset. The following evalua-
tions are based on one lane (1/3) of the complete chicken 
dataset because of time constraints.

Figure  5 shows the effect of using different amounts 
of prefetching: none (0, default), prefetching the second 
choice bucket (1), or the second and third choice buck-
ets (2). At low table loads (0.7), prefetching is not very 

helpful (level 1) or even detrimental (level 2 compared to 
level 1) because of the additional overhead. At intermedi-
ate load levels (0.85), prefetching helps, but a second bit 
does not provide an additional advantage. At high table 
loads (0.95), more aggressive prefetching provides an 
additional gain in running time. In fact, with prefetch-
ing level 2, the running time is almost independent of the 
load factor.

Figure  6 shows the effect of using 0 (default), 1 or 2 
shortcut bits per bucket. Almost independently of the 
load factor, using one shortcut bit yields a measurable 
running time reduction by 10%. Using a second bit gives 
only a small additional advantage (ca. 4%).

Unfortunately, the effects of both optimizations are not 
cumulative. Essentially, an effective use of shortcuts ren-
ders prefetching almost useless. On the other datasets, 
where most k-mer queries are successful, the effects of 
both optimizations are much less pronounced and even 
negligible.

Human lymphocytic leukemia tumor RNA‑seq data
Again, xengsort is more than 3 times faster than xenome 
and needs time comparable to XenofilteR even when only 
the time for sorting and scanning the existing BAM files 
is taken into account (Table 5). Producing the alignments 
for XenofilteR takes much longer.

Patient‑derived xenograft (PDX) RNA‑seq samples 
from human pancreatic tumors
With its 174 samples, this is a particularly large dataset of 
the type that we optimized xengsort for. Therefore, run-
ning time differences between the three methods become 
particularly apparent. Figure  4e shows that the align-
ment using bwa-mem and the sorting of the BAM file 
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Fig. 5  Effect of different prefetching levels on the running time of 
the adversarial chicken genome dataset: no prefetching (0, default), 
prefetching the second bucket (1), or prefetching both second and 
third bucket (2). Times are averages over 4 repeated runs
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running time of the adversarial chicken genome dataset: no extra bits 
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engineering” section. Times are averages over 6 repeated runs
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for XenofilteR took over 284,191 CPU minutes (close to 
200 CPU days). After that, XenofilteR required an addi-
tional 16,043 CPU minutes (over 11 CPU days) to clas-
sify the aligned and sorted reads. In comparison, xenome 
with 59,691 CPU minutes (41.5 days) took only 20% of 
the time used by bwa-mem and XenofilteR, and xengsort 
needed 13,555 CPU minutes (9.5 CPU days) to sort all 
reads and is therefore even faster than the classification 
by XenofilteR alone, even excluding the alignment and 
sorting steps, and over 4 times faster than xenome. Using 
the “quick mode” with an optimized hash table at 88% 
load needed only 5713 CPU minutes (less than 4  CPU 
days), i.e., less than half of the time of a full analysis.

We additionally examined some trade-offs for this data-
set. First, we note that only counting proportions without 
output (“count” operation) is not much faster than sort-
ing the reads into different output files (“sort” operation): 
13,285 vs. 13,555 CPU minutes (2% faster). We addition-
ally measured the running time of xengsort’s count opera-
tion on hash tables with different load factors (88% and 
99%) using both the standard assignment by random 
walk and an optimal assignment [11]. As expected, a load 
factor of 99% was slower than 88% (by 10.4% on the ran-
dom walk assignment, but only by 2.6% on the optimized 
assignment). Using the optimal assignment gives a speed 
boost (13.3% faster at 88% load; 19.3% at 99% load). The 
optimized assignment at 99% load yields an even faster 
running time than the random walk assignment at 88% 
load by 11% (11,824 vs. 13,285 CPU minutes).

Discussion and conclusion
We revisited the xenograft sorting problem and improved 
upon the state of the art in alignment-free methods with 
our implementation of xengsort.

On typical datasets (PDX RNA-seq), it is at least four 
times faster and needs less memory than the compa-
rable xenome tool. Our experiments show that xengsort 
provides accurate classification results, and classifies 
more reads than xenome, which more often assigns the 
label “ambiguous”. Surprisingly, on PDX datasets, our 
approach is even faster than scanning already aligned 
BAM files. This favorable behavior arises because almost 
every k-mer in every read can be expected to be found 
in the key-value store, and lookups of present keys are 
highly optimized.

On adversarial datasets (e.g., a sequenced chicken 
genome, where almost none of the k-mers can be found 
in the hash table), xengsort is twice as fast as xenome, but 
8 times slower than scanning pre-aligned and pre-sorted 
BAM files (which are mostly empty). With additional 
engineering tweaks, such as shortcut bits or software 
prefetching, our performance on such datasets can be 
improved (10% speed gain). More refined prefetching 

strategies, such as k-mer look-ahead, may lead to further 
improvements, and we will experiment with additional 
ideas.

Given that producing and sorting the BAM files takes 
significant additional time, our results show that overall, 
alignment-free methods require significantly less com-
putational resources than alignment-based methods. In 
view of the current worldwide discussions on climate 
change and energy efficiency, we advocate that the most 
resource-efficient available methods should be used for a 
task, and we propose that xengsort is preferable to exist-
ing work in this regard. Even though one could argue that 
alignments are needed later anyway, we find that this is 
not always true: First, to analyze PDX samples, typically 
only the graft reads are further considered and need to 
be aligned. Second, recent research has shown that more 
and more application areas can be addressed by align-
ment-free methods, even structural variation and variant 
calling [18], so alignments may not be needed at all.

On the methodological side, we developed a gen-
eral key-value store for DNA/RNA k-mers that allows 
extremely fast lookups, often only a single random mem-
ory access, and that has a low memory footprint thanks 
to a high load factor and the technique of quotienting.

Thus this work might be seen as a blueprint for imple-
mentations of other alignment-free methods, such as 
for gene expression quantification, metagenomics, etc. 
In principle, one could replace the underlying key-value 
store of each published k-mer based method by the 
hashing approach presented here and probably obtain 
a speed-up of factor 2 to 4, while at the same time sav-
ing some space for the hash table. In practice, such an 
approach may be difficult because the code in question 
is often deeply nested in the application. However, we 
would like to suggest that for future implementations, 
three-way bucketed Cuckoo hash tables with quotienting 
should be given serious consideration.

A (small) limitation of our approach is that the size of 
the hash table must be known (at least approximately) in 
advance. In principle we could grow the table dynami-
cally, but it means re-hashing all elements. Fortunately, 
the total length of the sequences in the k-mer key-value 
store provides an easily calculated upper bound. The 
advantage of such a static approach is that only little 
additional memory is required during construction.

The software xengsort is available at http://​gitlab.​
com/​genom​einfo​rmati​cs/​xengs​ort under the MIT 
license. Installation and usage instructions are provided 
within the README file of the repository. The software 
is written in Python, but makes use of just-in-time com-
pilation using the numba package [19]. While requiring 
an additional 1–2 s of startup time, this allows for many 
optimizations, because certain parameters that become 

http://gitlab.com/genomeinformatics/xengsort
http://gitlab.com/genomeinformatics/xengsort
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only known at run time, such as random parameters for 
the hash functions, can be compiled as constants into 
the code. These optimizations yield savings that exceed 
the initial compilation effort.

While we have indications that classification results 
agree well overall among all methods and variants, we 
concur with a recent study [1] that there exist sub-
tle differences, whose effects can propagate through 

Table 6  Python source code of xengsort’s classification routine with thresholds, as of v1.0.0

def classify_xengsort (counts):
# counts =[ neither ,host ,graft ,both ,0,weakhost weakgraft ,both]
# returns: 0=host , 1=graft , 2=ambiguous , 3=both , 4=neither
nkmers = 0
for i in counts:

nkmers += i
if nkmers == 0:

return 2 # no k-mers -> ambiguous
nothing = uint32(0)
few = uint32(6)
insubstantial = uint32(nkmers // 20)
Ag = uint32(3)
Ah = uint32(3)
Mh = uint32(nkmers // 4)
Mg = uint32(nkmers // 4)
Mb = uint32(nkmers // 5)
Mn = uint32 (( nkmers * 3) // 4 + 1)

hscore = counts[1] + counts[5] // 2
gscore = counts[2] + counts[6] // 2

# no host
if counts[1] + counts[5] == nothing: # no host

if gscore >= Ag:
return 1 # graft

if counts[3] + counts[7] >= Mb: # both
return 3 # both

if counts[0] >= Mn: # neither
return 4 # neither

# host , but no graft
elif counts[2] + counts[6] == nothing: # no graft

if hscore >= Ah:
return 0 # host

if counts[3] + counts[7] >= Mb: # both
return 3 # both

if counts[0] >= Mn: # neither
return 4 # neither

# some real graft , few weak host , no real host:
if counts[2] >= few and counts[5] <= few and counts[1] == nothing:

return 1 # graft
# some real host , few weak graft , no real graft:
if counts[1] >= few and counts[6] <= few and counts[2] == nothing:

return 0 # host

# substantial graft , insubstantial real host ,
# a little weak host compared to graft:
if (counts[2] + counts[6] >= Mg and counts[1] <= insubstantial and

counts[5] < gscore):
return 1 # graft

# substantial host , insubstantial real graft ,
# a little weak graft compared to host:
if (counts[1] + counts[5] >= Mh and counts[2] <= insubstantial and

counts[6] < hscore):
return 0 # host

# substantial both , insubstantial host and graft:
if (counts[3] + counts[7] >= Mb and gscore <= insubstantial and

hscore <= insubstantial):
return 3 # both

# substantial neither:
if counts[0] >= Mn:

return 4 # neither
# no specific rule applies:
return 2 # ambiguous
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computational pipelines and influence, for example, 
variant calling results downstream, and we believe that 
further evaluation studies are necessary. In contrast 
to their study, we however suggest that a best practice 
workflow for PDX analysis should start (after quality 
control and adapter trimming on RNA-seq data) with 
alignment-free xenograft sorting, followed by aligning 
the graft reads and the reads that can originate from 
both genomes to the graft genome. In any workflow, 
the latter reads, classified as “both” may pose prob-
lems, because one may not be able to decide on the 
species of origin. Indeed, ultra-conserved regions of 
DNA sequence exist between human and mouse. In 
this sense we believe that full read sorting (into catego-
ries host, graft, both, neither, ambiguous, as opposed to 
extracting graft reads only) gives the highest flexibility 
for downstream steps and is preferable to filter-only 
approaches.

Appendix
Table  6 shows the Python source of the read (pair) 
classification routine. The input vector counts corre-
sponds to (x, h, g , b1, 0, h′, g ′, b2) with b = b1 + b2 in the 
notation of “Fragment classification” section.
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