
Azam et al. Algorithms Mol Biol (2021) 16:18
https://doi.org/10.1186/s13015-021-00197-2

RESEARCH

A novel method for inference of acyclic
chemical compounds with bounded
branch‑height based on artificial neural
networks and integer programming
Naveed Ahmed Azam1, Jianshen Zhu1, Yanming Sun1, Yu Shi1, Aleksandar Shurbevski1, Liang Zhao2,
Hiroshi Nagamochi1* and Tatsuya Akutsu3*   

Abstract 

Analysis of chemical graphs is becoming a major research topic in computational molecular biology due to its
potential applications to drug design. One of the major approaches in such a study is inverse quantitative structure
activity/property relationship (inverse QSAR/QSPR) analysis, which is to infer chemical structures from given chemical
activities/properties. Recently, a novel two-phase framework has been proposed for inverse QSAR/QSPR, where in the
first phase an artificial neural network (ANN) is used to construct a prediction function. In the second phase, a mixed
integer linear program (MILP) formulated on the trained ANN and a graph search algorithm are used to infer desired
chemical structures. The framework has been applied to the case of chemical compounds with cycle index up to 2 so
far. The computational results conducted on instances with n non-hydrogen atoms show that a feature vector can be
inferred by solving an MILP for up to n = 40 , whereas graphs can be enumerated for up to n = 15 . When applied to
the case of chemical acyclic graphs, the maximum computable diameter of a chemical structure was up to 8. In this
paper, we introduce a new characterization of graph structure, called “branch-height” based on which a new MILP
formulation and a new graph search algorithm are designed for chemical acyclic graphs. The results of computational
experiments using such chemical properties as octanol/water partition coefficient, boiling point and heat of combus-
tion suggest that the proposed method can infer chemical acyclic graphs with around n = 50 and diameter 30.

Keywords:  QSAR/QSPR, Molecular design, Artificial neural network, Mixed integer linear programming, Enumeration
of graphs

AMS Subject Classification:  Primary, 05C92, 92E10, Secondary, 05C30, 68T07, 90C11, 92-04

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
In computational molecular biology, various types of
data have been utilized, which include sequences, gene
expression patterns, and protein structures. Graph struc-
tured data have also been extensively utilized, which
include metabolic pathways, protein-protein interac-
tion networks, gene regulatory networks, and chemical
graphs. Much attention has recently been paid to the
analysis of chemical graphs due to its potential applica-
tions to computer-aided drug design. One of the major

Open Access

Algorithms for
Molecular Biology

*Correspondence: nag@amp.i.kyoto-u.ac.jp; takutsu@kuicr.kyoto-u.ac.jp
1 Department of Applied Mathematics and Physics, Kyoto University,
Yoshida Honmachi, Sakyo, Kyoto 606‑8501, Japan
3 Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Gokasho, Uji 611‑0011, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-9763-797X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00197-2&domain=pdf

Page 2 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

approaches to computer-aided drug design is quanti-
tative structure activity/property relationship (QSAR/
QSPR) analysis, the purpose of which is to derive quan-
titative relationships between chemical structures and
their activities/properties. Furthermore, inverse QSAR/
QSPR has been extensively studied [1, 2], the purpose of
which is to infer chemical structures from given chemical
activities/properties. Inverse QSAR/QSPR is often for-
mulated as an optimization problem to find a chemical
structure maximizing (or minimizing) an objective func-
tion under various constraints.

In both QSAR/QSPR and inverse QSAR/QSPR, chemi-
cal compounds are usually represented as vectors of
real or integer numbers, which are often called descrip-
tors and correspond to feature vectors in machine learn-
ing. Using these chemical descriptors, various heuristic
and statistical methods have been developed for finding
optimal or nearly optimal graph structures under given
objective functions [1, 3, 4]. Inference or enumeration
of graph structures from a given feature vector is a cru-
cial subtask in many of such methods. Various methods
have been developed for this enumeration problem [5–8]
and the computational complexity of the inference prob-
lem has been analyzed [9, 10]. On the other hand, enu-
meration in itself is a challenging task, since the number
of molecules (i.e., chemical graphs) with up to 30 atoms
(vertices) C, N, O, and S, may exceed 1060 [11].

As a new approach, artificial neural network (ANN)
and deep learning technologies have recently been
applied to inverse QSAR/QSPR. For example, varia-
tional autoencoders [12], recurrent neural networks [13,
14], and grammar variational autoencoders [15] have
been applied. In these approaches, new chemical graphs
are generated by solving a kind of inverse problems on
neural networks that are trained using known chemi-
cal compound/activity pairs. However, the optimality
of the solution is not necessarily guaranteed in these
approaches. In order to guarantee the optimality math-
ematically, a novel approach has been proposed [16] for
ANNs, using mixed integer linear programming (MILP).

Recently, a new framework has been proposed [17–19]
by combining two previous approaches: efficient enumer-
ation of tree-like graphs [5], and MILP-based formulation
of the inverse problem on ANNs [16]. This combined
framework for inverse QSAR/QSPR mainly consists of
two phases. The first phase solves (I) Prediction Prob-
lem, where a feature vector f(G) of a chemical graph G is
introduced and a prediction function ψN on a chemical
property π is constructed with an ANN N using a data
set of chemical compounds G and their values a(G) of π .
The second phase solves (II) Inverse Problem, where
(II-a) given a target value y∗ of the chemical property π , a
feature vector x∗ is inferred from the trained ANN N so

that ψN (x∗) is close to y∗ and (II-b) then a set of chemical
structures G∗ such that f (G∗) = x∗ is enumerated by a
graph search algorithm. In (II-a) of the above-mentioned
previous methods [17–19], an MILP is formulated for
acyclic chemical compounds. Afterwards, Ito et al. [20]
and Zhu et al. [21] designed a method of inferring chemi-
cal graphs with cycle index 1 and 2, respectively, by for-
mulating a new MILP and using an efficient algorithm for
enumerating chemical graphs with cycle index 1 [22] and
cycle index 2 [23, 24]. The computational results con-
ducted on instances with n non-hydrogen atoms show
that a feature vector x∗ can be inferred for up to around
n = 40 whereas graphs G∗ can be enumerated for up to
around n = 15.

In this paper, we present a new characterization of
graph structure, called “branch-height.” Based on this,
we can treat a class of acyclic chemical graphs with a
structure that is topologically restricted but frequently
appears in a chemical database, formulate a new MILP
formulation that can handle acyclic graphs with a large
diameter, and design a new graph search algorithm that
generates acyclic chemical graphs with up to around 50
vertices. The results of computational experiments using
such chemical properties as octanol/water partition coef-
ficient, boiling point and heat of combustion suggest that
the proposed method is much more useful than the pre-
vious method.

The paper is organized as follows. "Preliminary" section
introduces some notions on graphs, a modeling of chemi-
cal compounds and a choice of descriptors. "A method for
inferring chemical graphs" section reviews the framework
for inferring chemical compounds based on ANNs and
MILPs. "MILPs for chemical acyclic graphs with bounded
branch-height" section introduces a new method of mod-
eling acyclic chemical graphs and proposes a new MILP
formulation that represents an acyclic chemical graph
G with n vertices, where our MILP requires only O(n)
variables and constraints when the branch-parameter k
and the k-branch height in G (graph topological param-
eters newly introduced in this paper) is constant. "A new
graph search algorithm" section describes the idea of
our new dynamic programming type of algorithm that
enumerates a given number of acyclic chemical graphs
for a given feature vector. "Experimental results" section
reports the results on some computational experiments
conducted for chemical properties such as octanol/water
partition coefficient, boiling point and heat of combus-
tion. "Concluding remarks" section makes some con-
cluding remarks. Appendix A provides the statistical
distribution of structural features of acyclic chemical
graphs in a chemical graph database. Appendices B and C
describe the idea of our MILP formulation and the details
of all variables and constraints in the MILP formulation,

Page 3 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

respectively. Appendix D presents descriptions of our
new graph search algorithm.

Preliminary
This section introduces some notions and terminology
on graphs, a modeling of chemical compounds and our
choice of descriptors.

Let R , Z and Z+ denote the sets of reals, integers and
non-negative integers, respectively. For two integers a
and b, let [a, b] denote the set of integers i with a ≤ i ≤ b.

Graphs
A graph stands for a simple undirected graph, where an
edge joining two vertices u and v is denoted by uv (= vu) .
The sets of vertices and edges of a graph H are denoted
by V(H) and E(H), respectively. Let H = (V ,E) be a graph
with a set V of vertices and a set E of edges. For a vertex
v ∈ V  , the set of neighbors of v in H is denoted by NH (v) ,
and the degree degH (v) of v is defined to be |NH (v)| . The
length of a path is defined to be the number of edges in
the path. The distance distH (u, v) between two vertices
u, v ∈ V is defined to be the minimum length of a path
connecting u and v in H. The diameter dia(H) of H is
defined to be the maximum distance between two ver-
tices in H; i.e., dia(H) � maxu,v∈V distH (u, v) . Denote by
ℓ(P) the length of a path P.

Centers of trees For a tree T with an even (resp., odd)
diameter d, the center is defined to be the vertex v (resp.,
the adjacent vertex pair {v, v′} ) that situates in the middle
of one of the longest paths, with length d. The center of
each tree is uniquely determined.

Rooted trees A rooted tree is defined to be a tree where a
vertex (or a pair of adjacent vertices) is designated as the

root. Let T be a rooted tree, where for two adjacent verti-
ces u and v, vertex u is called the parent of v if u is closer
to the root than v is. The height height(v) of a vertex v in
T is defined to be the maximum length of a path from v
to a leaf u in the descendants of v, where height(v) = 0
for each leaf v in T. Figure 1a and b illustrate examples of
trees rooted at the center.

Degree-bounded trees For positive integers a, b
and c with b ≥ 2 , let T(a, b, c) denote the rooted tree
such that the number of children of the root is a, the
number of children of each non-root internal ver-
tex is b and the distance from the root to each leaf
is c. We see that the number of vertices in T(a, b, c) is
a(bc − 1)/(b− 1)+ 1 , and the number of non-leaf verti-
ces in T(a, b, c) is a(bc−1 − 1)/(b− 1)+ 1 . In the rooted
tree T(a, b, c), we denote the vertices by v1, v2, . . . , vn
with a breadth-first-search order, and denote the edge
between a vertex vi with i ∈ [2, n] and its parent by ei ,
where n = a(bc − 1)/(b− 1)+ 1 and each vertex vi with
i ∈ [1, a(bc−1 − 1)/(b− 1)+ 1] is a non-leaf vertex. For
each vertex vi in T(a, b, c), let Cld(i) denote the set of
indices j such that vj is a child of vi , and prt(i) denote the
index j such that vj is the parent of vi when i ∈ [2, n] . Let
Pprc(a, b, c) be a set of ordered index pairs (i, j) of vertices
vi and vj in T(a, b, c). We call Pprc(a, b, c) proper if the next
conditions hold:

(a)	 For each pair of vertices vi and vj in T(a, b, c)
such that vi is the parent of vj , there is a sequence
(i1, i2), (i2, i3), . . . , (ik−1, ik) of index pairs in
Pprc(a, b, c) such that i1 = i and ik = j ; and

(b)	 Each subtree H = (V ,E) of T(a, b, c) with v1 ∈ V
is isomorphic to a subtree H ′ = (V ′,E′) by a graph

a b c
Fig. 1  An illustration of rooted trees and a 2-branch-tree: a A tree H1 with odd diameter 11; b A tree H2 with even diameter 10; c The 2-branch-tree
of H2

Page 4 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

isomorphism ψ : V → V ′ with ψ(v1) = v1 so that
if vj ∈ V ′ for a pair (i, j) ∈ Pprc(a, b, c) then vi ∈ V ′.

Note that a proper set Pprc(a, b, c) is not necessarily
unique.

Branch-height in trees In this paper, we introduce
“branch-height” of a tree as a new measure to the
“agglomeration degree” of trees. We specify a non-
negative integer k, called a branch-parameter to define
branch-height. First we regard T as a rooted tree by
choosing the center of T as the root. Figure 1a, b illus-
trate examples of rooted trees. We introduce the follow-
ing terminology on a rooted tree T.

•	 A leaf k-branch: A non-root vertex v in T such that
height(v) = k.

•	 A non-leaf k-branch: A non-root vertex v in T such
that v has at least two children, and for each child u
of v it holds that height(u) ≥ k . We call a leaf or a
non-leaf k-branch a k-branch. Figure 2a–c illustrate
the k-branches of the rooted tree H2 in Fig. 1b for
k = 1, 2 and 3, respectively.

•	 A k-branch-path: A path P in T that joins two ver-
tices u and u′ such that each of u and u′ is the root
or a k-branch and P does not contain the root or a
k-branch as an internal vertex.

•	 The k-branch-subtree of T: The subtree of T that con-
sists of the edges in all k-branch-paths of T. We call a
vertex (resp., an edge) in T a k-internal vertex (resp.,
a k-internal edge) if it is contained in the k-branch-
subtree of T and a k-external vertex (resp., a k-exter-
nal edge) otherwise. Let V in and V ex (resp., Ein and
Eex ) denote the sets of k-internal and k-external ver-
tices (resp., edges) in T.

•	 The k-branch-tree of T: The rooted tree obtained
from the k-branch-subtree of T by replacing each

k-branch-path with a single edge. Figure 1c illustrates
the 2-branch-tree of the rooted tree H2 in Fig. 1b.
Notice that by our definitions, leaf k-branches and
non-leaf k-branches are leaves and branching points
in the k-branch-tree.

•	 A k-fringe-tree: One of the connected components
that consists of the edges not in the k-branch-sub-
tree. Each k-fringe-tree T ′ contains exactly one vertex
v in the k-branch-subtree, where T ′ is regarded as a
tree rooted at v. Note that the height of any k-fringe-
tree is at most k. Figure 2a–c illustrate the k-fringe-
trees of the rooted tree H2 in Fig. 1b for k = 1, 2 and
3, respectively.

•	 The k-branch-leaf number blk(T) : The number
of leaf k-branches in T. For the trees Hi , i = 1, 2
in Fig. 1a, b, it holds that bl0(H1) = bl0(H2) = 8 ,
bl1(H1) = bl1(H2) = 5 , bl2(H1) = bl2(H2) = 3 and
bl3(H1) = bl3(H2) = 2.

•	 The k-branch height bhk(T) of T: The maximum
number of k-branches along a path from the root to
a leaf of T; i.e., bhk(T) is the height of the k-branch-
tree T ∗ (the maximum length of a path from the root
to a leaf in T ∗ ). For the example of trees Hi , i = 1, 2
in Fig. 1a, b, it holds that bh0(H1) = bh0(H2) = 3 ,
bh1(H1) = bh1(H2) = 3 , bh2(H1) = bh2(H2) = 2
and bh3(H1) = bh3(H2) = 1.

Even though this paper deals exclusively with acyclic
graphs, we formally introduce the k-branch height for
chemical cyclic graphs (chemical graphs that contain at
least one cycle). The core of a chemical cyclic graph G is
defined to be the induced subgraph G′ of G that consists
of vertices in a cycle or the vertices in a path joining two
cycles. A vertex in the core (not in the core) is called a
core vertex (resp., a non-core vertex). The edges not in
the core of a chemical cyclic graph G form a collection

a b c
Fig. 2  An illustration of the k-branches (depicted by gray circles), the k-branch-subtree (depicted by solid lines) and k-fringe-trees (depicted by
dashed lines) of H2 : a k = 1 ; b k = 2 ; c k = 3

Page 5 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

of trees T, which we call a non-core tree. Each non-core
tree contains exactly one core vertex and is regarded as
a tree rooted at the core vertex. The k-branch height of a
chemical cyclic graph G is defined to be the maximum of
k-branch heights over all non-core trees. We observe that
most chemical graphs G with at most 50 non-hydrogen
atoms satisfy bh2(G) ≤ 2 . See Appendix A for a summary
of statistical feature distribution of chemical graphs reg-
istered in the chemical database PubChem [25].

For convenient reference, we summarize the graph-
related notation used throughout this paper in Table 1.

Modeling of chemical compounds
We represent the graph structure of a chemical com-
pound as a graph with labels on vertices and multiplic-
ity on edges in a hydrogen-suppressed model. Let � be
a set of labels each of which represents a chemical ele-
ment such as C (carbon), O (oxygen), N (nitrogen) and so
on, where we assume that � does not contain H (hydro-
gen). Let mass(a) and val(a) denote the mass and valence
of a chemical element a ∈ � , respectively. In our model,
we use integer mass∗(a) = ⌊10 ·mass(a)⌋ , a ∈ � , and
assume that each chemical element a ∈ � has a unique
valence val(a) ∈ [1, 4].

We introduce a total order < over the elements in �
according to their mass values; i.e., we write a < b for
chemical elements a,b ∈ � with mass(a) < mass(b) .
A pair of two atoms a and b , a,b ∈ � , joined with a
bond-multiplicity m ∈ [1, 3] , where m = 1, 2, 3, cor-
respond to single, double, and triple bonds, respec-
tively, is denoted by a tuple γ = (a,b,m) , called the

adjacency-configuration of the atom pair. Choose a set
Ŵ< of tuples γ = (a,b,m) ∈ �×�× [1, 3] such that
a < b . For a tuple γ = (a,b,m) ∈ �×�× [1, 3] , let γ
denote the tuple (b,a,m) . Set Ŵ> = {γ | γ ∈ Ŵ<} and
Ŵ= = {(a,a,m) | a ∈ �,m ∈ [1, 3]} , and Ŵ = Ŵ< ∪ Ŵ=.

We use a hydrogen-suppressed model because hydro-
gen atoms can be added at the final stage.

Let (H ,α,β) be a tuple of a graph H = (V ,E) , a func-
tion α : V → � and a function β : E → [1, 3] , where
α(v) = a and β(e) = m mean that a chemical element
a is assigned to a vertex v and a bond-multiplicity m is
assigned to an edge e, respectively. For a notational con-
venience, we denote the sum of bond-multiplicities of
edges incident to a vertex u ∈ V by

β(u) �
∑

uv∈E β(uv).

A tuple G = (H ,α,β) is called a chemical graph over �
and Ŵ< ∪ Ŵ= if the following holds:

	(i)	 H is connected;
	(ii)	 (α(u),α(v),β(uv)) ∈ Ŵ< ∪ Ŵ= for each edge

uv ∈ E ; and
	(iii)	 β(u) ≤ val(α(u)) for each vertex u ∈ V .

A chemical graph G = (H ,α,β) is called a “chemical acy-
clic graph” if the graph H is an acyclic graph. Similarly for
other types of graphs for H.

We define the bond-configuration of an edge
e = uv ∈ E in a chemical graph G to be a tuple
(degH (u), degH (v),β(e)) such that degH (u) ≤ degH (v) for
the end-vertices u and v of e. Let Bc denote the set of bond-
configurations µ = (d1, d2,m) ∈ [1, 4] × [1, 4] × [1, 3]
such that max{d1, d2} +m ≤ 5 . We regard that
(d1, d2,m) = (d2, d1,m).

In summary, we give the notation on modeling chemi-
cal compounds used throughout this paper in Table 2.

Descriptors
In our method, we use only graph-theoretical descriptors
for defining a feature vector, which facilitates our design
of an algorithm for constructing graphs. Given a chemi-
cal acyclic graph G = (H ,α,β) , we define a feature vector
f(G) that consists of the following 11 kinds of descriptors.
We choose an integer k∗ ∈ [1, 4] as a branch-parameter.

General chemical graph descriptors

•	 n(G): the number |V| of vertices.
•	 dia(G) � dia(H)/n(G) : the diameter of H divided by

n(G) = |V |.
•	 ms �

∑
v∈V mass∗(α(v))/n(G) : the average mass∗ of

atoms in G.
•	 nH(G) : the number of hydrogen atoms to be added to

G.

Table 1  Graph-theoretic notation

Symbol Designation

General graph notation

 H = (V , E) A graph H with a vertex set V and edge set E

 V(H) The vertex set of a graph H

 E(H) The edge set of a graph H

 NH(v) The number of neighbors of a vertex v in a graph H

 degH(v) The degree |NH(v)| of a vertex v in a graph H

 distH(u, v) The distance between two vertices u and v in a graph H

 dia(H) The diameter of a graph H

 ℓ(P) The length of a path P

 Branch-height in a tree T

 V in The set of internal vertices for a fixed branch parameter k

 Vex The set of external vertices for a fixed branch parameter k

 E in The set of internal edges for a fixed branch parameter k

 Eex The set of external edges for a fixed branch parameter k

 blk(T) The k-branch-leaf number of T

 bhk(T) The k-branch height of T

Page 6 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

Descriptors for vertices of certain degree

•	 dgt
i
(G) � |{v ∈ V

t | deg
H
(v) = i}|, i ∈ [1, 4], t ∈ {in, ex} :

the number of k∗-internal/k∗-external vertices of
degree i in H, where the bond-multiplicity of edges
incident to a vertex v is ignored in the degree of v.

Descriptors for branch-leaf number and branch-height

•	 blk∗(G) : the k∗-branch-leaf number of G.
•	 bhk∗(G) : the k∗-branch height of G.

Descriptors for vertex labels

•	 cet
a
(G) � |{v ∈ V t | α(v) = a}|, a ∈ �, t ∈ {in, ex} :

the number of k∗-internal/k∗-external vertices with
chemical element a ∈ �.

Descriptors for the number of bonds

•	 bdtm(G) � {e ∈ Et | β(e) = m} , m = 2, 3 , t ∈ {in, ex} :
the number of k∗-internal/k∗-external edges with
bond-multiplicity m.

Descriptors for adjacency-configurations

•	 actγ (G) , γ ∈ Ŵ , t ∈ {in, ex} : the number of k∗-inter-
nal/k∗-external edges e = uv with adjacency-config-
uration γ = (a,b,m) (i.e., α(u) = a,α(v) = b and
β(e) = m ) in G.

Descriptors for bond-configurations

•	 bctµ(G) , µ ∈ Bc , t ∈ {in, ex} : the number of k∗-inter-
nal/k∗-external edges e = uv with bond-configuration
µ = (d, d′,m) (i.e., degH (u) = d, degH (v) = d′ and
β(e) = m ) in G.

Note that

The number K of descriptors in our feature vector
x = f (G) is K = 2|�| + 2|Ŵ| + 50 . Note that the above K
descriptors are not independent in the sense that some
descriptors depend on the combination of other descrip-
tors. For example, descriptor bdini (G) can be determined
by

∑
γ=(a,b,m)∈Ŵ:m=i ac

in
γ (G).

A method for inferring chemical graphs
Framework for the Inverse QSAR/QSPR
We review the framework that solves the inverse QSAR/
QSPR by using MILPs [20, 21], which is illustrated in
Fig. 3. For a specified chemical property π such as boiling
point, we denote by a(G) the observed value of the prop-
erty π for a chemical compound G. As the first phase, we
solve (I) Prediction Problem with the following three
steps.

Phase 1.
Stage 1: Let DB be a set of chemical graphs. For a

specified chemical property π , choose a class G of
graphs such as acyclic graphs or monocyclic graphs.
Prepare a data set Dπ = {Gi | i = 1, 2, . . . ,m} ⊆ G ∩ DB
such that the value a(Gi) of each chemical graph Gi ,
i = 1, 2, . . . ,m is available. Set reals a, a ∈ R so that
a ≤ a(Gi) ≤ a , i = 1, 2, . . . ,m.

nH(G) �
∑

a ∈ �,
t ∈ {in, ex}

val(a)cet
a
(G)−

∑

γ = (a,b,m) ∈ Ŵ,
t ∈ {in, ex}

2m · actγ (G)

=
∑

a ∈ �,
t ∈ {in, ex}

val(a)cet
a
(G)− 2(n(G)− 1+

∑

m ∈ [2, 3],
t ∈ {in, ex}

(m− 1) · bdtm(G)).

Table 2  Notation adopted for modeling chemical compounds

Symbol Designation

� A set of labels representing chemical elements

mass(a) Atomic mass of chemical element a ∈ �

val(a) Valence of chemical element a ∈ �

mass∗(a) ⌊10 ·mass(a)⌋ , a ∈ �

a < b A total order over labels in the set � , indicating
mass(a) < mass(b)

γ = (a,b,m) Adjacency configuration for an atom pair, a,b ∈ � ,
m ∈ [1, 3]

γ For an adjacency configuration γ = (a,b,m) ,
γ = (b,a,m)

Ŵ< Set of adjacency configurations
γ = (a,b,m) ∈ �×�× [1, 3] with a < b

Ŵ> Set of adjacency configurations Ŵ> = {γ | γ ∈ Ŵ<}

Ŵ= Set of adjacency configurations,
Ŵ= = {(a,a,m) | a ∈ �,m = [1, 3]}

Ŵ Ŵ = Ŵ< ∪ Ŵ=

α A mapping of atom labels in � to graph vertices

β A mapping of integers in [1, 3] to graph edges, over-
loaded as β(u) =

∑
uv∈E(H) β(uv) for vertices u ∈ V(H)

in a graph H

Bc Set of bond-configurations µ ∈ [1, 4] × [1, 4] × [1, 3]

Page 7 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

Stage 2: Introduce a feature function f : G → R
K for

a positive integer K. We call f(G) the feature vector of
G ∈ G , and call each entry of a vector f(G) a descriptor
of G.

Stage 3: Construct a prediction function ψN with an
ANN N that, given a vector in RK  , returns a real num-
ber in the range [a, a] so that ψN (f (G)) takes a value
nearly equal to a(G) for many chemical graphs in DB .
See Fig. 3a–c for an illustration of Stages 1, 2, and 3 in
Phase 1.

In this paper, we use the range-based method
to define an applicability domain (AD) [26] to our
inverse QSAR/QSPR. Set xj and xj to be the mini-
mum and maximum values of the j-th descriptor xj in
f (Gi) , respectively, over all graphs Gi , i = 1, 2, . . . ,m ,
where we possibly normalize some descriptors such as
cein

a
(G) , which is normalized with cein

a
(G)/n(G) . Define

our AD D to be the set of vectors x ∈ R
K such that

xj ≤ xj ≤ xj for the variable xj of each j-th descriptor,
j = 1, 2, . . . , k.

In the second phase, we try to find a vector x∗ ∈ R
K

from a target value y∗ of the chemical propery π such that
ψN (x∗) = y∗ . Based on the method due to Akutsu and
Nagamochi [16], Chiewvanichakorn et al. [18] showed
that this problem can be formulated as an MILP. By
including a set of linear constraints such that x ∈ D into
their MILP, we obtain the next result.

Theorem 1  ([20, 21]) Let N be an ANN with a piece-
wise-linear activation function for an input vector
x ∈ R

K , nA denote the number of nodes in the architecture
and nB denote the total number of break-points over all
activation functions. Then there is an MILP M(x, y; C1)
that consists of variable vectors x ∈ D (⊆ R

K) , y ∈ R,
and an auxiliary variable vector z ∈ R

p for some integer
p = O(nA + nB) and a set C1 of O(nA + nB) constraints on
these variables such that: ψN (x∗) = y∗ if and only if there
is a vector (x∗, y∗) feasible to M(x, y; C1).

a Phase 1, Stage 1

e Phase 2, Stage 5d Phase 2, Stage 4

b Phase 1, Stage 2 c Phase 1, Stage 3

Fig. 3  a–c An illustration of Phase 1: a Stage 1 for preparing a data set Dπ for a graph class G and a specified chemical property π ; b Stage 2 for
introducing a feature function f with descriptors; c Stage 3 for constructing a prediction function ψN with an ANN N  ; d–e An illustration of Phase 2:
(d) Stage 4 for formulating an MILP M(x , y , g;C1,C2) and finding a feasible solution (x∗ , g∗) of the MILP for a target value y∗ so that ψN (x∗) = y∗
(possibly detecting that no target graph G∗ exists); (e) Stage 5 for enumerating graphs G∗ ∈ G such that f (G∗) = x∗

Page 8 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

See Appendix “Upper and lower bounds on descrip-
tors” for the set of constraints to define our AD D in the
MILP M(x, y; C1) in Theorem 1.

A vector x ∈ R
K is called admissible if there is a chemi-

cal graph G ∈ G such that f (G) = x [17]. Let A denote
the set of admissible vectors x ∈ R

K  . To ensure that a
vector x∗ inferred from a given target value y∗ becomes
admissible, we introduce a new vector variable g ∈ R

q for
an integer q. For the class G of chemical acyclic graphs,
Azam et al. [17] introduced a set C2 of new constraints
with a new vector variable g ∈ R

q for an integer q so that

•	 A feasible solution (x∗, g∗) of a new MILP for a target
value y∗ delivers a vector x∗ with ψN (x∗) = y∗ , and

•	 A vector g∗ that represents a chemical acyclic graph
G∗ ∈ G.

Afterwards, for the classes of chemical graphs with cycle
index 1 and 2, Ito et al. [17] and Zhu et al. [21] presented
such a set C2 of constraints so that a vector g∗ in a feasible
solution (x∗, g∗) of a new MILP can represent a chemical
graph G∗ in the class G , respectively.

As the second phase, we solve (II) Inverse Problem
for the inverse QSAR/QSPR by treating the following
inference problems.

(II-a) Inference of Vectors
Input: A real y∗ with a ≤ y∗ ≤ a.
Output: Vectors x∗ ∈ A ∩D and g∗ ∈ R

q such that
ψN (x∗) = y∗ and g∗ forms a chemical graph G∗ ∈ G with
f (G∗) = x∗.

(II-b) Inference of Graphs
Input: A vector x∗ ∈ A ∩D.
Output: All graphs G∗ ∈ G such that f (G∗) = x∗.
The second phase consists of the next two steps.
Phase 2.
Stage 4: Formulate Problem (II-a) as the above MILP

M(x, y, g; C1, C2) based on G and N  . Find a feasible solu-
tion (x∗, g∗) of the MILP such that

x∗ ∈ A ∩D and ψN (x∗) = y∗.

The second requirement may be replaced with inequali-
ties (1− ε)y∗ ≤ ψN (x∗) ≤ (1+ ε)y∗ for a tolerance
ε > 0.

Stage 5: To solve Problem (II-b), enumerate all (or a
specified number) of graphs G∗ ∈ G such that f (G∗) = x∗
for the inferred vector x∗ . See Fig. 3d, e for an illustration
of Stages 4 and 5 in Phase 2.

In practical applications, there would be many criteria
that a target chemical compound needs to satisfy rather
than a single chemical property π , such as stability and
synthesizability. The above five steps in the framework
are rather schematic in the sense that it would be neces-
sary to adjust several settings in each stage in order to

find a collection of chemical graphs that meet many of
those criteria after a repeated application of the frame-
work. For example, we can include in an MILP formula-
tion in Stage 4 additional conditions such as lower and
upper bounds on the frequency of adjacency-configura-
tions and extra requirements on substructures of a tar-
get chemical graph as long as these conditions can be
expressed as linear constraints with integer/real vari-
ables. Also an efficient algorithm in Stage 5 can quickly
offer a large number of isomers of the same feature vec-
tors, to which we can apply a further screening to choose
promising candidates for chemical graphs.

Our target graph class
In this paper, we choose a branch-parameter k ≥ 1 and
define a class G of chemical acyclic graphs G such that

•	 The maximum degree in G is at most 4;
•	 The k-branch height bhk(G) is bounded for a speci-

fied branch-parameter k; and
•	 The size of each k-fringe-tree in G is bounded.

The reason why we restrict ourselves to the graphs in
G is that this class G covers a large part of the acyclic
chemical compounds registered in the chemical data-
base PubChem. See Appendix A for a summary of the
statistical features of the chemical graphs in PubChem
in terms of k-branch height and the size of 2-fringe-
trees. According to this, over 55% (resp., 99%) of acy-
clic chemical compounds with up to 100 non-hydrogen
atoms in PubChem have the maximum degree 3 (resp.,
4); and nearly 87% (resp., 99%) of acyclic chemical com-
pounds with up to 50 non-hydrogen atoms in PubChem
have the 2-branch height at most 1 (resp., 2). This
implies that k = 2 is sufficient to cover most of chemi-
cal acyclic graphs. For k = 2 , over 92% of 2-fringe-trees
of chemical compounds with up to 100 non-hydrogen
atoms in PubChem obey the following size constraint:

We formulate an MILP in Stage 4 that, given a tar-
get value y∗ , infers a vector x∗ ∈ Z

K
+ with ψN (x∗) = y∗

and a chemical acyclic graph G∗ = (H ,α,β) ∈ G with
f (G∗) = x∗ . We here specify some of the features of a
graph G∗ ∈ G such as the number of non-hydrogen atoms
in order to control the graph structure of target graphs
to be inferred and to simplify MILP formulations. In this
paper, we specify the following features on a graph G ∈ G :
a set � of chemical elements, a set Ŵ< of adjacency-con-
figurations, the maximum degree, the number of non-
hydrogen atoms, the diameter, the k-branch height and
the k-branch-leaf number for a branch-parameter k.

(1)
n(T) ≤ 2 deg

T
(r)+ 2 for each 2-fringe-tree T with the root r.

Page 9 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

More formally, given specified integers n∗ ,
dmax , dia∗ , k∗ , bh∗ , bl∗ ∈ Z other than � and Ŵ , let
H(n∗, dmax, dia

∗, k∗, bh∗, bl∗) denote the set of acyclic
graphs H such that

The maximum degree of a vertex in H is at most 3
when dmax = 3 (or equal to 4 when dmax = 4),
The number n(H) of vertices in H is n∗,
The diameter dia(H) of H is dia∗,
The k∗-branch height bhk∗(H) is bh∗,
The k∗-branch-leaf number blk∗(H) is bl∗ and
(1) holds.

To design Stage 4 for our class G , we for-
mulate an MILP M(x, g; C2) that infers a
chemical graph G∗ = (H ,α,β) ∈ G with
H ∈ H(n∗, dmax, dia

∗, k∗, bh∗, bl∗) for a given specifica-
tion (�,Ŵ, n∗, dmax, dia

∗, k∗, bh∗, bl∗) . The details will
be given in "MILPs for chemical acyclic graphs with
bounded branch-height" section and Appendix C.

Design of Stage 5, i.e., generating chemical graphs
G∗ that satisfy f (G∗) = x∗ for a given feature vector
x∗ ∈ Z

K
+ is still challenging for a relatively large instance

with size n(G∗) ≥ 20 . There have been proposed algo-
rithms for generating chemical graphs G∗ in Stage 5
for the classes of graphs with cycle index 0 to 2 [5,
22–24]. All of these are designed based on the branch-
and-bound method and can generate a target chemical
graph with size n(G∗) ≤ 20 . To break this barrier, we
newly employ the dynamic programming method for
designing an algorithm in Stage 5 in order to generate
a target chemical graph G∗ with size n(G∗) = 50 . For
this, we further restrict the structure of acyclic graphs
G so that the number bl2(G) of leaf 2-branches is at
most 3. Among all acyclic chemical compounds with
up to 50 non-hydrogen atoms in the chemical database
PubChem, the ratio of the number of acyclic chemical
compounds G with bl2(G) ≤ 2 (resp., bl2(G) ≤ 3 ) is 78%
(resp., 95%). See "A new graph search algorithm" sec-
tion and Appendix D for the details on the new algo-
rithm in Stage 5.

To conclude the description of the target graph class to
be inferred by the inverse QSAR/QSPR framework devel-
oped in this paper, we summarize the global parameters
in Table 3.

MILPs for chemical acyclic graphs with bounded
branch‑height
In this section, we describe an idea of formulating an
MILP M(x, g; C2) to infer a chemical acyclic graph G in
the class G for a given specification (�,Ŵ, n∗, dmax, dia

∗,
k∗, bh∗, bl∗) defined in the previous section. Please refer

to Table 3 for a summary of the parameters that we
assume to be fixed for a target graph.

Scheme graphs
Our new idea of constructing an acyclic graph H is as fol-
lows. See a rooted tree TB = T (dmax, dmax − 1, bh∗) in
Fig. 4a.

•	 From the tree TB , we first choose a subtree T includ-
ing the root u1 . We use T as the k∗-branch-tree of H.

•	 Next, we choose some edges in the tree T and replace
each of the edges e = uiuj with a path Pe between
vertices ui and uj . Let T ∗ denote the resulting tree.
We use T ∗ as the k∗-branch-subtree of H.

•	 Finally, we append to the tree T ∗ rooted trees with
height at most k as the k∗-fringe-trees of H. The
resulting tree is a required rooted tree H.

In our MILP, we prepare a binary variable for each of
the vertices and edges in TB so that a subtree T of TB can
be selected as one of the combinations of these binary
values.

To represent a replacement of an edge e with a path Pe in
our MILP, we introduce a path Pt∗ = (v1,1, v2,1, . . . , vt∗,1)
of a sufficiently large length t∗ − 1 , and a set F of directed
edges between the vertices in TB and Pt∗ as shown in
Fig. 4a. We also introduce a binary variable for each of
the vertices and edges in Pt∗ and F in our MILP. When
an edge e = uiuj is replaced with a path Pe , we select
an edge from ui to a vertex vh,1 in Pt∗ and an edge from
a vertex vh+p,1 so that the edges (ui, vh,1) and (vh+p,1,uj)
and the subpath (vh,1, vh+1,1, . . . , vh+p,1) of Pt∗ form a path
Pe . Such a path Pe can be selected as one of the combi-
nations of these binary values. To append rooted trees to
tree T ∗ , we prepare a rooted tree with a sufficiently large
size at each vertex in TB and Pt∗ and introduce a binary
variable for each of the vertices and edges in these rooted

Table 3  Fixed parameters of target graphs

Symbol Designation

� A set of atom labels

Ŵ A set of adjacency configurations

n
∗ Number of vertices

dmax Maximum vertex degree, at most 3 and
exactly 4, for dmax = 3 and dmax = 4 ,
respectively

dia∗ Graph diameter

k
∗ Branch parameter

bh∗ k
∗-branch height

bl∗ k
∗-branch-leaf number

Page 10 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

trees in our MILP. A rooted subtree from each of such
rooted trees as a k∗-fringe-tree can be selected as one of
the combinations of these binary values.

We call the graph that consists of all the above graphs
TB , Pt∗ and the edge set F and the set of rooted trees at the
vertices in TB and Pt∗ a scheme graph SG(dmax, k

∗, bh∗, t∗)

.
Figure 5a illustrates an acyclic graph H with n(H) = 37 ,

dia(H) = 17 , bh2(H) = 2 and bl2(H) = 3 , where the
maximum degree of a vertex is 3. Figure 5b illustrates
the 2-branch-tree of the acyclic graph H in Fig. 5a. Fig-
ure 5c illustrates a subgraph H ′ of the scheme graph
SG(dmax, k

∗, bh∗, t∗ = n∗ − bl∗ − 1) such that H ′ is iso-
morphic to the acyclic graph H in Fig. 5a.

In this paper, we obtain the following result.

Theorem 2  Let � be a set of chemical elements, Ŵ
be a set of adjacency-configurations, where |�| ≤ |Ŵ|

, and K = 2|�| + 2|Ŵ| + 50 . Given non-negative inte-
gers n∗ ≥ 3, dmax ∈ {3, 4}, dia∗ ≥ 3, k∗ ≥ 1, bh∗ ≥ 1
and bl∗ ≥ 2, there is an MILP M(x, g; C2) that consists
of variable vectors x ∈ R

K and g ∈ R
q for an integer

q = O(|Ŵ| · [(dmax − 1)bh
∗+k∗ + n∗ · (dmax − 1)max{bh∗ ,k∗})])

and a set C2 of constraints on x and g with size

O(|Ŵ| + (dmax − 1)bh
∗+k∗ + n∗ · (dmax − 1)max{bh∗,k∗}))

such that: (x∗, g∗) is feasible to M(x, g; C2) if and only if
g∗ forms a chemical acyclic graph G = (H ,α,β) such that
H ∈ H(n∗, dmax, dia

∗, k∗, bh∗, bl∗) and f (G) = x∗.

Note that our MILP requires only O(n∗) variables and
constraints when the branch-parameter k∗ , the k∗-branch
height and |Ŵ| are constant.

See Appendices B and C for the details of the MILP
formulation and the set of all variables and constraints in
the MILP formulation, respectively.

A new graph search algorithm
Previous methods of inferring chemical graphs [17–19]
use a graph search algorithm based on the branch-and-
bound algorithm proposed by Fujiwara et al. [5], where
an enormous number of chemical graphs are constructed
by repeatedly appending and removing a vertex one by
one until a target chemical graph is constructed. Their
algorithm cannot generate even one acyclic chemical
graph when n(G) is larger than around 20.

b

c
a

Fig. 4  An illustration of scheme graph SG(dmax, k
∗ , bh∗ , t∗) with dmax = 3 , k∗ = 2 , bh∗ = 2 , and t∗ = 5 , where the vertices in TB (resp., in Pt∗ ) are

depicted with black (resp., gray) circles: a A base-tree TB and a link-path Pt∗ are joined with directed edges between them; b A tree Ss rooted at a
vertex us = us,1 ∈ VB ; c A tree Tt rooted at a vertex vt = vt ,1 ∈ VP

Page 11 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

This section introduces a new dynamic programming
method for designing an algorithm in Stage 5. We con-
sider the following aspects:

(a)	 Treat acyclic graphs with a certain limited struc-
ture that frequently appears among chemical com-
pounds registered in the chemical database; and

(b)	 Instead of manipulating acyclic graphs directly, first
compute the frequency vectors fff (G′) (sub-vectors
of the feature vectors f (G′) , see Appendix D) of
subtrees G′ of all target acyclic graphs and then
construct a limited number of target graphs G from
the process of computing the vectors.

In (a), we choose a branch-parameter k∗ = 2 and treat
acyclic graphs G that have a small 2-branch number
such as bl2(G) ∈ [2, 3] and satisfy the size constraint (1)
on 2-fringe-trees. Figure 6a, b illustrate chemical acyclic
graphs G with bl2(G) = 2 and bl2(G) = 3 , respectively.

We design a method in (b) based on the mechanism of
dynamic programming in the following way. Define a fre-
quency vector fff (T) of each chemical rooted tree T to be
a vector that consists of the frequency of each chemical
element a ∈ � , each adjacency-configuration a ∈ � , each
bond-configuration µ ∈ Bc , and each degree dgi ∈ Dg in
T. We are given a vector xxx∗ that is the frequency vector
fff (G) of a chemical acyclic graph G to be inferred.

We first construct a set FT of chemical rooted trees
with height at most k∗ = 2 and compute the frequency
vector fff (T) of each chemical rooted tree T ∈ FT to
obtain the set W(FT) of frequency vectors fff (T),T ∈ FT .

Note that a large number of chemical rooted trees
T ∈ FT maps to the same frequency vector www and the size
|W(FT)| is considerably smaller than the size |FT|.

We next combine two chemical rooted trees
Ta,Tb ∈ FT to construct a chemical tree Ta,b by joining
their roots ra and rb with an edge e = rarb of a bond-mul-
tiplicity m, as illustrated in Fig. 6a. In fact, we compute
only the feature vector fff (Ta,b) of such a tree Ta,b without
directly treating the graph structures of Ta , Tb and Ta,b .
For this, we add two frequency vectors wwwa,wwwb ∈ W(FT)
together with an additional term from the bond-multi-
plicity m to obtain the frequency vector wwwa,b (= fff (Ta,b))
of such a tree Ta,b . Given such a vector wwwa,b , we can actu-
ally construct a chemical tree Ta,b with fff (Ta,b) = wwwa,b by
choosing trees Ta,Tb ∈ FT and combining them with an
edge of bond-multiplicity m.

Our algorithm for generating a chemical acy-
clic graph G with bl2(G) = 2 continues to compute a
set W(p) of frequency vectors of chemical trees that
can be obtained by combining p trees in FT for each
p = 2, 3, . . . , ⌈(dia∗ − 5)/2⌉ . Finally, we find a vector pair
(www1,www2) with www1 ∈ W(⌊(dia∗−5)/2⌋) and www2 ∈ W(⌈(dia∗−5)/2⌉)
such that a vector with www1 , www2 and a bond-multiplicity
m is equal to the given vector xxx∗ ; i.e., a chemical acyclic
graph G with fff (G) = xxx∗ is obtained by joining chemical
trees T 1 and T 2 with wwwi = fff (Ti), i = 1, 2 with an edge of
bond-multiplicity m.

With a slight modification, the algorithm can generate
a chemical acyclic graph G with bl2(G) = 3.

Appendix D presents the details of our new algorithms
for generating acyclic graphs G with bl2(G) ∈ [2, 3].

a

b

c

Fig. 5  An illustration of selecting a subgraph H from the scheme graph SG(dmax, k
∗ , bh∗ , t∗ = n∗ − bl∗ − 1) : a An acyclic graph

H ∈ H(n∗ , dmax, dia
∗ , k∗ , bh∗ , bl∗) with n∗ = 37 , dmax = 3 , dia∗(H) = 17 , k∗ = 2 , bh∗ = 2 and bl∗ = 3 , where the labels of some vertices indicate

the corresponding vertices in the scheme graph SG(dmax, k
∗ , bh∗ , t∗) ; b The k∗-branch-tree of H for k∗ = 2 ; c An acyclic graph H′ selected from

SG(dmax, k
∗ , bh∗ , t∗) as a graph that is isomorphic to H in (a)

Page 12 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

Experimental results
We implemented our method of Stages 1 to 5 for infer-
ring chemical acyclic graphs and conducted experi-
ments to evaluate the computational efficiency for
three chemical properties π : octanol/water partition
coefficient (Kow), boiling point (Bp) and heat of com-
bustion (Hc). We executed the experiments on a PC
with Two Intel Xeon CPUs E5-1660 v3 @3.00GHz,
32 GB of RAM running under OS: Ubuntu 14.04.6 LTS.
We show 2D drawings of some of the inferred chemical
graphs, where ChemDoodle version 10.2.0 was used for
constructing the drawings.

Results on Phase 1. We implemented Stages 1, 2, and
3, in Phase 1 as follows.

Stage 1. We set a graph class G to be the set of all
chemical acyclic graphs, and set a branch-parameter k∗
to be 2. For each property π ∈ { Kow, Bp, Hc} , we first
select a set � of chemical elements and then collected
a data set Dπ on chemical acyclic graphs over the set �
of chemical elements provided by the Hazardous Sub-
stances Data Bank (HSDB) of PubChem. To construct
the data set, we eliminated chemical compounds that
have at most three carbon atoms or contain a charged
element such as N+ or an element a ∈ � whose valence
is different from our setting of valence function val.

Table 4 shows the size and range of data sets that we
prepared for each chemical property in Stage 1, where
we denote the following:

•	 π : one of the chemical properties Kow, Bp and Hc;
•	 � : the set of selected chemical elements (hydrogen

atoms are added at the final stage);
•	 |Dπ | : the size of data set Dπ over � for property π;
•	 |Ŵ| : the number of different adjacency-configurations

over the compounds in Dπ;
•	 [n, n] : the minimum and maximum number n(G) of

non-hydrogen atoms over the compounds G in Dπ;
•	 [bl, bl] : the minimum and maximum numbers bl2(G)

of leaf 2-branches over the compounds G in Dπ;
•	 [bh, bh] : the minimum and maximum values of the

2-branch height bh2(G) over the compounds G in
Dπ ; and

•	 [a, a] : the minimum and maximum values of a(G) for
π over compounds G in Dπ.

Stage 2. We used a feature function f that consists of
the descriptors defined in “Descriptors” section.

Stage 3. We used scikit-learn version 0.21.6 with
Python 3.7.4 to construct ANNs N where the tool and
activation function are set to be MLPRegressor and
ReLU, respectively. We tested several different architec-
tures of ANNs for each chemical property. To evaluate
the performance of the resulting prediction function ψN
with cross-validation, we partition a given data set Dπ
into five subsets D(i)

π  , i ∈ [1, 5] randomly, where Dπ \ D(i)
π

is used for a training set and D(i)
π is used for a test set in

five trials i ∈ [1, 5] . For a set {y1, y2, . . . , yN } of observed

a
b

Fig. 6  An illustration of chemical acyclic graphs G with diameter dia∗ and bl2(G) = 2, 3 : a A chemical acyclic graph G with two leaf 2-branches v1
and v2 ; b A chemical acyclic graph G with three leaf 2-branches v1, v2 and v3

Table 4  Results of Stage 1 in Phase 1

π � |Dπ | |Ŵ| [n, n] [bl, bl] [bh, bh] [a, a]

Kow C,O,N 216 10 [4, 28] [0, 2] [0, 4] [− 4.2, 8.23]

Bp C,O,N 172 10 [4, 26] [0, 1] [0, 3] [− 11.7, 404.84]

Hc C,O,N 128 6 [4, 26] [0, 1] [0, 2] [1346.4, 13304.5]

Page 13 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

values and a set {ψ1,ψ2, . . . ,ψN } of predicted values, we
define the coefficient of determination to be
R2 � 1−

∑
j∈[1,N](yj−ψj)

2

∑
j∈[1,N](yj−y)2

 , where y = 1
N

∑
j∈[1,N] yj . Table 5

shows the results on Stages 2 and 3, where

•	 K: the number of descriptors for the chemical com-
pounds in data set Dπ for property π;

•	 Activation: the choice of activation function;
•	 Architecture: (a, b, 1) consists of an input layer with

a nodes, a hidden layer with b nodes and an output
layer with a single node, where a is equal to the num-
ber K of descriptors;

•	 L-time: the average time (in seconds) to construct
ANNs for each trial;

•	 test R2 (ave.): the average of coefficient of determina-
tion over the five tests; and

•	 test R2 (best): the largest value of coefficient of deter-
mination over the five test sets.

From Table 5, we see that the execution of Stage 3 was
successful, where the average of test R2 is over 0.9 for all
three chemical properties.

For each chemical property π , we selected the ANN N
that attained the best test R2 score among the five ANNs
to formulate an MILP M(x, y, z; C1) which will be used in
Phase 2.

Results on Phase 2. We implemented Stages 4 and 5 in
Phase 2 as follows.

Stage 4. In this step, we solve the MILP M(x, y, g; C1, C2)
formulated based on the ANN N obtained in Phase 1. To
solve an MILP in Stage 4, we use CPLEX version 12.10.
In our experiment, we choose a target value y∗ ∈ [a, a]
and fix or bound some descriptors in our feature vector
as follows:

•	 Set the 2-leaf-branch number bl∗ to be each of 2 and
3;

•	 Fix the instance size n∗ = n(G) to be each integer in
{26, 32, 38, 44, 50};

•	 Set the diameter dia∗ = dia(G) be one of the integers
in {⌈(2/5)n∗⌉, ⌈(3/5)n∗⌉}.

•	 Set the maximum degree dmax := 3 for
dia∗ = ⌈(2/5)n∗⌉ and dmax := 4 for dia∗ = ⌈(3/5)n∗⌉;

•	 For each instance size n∗ , test a target value y∗π for
each chemical property π ∈ { Kow, Bp, Hc}.

Based on the above setting, we generated six instances
for each instance size n∗ . We set ε = 0.02 in Stage 4.

Tables 6, 7 (resp., Tables 8, 9) show the results on
Stage 4 for bl∗ = 2 (resp., bl∗ = 3 ), where we denote the
following:

•	 y∗π : a target value in [a, a] for a property π;
•	 n∗ : a specified number of vertices in [n, n];
•	 dia∗ : a specified diameter in {⌈(2/5)n∗⌉, ⌈(3/5)n∗⌉};
•	 IP-time: the time (sec.) to an MILP instance to find

vectors x∗ and g∗.

We observe that most of the MILP instances with
bl∗ = 2 , n∗ ≤ 50 and dia∗ ≤ 30 (resp., bl∗ = 3 , n∗ ≤ 50
and dia∗ ≤ 30 ) are solved within one minute (resp., in a
few minutes). The previously most efficient MILP for-
mulation for inferring chemical acyclic graphs due to
Zhang et al. [19] could solve instances with a relatively
small diameter of dia∗ = 9 for the case of dmax = 4
and n∗ = 20 and dia∗ = 8 for the case of dmax = 3 and
n∗ = 50 . Our new MILP formulation on chemical acy-
clic graphs with bounded 2-branch height considerably
improved the tractable size of chemical acyclic graphs in
Stage 4 for the inference problem (II-a).

Figure 7a–c illustrate some chemical acyclic graphs G
with bl2(G) = 2 obtained in Stage 4 by solving an MILP.
Remember that these chemical graphs obey the AD D
defined in Appendix A.

Figure 8a–c illustrate some chemical acyclic graphs G
with bl2(G) = 3 obtained in Stage 4 by solving an MILP.

Stage 5. In this stage, we execute our new graph
search algorithms for generating target graphs
G ∈ G(xxx∗) with bl2(G) ∈ {2, 3} for a given feature vector
xxx∗ obtained in Stage 4.

We introduce a time limit of 10 minutes for each iter-
ation h in Step 2 and an execution of Steps 1 and 3 for
bl∗ = 2 (resp., each iteration h in Steps 2 and 3 and δ1 in
Step 4 and an execution of Steps 1 and 5 for bl∗ = 3 ). In
the last step, we choose at most 100 feasible vector pairs
and generate a target graph from each of these feasible

Table 5  Results of Stages 2 and 3 in Phase 1

π K Activation Architecture L-Time test R2 (ave.) test R2 (best)

Kow 76 ReLU (76, 10, 1) 2.12 0.901 0.951

Bp 76 ReLU (76, 10, 1) 26.07 0.935 0.965

Hc 68 ReLU (68, 10, 1) 234.06 0.924 0.988

Page 14 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

vector pairs. We also impose an upper bound UB on
the size |W| of a vector set W that we maintain during
an execution of the algorithm. We executed the algo-
rithm for each of the three bounds UB = 106, 107, 108
until a feasible vector pair is found or the running time
exceeds a global time limitation of two hours.

When no feasible vector pair is found by the graph
search algorithms, we output the target graph G∗ con-
structed from the vector g∗ in Stage 4.

Tables 6, 7 (resp., Tables 8, 9) show the results of
Stage 5 for bl∗ = 2 (resp., bl∗ = 3 ), where we denote the
following:

•	 #FP: the number of feasible vector pairs obtained
by an execution of the graph search algorithm for a
given feature vector xxx∗;

•	 G-LB: a lower bound on the number of all target
graphs G ∈ G(xxx∗) for a given feature vector xxx∗;

a b

c
Fig. 7  An illustration of chemical acyclic graphs G with n(G) = 50 , bl2(G) = 2 and dmax = 4 obtained in Stage 4 by solving an MILP: a y∗Kow = 9 ,
dia(G) = ⌈(2/5)n∗⌉ = 20 ; b y∗Bp = 880 , dia(G) = n∗/2 = 25 ; c y∗Hc = 25000 , dia(G) = ⌈(3/5)n∗⌉ = 30

ba

c
Fig. 8  An illustration of chemical acyclic graphs G with n(G) = 50 , bl2(G) = 3 and dmax = 4 obtained in Stage 4 by solving an MILP: a y∗Kow = 9 ,
dia(G) = ⌈(2/5)n∗⌉ = 20 ; b y∗Bp = 880 , dia(G) = n∗/2 = 25 ; c y∗Hc = 25, 000 , dia(G) = ⌈(3/5)n∗⌉ = 30

Page 15 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

•	 # G: the number of all (or up to 100) chemical acy-
clic graphs G such that f (G) = x∗ (where at least
one such graph G has been found from the vector
g∗ in Stage 4);

•	 G-time: the running time (sec.) to execute Stage 5
for a given feature vector xxx∗ , where “> 2 hours”
means that the running time exceeds two hours.

Previously, an instance of chemical acyclic graphs with
size n∗ up to 16 was solved in Stage 5 by Azam et al.
[17]. For the classes of chemical graphs with cycle
index 1 and 2, the maximum size of instances solved in
Stage 5 by Ito et al. [17] and Zhu et al. [21] was around
18 and 15, respectively. Our new algorithm based on
dynamic programming solves instances with n∗ = 50 .
In our experiments, we also computed a lower bound

Table 6  Results of Stages 4 and 5 for bl∗ = 2 , dmax = 3 and dia∗ = ⌈ 2
5
n
∗⌉

π y∗ n∗ dia
∗ IP-time #FP G-LB #G G-time

Kow 4 26 11 3.95 11,780 2.4× 106 100 0.91

5 32 13 4.81 216 2.7× 104 100 10.64

7 38 16 7.27 19,931 4.2× 107 100 48.29

8 44 18 9.33 241,956 1.2× 1013 100 119.01

9 50 20 21.57 58,365 1.7× 1010 100 110.38

Bp 440 26 11 2.09 22,342 3.6× 107 100 2.9

550 32 13 3.94 748 5.9× 106 100 3.77

660 38 16 6.4 39,228 7.3× 108 100 151.25

770 44 18 7.21 138,076 3.0× 1012 100 182.66

880 50 20 9.49 106,394 3.0× 1010 100 217.18

Hc 13000 26 11 2.94 12 2.0× 101 12 0.04

16500 32 13 7.67 2722 1.2× 107 100 0.31

20000 38 16 10.5 1830 9.7× 105 100 1.06

23000 44 18 13.62 12,336 4.7× 108 100 142.02

25000 50 20 15.1 136,702 5.3× 1014 100 22.26

Table 7  Results of Stages 4 and 5 for bl∗ = 2 , dmax = 4 and dia∗ = ⌈ 3
5
n
∗⌉

π y∗ n∗ dia
∗ IP-time #FP G-LB #G G-time

Kow 4 26 16 16.21 4198 3.5× 105 100 1.18

5 32 20 24.74 1650 5.3× 106 100 0.69

7 38 23 38.88 154,408 9.5× 109 100 67.31

8 44 27 38.73 1,122,126 8.5× 1013 100 660.37

9 50 30 31.59 690,814 1.1× 1015 100 238.02

Bp 440 26 16 12.44 8156 2.6× 106 100 2.74

550 32 20 23.22 38,600 4.4× 108 100 12.72

660 38 23 20.62 52,406 1.1× 109 100 197.89

770 44 27 50.55 23,638 6.8× 108 100 244.56

880 50 30 48.37 40,382 2.2× 1011 100 884.99

Hc 13000 26 16 23.26 249 2.7× 103 100 0.06

16500 32 20 44.2 448 6.9× 104 100 0.63

20000 38 23 96.02 3330 6.1× 106 100 15.16

23000 44 27 82.34 43,686 1.5× 1010 100 152.96

25000 50 30 83.81 311,166 1.3× 1013 100 287.95

Page 16 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

G-LB on the number of target graphs. We observe that
there are over 1010 or 1014 target graphs in some cases.
Remember that these lower bounds are computed
without actually generating each target graph one by
one. So when a lower bound is enormously large, this
would suggest that we may need to impose some more
constraints on the structure of graphs or the range of

descriptors to narrow a family of target graphs to be
inferred.

An additional experiment We also conducted some
additional experiment to demonstrate that our MILP-
based method is flexible to control conditions on infer-
ence of chemical graphs. In Stage 3, we constructed

Table 8  Results of Stages 4 and 5 for bl∗ = 3 , dmax = 3 and dia∗ = ⌈ 2
5
n
∗⌉

π y∗ n∗ dia
∗ IP-time #FP G-LB #G G-time

Kow 4 26 11 3.1 511 3.6× 103 100 14.31

5 32 13 4.72 3510 6.8× 106 100 851.21

7 38 16 5.82 11,648 1.2× 108 100 612.86

8 44 18 9.69 17,239 2.2× 108 100 703.92

9 50 20 22.53 60,792 3.9× 1012 100 762.17

Bp 440 26 11 3.01 66 9.0× 102 66 902.77

550 32 13 4.29 308 1.0× 107 100 2238.62

660 38 16 5.86 303 1.8× 107 100 3061.11

770 44 18 14.39 19,952 4.7× 1010 100 678.26

880 50 20 10.39 17,993 7.1× 1012 100 4151.07

Hc 13000 26 11 3.05 340 1.5× 104 100 1.57

16500 32 13 5.81 600 3.1× 108 100 921.55

20000 38 16 15.67 18,502 6.2× 108 100 1212.54

23000 44 18 21.15 5064 6.9× 109 100 1279.95

25000 50 20 31.90 41,291 2.4× 1012 100 668.5

Table 9  Results of Stages 4 and 5 for bl∗ = 3 , dmax = 4 and dia∗ = ⌈ 3
5
n
∗⌉

π y∗ n∗ dia
∗ IP-time #FP G-LB #G G-time

Kow 4 26 16 9.94 100 2.5× 104 100 6.73

5 32 20 16.58 348 1.4× 108 100 3400.74

7 38 23 33.71 17,557 1.2× 1011 100 2652.38

8 44 27 34.28 0 0 1 >2 hours

9 50 30 68.74 80,411 6.4× 1015 100 6423.85

Bp 440 26 16 14.16 150 1.8× 105 100 29.72

550 32 20 18.94 305 1.4× 107 100 2641.9

660 38 23 21.15 1155 2.0× 109 100 4521.66

770 44 27 25.6 1620 4.3× 108 100 175.2

880 50 30 63.22 0 0 1 >2 hours

Hc 13000 26 16 31.87 12 2.7× 104 12 0.66

16500 32 20 41.03 392 3.4× 108 100 2480.34

20000 38 23 48.48 630 1.4× 105 100 105.59

23000 44 27 143.75 341 7.8× 108 100 5269.1

25000 50 30 315.91 10,195 3.8× 109 100 5697.08

Page 17 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

an ANN Nπ for each of the three chemical properties
π ∈ { Kow, Bp, Hc} , and formulated the inverse prob-
lem of each ANN Nπ as an MILP Mπ . Since the set of
descriptors is common to all three properties Kow, Bp
and Hc, it is possible to infer a chemical acyclic graph
G that satisfies a target value y∗π for each of the three
properties at the same time (if one exists). We specify
the size of graph so that n∗ = 50 , bl∗ = 2 , dia∗ = 25
and dmax = 4 , and set target values with y∗Kow = 4.0 ,
y∗Bp = 400.0 and y∗Hc = 13000.0 in an MILP that con-
sists of the three MILP MKow , MHc and MBp . The
MILP was solved in 18930 seconds and we obtained a
chemical acyclic graph G illustrated in Fig. 9. We con-
tinued to execute Stage 5 for this instance to generate
more target graphs G∗ . Table 10 shows that 100 target
graphs are generated by our new dynamic program-
ming algorithm.

Concluding remarks
In this paper, we introduced a new measure, branch-
height of a tree, and showed that many chemical com-
pounds in the chemical database have a simple structure
where the number of 2-branches is small. Based on this,
we proposed a new method of applying the framework
for inverse QSAR/QSPR [17–19] to the case of acyclic
chemical graphs where Azam et al. [17] inferred chemical
graphs with around 20 non-hydrogen atoms and Zhang
et al. [19] solved an MILP of inferring a feature vector for
an instance with diameter 9. In our method, we formu-
lated a new MILP in Stage 4 specialized for acyclic chem-
ical graphs with a small branch number and designed a
new graph search algorithm in Stage 5 that computes

frequency vectors of graphs in a dynamic programming
scheme.

We implemented our new method and conducted
some experiments on chemical properties such as
octanol/water partition coefficient, boiling point and
heat of combustion.

The resulting method improved the performance so
that chemical graphs with around 50 non-hydrogen
atoms and around diameter 30 can be inferred. Since
there are many acyclic chemical compounds having large
diameters, this is a significant improvement.

It is left as a future work to design MILPs and graph
search algorithms based on the new idea of the paper for
classes of graphs with a higher rank. Recently, a method
for inferring a chemical cyclic graph with any rank has
been designed by Akutsu and Nagamochi [27] based on
the ideas in this paper. The method is also designed so
that a target chemical graph to be inferred can be speci-
fied in a more flexible way, where we can include a pre-
scribed substructure of graphs such as a benzene ring
into a target chemical graph while imposing constraints
on a global topological structure of a target graph at the
same time.

Appendix A: Statistical features of molecular
structures
We observe the following features of the graph-theo-
retical structure of chemical graphs registered in the
chemical database PubChem. Let DB(≤n) denote the set
of chemical graphs with at most n non-hydrogen atoms
that are registered in chemical database PubChem
(downloaded a copy on March 21, 2019). The cycle index
(or rank) of a chemical graph G = (H = (V ,E),α,β) is
defined to be |E| − (|V | − 1) (i.e., the minimum number
of edges to be removed to make the graph H acyclic). We
call a chemical graph a rank-r chemical graph if the rank
of the graph is r. The core of a chemical cyclic graph G is
defined to be the induced subgraph G′ of G such that G′
consists of vertices in a cycle or vertices in a path joining
two cycles. A vertex in the core (not in the core) is called
a core vertex (resp., a non-core vertex). The edges not in
the core of a chemical cyclic graph G form a collection
of trees T, which we call a non-core tree. Each non-core
tree contains exactly one core vertex and is regarded as

Fig. 9  An illustration of a chemical acyclic graph G inferred for
three chemical properties Kow, Bp and Hc simultaneously, where
y∗Kow = 4.0 , y∗Bp = 400.0 and y∗Hc = 13000.0 , n∗ = 50 , bl∗ = 2 ,
dia∗ = 25 , and dmax = 4

Table 10  Results of Stages 4 and 5 for bl∗ = 2 , dmax = 4 , n∗ = 50 and dia∗ = 25

π y∗ n∗ dia
∗ IP-time #FP G-LB #G G-time

Kow 4 50 25 18930.46 117,548 2.4× 1011 100 423.53

Bp 400

Hc 1300

Page 18 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

a tree rooted at the core vertex. The k-branch height of a
chemical cyclic graph G is defined to be the maximum of
k-branch heights over all non-core trees.

Let ρr (%) denote the ratio of the number of chemical
graphs with rank at most r ∈ [0, 4] to the number of all
chemical graphs in PubChem. See Table 11.

Let ρ(d)
0 (%) denote the ratio of the number of chemi-

cal graphs in DB(≤100) such that the maximum degree is
at most d ∈ [3, 4] to the number of all chemical graphs
in DB(≤100) . Let ρ(d)

r (%), r ∈ [1, 4] denote the ratio of
the number of rank-r chemical graphs in DB(≤100) such
that the maximum degree of a non-core vertex is at most
d ∈ [3, 4] to the number of all rank-r chemical graphs in
DB(≤100) . See Table 12.

Let ρr(k , h) (%), r ∈ [0, 4] , k = 2 , h ∈ [1, 2] denote
the ratio of the number of rank-r chemical graphs in
DB(≤50) such that the k-branch height is at most h to the
number of all rank-r chemical graphs in DB(≤50) . See
Table 13. We see that most chemical graphs G with at
most 50 non-hydrogen atoms satisfy bh2(G) ≤ 2.

We show the distribution of 2-branch height over
alkans CnH2n+2 . Let Aln(n) denote the set of all alkans
with n carbon atoms, where |Aln(25)| = 36, 797, 588 . Let
ρAln(2, h) (%), h ∈ [1, 4] denote the ratio of the number
of alkans in Aln(25) such that the 2-branch height is at
most h to the number of alkans in Aln(25) . See Table 14.

Let ρ2bt(δ) denote the ratio of the number of acyclic
chemical graphs in DB(≤50) such that the degree of the
root of the 2-branch-tree is δ ∈ [1, 4] to the number of all
acyclic chemical graphs in DB(≤50) . See Table 15.

Among the 2-fringe-trees T of all acyclic chemical
graphs in DB(≤100) , over 90% of them satisfy n ≤ 2d + 2
for the number n = |V (T)| of non-hydrogen atoms in a
2-fringe-tree T and the number d of non-hydrogen atoms
adjacent to the root in T.

Let FT 0,2 denote the set of all 2-fringe-trees that
appear in an acyclic chemical graph in DB(≤100) , and
FT

(δ)
0,2 , δ ∈ [1, 3] denote the set of all 2-fringe-trees

T ∈ FT 0,2 that have δ children (i.e., the degree of the
root is δ ). Let ρ(δ)

2δ+2 (%) denote the ratio of the number of
2-fringe-trees in FT

(δ)
0,2 that have at most 2δ + 2 vertices

to the number of 2-fringe-trees in FT
(δ)
0,2 . See Table 16.

Appendix B: Formulating an MILP based on scheme
graphs
This section shows how to formulate an MILP based on a
scheme graph.

Scheme graphs
Let t∗ , s∗ , and c∗ , be integers such that

t
∗ = n

∗ − (bh
∗ − 1)− (k∗ + 1)bl

∗;
s
∗ = a(bc − 1)/(b− 1)+ 1 for a = dmax , b = dmax − 1

and c = bh∗ ; and
c∗ = s∗ − 1.

Let a scheme graph SG(dmax, k
∗, bh∗, t∗) consist of

a tree TB , a path Pt∗ , a set {Ss | s ∈ [1, s∗]} of trees,
a set {Tt | t ∈ [1, t∗]} of trees, and a set of directed
edges between TB and Pt∗ so that an acyclic graph
H ∈ H(n∗, dmax, dia

∗, k∗, bh∗, bl∗) will be constructed in
the following way:

(i)	The k∗-branch-tree of H will be chosen as a subtree
of TB = (VB,EB);

Table 11  The percentage ρr of the number of chemical
compounds with rank at most r ∈ [0, 4] over all chemical
compounds in PubChem

ρ0 ρ1 ρ2 ρ3 ρ4

2.9% 16.3% 44.5% 68.8% 84.7%

Table 12  The percentage ρ(d)
r of the number of chemical compounds with rank r ∈ [0, 4] such that the maximum degree of a non-

core vertex is at most d ∈ [3, 4] over all rank-r chemical compounds in DB(≤100)

ρ
(3)
0

ρ
(4)
0

ρ
(3)
1

ρ
(4)
1

ρ
(3)
2

ρ
(4)
2

ρ
(3)
3

ρ
(4)
3

ρ
(3)
4

ρ
(4)
4

55.55% 99.85% 68.30% 99.97% 84.46% 99.99% 87.11% 99.99% 87.75% 99.99%

Table 13  The percentage ρr(k, h) (%) of the number of rank-r chemical graphs in DB(≤50) such that the k-branch height is at most h to
the number of all rank-r chemical graphs in DB(≤50)

ρ0(2, 1) ρ0(2, 2) ρ1(2, 1) ρ1(2, 2) ρ2(2, 1) ρ3(2, 1) ρ4(2, 1)

87.23% 99.46% 88.13% 98.76% 96.39% 99.17% 99.43%

Page 19 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

(ii)	 Each k∗-fringe-tree rooted at a vertex us ∈ V (TB) of
H will be chosen as a subtree of Ss;

(iii)	Each k∗-branch-path of H (except for its end-verti-
ces) will be chosen as a subpath of Pt∗ or as an edge
in TB;

(iv)	Each k∗-fringe-tree rooted at a vertex vt ∈ V (Pt∗) of
H will be chosen as a subtree of Tt ; and

(v)	 An edge (u, v) directed from TB to Pt∗ will be
selected as an initial edge of a k∗-branch-path of H
and an edge (v, u) directed from Pt∗ to TB will be
selected as an ending edge of a k∗-branch-path of H.

More formally, each component of a scheme graph
SG(dmax, k

∗, bh∗, t∗) is defined as follows.

(i)	TB = (VB = {u1,u2, . . . ,us∗}, EB = {a1, a2, . . . , ac∗}) ,
called a base-tree is a tree rooted at a ver-
tex u1 that is isomorphic to the rooted tree
T (dmax, dmax − 1, bh∗) . Regard TB as an ordered
tree by introducing a total order for each set of sib-
lings and call the first (resp., last) child in a set of
siblings the leftmost (resp. rightmost) child, which
defines the leftmost (rightmost) path from the root
u1 to a leaf in TB , as illustrated in Fig. 4a.

	 For each vertex us ∈ VB , let EB(s) denote the set
of indices i of edges a(i) ∈ EB incident to us and

CldB(s) denote the set of indices i of children
ui ∈ VB of us in the tree TB.

	 For each integer d ∈ [0, k∗] , let VB(d) denote the set
of indices s of vertices us ∈ VB whose depth is d in
the tree TB , where VB(bh

∗) is the set of indices s of
leaves us of TB.

	 Regard each edge ai ∈ EB as a directed edge (us,us′)
from one end-vertex us of ai to the other end-vertex
us′ of ai such that s = prt(s′) (i.e., us is the parent of
us′ ), where head(i) and tail(i) denote the head us′
and tail us of edge ai ∈ EB , respectively.

	 For each index s ∈ [1, s∗] , let E+
B (s) (resp., E−

B (s) )
denote the set of indices i of edges ai ∈ EB such that
the tail (resp., head) of ai is vertex us.

	 Let LB denote the set of indices of leaves of TB , and
sleft (resp., sright ) denote the index s ∈ LB of the leaf
us at which the leftmost (resp., rightmost) path from
the root ends.

	 For each leaf us , s ∈ LB , let VB,s (resp., EB,s ) denote the
set of indices s of non-root vertices us (resp., indices
i of edges a(i) ∈ EB ) along the path from the root to
the leaf us in the tree TB.

	 For the example of a base-tree TB with bh∗ = 2 in
Fig. 4, it holds that LB = {5, 6, 7, 8, 9, 10} , sleft = 5 ,
sright = 10 , EB,sleft = {1, 4} and VB,sleft = {2, 5}.

(ii)	 Ss , s ∈ [1, s∗] is a tree rooted at vertex us ∈ VB
in TB that is isomorphic to the rooted tree
T (dmax − 1, dmax − 1, k∗) , as illustrated in Fig. 4b.
Let us,i and e′s,i denote the vertex and edge in Ss that
correspond to the i-th vertex and the i-th edge in
T (dmax − 1, dmax − 1, k∗) , respectively. Regard each
edge e′s,i as a directed edge (us,prt(i),us,i) . For this,
each vertex us ∈ VB is also denoted by us,1.

(iii)	Pt∗ = (VP = {v1 , v2 , . . . , vt∗} , EP = {e2 , e3 , . . . , et∗}) ,
called a link-path with size t∗ is a directed path from
vertex v1 to vertex vt∗ , as illustrated in Fig. 4a. Each
edge et ∈ EP is directed from vertex vt−1 to vertex vt
.

(iv)	Tt , t ∈ [1, t∗] is a tree rooted at vertex vt in
Pt∗ that is isomorphic to the rooted tree
T (dmax − 2, dmax − 1, k∗) , as illustrated in Fig. 4c.
Let vt,i and et,i denote the vertex and edge in Tt that
correspond to the i-th vertex and the i-th edge in
T (dmax − 2, dmax − 1, k∗) , respectively. Regard each
edge et,i as a directed edge (vt,prt(i),ut,i) . For this,
each vertex vt ∈ VP is also denoted by vt,1.

Table 14  The percentage ρAln(2, h) (%) of the number of alkans
in Aln(25) such that the 2-branch height is at most h to the
number of alkans in Aln(25)

ρAln(2, 1) ρAln(2, 2) ρAln(2, 3) ρAln(2, 4)

49.03% 97.67% 99.99% 100.00%

Table 15  The percentage ρ2bt(δ) of the number of acyclic
chemical graphs in DB(≤50) such that the degree of the root
of the 2-branch-tree is δ ∈ [1, 4] to the number of all acyclic
chemical graphs in DB(≤50)

ρ2bt(1) ρ2bt(2) ρ2bt(3) ρ2bt(4)

6.39% 83.58% 9.30% 0.73%

Table 16  The percentage ρ(δ)
2δ+2 (%) of the number of 2-fringe-

trees in FT
(δ)
0,2 that have at most 2δ + 2 vertices to the number of

2-fringe-trees in FT
(δ)
0,2

ρ
(1)
4

ρ
(2)
6

ρ
(3)
8

93.77% 93.99% 92.01%

Page 20 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

(v)	 For every pair (s, t) with s ∈ [1, s∗] and t ∈ [1, t∗] ,
join vertices us and vt with directed edges (us, vt)
and (vt ,us) , as illustrated in Fig. 4a.

We explain the basic idea of an MILP in Theorem 2. The
MILP mainly consists of the following three types of
constraints.

	C1.	 Constraints for selecting an acyclic graph H as a
subgraph of the scheme graph SG(dmax, k

∗, bh∗, t∗);

	C2.	 Constraints for assigning chemical elements to
vertices and multiplicity to edges to determine a
chemical graph G = (H ,α,β) ; and

	C3.	 Constraints for computing descriptors from the
selected acyclic chemical graph G.

In the constraints of C1, more formally we prepare the
following.

	(i)	 In the scheme graph SG(dmax, k
∗, bh∗, t∗) , we

prepare a binary variable u(s, 1) for each ver-
tex us = us,1 ∈ VB , s ∈ [1, s∗] so that vertex
us = us,1 becomes a k∗-branch of a selected graph
H if and only if u(s, 1) = 1 . The subgraph of the
base-tree TB that consists of vertices us = us,1
with u(s, 1) = 1 will be the k∗-branch-tree of
the graph H. We also prepare a binary vari-
able a(i), i ∈ [1, c∗] for each edge ai ∈ EB , where
c∗ = s∗ − 1 . For a pair of a vertex us,1 and a
child us′,1 of us,1 such that u(s, 1) = u(s′, 1) = 1 ,
either the edge ai = (us,1,us′,1) is used in the
selected graph H (when a(i) = 1 ) or a path
Pi = (us,1, vt ′,1, vt ′+1,1, . . . , vt ′′,1,us′,1) from ver-
tex us,1 to vertex us′,1 is constructed in H with an
edge (us,1, vt ′,1) , a subpath (vt ′,1, vt ′+1,1, . . . , vt ′′,1)
of the link-path Pt∗ and an edge (vt ′′ ,1,us′,1) (when
a(i) = 0 ). For example, vertices u1,1 and u2,1 are
connected by a path P1 = (u1,1, v1,1, v2,1,u2,1) in
the selected graph H ′ in Fig. 5c.

	(ii)	 Let

n
S
tree = 1+ (dmax − 1)((dmax − 1)k

∗
− 1)/(dmax − 2),

n
T
tree = 1+ (dmax − 2)((dmax − 1)k

∗
− 1)/(dmax − 2),

	 where nStree (resp., nTtree ) is the number of vertices
in the rooted tree T (dmax − 1, dmax − 1, k∗) (resp.,
T (dmax − 2, dmax − 1, k∗) ). In each tree Ss , s ∈ [1, s∗]
(resp., Tt , t ∈ [1, t∗] ) in the scheme graph, we pre-
pare a binary variable u(s, i) (resp., v(t, i)) for each
vertex us,i , i ∈ [2, nStree] (resp., vt,i , i ∈ [2, nTtree] ) so
that u(s, i) = 1 (resp., v(t, i) = 1 ) means that the cor-
responding vertex us,i (resp., vt,i ) is used as a vertex
in a selected graph H. The (non-empty) subgraph of
a tree Ss (resp., Tt ) that consists of vertices us,i with

u(s, i) = 1 (resp., vt,i with v(t, i) = 1 ) will be a k∗
-fringe-tree of a selected graph H.

	(iii)	 In the link-path Pt∗ , we prepare a binary variable
e(t), t ∈ [2, t∗] for each edge et,1 = (vt−1,1, vt,1) ∈ EP
so that e(t) = 1 if and only if edge et,1 is used in
some path Pi = (us,1, vt ′,1, vt ′+1,1, . . . , vt ′′,1,us′,1)
constructed in (i).

	(iv)	 For each pair (s, t) of s ∈ [1, s∗] and t ∈ [1, t∗] , we
prepare a binary variable e(s, t) (resp., e(t, s)) so
that e(s, t ′) = 1 (resp., e(t ′′, s) = 1 ) if and only if
directed edge (us,1, vt ′,1) (resp., (vt ′′ ,1,us,1) ) is used
as the first edge (resp., last edge) of some path
Pi = (us,1, vt ′,1, vt ′+1,1, . . . , vt ′′,1,us′,1) constructed
in (i).

Based on these, we include constraints with some more
additional variables so that a selected subgraph H is a
connected acyclic graph. See constraints (12) to (32) in
Appendix C for the details.

In the constraints of C2, we prepare an integer variable
α̃(u) for each vertex u in the scheme graph that repre-
sents the chemical element α(u) ∈ � if u is in a selected
graph H (or α̃(u) = 0 otherwise) and an integer variable
β̃(e) ∈ [0, 3] (resp., β̂(e) ∈ [0, 3] ) for each edge e (resp.,
e = e(s, t) or e(t, s), s ∈ [1, s∗] , t ∈ [1, t∗] ) in the scheme
graph that represents the multiplicity β(e) ∈ [1, 3] if e is
in a selected graph H (or β̃(e) or β̂(e) takes 0 otherwise).
This determines a chemical graph G = (H ,α,β) . Also we
include constraints for a selected chemical graph G to
satisfy the valence condition (α(u),α(v),β(uv)) ∈ Ŵ for
each edge uv ∈ E . See constraints (33) to (47) in Appen-
dix C for the details.

In the constraints of C3, we introduce a variable for
each descriptor and constraints with some more vari-
ables to compute the value of each descriptor in f(G) for a
selected chemical graph G. See constraints (48) to (75) in
Appendix C for the details.

Appendix C: All constraints in an MILP formulation
for chemical acyclic graphs
To formulate an MILP that represents a chemical graph,
we distinguish a tuple (a,b,m) from a tuple (b,a,m) .
For a tuple γ = (a,b,m) ∈ �×�× {1, 2, 3} , let γ
denote the tuple (b,a,m) . Let Ŵ< � {γ | γ ∈ Ŵ>} . We
call a tuple γ = (a,b,m) ∈ �×�× {1, 2, 3} proper if
m ≤ min{val(a), val(b)} and m ≤ max{val(a), val(b)} − 1 ,
where the latter is assumed because otherwise G must
consist of two atoms of a = b . Assume that each tuple
γ ∈ Ŵ is proper. Let ǫ be a fictitious chemical element that
represents null, call a tuple (a,b, 0) with a,b ∈ � ∪ {ǫ}

Page 21 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

fictitious, and define Ŵ0 to be the set of all fictitious
tuples; i.e., Ŵ0 = {(a,b, 0) | a,b ∈ � ∪ {ǫ}} . To repre-
sent chemical elements e ∈ � ∪ {ǫ} ∪ Ŵ in an MILP, we
encode these elements e into some integers denoted by
[e] . Assume that, for each element a ∈ � , [a] is a positive
integer and that [ǫ] = 0.

Upper and lower bounds on descriptors
In our formulation of an MILP for inferring a vector x∗ in
Stage 4, we fix the following descriptors as specified con-
stants: the number n(G) of vertices, the diameter dia(G) ,
and the number blk∗(G) of leaf k∗-leaf branches, which
are set to be given integers n∗ , dia∗ , and bl∗ , respectively.
For each of the other descriptors, we specify a lower
bound LB and an upper bound UB on the value so that
the descriptor takes a value from the range between LB
and UB.

constants

•	 n∗ ≥ 5 : the size n(G) of G;
•	 LBt

dg(i), UB
t
dg(i) ∈ [0, n∗], i ∈ [1, 4], t ∈ {in, ex} : lower and

upper bounds on the number dgti(G) of k∗-inter-
nal/k∗-external vertices of degree i in G;

•	 LBt
ce(a), UB

t
ce(a) ∈ [0, n∗] , a ∈ �, t ∈ {in, ex} : lower

and upper bounds on the number cet
a
(G) of k∗-inter-

nal/k∗-external vertices v with α(v) = a in G;
•	 LBt

bd(m) , UBt
bd
(m) ∈ [0, n∗ − 1], m ∈ [2, 3],t ∈ {in, ex} :

lower and upper bounds on the number bdtm(G) of k∗
-internal/k∗-external edges e with β(e) = m in G;

•	 LBt
ac(γ), UBt

ac(γ) ∈ [0, n∗ − 1], t ∈ {in, ex}, γ ∈ Ŵ< ∪ Ŵ= :
lower and upper bounds on the number actγ (G) of k∗
-internal/k∗-external edges e with adjacency-configu-
ration γ in G;

•	 LBt
bc(µ), UB

t
bc(µ) ∈ [0, n∗ − 1], t ∈ {in, ex} , µ ∈ Bc :

lower and upper bounds on the number bctµ(G) of
k∗-internal/k∗-external edges e with bond-configura-
tion µ in G;

variables x for descriptors

•	 dgin(i), dgex(i) ∈ [0, n∗] , i ∈ [1, 4] : dgin(i) (resp.,
dgex(i) ) represents dgini (G) (resp., dgexi (G));

•	 cein(a), ceex(a) ∈ [0, n∗] , a ∈ � : cein(a) (resp.,
ceex(a) ) represents cein

a
(G) (resp., ceex

a
(G));

•	 bdin(m), bdex(m) ∈ [0, 2n∗] , m ∈ [1, 3] : bdin(m)
(resp., bdex(m) ) represents bdinm(G) (resp., bdexm (G));

•	 acin(γ), acex(γ) ∈ [0, n∗] , γ ∈ Ŵ< ∪ Ŵ= : acin(γ)
(resp., acex(γ) ) represents acinγ (G) (resp., acexγ (G));

•	 bcin(µ), bcex(µ) ∈ [0, n∗ − 1] , µ ∈ Bc : bcin(µ) (resp.,
bcex(µ) ) represents bcinµ (G) (resp., bcexµ (G));

constraints

We use the range-based method to define an applicabil-
ity domain for our method. For this, we find the range
(the minimum and maximum) of each descriptor over all
relevant chemical compounds and represent each range
as a set of linear constraints in the constraint set C1 of our
MILP formulation. Recall that Dπ stands for a set of chemi-
cal graphs used for constructing a prediction function.
However, the number of examples in Dπ may not be large
enough to capture a general feature on the structure of
chemical graphs. For this, we also use some data set from
the whole set DB of chemical graphs in a database. Let DB(i)

G
denote the set of chemical graphs G ∈ DB ∩ G such that
n(G) = i for each integer i ≥ 1 . Based on this, we assume
that the given lower and upper bounds on the above
descriptors satisfy the following. For each t ∈ {in, ex},

(2)
LBt

dg(i) ≤ dgt(i) ≤ UBt
dg(i), i ∈ [1, 4], t ∈ {in, ex},

(3)
LBt

ce(a) ≤ cet(a) ≤ UBt
ce(a), a ∈ �, t ∈ {in, ex},

(4)
LBt

bd(m) ≤ bdt(m) ≤ UBt
bd(m), m ∈ [2, 3], t ∈ {in, ex},

(5)
LBt

ac(γ) ≤ act(γ) ≤ UBt
ac(γ), γ ∈ Ŵ, t ∈ {in, ex},

(6)
LBt

bc(µ) ≤ bct(µ) ≤ UBt
bc(µ), µ ∈ Bc, t ∈ {in, ex}.

(7)min
G∈Dπ∪DB

(n∗)
G

dgti(G)

n(G)
≤

LBt
dg(i)

n∗
≤

UBt
dg(i)

n∗
≤ max

G∈Dπ∪DB
(n∗)
G

dgti(G)

n(G)
,

i ∈ [1, 4],

(8)
min

G∈Dπ∪DB
(n∗)
G

cet
a
(G)

n(G)
≤

LBt
ce(a)

n∗
≤

UBt
ce(a)

n∗
≤ max

G∈Dπ∪DB
(n∗)
G

cet
a
(G)

n(G)
,

a ∈ �,

Page 22 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

Construction of scheme graph
We infer a subgraph H such that the maximum degree
is dmax ∈ {3, 4} , n(H) = n∗ , bhk∗(H) = bh∗ , and
blk∗(H) = bl∗ . For this, we first construct the scheme
graph SG(dmax, k

∗, bh∗, t∗) . We then prepare a binary
variable u(s, i) (resp., v(t, i)) for each vertex us,i in tree Ss
(resp., vt,i in tree Tt).

Recall that when the two end-vertices of edge
ai = (us,1,us′,1) ∈ EB = {a1, a2, . . . , ac∗} is connected in a
selected subgraph H, either edge ai is directly used in H
or a path Pi = (us,1, vt ′,1, vt ′+1,1, . . . , vt ′′,1,us′,1) from us,1 to
us′,1 visiting some vertices in Pt∗ is constructed in H. We
regard the index i of each edge ai ∈ EB = {a1, a2, . . . , ac∗}
as the “color” of the edge, and define the color set of EB
to be [1, c∗] . To introduce necessary linear constraints
that can construct such a path Pi properly in our MILP,
we assign the color i to the vertices vt ′,1, vt ′+1,1, . . . , vt ′′,1
in Pt∗ when a path Pi = (us,1, vt ′,1, vt ′+1,1, . . . , vt ′′,1,us′,1) is
used in H.

constants
Integers dmax ∈ {3, 4} , n∗ ≥ 3 , dia∗ ≥ 3 , k∗ ≥ 1 , bh∗ ≥ 1

and bl∗ ≥ 2;
variables

•	 a(i) ∈ {0, 1} , i ∈ EB : a(i) represents edge ai ∈ EB
( a(i) = 1 , i ∈ EB ) ( a(i) = 1 ⇔ edge ai is used in H);

•	 e(s, t), e(t, s) ∈ {0, 1} , s ∈ [1, s∗] , t ∈ [1, t∗] : e(s, t)
(resp., e(t, s)) represents direction (us,1, vt,1) (resp.,

(9)
min

G∈Dπ∪DB
(n∗)
G

bdtm(G)

n(G)− 1
≤

LBt
bd(m)

n∗ − 1
≤

UBt
bd(m)

n∗ − 1
≤ max

G∈Dπ∪DB
(n∗)
G

bdtm(G)

n(G)− 1
,

m ∈ [2, 3],

(10)
min

G∈Dπ∪DB
(n∗)
G

actγ (G)

n(G)− 1
≤

LBt
ac(γ)

n∗ − 1
≤

UBt
ac(γ)

n∗ − 1
≤ max

G∈Dπ∪DB
(n∗)
G

actγ (G)

n(G)− 1
,

γ ∈ Ŵ,

(11)
min

G∈Dπ∪DB
(n∗)
G

bctµ(G)

n(G)− 1
≤

LBt
bc(µ)

n∗ − 1
≤

UBt
bc(µ)

n∗ − 1
≤ max

G∈Dπ∪DB
(n∗)
G

bctµ(G)

n(G)− 1
,

µ ∈ Bc.

(vt,1,us,1) ), where e(s, t) = 1 (resp., e(t, s) = 1 ) ⇔
edge us,1, vt,1 is used in H and direction (us,1, vt,1)
(resp., (vt,1,us,1) ) is assigned to edge us,1vt,1;

•	 χ(t) ∈ [0, c∗] , t ∈ [1, t∗] : χ(t) represents the color
c ∈ [0, c∗] assigned to vertex vt,1 ( χ(t) = c ⇔ vertex
vt,1 is assigned color c, where χ(t) = c = 0 iff vt,1 is
not in H);

•	 δclr(t, c) ∈ {0, 1} , t ∈ [1, t∗] , c ∈ [0, c∗] ( δclr(t, c) = 1
⇔ χ(t) = c);

•	 clr(c) ∈ [0, t∗] , c ∈ [0, c∗] : the number of vertices vt,i
with color c;

•	 degb+(s) ∈ [0, 4] , s ∈ [1, s∗] : the out-degree of vertex
us,1 in the k∗-branch-subtree of H;

•	 degb-(s) ∈ [0, 4] , s ∈ [1, s∗] : the in-degree of vertex
us,1 in the k∗-branch-subtree of H;

constraints

(12)

∑

c∈[0,c∗]

δclr(t, c) = 1,
∑

c∈[0,c∗]

c · δclr(t, c) = χ(t), t ∈ [1, t∗],

(13)
∑

t∈[1,t∗]

δclr(t, c) = clr(c), c ∈ [0, c∗],

(14)t∗(1− a(i)) ≥ clr(i), i ∈ [1, c∗],

(15)e(s, t)+ e(t, s) ≤ 1, s ∈ [1, s∗], t ∈ [1, t∗],

(16)

∑

s∈[1,s∗]\{head(c)}

e(t, s) ≤ 1− δclr(t, c),
∑

s∈[1,s∗]\{tail(c)}

e(s, t) ≤ 1− δclr(t, c),

c ∈ [1, c∗], t ∈ [1, t∗],

Page 23 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

Selecting a subgraph
From the scheme graph SG(dmax, k

∗, bh∗, t∗) , we select
a subgraph H such that n(H) = n∗ , dia(H) = dia∗ ,
bhk∗(H) = bh∗ , and blk∗(H) = bl∗.

constants

•	 Integers dmax ∈ {3, 4} , n∗ ≥ 3 , dia∗ ≥ 3 , k∗ ≥ 1 ,
bh∗ ≥ 1 and bl∗ ≥ 2;

•	 For each tree Ss = T (dmax − 1, dmax − 1, k∗) , prepare

the set CldS(i) of the indices of children of a vertex vi;
the index prt(i) of the parent of a non-root vertex vi;
the set DsnS(d) of indices i of a vertex vi whose
depth is d;
a proper set Pprc(dmax − 1, dmax − 1, k∗) of index
pairs,

where we denote Pprc(dmax − 1, dmax − 1, k∗) by
PS,prc;

•	 For each tree Tt = T (dmax − 2, dmax − 1, k∗) , prepare

the set CldT(i) of the indices of children of a vertex vi;
the index prt(i) of the parent of a non-root vertex vi;
a proper set Pprc(dmax − 2, dmax − 1, k∗) of index
pairs,

where we denote Pprc(dmax − 2, dmax − 1, k∗) by
PT ,prc;

variables

(17)

∑

i∈E−
B (s)

a(i)+
∑

t∈[1,t∗]

e(t, s) = degb-(s),
∑

i∈E+
B (s)

a(i)+
∑

t∈[1,t∗]

e(s, t) = degb+(s),

degb-(s)+ degb+(s) ≤ dmax, s ∈ [1, s∗].

•	 σ(s) ∈ {0, 1} , s ∈ [1, s∗] : ( σ(s) = 1 ⇔ vertex us,1 is a
non-leaf k∗-branch or a root);

•	 u(s, i) ∈ {0, 1} , s ∈ [1, s∗] , i ∈ [1, nStree] : u(s, i) rep-
resents vertex us,i ( u(s, i) = 1 ⇔ vertex us,i is used in
H and edge e′s,i (i ≥ 2) is used in H), ( u(s, 1) = 1 and
σ(s) = 0 ⇔ vertex us,1 is a leaf k∗-branch);

•	 v(t, i) ∈ {0, 1} , t ∈ [1, t∗] , i ∈ [1, nTtree] : v(t, i) repre-
sents vertex vt,i ( v(t, i) = 1 ⇔ vertex vt,i is used in H
and edge et,i (i ≥ 2) is used in H);

•	 e(t) ∈ {0, 1} , t ∈ [1, t∗ + 1] : e(t) represents edge
et,1 = vt−1,1vt,1 , where e1,1 and et∗+1,1 are fictitious
edges ( e(t) = 1 ⇔ edge et,1 is used in H);

constraints

(18)u(s, i) ≥ u(s, j), s ∈ [1, s∗], (i, j) ∈ PS,prc,

(19)v(t, i) ≥ v(t, j), t ∈ [1, t∗], (i, j) ∈ PT ,prc,

(20)

∑

s∈[1,s∗],i∈[1,nStree]

u(s, i)+
∑

t∈[1,t∗],i∈[1,nTtree]

v(t, i) = n∗,

(21)

∑

i∈[1,nStree]

u(s, i) ≤ 2+ 2
∑

j∈CldS(1)

u(s, j), s ∈ [1, s∗],

(22)

∑

i∈[1,nTtree]

v(t, i) ≤ 2+ 2
∑

j∈CldT(1)

v(t, j), t ∈ [1, t∗],

(23)

e(t + 1)+
∑

s∈[1,s∗]

e(t, s) = v(t, 1), e(t)+
∑

s∈[1,s∗]

e(s, t) = v(t, 1),

∑

c∈[1,c∗]

δclr(t, c) = v(t, 1),

(where e(1) = e(t∗ + 1) = 0), t ∈ [1, t∗],

(24)c∗ · (1− e(t + 1)) ≥ χ(t)− χ(t + 1) ≥ v(t, 1)− e(t + 1), t ∈ [1, t∗ − 1],

Page 24 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

Constraints (21) and (22) represent an extension of con-
straint (1) on the size of 2-fringe-trees to the case of a
general branch-parameter k∗.

(25)

a(i)+
∑

t∈[1,t∗]

e(t, i + 1) = u(i + 1, 1), i ∈ [1, c∗],

(26)σ(s) ≤ u(s, 1), s ∈ [1, s∗],

(27)σ(s) = u(s, 1) = 1, if us is the root ,

(28)
(dmax − 1)σ (s) ≥

∑

s′∈CldB(s)

u(s′, 1) ≥ 2σ(s),
∑

i∈DsnS(k∗)

u(s, i) ≥ u(s, 1)− σ(s),

s ∈ [1, s∗],us �= root,

(29)

∑

s∈[2,s∗]

(u(s, 1)− σ(s)) = bl∗,
∑

s∈VB(bh
∗)

u(s, 1) ≥ 1,

(30)
∑

s∈V
B,sleft

u(s, 1)+
∑

i∈E
B,sleft

clr(i) =
⌈dia∗

2

⌉
− k∗,

(31)
∑

s∈V
B,sright

u(s, 1)+
∑

i∈E
B,sright

clr(i) =
⌊dia∗

2

⌋
− k∗,

(32)
∑

i∈VB,s

u(i, 1)+
∑

i∈EB,s

clr(i) ≤
⌊dia∗

2

⌋
− k∗, s ∈ LB \ {sleft, sright}.

•	 β̃(i) ∈ [0, 3] , i ∈ [1, c∗] : β̃(i) represents the multi-
plicity of edge ai , where β̃(i) = 0 if edge ai is not in
an inferred chemical graph G;

•	 β̃(p, i) ∈ [0, 3] , p ∈ [1, s∗ + t∗] , i ∈ [2, nStree] : β̃(p, i)
with p ≤ s∗ (resp., p > s∗ ) represents the multiplic-
ity of edge e′p,i (resp., ep−s∗,i);

•	 β̃(t, 1) ∈ [0, 3] , t ∈ [1, t∗ + 1] : β̃(t, 1) represents the

multiplicity of edge et,1;
•	 β̂(s, t) ∈ [0, 3] , s ∈ [1, s∗] , t ∈ [1, t∗] : β̂(s, t) repre-

sents the multiplicity of edge us,1vt,1;

constraints

Assigning chemical elements and valence condition
We include constraints so that each vertex v in a
selected graph H satisfies the valence condition; i.e.,
β(v) ≤ val(α(v)) . With these constraints, a chemical
acyclic graph G = (H ,α,β) on a selected subgraph H
will be constructed.

constants

•	 A set � ∪ {ǫ} of chemical elements, where ǫ denotes
null;

•	 A coding [a] , a ∈ � ∪ {ǫ} such that [ǫ] = 0 ; [a] ≥ 1 ,
a ∈ � ; and [a] �= [b] if a = b ; Let [�] and [� ∪ {ǫ}]
denote {[a] | a ∈ �} and {[a] | a ∈ � ∪ {ǫ}} , respec-
tively;

•	 A valence function: val : � → [1, 4];
•	 Let EB(s) denote the set of indices i of all edges

ai ∈ EB adjacent to vertex us,1 in TB.

(33)a(i) ≤ β̃(i) ≤ 3a(i), i ∈ [1, c∗],

(34)
u(s, i) ≤ β̃(s, i) ≤ 3u(s, i), s ∈ [1, s∗], i ∈ [2, nStree],

(35)v(t, i) ≤ β̃(s∗ + t, i) ≤ 3v(t, i), t ∈ [1, t∗], i ∈ [2, nTtree],

(36)e(t) ≤ β̃(t, 1) ≤ 3e(t), t ∈ [1, t∗ + 1],

(37)e(s, t)+ e(t, s) ≤ β̂(s, t) ≤ 3e(s, t)+ 3e(t, s), s ∈ [1, s∗], t ∈ [1, t∗].

Assigning multiplicity
We prepare an integer variable β̃(e) or β̂(e) for each
edge e in the scheme graph SG(dmax, k

∗, bh∗, t∗) to
denote the multiplicity of e in a selected graph H and
include necessary constraints for the variables to satisfy
in H.

constants

•	 Prepare functions tail and head such that
ai = (utail(i),uhead(i)) ∈ EB;

•	 Assume that each edge in a tree Ss , s ∈ [1, s∗] (resp.,
Tt , t ∈ [1, t∗] ) is denoted by e′s,i (resp., et,i ) with the
integer i ∈ [2, nStree] of the head us,i (resp., vt,i ) of the
edge;

variables

Page 25 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

variables

•	 α̃(p, i) ∈ [� ∪ {ǫ}] , p ∈ [1, s∗ + t∗] , i ∈ [1, nStree] :
α̃(p, i) with p ≤ s∗ (resp., p > s∗ ) represents α(up,i)
(resp., α(vp−s∗,i));

•	 δα(p, i,a) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , i ∈ [1, nStree] ,
a ∈ � ∪ {ǫ} : δα(p, i,a) = 1 ⇔ α(up,i) = a for p ≤ s∗
and α(vp−s∗,i) = a for p > s∗;

•	 δ
β̃
(i,m) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , i ∈ [1, c∗] ,

m ∈ [0, 3] : δ
β̃
(i,m) = 1 ⇔ the multiplicity of edge ai

in an inferred chemical graph G is m;
•	 δ

β̃
(p, i,m) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , i ∈ [2, nStree] ,

m ∈ [0, 3] : δ
β̃
(p, i,m) = 1 ⇔ the multiplicity of edge

e′p,i , p ≤ s∗ (or ep−s∗,i , p > s∗ ) in G is m;

•	 δ
β̃
(t, 1,m) ∈ {0, 1} , t ∈ [1, t∗ + 1] , m ∈ [0, 3] :

δ
β̃
(t, 1,m) = 1 ⇔ the multiplicity of edge et in G is q;

•	 δ
β̂
(s, t,m) ∈ {0, 1} , s ∈ [1, s∗] , t ∈ [1, t∗] , m ∈ [0, 3] :

δ
β̂
(s, t,m) = 1 ⇔ the multiplicity of edge us,1vt,1 in G

is m;

constraints

(38)

∑

a∈�∪{ǫ}

δα(p, i,a) = 1, p ∈ [1, s∗ + t∗], i ∈ [1, nStree],

(39)
∑

a∈�∪{ǫ}

[a] · δα(p, i,a) = α̃(p, i), p ∈ [1, s∗ + t∗], i ∈ [1, nStree],

(40)

∑

m∈[0,3]

δ
β̃
(i, q) = 1,

∑

m∈[1,3]

m · δ
β̃
(i,m) = β̃(i), i ∈ [1, c∗],

Descriptors on mass, the numbers of elements and bonds
We include constraints to compute descriptors ms(G) ,
cea(G) ( a ∈ �) , bdm(G) ( m ∈ [2, 3] ) and nH(G) according
to the definitions in "Modeling of chemical compounds"
section.

constants

•	 A function mass∗ : � → Z (we let mass(a) denote
the observed mass of a chemical element a ∈ � , and
define mass∗(a) = ⌊10 ·mass(a)⌋);

(41)

∑

m∈[0,3]

δ
β̃
(p, i,m) = 1,

∑

m∈[1,3]

m · δ
β̃
(p, i,m) = β̃(p, i),

p ∈ [1, s∗ + t∗], i ∈ [2, nStree],

(42)

∑

m∈[0,3]

δ
β̃
(t, 1, q) = 1,

∑

m∈[1,3]

m · δ
β̃
(t, 1,m)

= β̃(t, 1), t ∈ [1, t∗ + 1],

(43)

∑

m∈[0,3]

δ
β̂
(s, t,m) = 1,

∑

m∈[0,3]

mδ
β̂
(s, t,m) = β̂(s, t),

s ∈ [1, s∗], t ∈ [1, t∗],

(44)

∑

i∈EB(s)

β̃(i)+
∑

t∈[1,t∗]

β̂(s, t)+
∑

j∈CldS(1)

β̃(s, j) ≤
∑

a∈�

val(a) · δα(s, 1,a),

s ∈ [1, s∗],

(45)

∑

s∈[1,s∗]

β̂(s, t)+ β̃(t, 1)+ β̃(t + 1, 1)+
∑

j∈CldT(1)

β̃(s∗ + t, j) ≤
∑

a∈�

val(a)δα(s
∗ + t, 1,a),

t ∈ [1, t∗],

(46)β̃(s, i)+
∑

j∈CldS(i)

β̃(s, j) ≤
∑

a∈�

val(a)δα(s, i,a), s ∈ [1, s∗], i ∈ [2, nStree],

(47)

β̃(s∗ + t, i)+
∑

j∈CldT(i)

β̃(s∗ + t, j) ≤
∑

a∈�

val(a)δα(s
∗ + t, i,a),

t ∈ [1, t∗], i ∈ [2, nTtree].

Page 26 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

variables

•	 Mass ∈ Z : Mass represents
∑

v∈V mass∗(α(v));
•	 bd(m) ∈ [0, 2n∗] , m ∈ [1, 3];
•	 nH ∈ [0, 4n∗] : the number nH(G) of hydrogen atoms

to be included to G;

constraints

(48)

∑

p∈[1,s∗+t∗]

δα(p, 1,a) = cein(a),
∑

p∈[1,s∗+t∗],i∈[2,nStree]

δα(p, i,a) = ceex(a),

a ∈ �,

(49)
∑

a∈�

mass∗(a)(cein(a)+ ceex(a)) = Mass,

(50)

∑

i∈[1,c∗]

δ
β̃
(i, q)+

∑

s∈[1,s∗],t∈[1,t∗]

δ
β̂
(s, t, q)+

∑

t∈[2,t∗]

δ
β̃
(t, 1, q) = bdin(m),

∑

p∈[1,s∗+t∗],i∈[2,nStree]

δ
β̃
(p, i,m) = bdex(m),

m ∈ [1, 3],

(54)

2v(t, 1)+
∑

j∈CldT(1)

v(t, j) = deg(s∗ + t, 1), t ∈ [1, t∗],

(55)

v(t, i)+
∑

j∈CldT(i)

v(t, j) = deg(s∗ + t, i), t ∈ [1, t∗], i ∈ [2, nTtree],

Descriptor for the number of adjacency‑configurations
We include constraints to compute descriptors acγ (G)
( γ = (a,b,m) ∈ Ŵ ) according to the definitions in "Mod-
eling of chemical compounds" section.

constants

(56)

∑

d∈[0,4]

δdeg(p, i, d) = 1,
∑

d∈[1,4]

d · δdeg(p, i, d) = deg(p, i),

p ∈ [1, s∗ + t∗], i ∈ [1, nStree],

(57)

∑

p∈[1,s∗+t∗]

δdeg(p, 1, d) = dgin(d),

∑

p∈[1,s∗+t∗],i∈[2,nStree]

δdeg(p, i, d) = dgex(d), d ∈ [1, 4],

(58)
dgin(4)+ dgex(4) ≥ 1(resp., = 0)

when dmax = 4(resp., = 3).

Descriptor for the Number of Specified Degree
We include constraints to compute descriptors dgi(G)
( i ∈ [1, 4] ) according to the definitions in "Modeling of
chemical compounds" section. We also add constraints
so that the maximum degree of a vertex in H is at most 3
(resp., equal to 4) when dmax = 3 (resp., dmax = 4).

variables

•	 deg(p, i) ∈ [0, 4] , p ∈ [1, s∗ + t∗] , i ∈ [1, nStree] :
deg(p, i) represents degH (up,i) for p ≤ s∗ or
degH (vp−s∗,i) for p > s∗;

•	 δdeg(p, i, d) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , i ∈ [1, nStree] ,
d ∈ [0, 4] : δdeg(p, i, d) = 1 ⇔ deg(p, i) = d;

constraints

(51)

∑

a∈�

val(a)(cein(a)+ ce
ex(a))− 2(n∗ − 1+ bd

in(2)+ bd
ex(2)

+ 2bd
in(3)+ 2bd

ex(3)) = nH.

(52)

∑

i∈EB(s)

a(i)+
∑

t∈[1,t∗]

(e(s, t)+ e(t, s))+
∑

j∈CldS(1)

u(s, j) = deg(s, 1),

s ∈ [1, s∗],

(53)

u(s, i)+
∑

j∈CldS(i)

u(s, j) = deg(s, i), s ∈ [1, s∗], i ∈ [2, nStree],
•	 A set Ŵ = Ŵ< ∪ Ŵ= ∪ Ŵ> of proper tuples

(a,b,m) ∈ �×�× [1, 3];
•	 The set Ŵ0 = {(a,b, 0) | a,b ∈ � ∪ {ǫ}};

Page 27 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

variables

•	 δτ (i, γ) ∈ {0, 1} , i ∈ [1, c∗] , γ ∈ Ŵ ∪ Ŵ0 :
δτ (i, γ) = 1 ⇔ edge ai is assigned tuple γ ; i.e.,
γ = (α̃(tail(i), 1), α̃(head(i), 1), β̃(i));

•	 δτ (t, 1, γ) ∈ {0, 1} , t ∈ [2, t∗] , γ ∈ Ŵ ∪ Ŵ0 :
δτ (t, 1, γ) = 1 ⇔ edge et,1 is assigned tuple γ ; i.e.,
γ = (α̃(s∗ + t − 1, 1), α̃(s∗ + t, 1), β̃(t, 1));

•	 δτ (p, i, γ) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , i ∈ [2, nStree] ,
γ ∈ Ŵ ∪ Ŵ0 : δτ (p, i, γ) = 1 ⇔ edge e′p,i , p ≤ s∗
(or ep−s∗,i , p > s∗ ) is assigned tuple γ ; i.e.,
γ = (α̃(p, prt(i)), α̃(p, i), β̃(p, i));

•	 δτ̂ (s, t, γ) ∈ {0, 1} , s ∈ [1, s∗] , t ∈ [1, t∗] , γ ∈ Ŵ ∪ Ŵ0 :
δτ̂ (s, t, γ) = 1 ⇔ edge us,1vt,1 is assigned tuple γ ; i.e.,
γ = (α̃(s, 1), α̃(s∗ + t, 1), β̂(s, t));

constraints

(59)

∑

(a,b,m)∈Ŵ∪Ŵ0

[a]δτ (i, (a,b,m)) = α̃(tail(i), 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

[b]δτ (i, (a,b,m)) = α̃(head(i), 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

m · δτ (i, (a,b,m)) = β̃(i),

∑

γ∈Ŵ∪Ŵ0

δτ (i, γ) = 1, i ∈ [1, c∗],

(60)

∑

(a,b,m)∈Ŵ∪Ŵ0

[a]δτ (t, 1, (a,b,m)) = α̃(s∗ + t − 1, 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

[b]δτ (t, 1, (a,b,m)) = α̃(s∗ + t, 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

m · δτ (t, 1, (a,b,m)) = β̃(t, 1),

∑

γ∈Ŵ∪Ŵ0

δτ (t, 1, γ) = 1, t ∈ [2, t∗],

(61)

∑

(a,b,m)∈Ŵ∪Ŵ0

[a]δτ (p, i, (a,b,m)) = α̃(p, prt(i)),

∑

(a,b,m)∈Ŵ∪Ŵ0

[b]δτ (p, i, (a,b,m)) = α̃(p, i),

∑

(a,b,m)∈Ŵ∪Ŵ0

m · δτ (p, i, (a,b,m)) = β̃(p, i),

∑

γ∈Ŵ∪Ŵ0

δτ (p, i, γ) = 1, p ∈ [1, s∗ + t∗], i ∈ [2, nStree],

(62)

∑

(a,b,m)∈Ŵ∪Ŵ0

[a]δτ̂ (s, t, (a,b,m)) = α̃(s, 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

[b]δτ̂ (s, t, (a,b,m)) = α̃(s∗ + t, 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

m · δτ̂ (s, t, (a,b,m)) = β̂(s, t),

∑

γ∈Ŵ∪Ŵ0

δτ̂ (s, t, γ) = 1, s ∈ [1, s∗], t ∈ [1, t∗],

(63)

∑

i∈[1,c∗]

(δτ (i, γ)+ δτ (i, γ))+
∑

s∈[1,s∗],t∈[1,t∗]

(δτ̂ (s, t, γ)+ δτ̂ (s, t, γ))

+
∑

t∈[2,t∗]

(δτ (t, 1, γ)+ δτ (t, 1, γ)) = acin(γ), γ ∈ Ŵ<,

(64)

∑

i∈[1,c∗]

δτ (i, γ)+
∑

s∈[1,s∗],t∈[1,t∗]

δτ̂ (s, t, γ)+
∑

t∈[2,t∗]

δτ (t, 1, γ) = acin(γ),

γ ∈ Ŵ=,

(65)
∑

p∈[1,s∗+t∗],i∈[2,nStree]

(δτ (p, i, γ)+ δτ (p, i, γ)) = acex(γ), γ ∈ Ŵ<,

Page 28 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

Descriptor for bond‑configuration
We include constraints to compute the descriptors for
bond-configuration bdµ(G) , µ ∈ Bc , according to the
definition.

variables

•	 bc(µ) ∈ [0, n∗ − 1] , µ ∈ Bc;
•	 δdc(i, d, d

′,m) ∈ {0, 1} , i ∈ [1, c∗] , d, d′ ∈ [0, 4] ,
m ∈ [0, 3] : δdc(i, d, d′,m) = 1 ⇔ degH (utail(i)) = d ,
degH (uhead(i)) = d′ and β(ai) = m ∈ [1, 3] in G;

(66)

∑

p∈[1,s∗+t∗],i∈[2,nStree]

δτ (p, i, γ) = acex(γ), γ ∈ Ŵ=. •	 δdc(t, 1, d, d
′,m) ∈ {0, 1} , t ∈ [2, t∗] , d, d′ ∈ [0, 4] ,

m ∈ [0, 3] : δdc(t, 1, d, d′,m) = 1 ⇔ degH (vt−1,1) = d ,
degH (vt,1) = d′ and β(et,1) = m ∈ [1, 3] in G;

•	 δdc(p, i, d, d
′,m) ∈ {0, 1} , p ∈ [1, s∗ + t∗] ,

i ∈ [2, nStree] , d, d′ ∈ [0, 4] , m ∈ [0, 3] :
δdc(p, i, d, d

′,m) = 1 ⇔ degH (up,prt(i)) = d ,
degH (up,i) = d′ and β(e′p,i) = m ∈ [1, 3] for p ≤ s∗
(or degH (vp−s∗,prt(i)) = d , degH (vp−s∗,i) = d′ and
β(ep−s∗,i) = m ∈ [1, 3] for p > s∗ ) in G;

•	 δ
d̂c
(s, t, d, d′,m) ∈ {0, 1} , s ∈ [1, s∗] , t ∈ [1, t∗] ,

d, d′ ∈ [0, 4] , m ∈ [0, 3] : δ
d̂c
(s, t, d, d′, 1) = 1

⇔ degH (us,1) = d , degH (vt,1) = d′ and
β(us,1vt,1) = m ∈ [1, 3] in G;

constraints

(67)

∑

d,d′∈[0,4],m∈[0,3]

δdc(i, d, d
′,m) = 1,

∑

d,d′∈[0,4],m∈[0,3]

m · δdc(i, d, d
′,m) = β̃(i),

∑

d∈[1,4],d′∈[0,4],m∈[0,3]

d · δdc(i, d, d
′,m) = deg(tail(i), 1),

∑

d∈[0,4],d′∈[1,4],m∈[0,3]

d′ · δdc(i, d, d
′,m) = deg(head(i), 1), i ∈ [1, c∗],

(68)

∑

d,d′∈[0,4],m∈[0,3]

δdc(t, 1, d, d
′,m) = 1,

∑

d,d′∈[0,4],m∈[0,3]

m · δdc(t, 1, d, d
′,m) = β̃(t, 1),

∑

d∈[1,4],d′∈[0,4],m∈[0,3]

d · δdc(t, 1, d, d
′,m) = deg(s∗ + t − 1, 1),

∑

d∈[0,4],d′∈[1,4],m∈[0,3]

d′ · δdc(t, 1, d, d
′,m) = deg(s∗ + t, 1), t ∈ [2, t∗],

(69)
∑

d, d′ ∈ [0, 4],
m ∈ [0, 3]

δdc(p, i, d, d
′,m) = 1, p ∈ [1, s∗ + t∗], i ∈ [2, nStree],

(70)

∑

d, d′ ∈ [0, 4],
m ∈ [0, 3]

m · δdc(s, i, d, d
′,m) = β̃(s, i), s ∈ [1, s∗], i ∈ [2, nStree],

(71)

∑

d, d′ ∈ [0, 4],
m ∈ [0, 3]

m · δdc(s
∗ + t, i, d, d′,m) = β̃(s∗ + t, i), t ∈ [1, t∗], i ∈ [2, nTtree],

Page 29 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

Appendix D: Descriptions of new graph search
algorithms
Multi‑rooted trees and frequency vectors
For a finite set A of elements, let ZA

+ denote the set of
functions www : A → Z+ . A function www ∈ Z

A
+ is called a non-

negative integer vector (or a vector) on A and the value xxx(a)
for an element a ∈ A is called the entry of xxx for a ∈ A . For
a vector www ∈ Z

A
+ and an element a ∈ A , let www + 111a (resp.,

(72)

∑

d ∈ [1, 4], d′ ∈ [0, 4],
m ∈ [0, 3]

d · δdc(p, i, d, d
′,m) = deg(p, prt(i)),

∑

d ∈ [0, 4], d′ ∈ [1, 4],
m ∈ [0, 3]

d′ · δdc(t, i, d, d
′,m) = deg(p, i), p ∈ [1, s∗ + t∗], i ∈ [2, nStree],

(73)

∑

d,d′∈[1,4],m∈[0,3]

δ
d̂c
(s, t, d, d′,m) = 1,

∑

d,d′∈[1,4],m∈[0,3]

m · δ
d̂c
(s, t, d, d′,m) = β̂(s, t),

∑

d∈[1,4],d′∈[0,4],m∈[0,3]

d · δ
d̂c
(s, t, d, d′,m) = deg(s, 1),

∑

d∈[0,4],d′∈[1,4],m∈[0,3]

d′ · δ
d̂c
(s, t, d, d′,m) = deg(s∗ + t, 1),

s ∈ [1, s∗], t ∈ [1, t∗],

(74)

∑

i∈[1,c∗]

(δdc(i, d, d
′,m)+ δdc(i, d

′, d,m))

+
∑

t∈[2,t∗]

(δdc(t, 1, d, d
′,m)+ δdc(t, 1, d

′, d,m))

+
∑

s∈[1,s∗],t∈[1,t∗]

(δ
d̂c
(s, t, d, d′,m)+ δ

d̂c
(s, t, d′, d,m)) = bcin(µ),

∑

p∈[1,s∗+t∗],i∈[2,nStree]

(δdc(p, i, d, d
′,m)+ δdc(p, i, d

′, d,m)) = bcex(µ),

µ = (d, d′,m) ∈ Bc, d < d′,

(75)

∑

i∈[1,c∗]

δdc(i, d, d,m)+
∑

t∈[2,t∗]

δdc(t, 1, d, d,m)

+
∑

s∈[1,s∗],t∈[1,t∗]

δ
d̂c
(s, t, d, d,m) = bcin(µ),

∑

p∈[1,s∗+t∗],i∈[2,nStree]

δdc(p, i, d, d,m) = bcex(µ), µ = (d, d,m) ∈ Bc.

www − 111a ) denote the vector www′ such that www′(a) = www(a)+ 1
(resp., www′(a) = www(a)− 1 ) and www′(b) = www(b) for the other
elements b ∈ A \ {a} . For a vector www ∈ Z

A
+ and a sub-

set B ⊆ A , let www[B] denote the projection of www to B; i.e.,
www[B] ∈ Z

B
+ such that www[B](b) = www(b) , b ∈ B.

Let Bc denote the set of tuples
µ = (d1, d2, k) ∈ [1, 4] × [1, 4] × [1, 3] (bond-configu-
ration) such that max{d1, d2} + k ≤ 4 . For two tuples
µ = (d1, d2, k),µ

′ = (d′1, d
′
2, k

′) ∈ Bc , we write µ ≥ µ′ if
max{d1, d2} ≥ max{d′1, d

′
2}   ,

min{d1, d2} ≥ min{d′1, d
′
2} and k ≥ k ′,

and write µ > µ′ if
µ ≥ µ′ and µ = µ′.

Let Dg = {dg1, dg2, dg3, dg4} , where dgi denotes the
number of vertices with degree i.

Henceforth we deal with vectors www that have their wwwin
and wwwex components, both wwwin,wwwex ∈ Z

�∪Ŵ∪Bc∪Dg
+  , and

for convenience we write www = (wwwin,wwwex) in the sense of
concatenation.

For a vector xxx = (xxxin,xxxex) with xxxin,xxxex ∈ Z
�∪Ŵ∪Bc∪Dg
+  ,

let G(xxx) denote the set of chemical acyclic graphs G

Page 30 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

whose 2-internal (resp., 2-external) vertices/edges are
determined by the vector xxxin (resp., xxxex ); i.e., G satisfies
the following:

cein
a
(G) = xxxin(a) and ceex

a
(G) = xxxex(a) for each

chemical element a ∈ �,
acinγ (G) = xxxin(γ) and acexγ (G) = xxxex(γ) for each
adjacency-configuration γ ∈ Ŵ,
bcinµ (G) = xxxin(µ) and bcexµ (G) = xxxex(µ) for each
bond-configuration µ ∈ Bc,
dgini (G) = xxxin(dgi) and dgexi (G) = xxxex(dgi) for each
degree dgi ∈ Dg.

Throughout the section, let k∗ = 2 be a branch-
parameter, xxx∗ = (xxx∗in,xxx

∗
ex) be a given feature vector

with xxx∗in,xxx
∗
ex ∈ Z

�∪Ŵ∪Bc∪Dg
+  , and dia∗ be an integer.

We infer a chemical acyclic graph G ∈ G(xxx∗) such that

bl2(G) ∈ [2, 3] and the diameter of G is dia∗ , where
n∗ =

∑
a∈�(xxx

∗
in(a)+ xxx∗ex(a)) . Note that any other

descriptors of G ∈ G(xxx∗) can be determined by the entries
of vector xxx∗.

To infer a chemical acyclic graph G ∈ G(xxx∗) , we con-
sider a connected subgraph T of G that consists of

Our method first generates a set FT of all possible rooted
trees T that can be a 2-fringe-tree of a chemical graph
G ∈ G(xxx∗) , and then extends the trees T by repeatedly
appending a tree in FT until a chemical graph G ∈ G(xxx∗)
is formed. In the extension, we actually manipulate the
“frequency vectors” of trees defined below.

(76)

- a subtree of the 2-branch-subtree G′ of G and
- the 2-fringe-trees rooted at vertices in G′.

a an internal-subtree

d an end-fringe-tree c an end-subtree

b an internal-fringe-tree

Fig. 10  An illustration of subtrees T of a chemical acyclic graph G in Fig. 6a, where the vertices/edges in T are depicted by solid lines: a An
internal-subtree T of G; b An internal-fringe-tree T of G; c An end-subtree T of G; d An end-fringe-tree T of G 

Fig. 11  An illustration of combining two bi-rooted trees T1 = Twww1 and T2 = Twww2 with a new edge with multiplicity m joining vertices r1(T1) and
r1(T2) to construct a target graph G, where ai ∈ � , di ∈ [1, dmax − 1] , mi ∈ [di , val(ai)− 1] , i = 1, 2 , and m ∈ [1,min{3, val(a1)−m1, val(a2)−m2}]

Page 31 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

To specify which part of a given tree T plays the role of
2-internal vertices/edges or 2-external vertices/edges in a
chemical graph G ∈ G(xxx∗) to be inferred, we designate at
most three vertices r1(T) , r2(T) , and r3(T) , in T as ter-
minals, and call T rooted (resp., bi-rooted and tri-rooted)
if the number of terminals is one (resp., two and three).
For a rooted tree (resp., bi- or tri-rooted tree) T, let Ṽin
denote the set of vertices contained in a path between
two terminals of T, Ẽin denote the set of edges in T
between two vertices in Ṽin , and define Ṽex � V (T) \ Ṽin
and Ẽex � E(T) \ Ẽin . For a bi- or tri-rooted tree T, define
the backbone path PT of T to be the path of T between
vertices r1(T) and r2(T).

Given a chemical acyclic graph T, define fff t(T) ,
t ∈ {in, ex} , to be the vector www ∈ Z

�∪Ŵ∪Bc∪Dg
+ that con-

sists of the following entries:

•	 www(a) = |{v ∈ Ṽt | α(v) = a}| , a ∈ �,
•	

www(γ) = |{uv ∈ Ẽt | {α(u),α(v)} = {a,b},β(uv) = q}| ,
γ = (a,b, q) ∈ Ŵ,

•	 www(µ) = |{uv ∈ Ẽt | {deg
T
(u), deg

T
(v)} = {d, d′},β(uv) = m}|   ,

µ = (d, d′,m) ∈ Bc,
•	 www(dgi) = |{v ∈ Ṽt | degT (v) = i}| , dgi ∈ Dg.

Define fff (T) � (fff in(T), fff ex(T)) . The entry for an element
e ∈ � ∪ Ŵ ∪ Bc ∪ Dg in fff t(T) , t ∈ {in, ex} is denoted by
fff t(e;T) . For a subset B of � ∪ Ŵ ∪ Bc ∪ Dg , let fff t[B](T)
denote the projection of fff t(T) onto B.

Our aim is to generate all chemical bi-rooted (resp., tri-
rooted) trees T with diameter dia∗ such that fff (T) = xxx∗.

A new algorithm for computing chemical bi‑rooted trees G
with bl2(G) = 2

This section describes a sketch of our new graph search
algorithm for the case of bl2(G) = 2 . See Appendix “A
sketch of algorithm for computing chemical tri-rooted
trees G with bl2(G) = 3” for a sketch of a new algorithm
for the case of bl2(G) = 3.

We call a chemical graph G ∈ G(xxx∗) with diameter dia∗
and bl2(G) = 2 a target graph.

A chemical acyclic graph G with bl2(G) = 2 has exactly
two leaf 2-branches vi , i = 1, 2 , where the length of the
path between the two leaf 2-branches v1 and v2 of a tar-
get graph G is dia∗ − 2k∗ = dia∗ − 4 . We observe that a
connected subgraph T of a target graph G that satisfies
(76) for bl2(G) = 2 is a chemical rooted or bi-rooted tree
with roots u and v, where possibly u = v . We call such a
subgraph T an internal-subtree (resp., end-subtree) of G if
neither (resp., one) of u and v is a 2-branch in G. When
u = v , we call an internal-subtree (resp., end-subtree) T
of G an internal-fringe-tree (resp., end-fringe-tree) of G.

Figure 10a–d illustrates an internal-subtree, an internal-
fringe-tree, an end-subtree and an end-fringe-tree of G.

Let δ1 = ⌊dia
∗−5
2 ⌋ and δ2 = dia∗ − 5− δ1 = ⌈dia

∗−5
2 ⌉ .

We regard a target graph G ∈ G(xxx∗) with bl2(G) = 2 and
diameter dia∗ as a combination of two chemical bi-rooted
trees T1 and T2 with ℓ(PTi) = δi , i = 1, 2 , joined by an
edge e = r1(T1)r1(T2) , as illustrated in Fig. 11.

We start with generating chemical rooted trees and
then iteratively extend chemical bi-rooted trees T with
ℓ(PT) = 1, 2, . . . , δ1 , before we finally combine two
chemical bi-rooted trees T1 and T2 with ℓ(PTi) = δi . To
describe our algorithm, we introduce some notation.

•	 Let T (xxx∗) denote the set of all bi-rooted trees
T (where possibly r1(T) = r2(T) ) such that
fff in(T) ≤ xxx∗in and fff ex(T) ≤ xxx∗ex , which is a necessary
condition for T to be an internal-subtree or end-sub-
tree of a target graph G ∈ G(xxx∗).

•	 Let FT denote the set of all rooted trees T ∈ T (xxx∗)
that can be a 2-fringe-tree of a target graph G, where
T satisfies the size constraint (1) of 2-fringe-trees.

•	 For each integer h ∈ [1, dia∗ − 4] , let T (h)
end denote the

set of all bi-rooted trees T ∈ T (xxx∗) that can be an
end-subtree of a target graph G such that ℓ(PT) = h ,
and each 2-fringe-tree Tv rooted at a vertex v in PT
belongs to FT .

The idea of our new algorithm is to compute only the
set W(h)

end of frequency vectors www of end trees, whose size
|W

(h)
end| is much more restricted than that of T (h)

end . We
compute the set W(h)

end of frequency vectors www of trees in
T

(h)
end iteratively for each integer h ≥ 0 . During the compu-

tation, we keep a sample of a tree Twww for each frequency
vector www so that a final step can construct some num-
ber of target graphs G by assembling these sample trees.
Based on this, we generate target graphs G ∈ G(xxx∗) by the
following steps:

1.		 (i)	 Compute FT by a branch-and-bound
procedure that generates all possible rooted
trees T ∈ T (xxx∗) (where r1(T) = r2(T) )
that can be a 2-fringe-tree of a target graph
G ∈ G(xxx∗);

	 (ii)	 Compute the set W(0) of all vectors
www = (wwwin,wwwex) such that wwwin = fff in(T) and
wwwex = fff ex(T) for some tree T ∈ FT  , and
let W(0)

end ⊆ W(0) be those trees with height
exactly 2;

	 (iii)	 For each vector www = (wwwin,wwwex) ∈ W(0) , choose
a sample tree Twww ∈ FT such that wwwin = fff in(T)

Page 32 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

and wwwex = fff ex(T) , and store these sample
trees;

2.	 For each integer h = 1, 2, . . . , δ2 , iteratively execute
the next:

	 (i)	 Compute the set W
(h)
end of all vectors

www = (wwwin,wwwex) such that wwwin = fff in(T) and
wwwex = fff ex(T) for some bi-rooted tree T ∈ T

(h)
end ,

where such a vector www is obtained from a com-
bination of vectors www′ ∈ W(0) and www′′ ∈ W

(h−1)
end

;
	 (ii)	 For each vector www ∈ W

(h)
end , store a sample tree

Twww , which is obtained from a combination of
sample trees Twww′ with www′ ∈ W(0) and Twww′′ with
www′′ ∈ W

(h−1)
end ;

3.	 We call a pair of vectors www1 ∈ W
(δ1)

end and www2 ∈ W
(δ2)

end
feasible, if it admits a target graph G ∈ G(xxx∗) such
that www1

in +www2
in ≤ xxx∗in and www1

ex +www2
ex ≤ xxx∗ex . Find the

set Wpair of all feasible pairs of vectors www1 and www2;
4.	 For each feasible vector pair (www1,www2) ∈ Wpair , con-

struct a corresponding target graph G by combining
the corresponding samples trees Twww1 and Twww2 , as illus-
trated in Fig. 11.

Detailed descriptions of the five steps in the above
algorithm can be found in Appendix “Case of two leaf
2-branches”.

For a relatively large instance with n∗ ≥ 40 and
dia∗ ≥ 20 , the number |Wpair| of feasible vector pairs in
Step 4 is still very large. In fact, the size |W(h)

end| of a vector
set W(h)

end to be computed in Step 2 can also be considera-
bly large during an execution of the algorithm. For such a
case, we impose a time limitation on the running time for
computing W(h)

end and a memory limitation on the number
of vectors stored in a vector set W(h)

end . With these limita-
tions, we can compute only a limited subset Ŵ

(h)

end of each
vector set W(h)

end in Step 2. Even with such a subset Ŵ
(h)

end ,
we still can find a large size of a subset Ŵpair of Wpair in
Step 3.

Our algorithm also delivers a lower bound on the num-
ber of all target graphs G ∈ G(xxx∗) in the following way. In
Step 1, we also compute the number t(www) of trees T ∈ FT
such that www = fff (T) for each www ∈ W(0) . In Step 2, when a
vector www is constructed from two vectors www′ and www′′ , we
iteratively compute the number t(www) of trees T such that
www = fff (T) by t(www) := t(www′)× t(www′′) . In Step 3, when a fea-
sible vector pair (www1,www2) ∈ Wpair is obtained, we know
that the number of the corresponding target graphs G is
t(www1)× t(www2) . Possibly we compute a subset Ŵpair of
Wpair in Step 3. Then (1/2)

∑
(www1,www2)∈Ŵpair

t(www1)× t(www2)
gives a lower bound on the number of target graphs
G ∈ G(xxx∗) , where we divided by 2 since an axially sym-
metric target graph G can correspond to two vector pairs
in Wpair.

Fig. 12  An illustration of combining a tri-rooted T1 = Twww1 and a bi-rooted tree T2 = Twww2 with a new edge joining vertices r3(T1) and r1(T2) to
construct a target graph G 

Page 33 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

A sketch of algorithm for computing chemical tri‑rooted
trees G with bl2(G) = 3

We call a chemical graph G ∈ G(xxx∗) with diameter dia∗
and bl2(G) = 3 a target graph. Let n∗inl �

∑
a∈� xxx∗in(a) ,

which is the number of 2-internal vertices in a target
graph G ∈ G(xxx∗).

A chemical acyclic graph G with bl2(G) = 3 has exactly
three leaf 2-branches vi , i = 1, 2, 3 , and exactly one
2-internal vertex v4 adjacent to three 2-internal verti-
ces v′i , i = 1, 2, 3 , as illustrated in Fig. 6(b). We call ver-
tex v4 the joint-vertex of G. Without loss of generality
assume that the length of the path Pv1,v2 between v1 and
v2 is dia∗ − 4 and that the length of the path Pv1,v′1 is not
smaller than that of Pv2,v′2.

Analogously with the case of bl2(G) = 2 , we define
internal-subtree (resp., end-subtree, internal-fringe-tree,
and end-fringe-tree) of G, to be a connected subgraph
G′ that satisfies (76). Observe that G can be partitioned
into three end-subtrees Ti , i = 1, 2, 3 , the 2-fringe-tree
T4 rooted at the joint-vertex v4 and three edges v′iv4 ,
i = 1, 2, 3 , where the backbone path PTi connects leaf
2-branch vi and vertex v′i . In particular, we call the end-
subtree of G that consists of T1 , T2 , T4 , and edges v′iv4 ,
i = 1, 2 , the main-subtree of G, which consists of the
path Pv1,v2 and all the 2-fringe-trees rooted at vertices
in Pv1,v2 . We call T3 the co-subtree of G.

Let δi , i = 1, 2, 3 denote the length of the backbone
path of Ti . Note that

δ1 + δ2 + 2 = dia∗ − 4 and
δ1 ≥ δ2 ≥ δ3 = n∗inl − dia∗ + 2,

from which it follows that
δ2 ∈ [δ3, ⌊dia

∗/2⌋ − 3] and
δ1 ∈ [⌈dia∗/2⌉ − 3, dia∗ − 6− δ3].

We regard a target graph G ∈ G(xxx∗) with bl2(G) = 3
and diameter dia∗ as a combination of the main-subtree
and the co-subtree joined with an edge. We represent
the co-subtree as a chemical bi-rooted tree T with
ℓ(PT) = δ3 . We represent the main-subtree of a target
graph G as a tri-rooted tree T with ℓ(PT) = dia− 4
so that terminals r1(T) , r2(T) , and r3(T) , correspond
to the two leaf 2-branches and the joint-vertex of G,
respectively.

We start with generating chemical rooted trees and
then iteratively extend chemical bi-rooted trees T with
ℓ(PT) = 1, 2, . . . , dia∗ − 6− δ3 , before we combine two
chemical bi-rooted trees T ′ and T ′′ to obtain a chemical
tri-rooted tree T1 with ℓ(PT1) = δi , and finally, combine a
chemical tri-rooted tree T1 and a chemical bi-rooted tree
T2 with ℓ(PT2) = δ3 , to obtain a target graph G ∈ G(xxx∗).

Analogously with the case of bl2(G) = 2 , we define the
set T (xxx∗) of all bi-rooted trees T, the set FT of all rooted

a b f e d c h g

Fig. 13  An illustration of fictitious rooted trees T [+p] , p ∈ [1, 3] for rooted trees T with r = r1(T) = r2(T) and d = degT (r) , where a dashed line
depicts a fictitious edge incident to the terminal r1(T) = r2(T) : (a) T [+1] and d = 1 ; (b) T [+1] and d = 2 ; (c) T [+1] and d = 3 ; (d) T [+2] and d = 0 ;
(e) T [+2] and d = 1 ; (f) T [+2] and d = 2 ; (g) T [+3] and d = 0 ; (h) T [+3] and d = 1

a b

Fig. 14  An illustration of fictitious trees T [+q] and T �+1� for bi-rooted trees and tri-rooted trees T: a T [+q] of a bi-rooted tree T; b T �+1� of a
tri-rooted tree T 

Page 34 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

trees T ∈ T (xxx∗) that can be a 2-fringe-tree of a target
graph G and the set T (h)

end , h ∈ [1, dia∗ − 6− δ3] , of all bi-
rooted trees T ∈ T (xxx∗) that can be an end-subtree of a
target graph G such that ℓ(PT) = h.

We generate target graphs G ∈ G(xxx∗) by the following
steps:

1.	 Analogously with Step 1 for the case of bl2(G) = 2 ,
compute the set FT by a branch-and-bound algo-
rithm as described in "Step 1: Enumeration of
2-fringe-trees" section, and the set W(0) of all vec-
tors www = (wwwin,wwwex) such that wwwin = fff in(T) and
wwwex = fff ex(T) for some tree T ∈ FT  . For each vec-
tor www ∈ W(0) , store a sample tree Twww ∈ FT  , and let
W

(0)
end ⊆ W(0) be the set of feature vectors of possible

end-trees with height 2;
2.	 For each integer h = 1, 2, . . . , dia∗ − 6− δ3 , compute

the set W(h)
end of all vectors www = (wwwin,wwwex) such that

wwwin = fff in(T) and wwwex = fff ex(T) for some bi-rooted
tree T ∈ T

(h)
end . For each vector www ∈ W

(h)
end , store a

sample tree Twww;
3.	 For each integer h ∈ [⌈dia∗/2⌉ − 2, dia∗ − 5− δ3] ,

compute the set W(h)
end+2 of all vectors www = (wwwin,wwwex)

such that wwwin = fff in(T) and wwwex = fff ex(T) of some bi-
rooted tree T with ℓ(PT) = h that represents an end-
subtree rooted at the joint-vertex. For each vector
www ∈ W

(h)
end+2 , store a sample tree Twww;

4.	 For each integer δ1 ∈ [⌈dia∗/2⌉ − 3, dia∗ − 6− δ3] ,
compute the set W(δ1+1)

main of all vectors www = (wwwin,wwwex)
such that wwwin = fff in(T) and wwwex = fff ex(T) for some
tri-rooted tree T that represents the main-subtree
such that the length of the path Pr2(T),r3(T) between
terminals r2(T) and r3(T) is δ1 + 1 . For each vector
www ∈ W

(δ1+1)
main  , store a sample tree Twww;

5.	 We call a pair of vectors www1 ∈ W
(δ1+1)
main and www2 ∈ W

(δ3)

end
feasible if it admits a target graph G ∈ G(xxx∗) such that
www1
in +www2

in ≤ xxx∗in and www1
ex +www2

ex ≤ xxx∗ex . Find the set
Wpair of all feasible pairs of vectors www1 and www2;

6.	 For each feasible vector pair (www1,www2) ∈ Wpair , con-
struct a corresponding target graph G by combining
the samples trees Twww1 and Twww2 , which correspond to
the main-subtree and the co-subtree of a target graph
G, respectively, as illustrated in Fig. 12.

Detailed descriptions of the six steps in the above
algorithm can be found in Appendix “Case of three leaf
2-branches”.

Frequency vectors of fictitious trees
Let T be a chemical bi-rooted or tri-rooted tree, where
we regard a rooted tree T as a bi-rooted tree with
r1(T) = r2(T) for a notational convenience. Recall that our
algorithm generates a target graph G ∈ G(xxx∗) as a super-
graph of T, where one of terminals r1(T) and r2(T) can be
a 2-branch of G. We assume that the second terminal r2(T)
will be a 2-branch of G in such a case in our algorithms.

For an integer p ∈ [1, 3] , let T [+p] denote a fictitious
chemical graph obtained from T by regarding the degree
of terminal r1(T) as degT (r1(T))+ p . Figure 13 (resp.,
Fig. 14a) illustrates fictitious trees T [+p] in the case of
r1(T) = r2(T) (resp., r1(T) = r2(T) ). The frequency vec-
tors fff in(T [+p]) and fff ex(T [+p]) are obtained as follows:
Let d = degT (r1(T)) , vi , i ∈ [1, d] , denote the neigh-
bors of r1(T) , and di = degT (vi) , mi = β(r1(T)vi) , and
µi = (d, di,mi) , µ′

i = (d + p, di,mi) , i ∈ [1, d].
For r1(T) = r2(T) and d′ = d + p,

fff in(T [+p]) = fff in(T)+ 111dgd′ − 111dgd   ,
fff ex(T [+p]) = fff ex(T)+

∑

1≤i≤d

(111µ′
i
− 111µi).

For r1(T) = r2(T) and d′ = d + p , where vd denotes the
vertex in PT ,

fff in(T [+1]) = fff in(T)+ 111dgd′ − 111dgd + 111µ′
d
− 111µd

,
fff ex(T [+1]) = fff ex(T)+

∑

1≤i≤d−1

(111µ′
i
− 111µi).

Let T be a chemical tri-rooted tree, where the third ter-
minal r3(T) is in the backbone path PT between vertices
r1(T) and r2(T) . Let T �+1� denote a fictitious chemical
graph obtained from T by regarding the degree of ter-
minal r3(T) as degT (r3(T))+ 1 . Figure 14b illustrates a
fictitious tri-rooted tree T �+1� . The frequency vectors
fff in(T �+1�) and fff ex(T �+1�) are obtained as follows: Let
d = degT (r3(T)) , vi , i ∈ [1, d] , denote the neighbors of
r3(T) , where vd−1 and vd are contained in the path PT . For
each index i ∈ [1, d] , let di = degT (vi) , mi = β(r3(T)vi) ,
µi = (d, di,mi) , and µ′

i = (d + 1, di,mi).
Then

(77)

fff in(T �+1�) = fff in(T)+ 111dg(d+1) − 111dgd +
∑

i∈[d−1,d]

(111µ′
i
− 111µi),

fff ex(T �+1�) = fff ex(T)+
∑

i≤[1,d−2]

(111µ′
i
− 111µi).

Page 35 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

Sets of frequency vectors
For an element a ∈ � and integers d ∈ [0, dmax − 2]
and m ∈ [d, val(a)− 1] , let W

(0)
inl (a, d,m) (resp.,

W
(0)
inl+3(a, d,m) ) denote the set of frequency vectors

(fff in(T [+2]), fff ex(T [+2])) (resp., (fff in(T [+3]), fff ex(T [+3])) )
of a chemical rooted tree T such that

r1(T) = r2(T) , the height of T is at most 2,
α(r1(T)) = a , degT (r1(T)) = d , and β(r1(T)) = m.

Recall that β(u) =
∑

uv∈E β(uv) , defined in “Preliminary”
section.

For an element a ∈ � and integers d ∈ [1, dmax − 1] ,
m ∈ [d, val(a)− 1] , and h ≥ 0 , let W

(h)
end(a, d,m)

(resp., W
(h)
end+2(a, d,m) ) denote the set of fre-

quency vectors (fff in(T [+1]), fff ex(T [+1])) (resp.,
(fff in(T [+2]), fff ex(T [+2])) ) of chemical bi-rooted trees T
such that

α(r1(T)) = a , degT (r1(T)) = d , β(r1(T)) = m ,
ℓ(PT) = h and
if h = 0 then the height of the tree T ′ rooted at r2(T)
is 2.

Case of two leaf 2‑branches
Step 1: Enumeration of 2‑fringe‑trees
The main task of Step 1 is to compute for each
tuple (a, d,m) of an element a ∈ � and inte-
gers d ∈ [1, dmax − 1] (resp., d ∈ [0, dmax − 2] ) and
m ∈ [d, val(a)− 1] (resp., m ∈ [d, val(a)− 2] ), the set
W

(0)
end(a, d,m) (resp., W

(0)
inl (a, d,m) ) of all frequency

vectors fff (T [+1]) (resp., fff (T [+2]) ) of chemical
rooted trees T such that r1(T) = r2(T) , α(r1(T)) = a ,
degT (r1(T)) = d and β(r1(T)) = m.

Step 1 first computes the set FT of all possible chemi-
cal rooted trees T ∈ T (xxx∗) (where r1(T) = r2(T) ) that

can be a 2-fringe-tree of a target graph G ∈ G(xxx∗) . For
this, we design a branch-and-bound procedure where
we append a new vertex one by one to construct a rooted
tree with only one child. To design a bounding proce-
dure, we derive a property of the structure of chemical
rooted trees that can be a 2-fringe-tree of a target graph.

Let G0 be a chemical rooted tree with a termi-
nal r0 = r1(G0) = r2(G0) , where fff in(α(r0);G0) = 1
and fff in(a;G0) = 0 , a ∈ � \ {α(r0)} and
fff in(γ ;G0) = 0 , γ ∈ Ŵ . For a vector xxx = (xxxin,xxxex) with
xxxin,xxxex ∈ Z

�∪Ŵ∪Bc∪Dg
+  , we call G0 xxx-extensible if some

chemical acyclic graph G ∈ G(xxx) contains G0 as a sub-
graph of a 2-fringe-tree T rooted at r0 in G.

We use the next condition as a bounding procedure
when we generate chemical rooted trees in Step 1.

Lemma 3  For a branch-parameter k = 2, let
xxx∗ = (xxx∗in,xxx

∗
ex) be a vector with xxx∗in,xxx

∗
ex ∈ Z

�∪Ŵ∪Bc∪Dg
+ , and

G0 be a chemical rooted tree rooted at a vertex r0 such that
fff (G0) ≤ xxx∗ .

	(i)	 Graph G0 is xxx∗-extensible only when the next holds
for any subset �′ ⊆ � :

a b c d
Fig. 15  An illustration of rooted trees T with height at most 2 and only one child satisfying the size constraint: a case of n(T) = 2 ; b case of
n(T) = 3 ; c case of n(T) = 4 ; d case of n(T) = 5

Fig. 16  An illustration of appending a rooted tree T ′ to a bi-rooted
tree T ′′ to compute a vector www ∈ W

(h)
end(a, d,m) from the frequency

vectors www′ = fff (T ′[+2]) ∈ W
(0)
inl (a, d − 1,m′) of a rooted tree T ′ and

www′′ = fff (T ′′[+1]) ∈ W
(h−1)
end (b, d′′ ,m′′) of a bi-rooted tree T ′′

Page 36 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

	(ii)	 Let G1 denote the chemical rooted tree obtained
from G0 by appending a new atom with an ele-
ment b ∈ � to an atom with an element a ∈ � in
G0 with a multiplicity q; i.e., we join an atom a in G0
and a new atom b with an adjacency-configuration
(a,b, q) . Then G1 is xxx∗-extensible only when the
next holds:
xxx∗ex(a)− fff ex(a;G0) ≤ nbnbnb(a)− 1

	 for
	
nbnbnb(a) =

∑

γ = (a,b,m) ∈ Ŵ :

b �= a ∈ �

(xxx∗ex(γ)− fff ex(γ ;G0))+ 2
∑

γ=(a,a,m)∈Ŵ

(xxx∗ex(γ)− fff ex(γ ;G0))

.
Proof 

	(i)	 Assume that G0 is a subgraph of a 2-fringe-tree T in
some chemical graph G ∈ G(xxx∗) so that T is rooted
at r0 . The left-hand side means the number of the
remaining 2-external vertices with elements in �′
in the 2-fringe-trees in G. Each of such atoms has
a neighbor in the connected graph G. The right-
hand side indicates an upper bound on the number
of 2-external edges joining elements in �′ in the
2-fringe-trees in G.

	(ii)	 Note that fff ex[�∪Ŵ](G1) = fff ex[�∪Ŵ](G0)+ 111b + 111γ .
For �′ = {a} , the left-hand side in Eq. (78) is
xxx∗ex(a)− fff ex(a;G0) , which remains unchanged
if a = b (resp., is reduced by 1 if a = b ); and the
right-hand side in (78) is nbnbnb(a) , which is reduced
by 1 if a = b (resp., is reduced by 2 if a = b ). That
is, the left-hand side minus the right-hand side in
(78) is always reduced by 1. This gives the required
necessary condition for G1 to be xxx∗-extensible.

 �

Figure 15 illustrates all graph structures of rooted trees
T with height at most 2 and only one child satisfying
the size constraint (1). For each element a ∈ � , we enu-
merate chemical trees T ∈ T (xxx∗) rooted at vertex r with
α(r) = a that has only one child by a branch-and-bound

(78)

∑

a∈�′

(xxx∗ex(a)− fff ex(a;G0)) ≤
∑

γ = (a,b,m) ∈ Ŵ :

a ∈ �′,b ∈ � \�′

(xxx∗ex(γ)− fff ex(γ ;G0))

+ 2
∑

γ = (a,b,m) ∈ Ŵ :

a,b ∈ �′

(xxx∗ex(γ)− fff ex(γ ;G0)).

algorithm. Let Ta denote the set of resulting rooted trees
for each root element a ∈ �.

We next enumerate chemical trees T ∈ T (xxx∗) rooted
at vertex r with α(r) = a that has two or three children
by generating a combination of two or three graphs in Ta .
During generating graphs, our bounding procedure tests
whether the current graph satisfies the necessary condi-
tion in Lemma 3(ii).

Finally, we compute the following sets:

for each element a ∈ � , integers d ∈ [1, dmax − 1] ,
m ∈ [d, val(a)− 1] , the set W

(0)
end(a, d,m) of fre-

quency vectors fff (T [+1]) for rooted trees T ∈ Ta with
degT (r) = d and height 2;

for each element a ∈ � , integers d ∈ [0, dmax − 2] ,
m ∈ [d, val(a)− 2] , the set W

(0)
inl (a, d,m) of fre-

quency vectors fff (T [+2]) for rooted trees T ∈ Ta with
degT (r) = d and height at most 2.

For each vector www ∈ W
(0)
end(a, d,m) (resp.,

www ∈ W
(0)
inl (a, d,m) ), we store a sample tree Twww.

We remark that the size of the set FT depends on
the vector xxx∗ . However, since the height of trees is lim-
ited to 2, the degree is at most 3 or 4, and the size con-
straint (1) on fringe trees in "Our target graph class"
section, the size of the set FT is fairly limited.

Step 2: Generation of frequency vectors of end‑subtrees
The main task of Step 2 is to compute the following sets
in the ascending order of h = 1, 2, . . . , δ2 :

For elements a ∈ � , integers d ∈ [1, dmax − 1] ,
m ∈ [d, val(a)− 1] , and h ∈ [1, δ2] , the sets W(h)

end(a, d,m)
of all frequency vectors fff (T [+1]) of chemical bi-
rooted trees T ∈ T (xxx∗) such that α(r1(T)) = a ,
degT (r1(T)) = d , β(r1(T)) = m and ℓ(PT) = h.

Observe that each vector www = (wwwin,wwwex) ∈ W
(h)

end
(a, d,m)

is obtained from a combination of

Page 37 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

vectors www′ = (www′
in,www

′
ex) ∈ W

(0)
inl (a, d − 1,m′) and

www′′ = (www′′
in,www

′′
ex) ∈ W

(h−1)
end (b, d′′,m′′) such that

m′ ≤ val(a)− 2 , 1 ≤ m−m′ ≤ val(b)−m′′,
wwwin = www′

in +www′′
in + 111γ + 111µ ≤ xxx∗in   ,

wwwex = www′
ex +www′′

ex ≤ xxx∗ex
for γ = (a,b,m−m′) ∈ Ŵ and
µ = (d + 1, d′′ + 1,m−m′) ∈ Bc.

Figure 16 illustrates this process of computing a vector
www ∈ W

(h)
end(a, d,m).

For each vector www ∈ W
(h)
end(a, d,m) obtained

from a combination www′ ∈ W
(0)
inl (a, d − 1,m′) and

www′′ ∈ W
(h−1)
end (b, d′′,m′′) , we construct a sample tree Twww

from their sample trees Twww′ and Twww′′.

Step 3: Enumeration of feasible vector pairs
A feasible pair of vectors is defined to be a pair
of vectors wwwi = (wwwi

in,www
i
ex) ∈ W

(δi)

end(ai, di,mi) ,
ai ∈ � , di ∈ [1, dmax − 1] , mi ∈ [di, val(ai)− 1] ,
i = 1, 2 that admits an adjacency-configura-
tion γ = (a1,a2,m) ∈ Ŵ and a bond-configura-
tion µ = (d1 + 1, d2 + 1,m) ∈ Bc with an integer
m ∈ [1,min{3, val(a1)−m1, val(a2)−m2}] such that

xxx∗in = www1
in +www2

in + 111γ + 111µ and xxx∗ex = www1
ex +www2

ex,

or equivalently www1 is equal to the vector
(xxx∗in −www2

in − 111γ − 111µ,xxx
∗
ex −www1

ex) , which we call the (γ ,µ)
-complement of www2 , and denote it by www2.

The main task of Step 3 is to enumerate all feasible
vector pairs (www1,www2) , wwwi ∈ W

(δi)

end(ai, di,mi) with ai ∈ � ,
di ∈ [1, dmax − 1] , mi ∈ [di, val(ai)− 1] , i = 1, 2.

To efficiently search for a feasible pair of vec-
tors in two sets W

(δi)

end(ai, di,mi) , i = 1, 2 , we first
compute the (γ ,µ)-complement vector www of each

vector www ∈ W
(δ2)

end (a2, d2,m2) for each pair of
γ = (a1,a2,m) ∈ Ŵ and µ = (d1 + 1, d2 + 1,m) ∈ Bc
with m ∈ [1,min{3, val(a1)−m1, val(a2)−m2}] , and
denote by W(δ2)

end the set of the resulting (γ ,µ)-comple-
ment vectors. Observe that (www1,www2) is a feasible vector
pair if and only if www1 = www2 . To find such pairs, we merge
the sets W(δ1)

end (a1, d1,m1) and W(δ2)

end into a sorted list Lγ ,µ .
Then each feasible vector pair (www1,www2) appears as a con-
secutive pair of vectors www1 and www2 in the list Lγ ,µ.

Step 4: Construction of chemical graphs
The task of Step 4 is to construct for each feasible vector
pair wwwi ∈ W

(δi)

end(ai, di,mi) , i = 1, 2 such that www1 is equal
to the (γ = (a1,a2,m),µ)-complement vector www2 of www2 ,
construct a target graph T(www1,www2) ∈ G(xxx∗) by combin-
ing the sample trees Ti = Twwwi of vectors wwwi with an edge
e = r1(T1)r1(T2) such that β(e) = m . Figure 11 illustrates
two sample trees Ti , i = 1, 2 to be combined with a new
edge e = r1(T1)r1(T2).

Case of three leaf 2‑branches
Step 1: Enumeration of 2‑fringe‑trees
The main task of Step 1 is to compute the following sets:

for each tuple (a, d,m) of an element a ∈ � and
integers d ∈ [1, dmax − 1] (resp., d ∈ [0, dmax − 2]
and d ∈ [0, dmax − 3] ) and m ∈ [d, val(a)− 1] (resp.,
m ∈ [d, val(a)− 2] and m ∈ [d, val(a)− 3] ), the set
W

(0)
end(a, d,m) (resp., W(0)

inl (a, d,m) and W(0)
inl+3(a, d,m) )

of all frequency vectors fff (T [+1]) (resp., fff (T [+2])
and fff (T [+3]) ) of chemical rooted trees T such that
r1(T) = r2(T) , α(r1(T)) = a , degT (r1(T)) = d and
β(r1(T)) = m . For each vector www ∈ W

(0)
end(a, d,m) (resp.,

www ∈ W
(0)
inl (a, d,m) and www ∈ W

(0)
inl+3(a, d,m) ), we store a

sample tree Twww . This step can be designed in a similar way
as Step 1 for the case of bl2(G) = 2.

Fig. 17  An illustration of computing the frequency vector www = fff (T �+1�) ∈ W
(δ1+1)
main (a, d,m) of a tri-rooted tree T from the frequency vectors

www1 = fff (T1[+2]) ∈ W
(δ1+1)
end+2 (a, d − 1,m′′) and www2 = fff (T2[+1]) ∈ W

(δ2)

end (a
′ , d′ ,m′) for bi-rooted trees T1 and T2

Page 38 of 39Azam et al. Algorithms Mol Biol (2021) 16:18

Step 5: Enumeration of feasible vector pairs
Analogously with the case of bl2(G) = 2 , a feasi-
ble pair of vectors is defined to be a pair of vec-
tors www1 = (www1

in,www
1
ex) ∈ W

(δ1+1)
main (a1, d1,m1) ,

and www2 = (www2
in,www

2
ex) ∈ W

(δ3)

end (a2, d2,m2) ,
δ1 ∈ [⌈dia∗/2⌉ − 3, dia∗ − 6− δ3] , ai ∈ � ,
di ∈ [1, dmax − 1] , mi ∈ [di, val(ai)− 1] ,
i = 1, 2 that admits an adjacency-configura-
tion γ = (a1,a2,m) ∈ Ŵ and a bond-configura-
tion µ = (d1 + 1, d2 + 1,m) ∈ Bc with an integer
m ∈ [1,min{3, val(a1)−m1, val(a2)−m2}] such that

xxx∗in = www1
in +www2

in + 111γ + 111µ and xxx∗ex = www1
ex +www2

ex.

Step 5 computes the set of all feasible vector pairs
(www1,www2) by using a sorting algorithm as in the Step 4 for
the case of bl2(G) = 2.

Step 6: Construction of chemical graphs
Analogously with Step 4 for the case of bl2(G) = 2 , Step 6
constructs a target graph T(www1,www2) ∈ G(xxx∗) for each fea-
sible vector pair (www1,www2) by combining the sample trees
Ti = Twwwi of vectors wwwi with a new edge e = r1(T1)r1(T2).

Abbreviations
ANN: Artificial neural network; MILP: Mixed integer linear programming.

Acknowledgements
Not applicable.

Authors’ contributions
Conceptualization, HN and TA; methodology, HN; software, NAA, JZ, YS, YS, AS
and L.; validation, NAA, JZ, AS and HN; formal analysis, HN; data resources, AS,
LZ, HN and TA; writing—original draft preparation, HN; writing—review and
editing, NAA, AS and TA; project administration, HN; funding acquisition, TA. All
authors read and approved the final manuscript.

Funding
This research was supported, in part, by Japan Society for the Promotion of
Science, Japan, under Grant #18H04113.

Availablity of data and materials
Source code of the implementation of our algorithm is freely available from
https://​github.​com/​ku-​dml/​mol-​infer.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Applied Mathematics and Physics, Kyoto University, Yoshida
Honmachi, Sakyo, Kyoto 606‑8501, Japan. 2 Graduate School of Advanced
Integrated Studies in Human Survivability, Kyoto University, Yoshida
Nakaadachi‑cho, Sakyo, Kyoto 606‑8306, Japan. 3 Bioinformatics Center, Insti-
tute for Chemical Research, Kyoto University, Gokasho, Uji 611‑0011, Japan.

Received: 24 September 2020 Accepted: 27 April 2021

Step 2: Generation of frequency vectors of end‑subtrees
Analogously with Step 2 for the case of bl2(G) = 2 ,
Step 2 computes the following sets in the ascending order
of h = 1, 2, . . . , dia∗ − 6− δ3:

For elements a ∈ � , integers d ∈ [1, dmax − 1] ,
m ∈ [d, val(a)− 1] , i = 1, 2 , and h ∈ [1, dia∗ − 6− δ3] ,
the sets W(h)

end(a, d,m) of all frequency vectors fff (T [+1])
of chemical bi-rooted trees T ∈ T (xxx∗) such that
α(r1(T)) = a , degT (r1(T)) = d , β(r1(T)) = m and
ℓ(PT) = h.

For each vector www ∈ W
(h)
end(a, d,m) , we construct a sam-

ple tree Twww from their sample trees Twww′ and Twww′′.

Step 3: Generation of frequency vectors of end‑subtrees
with two fictitious edges
The main task of Step 3 is to compute the following sets:

For elements a ∈ � , integers d ∈ [1, dmax − 2] ,
m ∈ [d, val(a)− 2] and h ∈ [⌈dia∗/2⌉ − 2, dia∗ − 5− δ3] ,
the sets W

(h)
end+2(a, d,m) of all frequency vectors

of bi-rooted trees T [+2] such that α(r1(T)) = a ,
degT (r1(T)) = d , β(r1(T)) = m and ℓ(PT) = h . For each
vector www ∈ W

(h)
end+2(a, d,m) , we store a sample tree Twww .

This step can be designed in a similar way as Step 3 for
the case of bl2(G) = 2.

Step 4: Enumeration of frequency vectors of main‑subtrees
For an element a ∈ � , and integers
d ∈ [2, dmax − 1] , m ∈ [d, val(a)− 1] , and
δ1 ∈ [⌈dia∗/2⌉ − 3, dia∗ − 6− δ3] , define W(δ1+1)

main (a, d,m)
to be the set of the frequency vectors fff (T �+1�) of chemi-
cal tri-rooted trees T such that

α(r1(T)) = a , degT (r1(T)) = d , β(r1(T)) = m ,
ℓ(PT) = dia∗ − 4 and
the length of the path Pr2(T),r3(T) between vertices
r2(T) and r3(T) is δ1 + 1.

See Fig. 12 for the structure of a main-tree. Such a chemi-
cal tri-rooted graph T corresponds to the main-subtree
of a target graph G ∈ G(xxx∗).

The main task of Step 4 is to compute the
sets W

(δ1+1)
main (a, d,m) , a ∈ � , d ∈ [2, dmax − 1] ,

m ∈ [d, val(a)− 1] , δ1 ∈ [⌈dia∗/2⌉ − 3, dia∗ − 6− δ3] .
Each vector www ∈ W

(δ1+1)
main (a, d,m) can be obtained from

a combination of vectors www1 ∈ W
(δ1+1)
end+2 (a, d − 1,m′′)

and www2 ∈ W
(δ2)

end (a
′, d′,m′) such that δ1 + δ2 = dia∗ − 4

and δ1 ≥ δ2 , as illustrated in Fig. 17. For each vector
www ∈ W

(δ1+1)
main (a, d,m) , we store a sample tree Twww . This step

can be designed in a similar way as Step 3 for the case of
bl2(G) = 2.

https://github.com/ku-dml/mol-infer

Page 39 of 39Azam et al. Algorithms Mol Biol (2021) 16:18 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

References
	1.	 Miyao T, Kaneko H, Funatsu K. Inverse QSPR/QSAR analysis for chemical

structure generation (from y to x). J Chem Inf Model. 2016;56(2):286–99.
	2.	 Skvortsova MI, Baskin II, Slovokhotova OL, Palyulin VA, Zefirov NS. Inverse

problem in QSAR/QSPR studies for the case of topological indices
characterizing molecular shape (Kier indices). J Chem Inf Comput Sci.
1993;33(4):630–4.

	3.	 Ikebata H, Hongo K, Isomura T, Maezono R, Yoshida R. Bayesian molecular
design with a chemical language model. J Comput Aided Mol Design.
2017;31(4):379–91.

	4.	 Rupakheti C, Virshup A, Yang W, Beratan DN. Strategy to discover diverse
optimal molecules in the small molecule universe. J Chem Inf Model.
2015;55(3):529–37.

	5.	 Fujiwara H, Wang J, Zhao L, Nagamochi H, Akutsu T. Enumerating
treelike chemical graphs with given path frequency. J Chem Inf Model.
2008;48(7):1345–57.

	6.	 Kerber A, Laue R, Grüner T, Meringer M. MOLGEN 4.0. Match Commun
Math Comput Chem. 1998;37:205–8.

	7.	 Li J, Nagamochi H, Akutsu T. Enumerating substituted benzene isomers
of tree-like chemical graphs. IEEE/ACM Trans Comput Biol Bioinf.
2016;15(2):633–46.

	8.	 Reymond J-L. The chemical space project. Accounts Chem Res.
2015;48(3):722–30.

	9.	 Akutsu T, Fukagawa D, Jansson J, Sadakane K. Inferring a graph from path
frequency. Discrete Appl Math. 2012;160(10–11):1416–28.

	10.	 Nagamochi H. A detachment algorithm for inferring a graph from path
frequency. Algorithmica. 2009;53(2):207–24.

	11.	 Bohacek RS, McMartin C, Guida WC. The art and practice of structure-
based drug design: a molecular modeling perspective. Med Res Rev.
1996;16(1):3–50.

	12.	 Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM,
Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel
TD, Adams RP, Aspuru-Guzik A. Automatic chemical design using a
data-driven continuous representation of molecules. ACS Central Sci.
2018;4(2):268–76.

	13.	 Segler MHS, Kogej T, Tyrchan C, Waller MP. Generating focused molecule
libraries for drug discovery with recurrent neural networks. ACS Central
Sci. 2017;4(1):120–31.

	14.	 Yang X, Zhang J, Yoshizoe K, Terayama K, Tsuda K. ChemTS: an efficient
python library for de novo molecular generation. Sci Technol Adv Mater.
2017;18(1):972–6.

	15.	 Kusner MJ, Paige B, Hernández-Lobato JM. Grammar variational autoen-
coder. In: Proceedings of the 34th International Conference on Machine
Learning, vol 70; 2017. p. 1945–54

	16.	 Akutsu T, Nagamochi H. A mixed integer linear programming formulation
to artificial neural networks. In: Proceedings of the 2nd international con-
ference on information science and systems, Tokyo, Japan, ACM; 2019. p.
215–20.

	17.	 Azam NA, Chiewvanichakorn R, Zhang F, Shurbevski A, Nagamochi H,
Akutsu T. A method for the inverse QSAR/QSPR based on artificial neural

networks and mixed integer linear programming with guaranteed admis-
sibility. In: Proceedings of the 13th international joint conference on
biomedical engineering systems and technologies, vol 3: BIOINFORMAT-
ICS, Valetta, Malta; 2020. p. 101–108

	18.	 Chiewvanichakorn R, Wang C, Zhang Z, Shurbevski A, Nagamochi H,
Akutsu T. A method for the inverse QSAR/QSPR based on artificial neural
networks and mixed integer linear programming. In: Proceedings of the
2020 10th international conference on bioscience, biochemistry and bio-
informatics, Kyoto, Japan; 2020. p. 40–46. https://​doi.​org/​10.​1145/​33860​
52.​33860​54

	19.	 Zhang F, Zhu J, Chiewvanichakorn R, Shurbevski A, Nagamochi H, Akutsu
T. A new integer linear programming formulation to the inverse QSAR/
QSPR for acyclic chemical compounds using skeleton trees. In: Proceed-
ings of the 33rd international conference on industrial, engineering and
other applications of applied intelligent systems, Kitakyushu, Japan; 2020.
p. 433–444. https://​doi.​org/​10.​1007/​978-3-​030-​55789-8_​38

	20.	 Ito R, Azam NA, Wang C, Shurbevski A, Nagamochi H, Akutsu T. A novel
method for the inverse QSAR/QSPR to monocyclic chemical compounds
based on artificial neural networks and integer programming. In:
Proceedings of the 21st international conference on bioinformatics and
computational biology; 2020

	21.	 Zhu J, Wang C, Shurbevski A, Nagamochi H, Akutsu T. A novel method
for inference of chemical compounds of cycle index two with desired
properties based on artificial neural networks and integer programming.
Algorithms. 13:5. doi: https://​doi.​org/​10.​3390/​a1305​0124.​124.

	22.	 Suzuki M, Nagamochi H, Akutsu T. Efficient enumeration of monocyclic
chemical graphs with given path frequencies. J Cheminf. 2014;6(1):31.

	23.	 Tamura Y, Nishiyama Y, Wang C, Sun Y, Shurbevski A, Nagamochi H,
Akutsu T. Enumerating chemical graphs with mono-block 2-augmented
tree structure from given upper and lower bounds on path frequencies;
2020. arXiv preprint arXiv:​2004.​06367

	24.	 Yamashita K, Masui R, Zhou X, Wang C, Shurbevski A, Nagamochi H,
Akutsu T. Enumerating chemical graphs with two disjoint cycles satisfy-
ing given path frequency specifications; 2020. arXiv preprint arXiv:​2004.​
08381

	25.	 Kim S, et al. PubChem in 2021: new data content and improved web
interfaces. Nucleic Acids Res. 2021;49(D1):D1388–95.

	26.	 Netzeva TI, et al. Current status of methods for defining the applicabil-
ity domain of (quantitative) structure-activity relationships: the report
and recommendations of ECVAM workshop 52. Altern Lab Anim.
2005;33(2):155–73.

	27.	 Nagamochi H, Akutsu T. A novel method for inference of chemical
compounds with prescribed topological substructures based on integer
programming; 2020. arXiv preprint arXiv:​2010.​09203

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/3386052.3386054
https://doi.org/10.1145/3386052.3386054
https://doi.org/10.1007/978-3-030-55789-8_38
https://doi.org/10.3390/a13050124.124.
http://arxiv.org/abs/2004.06367
http://arxiv.org/abs/2004.08381
http://arxiv.org/abs/2004.08381
http://arxiv.org/abs/2010.09203

	A novel method for inference of acyclic chemical compounds with bounded branch-height based on artificial neural networks and integer programming
	Abstract
	Background
	Preliminary
	Graphs
	Modeling of chemical compounds
	Descriptors

	A method for inferring chemical graphs
	Framework for the Inverse QSARQSPR
	Our target graph class

	MILPs for chemical acyclic graphs with bounded branch-height
	Scheme graphs

	A new graph search algorithm
	Experimental results
	Concluding remarks
	Acknowledgements
	References

