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Abstract 

Analysis of chemical graphs is becoming a major research topic in  computational molecular biology due to its 
potential applications to drug design. One of the major approaches in such a study is inverse quantitative structure 
activity/property relationship (inverse QSAR/QSPR) analysis, which is to infer chemical structures from given chemical 
activities/properties. Recently, a novel two-phase framework has been proposed for inverse QSAR/QSPR, where in the 
first phase an artificial neural network (ANN) is used to construct a prediction function. In the second phase, a mixed 
integer linear program (MILP) formulated on the trained ANN and a graph search algorithm are used to infer desired 
chemical structures. The framework has been applied to the case of chemical compounds with cycle index up to 2 so 
far. The computational results conducted on instances with n non-hydrogen atoms show that a feature vector can be 
inferred by solving an MILP for up to n = 40 , whereas graphs can be enumerated for up to n = 15 . When applied to 
the case of chemical acyclic graphs, the maximum computable diameter of a chemical structure was up to 8. In this 
paper, we introduce a new characterization of graph structure, called “branch-height” based on which a new MILP 
formulation and a new graph search algorithm are designed for chemical acyclic graphs. The results of computational 
experiments using such chemical properties as octanol/water partition coefficient, boiling point and heat of combus-
tion suggest that the proposed method can infer chemical acyclic graphs with around n = 50 and diameter 30.
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Background
In computational molecular biology, various types of 
data have been utilized, which  include sequences, gene 
expression patterns, and protein structures. Graph struc-
tured data have also been extensively utilized, which 
include metabolic pathways, protein-protein interac-
tion networks, gene regulatory networks, and chemical 
graphs. Much attention has recently been paid to the 
analysis of chemical graphs due to its potential applica-
tions to computer-aided drug design. One of the major 
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approaches to computer-aided drug design is quanti-
tative structure activity/property relationship (QSAR/
QSPR) analysis, the purpose of which is to derive quan-
titative relationships between chemical structures and 
their activities/properties. Furthermore, inverse QSAR/
QSPR has been extensively studied [1, 2], the purpose of 
which is to infer chemical structures from given chemical 
activities/properties. Inverse QSAR/QSPR is often for-
mulated as an optimization problem to find a chemical 
structure maximizing (or minimizing) an objective func-
tion under various constraints.

In both QSAR/QSPR and inverse QSAR/QSPR, chemi-
cal compounds are usually represented as vectors of 
real or integer numbers, which are often called descrip-
tors and correspond to feature vectors in machine learn-
ing. Using these chemical descriptors, various heuristic 
and statistical methods have been developed for finding 
optimal or nearly optimal graph structures under given 
objective functions [1, 3, 4]. Inference or enumeration 
of graph structures from a given feature vector is a cru-
cial subtask in many of such methods. Various methods 
have been developed for this enumeration problem [5–8] 
and the computational complexity of the inference prob-
lem has been analyzed [9, 10]. On the other hand, enu-
meration in itself is a challenging task, since the number 
of molecules (i.e., chemical graphs) with up to 30 atoms 
(vertices) C, N, O, and S, may exceed 1060 [11].

As a new approach, artificial neural network (ANN) 
and deep learning technologies have recently been 
applied to inverse QSAR/QSPR. For example, varia-
tional autoencoders [12], recurrent neural networks [13, 
14], and grammar variational autoencoders [15] have 
been applied. In these approaches, new chemical graphs 
are generated by solving a kind of inverse problems on 
neural networks that are trained using known chemi-
cal compound/activity pairs. However, the optimality 
of the solution is not necessarily guaranteed in these 
approaches. In order to guarantee the optimality math-
ematically, a novel approach has been proposed [16] for 
ANNs, using mixed integer linear programming (MILP).

Recently, a new framework has been proposed [17–19] 
by combining two previous approaches: efficient enumer-
ation of tree-like graphs [5], and MILP-based formulation 
of the inverse problem on ANNs [16]. This combined 
framework for inverse QSAR/QSPR mainly consists of 
two phases. The first phase solves (I) Prediction Prob-
lem, where a feature vector f(G) of a chemical graph G is 
introduced and a prediction function ψN  on a chemical 
property π is constructed with an ANN N  using a data 
set of chemical compounds G and their values a(G) of π . 
The second phase solves (II) Inverse Problem, where 
(II-a) given a target value y∗ of the chemical property π , a 
feature vector x∗ is inferred from the trained ANN N  so 

that ψN (x∗) is close to y∗ and (II-b) then a set of chemical 
structures G∗ such that f (G∗) = x∗ is enumerated by a 
graph search algorithm. In (II-a) of the above-mentioned 
previous methods [17–19], an MILP is formulated for 
acyclic chemical compounds. Afterwards, Ito et  al. [20] 
and Zhu et al. [21] designed a method of inferring chemi-
cal graphs with cycle index 1 and 2, respectively, by for-
mulating a new MILP and using an efficient algorithm for 
enumerating chemical graphs with cycle index 1 [22] and 
cycle index 2 [23, 24]. The computational results con-
ducted on instances with n non-hydrogen atoms show 
that a feature vector x∗ can be inferred for up to around 
n = 40 whereas graphs G∗ can be enumerated for up to 
around n = 15.

In this paper, we present a new characterization of 
graph structure, called “branch-height.” Based on this, 
we can treat a class of acyclic chemical graphs with a 
structure that is topologically restricted but frequently 
appears in a chemical database, formulate a new MILP 
formulation that can handle acyclic graphs with a large 
diameter, and design a new graph search algorithm that 
generates acyclic chemical graphs with up to around 50 
vertices. The results of computational experiments using 
such chemical properties as octanol/water partition coef-
ficient, boiling point and heat of combustion suggest that 
the proposed method is much more useful than the pre-
vious method.

The paper is organized as follows. "Preliminary" section 
introduces some notions on graphs, a modeling of chemi-
cal compounds and a choice of descriptors. "A method for 
inferring chemical graphs" section reviews the framework 
for inferring chemical compounds based on ANNs and 
MILPs. "MILPs for chemical acyclic graphs with bounded 
branch-height" section introduces a new method of mod-
eling acyclic chemical graphs and proposes a new MILP 
formulation that represents an acyclic chemical graph 
G with n vertices, where our MILP requires only O(n) 
variables and constraints when the branch-parameter k 
and the k-branch height in G (graph topological param-
eters newly introduced in this paper) is constant. "A new 
graph search algorithm" section describes the idea of 
our new dynamic programming type of algorithm that 
enumerates a given number of acyclic chemical graphs 
for a given feature vector. "Experimental results" section 
reports the results on some computational experiments 
conducted for chemical properties such as octanol/water 
partition coefficient, boiling point and heat of combus-
tion. "Concluding remarks" section makes some con-
cluding remarks. Appendix  A provides the statistical 
distribution of structural features of acyclic chemical 
graphs in a chemical graph database. Appendices B and C 
describe the idea of our MILP formulation and the details 
of all variables and constraints in the MILP formulation, 
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respectively. Appendix  D presents descriptions of our 
new graph search algorithm.

Preliminary
This section introduces some notions and terminology 
on graphs, a modeling of chemical compounds and our 
choice of descriptors.

Let R , Z and Z+ denote the sets of reals, integers and 
non-negative integers, respectively. For two integers a 
and b, let [a, b] denote the set of integers i with a ≤ i ≤ b.

Graphs
A graph stands for a simple undirected graph, where an 
edge joining two vertices u and v is denoted by uv (= vu) . 
The sets of vertices and edges of a graph H are denoted 
by V(H) and E(H), respectively. Let H = (V ,E) be a graph 
with a set V of vertices and a set E of edges. For a vertex 
v ∈ V  , the set of neighbors of v in H is denoted by NH (v) , 
and the degree degH (v) of v is defined to be |NH (v)| . The 
length of a path is defined to be the number of edges in 
the path. The distance distH (u, v) between two vertices 
u, v ∈ V  is defined to be the minimum length of a path 
connecting u and v in H. The diameter dia(H) of H is 
defined to be the maximum distance between two ver-
tices in H; i.e., dia(H) � maxu,v∈V distH (u, v) . Denote by 
ℓ(P) the length of a path P.

Centers of trees For a tree T with an even (resp., odd) 
diameter d, the center is defined to be the vertex v (resp., 
the adjacent vertex pair {v, v′} ) that situates in the middle 
of one of the longest paths, with length d. The center of 
each tree is uniquely determined.

Rooted trees A rooted tree is defined to be a tree where a 
vertex (or a pair of adjacent vertices) is designated as the 

root. Let T be a rooted tree, where for two adjacent verti-
ces u and v, vertex u is called the parent of v if u is closer 
to the root than v is. The height height(v) of a vertex v in 
T is defined to be the maximum length of a path from v 
to a leaf u in the descendants of v, where height(v) = 0 
for each leaf v in T. Figure 1a and b illustrate examples of 
trees rooted at the center.

Degree-bounded trees For positive integers a,  b 
and c with b ≥ 2 , let T(a,  b,  c) denote the rooted tree 
such that the number of children of the root is a, the 
number of children of each non-root internal ver-
tex is b and the distance from the root to each leaf 
is c. We see that the number of vertices in T(a,  b,  c) is 
a(bc − 1)/(b− 1)+ 1 , and the number of non-leaf verti-
ces in T(a, b, c) is a(bc−1 − 1)/(b− 1)+ 1 . In the rooted 
tree T(a,  b,  c), we denote the vertices by v1, v2, . . . , vn 
with a breadth-first-search order, and denote the edge 
between a vertex vi with i ∈ [2, n] and its parent by ei , 
where n = a(bc − 1)/(b− 1)+ 1 and each vertex vi with 
i ∈ [1, a(bc−1 − 1)/(b− 1)+ 1] is a non-leaf vertex. For 
each vertex vi in T(a,  b,  c), let Cld(i) denote the set of 
indices j such that vj is a child of vi , and prt(i) denote the 
index j such that vj is the parent of vi when i ∈ [2, n] . Let 
Pprc(a, b, c) be a set of ordered index pairs (i, j) of vertices 
vi and vj in T(a, b, c). We call Pprc(a, b, c) proper if the next 
conditions hold: 

(a)	 For each pair of vertices vi and vj in T(a,  b,  c) 
such that vi is the parent of vj , there is a sequence 
(i1, i2), (i2, i3), . . . , (ik−1, ik) of index pairs in 
Pprc(a, b, c) such that i1 = i and ik = j ; and

(b)	 Each subtree H = (V ,E) of T(a,  b,  c) with v1 ∈ V  
is isomorphic to a subtree H ′ = (V ′,E′) by a graph 

a b c 
Fig. 1  An illustration of rooted trees and a 2-branch-tree: a A tree H1 with odd diameter 11; b A tree H2 with even diameter 10; c The 2-branch-tree 
of H2
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isomorphism ψ : V → V ′ with ψ(v1) = v1 so that 
if vj ∈ V ′ for a pair (i, j) ∈ Pprc(a, b, c) then vi ∈ V ′.

Note that a proper set Pprc(a, b, c) is not necessarily 
unique.

Branch-height in trees In this paper, we introduce 
“branch-height” of a tree as a new measure to the 
“agglomeration degree” of trees. We specify a non-
negative integer k, called a branch-parameter to define 
branch-height. First we regard T as a rooted tree by 
choosing the center of T as the root. Figure  1a, b illus-
trate examples of rooted trees. We introduce the follow-
ing terminology on a rooted tree T.

•	 A leaf k-branch: A non-root vertex v in T such that 
height(v) = k.

•	 A non-leaf k-branch: A non-root vertex v in T such 
that v has at least two children, and for each child u 
of v it holds that height(u) ≥ k . We call a leaf or a 
non-leaf k-branch a k-branch. Figure  2a–c illustrate 
the k-branches of the rooted tree H2 in Fig.  1b for 
k = 1, 2 and 3, respectively.

•	 A k-branch-path: A path P in T that joins two ver-
tices u and u′ such that each of u and u′ is the root 
or a k-branch and P does not contain the root or a 
k-branch as an internal vertex.

•	 The k-branch-subtree of T: The subtree of T that con-
sists of the edges in all k-branch-paths of T. We call a 
vertex (resp., an edge) in T a k-internal vertex (resp., 
a k-internal edge) if it is contained in the k-branch-
subtree of T and a k-external vertex (resp., a k-exter-
nal edge) otherwise. Let V in and V ex (resp., Ein and 
Eex ) denote the sets of k-internal and k-external ver-
tices (resp., edges) in T.

•	 The k-branch-tree of T: The rooted tree obtained 
from the k-branch-subtree of  T by replacing each 

k-branch-path with a single edge. Figure 1c illustrates 
the 2-branch-tree of the rooted tree H2 in Fig.  1b. 
Notice that by our definitions, leaf k-branches and 
non-leaf k-branches are leaves and branching points 
in the k-branch-tree.

•	 A k-fringe-tree: One of the connected components 
that consists of the edges not in the k-branch-sub-
tree. Each k-fringe-tree T ′ contains exactly one vertex 
v in the k-branch-subtree, where T ′ is regarded as a 
tree rooted at v. Note that the height of any k-fringe-
tree is at most k. Figure 2a–c illustrate the k-fringe-
trees of the rooted tree H2 in Fig. 1b for k = 1, 2 and 
3, respectively.

•	 The k-branch-leaf number blk(T ) : The number 
of leaf k-branches in T. For the trees Hi , i = 1, 2 
in Fig.  1a, b, it holds that bl0(H1) = bl0(H2) = 8 , 
bl1(H1) = bl1(H2) = 5 , bl2(H1) = bl2(H2) = 3 and 
bl3(H1) = bl3(H2) = 2.

•	 The k-branch height bhk(T ) of T: The maximum 
number of k-branches along a path from the root to 
a leaf of T; i.e., bhk(T ) is the height of the k-branch-
tree T ∗ (the maximum length of a path from the root 
to a leaf in T ∗ ). For the example of trees Hi , i = 1, 2 
in Fig.  1a, b, it holds that bh0(H1) = bh0(H2) = 3 , 
bh1(H1) = bh1(H2) = 3 , bh2(H1) = bh2(H2) = 2 
and bh3(H1) = bh3(H2) = 1.

Even though this paper deals exclusively with acyclic 
graphs, we formally introduce the k-branch height for 
chemical cyclic graphs (chemical graphs that contain at 
least one cycle). The core of a chemical cyclic graph G is 
defined to be the induced subgraph G′ of G that consists 
of vertices in a cycle or the vertices in a path joining two 
cycles. A vertex in the core (not in the core) is called a 
core vertex (resp., a non-core vertex). The edges not in 
the core of a chemical cyclic graph G form a collection 

a b c
Fig. 2  An illustration of the k-branches (depicted by gray circles), the k-branch-subtree (depicted by solid lines) and k-fringe-trees (depicted by 
dashed lines) of H2 : a k = 1 ; b k = 2 ; c k = 3
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of trees T, which we call a non-core tree. Each non-core 
tree contains exactly one core vertex and is regarded as 
a tree rooted at the core vertex. The k-branch height of a 
chemical cyclic graph G is defined to be the maximum of 
k-branch heights over all non-core trees. We observe that 
most chemical graphs G with at most 50 non-hydrogen 
atoms satisfy bh2(G) ≤ 2 . See Appendix A for a summary 
of statistical feature distribution of chemical graphs reg-
istered in the chemical database PubChem [25].

For convenient reference, we summarize the graph-
related notation used throughout this paper in Table 1.

Modeling of chemical compounds
We represent the graph structure of a chemical com-
pound as a graph with labels on vertices and multiplic-
ity on edges in a hydrogen-suppressed model. Let � be 
a set of labels each of which represents a chemical ele-
ment such as C (carbon), O (oxygen), N (nitrogen) and so 
on, where we assume that � does not contain H (hydro-
gen). Let mass(a) and val(a) denote the mass and valence 
of a chemical element a ∈ � , respectively. In our model, 
we use integer mass∗(a) = ⌊10 ·mass(a)⌋ , a ∈ � , and 
assume that each chemical element a ∈ � has a unique 
valence val(a) ∈ [1, 4].

We introduce a total order < over the elements in � 
according to their mass values; i.e., we write a < b for 
chemical elements a,b ∈ � with mass(a) < mass(b) . 
A pair of two atoms a and b , a,b ∈ � , joined with a 
bond-multiplicity m ∈ [1, 3] , where m = 1, 2, 3, cor-
respond to single, double, and triple bonds, respec-
tively, is denoted by a tuple γ = (a,b,m) , called the 

adjacency-configuration of the atom pair. Choose a set 
Ŵ< of tuples γ = (a,b,m) ∈ �×�× [1, 3] such that 
a < b . For a tuple γ = (a,b,m) ∈ �×�× [1, 3] , let γ  
denote the tuple (b,a,m) . Set Ŵ> = {γ | γ ∈ Ŵ<} and 
Ŵ= = {(a,a,m) | a ∈ �,m ∈ [1, 3]} , and Ŵ = Ŵ< ∪ Ŵ=.

We use a hydrogen-suppressed model because hydro-
gen atoms can be added at the final stage.

Let (H ,α,β) be a tuple of a graph H = (V ,E) , a func-
tion α : V → � and a function β : E → [1, 3] , where 
α(v) = a and β(e) = m mean that a chemical element 
a is assigned to a vertex v and a bond-multiplicity m is 
assigned to an edge e, respectively. For a notational con-
venience, we denote the sum of bond-multiplicities of 
edges incident to a vertex u ∈ V  by

β(u) �
∑

uv∈E β(uv).

A tuple G = (H ,α,β) is called a chemical graph over � 
and Ŵ< ∪ Ŵ= if the following holds: 

	(i)	 H is connected;
	(ii)	 (α(u),α(v),β(uv)) ∈ Ŵ< ∪ Ŵ= for each edge 

uv ∈ E ; and
	(iii)	 β(u) ≤ val(α(u)) for each vertex u ∈ V .

A chemical graph G = (H ,α,β) is called a “chemical acy-
clic graph” if the graph H is an acyclic graph. Similarly for 
other types of graphs for H.

We define the bond-configuration of an edge 
e = uv ∈ E in a chemical graph G to be a tuple 
(degH (u), degH (v),β(e)) such that degH (u) ≤ degH (v) for 
the end-vertices u and v of e. Let Bc denote the set of bond-
configurations µ = (d1, d2,m) ∈ [1, 4] × [1, 4] × [1, 3] 
such that max{d1, d2} +m ≤ 5 . We regard that 
(d1, d2,m) = (d2, d1,m).

In summary, we give the notation on modeling chemi-
cal compounds used throughout this paper in Table 2.

Descriptors
In our method, we use only graph-theoretical descriptors 
for defining a feature vector, which facilitates our design 
of an algorithm for constructing graphs. Given a chemi-
cal acyclic graph G = (H ,α,β) , we define a feature vector 
f(G) that consists of the following 11 kinds of descriptors. 
We choose an integer k∗ ∈ [1, 4] as a branch-parameter.

General chemical graph descriptors

•	 n(G): the number |V| of vertices.
•	 dia(G) � dia(H)/n(G) : the diameter of H divided by 

n(G) = |V |.
•	 ms �

∑
v∈V mass∗(α(v))/n(G) : the average mass∗ of 

atoms in G.
•	 nH(G) : the number of hydrogen atoms to be added to 

G.

Table 1  Graph-theoretic notation

Symbol Designation

General graph notation

 H = (V , E) A graph H with a vertex set V and edge set E

 V(H) The vertex set of a graph H

 E(H) The edge set of a graph H

 NH(v) The number of neighbors of a vertex v in a graph H

 degH(v) The degree |NH(v)| of a vertex v in a graph H

 distH(u, v) The distance between two vertices u and v in a graph H

 dia(H) The diameter of a graph H

 ℓ(P) The length of a path P

 Branch-height in a tree T

 V in The set of internal vertices for a fixed branch parameter k

 Vex The set of external vertices for a fixed branch parameter k

 E in The set of internal edges for a fixed branch parameter k

 Eex The set of external edges for a fixed branch parameter k

 blk(T ) The k-branch-leaf number of T

 bhk(T ) The k-branch height of T
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Descriptors for vertices of certain degree

•	 dgt
i
(G) � |{v ∈ V

t | deg
H
(v) = i}|, i ∈ [1, 4], t ∈ {in, ex} : 

the number of k∗-internal/k∗-external vertices of 
degree i in H, where the bond-multiplicity of edges 
incident to a vertex v is ignored in the degree of v.

Descriptors for branch-leaf number and branch-height

•	 blk∗(G) : the k∗-branch-leaf number of G.
•	 bhk∗(G) : the k∗-branch height of G.

Descriptors for vertex labels

•	 cet
a
(G) � |{v ∈ V t | α(v) = a}|, a ∈ �, t ∈ {in, ex} : 

the number of k∗-internal/k∗-external vertices with 
chemical element a ∈ �.

Descriptors for the number of bonds

•	 bdtm(G) � {e ∈ Et | β(e) = m} , m = 2, 3 , t ∈ {in, ex} : 
the number of k∗-internal/k∗-external edges with 
bond-multiplicity m.

Descriptors for adjacency-configurations

•	 actγ (G) , γ ∈ Ŵ , t ∈ {in, ex} : the number of k∗-inter-
nal/k∗-external edges e = uv with adjacency-config-
uration γ = (a,b,m) (i.e., α(u) = a,α(v) = b and 
β(e) = m ) in G.

Descriptors for bond-configurations

•	 bctµ(G) , µ ∈ Bc , t ∈ {in, ex} : the number of k∗-inter-
nal/k∗-external edges e = uv with bond-configuration 
µ = (d, d′,m) (i.e., degH (u) = d, degH (v) = d′ and 
β(e) = m ) in G.

Note that

The number K of descriptors in our feature vector 
x = f (G) is K = 2|�| + 2|Ŵ| + 50 . Note that the above K 
descriptors are not independent in the sense that some 
descriptors depend on the combination of other descrip-
tors. For example, descriptor bdini (G) can be determined 
by 

∑
γ=(a,b,m)∈Ŵ:m=i ac

in
γ (G).

A method for inferring chemical graphs
Framework for the Inverse QSAR/QSPR
We review the framework that solves the inverse QSAR/
QSPR by using MILPs [20, 21], which is illustrated in 
Fig. 3. For a specified chemical property π such as boiling 
point, we denote by a(G) the observed value of the prop-
erty π for a chemical compound G. As the first phase, we 
solve (I) Prediction Problem with the following three 
steps.

Phase 1.
Stage 1: Let DB be a set of chemical graphs. For a 

specified chemical property π , choose a class G of 
graphs such as acyclic graphs or monocyclic graphs. 
Prepare a data set Dπ = {Gi | i = 1, 2, . . . ,m} ⊆ G ∩ DB 
such that the value a(Gi) of each chemical graph Gi , 
i = 1, 2, . . . ,m is available. Set reals a, a ∈ R so that 
a ≤ a(Gi) ≤ a , i = 1, 2, . . . ,m.

nH(G) �
∑

a ∈ �,
t ∈ {in, ex}

val(a)cet
a
(G)−

∑

γ = (a,b,m) ∈ Ŵ,
t ∈ {in, ex}

2m · actγ (G)

=
∑

a ∈ �,
t ∈ {in, ex}

val(a)cet
a
(G)− 2(n(G)− 1+

∑

m ∈ [2, 3],
t ∈ {in, ex}

(m− 1) · bdtm(G)).

Table 2  Notation adopted for modeling chemical compounds

Symbol Designation

� A set of labels representing chemical elements

mass(a) Atomic mass of chemical element a ∈ �

val(a) Valence of chemical element a ∈ �

mass∗(a) ⌊10 ·mass(a)⌋ , a ∈ �

a < b A total order over labels in the set � , indicating 
mass(a) < mass(b)

γ = (a,b,m) Adjacency configuration for an atom pair, a,b ∈ � , 
m ∈ [1, 3]

γ For an adjacency configuration γ = (a,b,m) , 
γ = (b,a,m)

Ŵ< Set of adjacency configurations 
γ = (a,b,m) ∈ �×�× [1, 3] with a < b

Ŵ> Set of adjacency configurations Ŵ> = {γ | γ ∈ Ŵ<}

Ŵ= Set of adjacency configurations, 
Ŵ= = {(a,a,m) | a ∈ �,m = [1, 3]}

Ŵ Ŵ = Ŵ< ∪ Ŵ=

α A mapping of atom labels in � to graph vertices

β A mapping of integers in [1, 3] to graph edges, over-
loaded as β(u) =

∑
uv∈E(H) β(uv) for vertices u ∈ V(H) 

in a graph H

Bc Set of bond-configurations µ ∈ [1, 4] × [1, 4] × [1, 3]



Page 7 of 39Azam et al. Algorithms Mol Biol           (2021) 16:18 	

Stage 2: Introduce a feature function f : G → R
K  for 

a positive integer K. We call f(G) the feature vector of 
G ∈ G , and call each entry of a vector f(G) a descriptor 
of G.

Stage 3: Construct a prediction function ψN  with an 
ANN N  that, given a vector in RK  , returns a real num-
ber in the range [a, a] so that ψN (f (G)) takes a value 
nearly equal to a(G) for many chemical graphs in DB . 
See Fig. 3a–c for an illustration of Stages 1, 2, and 3 in 
Phase 1.

In this paper, we use the range-based method 
to define an applicability domain (AD) [26] to our 
inverse QSAR/QSPR. Set xj  and xj  to be the mini-
mum and maximum values of the j-th descriptor xj in 
f (Gi) , respectively, over all graphs Gi , i = 1, 2, . . . ,m , 
where we possibly normalize some descriptors such as 
cein

a
(G) , which is normalized with cein

a
(G)/n(G) . Define 

our AD D to be the set of vectors x ∈ R
K  such that 

xj ≤ xj ≤ xj  for the variable xj of each j-th descriptor, 
j = 1, 2, . . . , k.

In the second phase, we try to find a vector x∗ ∈ R
K  

from a target value y∗ of the chemical propery π such that 
ψN (x∗) = y∗ . Based on the method due to Akutsu and 
Nagamochi [16], Chiewvanichakorn  et  al. [18] showed 
that this problem can be formulated as an MILP. By 
including a set of linear constraints such that x ∈ D into 
their MILP, we obtain the next result.

Theorem 1  ([20, 21]) Let N  be an ANN with a piece-
wise-linear activation function for an input vector 
x ∈ R

K , nA denote the number of nodes in the architecture 
and nB denote the total number of break-points over all 
activation functions. Then there is an MILP M(x, y; C1) 
that consists of variable vectors x ∈ D (⊆ R

K ) , y ∈ R, 
and an auxiliary variable vector z ∈ R

p for some integer 
p = O(nA + nB) and a set C1 of O(nA + nB) constraints on 
these variables such that: ψN (x∗) = y∗ if and only if there 
is a vector (x∗, y∗) feasible to M(x, y; C1).

a Phase 1, Stage 1

e Phase 2, Stage 5d Phase 2, Stage 4

b Phase 1, Stage 2 c Phase 1, Stage 3

Fig. 3  a–c An illustration of Phase 1: a Stage 1 for preparing a data set Dπ for a graph class G and a specified chemical property π ; b Stage 2 for 
introducing a feature function f with descriptors; c Stage 3 for constructing a prediction function ψN  with an ANN N  ; d–e An illustration of Phase 2: 
(d) Stage 4 for formulating an MILP M(x , y , g;C1,C2) and finding a feasible solution (x∗ , g∗) of the MILP for a target value y∗ so that ψN (x∗) = y∗ 
(possibly detecting that no target graph G∗ exists); (e) Stage 5 for enumerating graphs G∗ ∈ G such that f (G∗) = x∗
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See Appendix  “Upper and lower bounds on descrip-
tors” for the set of constraints to define our AD D in the 
MILP M(x, y; C1) in Theorem 1.

A vector x ∈ R
K  is called admissible if there is a chemi-

cal graph G ∈ G such that f (G) = x [17]. Let A denote 
the set of admissible vectors x ∈ R

K  . To ensure that a 
vector x∗ inferred from a given target value y∗ becomes 
admissible, we introduce a new vector variable g ∈ R

q for 
an integer q. For the class G of chemical acyclic graphs, 
Azam  et  al. [17] introduced a set C2 of new constraints 
with a new vector variable g ∈ R

q for an integer q so that

•	 A feasible solution (x∗, g∗) of a new MILP for a target 
value y∗ delivers a vector x∗ with ψN (x∗) = y∗ , and

•	 A vector g∗ that represents a chemical acyclic graph 
G∗ ∈ G.

Afterwards, for the classes of chemical graphs with cycle 
index 1 and 2, Ito et al. [17] and Zhu et al. [21] presented 
such a set C2 of constraints so that a vector g∗ in a feasible 
solution (x∗, g∗) of a new MILP can represent a chemical 
graph G∗ in the class G , respectively.

As the second phase, we solve (II) Inverse Problem 
for the inverse QSAR/QSPR by treating the following 
inference problems.

(II-a) Inference of Vectors
Input: A real y∗ with a ≤ y∗ ≤ a.
Output: Vectors x∗ ∈ A ∩D and g∗ ∈ R

q such that 
ψN (x∗) = y∗ and g∗ forms a chemical graph G∗ ∈ G with 
f (G∗) = x∗.

(II-b) Inference of Graphs
Input: A vector x∗ ∈ A ∩D.
Output: All graphs G∗ ∈ G such that f (G∗) = x∗.
The second phase consists of the next two steps.
Phase 2.
Stage 4:   Formulate Problem (II-a) as the above MILP 

M(x, y, g; C1, C2) based on G and N  . Find a feasible solu-
tion (x∗, g∗) of the MILP such that

x∗ ∈ A ∩D and ψN (x∗) = y∗.

The second requirement may be replaced with inequali-
ties (1− ε)y∗ ≤ ψN (x∗) ≤ (1+ ε)y∗ for a tolerance 
ε > 0.

Stage  5:   To solve Problem (II-b), enumerate all (or a 
specified number) of graphs G∗ ∈ G such that f (G∗) = x∗ 
for the inferred vector x∗ . See Fig. 3d, e for an illustration 
of Stages 4 and 5 in Phase 2.

In practical applications, there would be many criteria 
that a target chemical compound needs to satisfy rather 
than a single chemical property π , such as stability and 
synthesizability. The above five steps in the framework 
are rather schematic in the sense that it would be neces-
sary to adjust several settings in each stage in order to 

find a collection of chemical graphs that meet many of 
those criteria after a repeated application of the frame-
work. For example, we can include in an MILP formula-
tion in Stage  4 additional conditions such as lower and 
upper bounds on the frequency of adjacency-configura-
tions and extra requirements on substructures of a tar-
get chemical graph as long as these conditions can be 
expressed as linear constraints with integer/real vari-
ables. Also an efficient algorithm in Stage 5 can quickly 
offer a large number of isomers of the same feature vec-
tors, to which we can apply a further screening to choose 
promising candidates for chemical graphs.

Our target graph class
In this paper, we choose a branch-parameter k ≥ 1 and 
define a class G of chemical acyclic graphs G such that

•	 The maximum degree in G is at most 4;
•	 The k-branch height bhk(G) is bounded for a speci-

fied branch-parameter k; and
•	 The size of each k-fringe-tree in G is bounded.

The reason why we restrict ourselves to the graphs in 
G is that this class G covers a large part of the acyclic 
chemical compounds registered in the chemical data-
base PubChem. See Appendix A for a summary of the 
statistical features of the chemical graphs in PubChem 
in terms of k-branch height and the size of 2-fringe-
trees. According to this, over 55% (resp., 99%) of acy-
clic chemical compounds with up to 100 non-hydrogen 
atoms in PubChem have the maximum degree 3 (resp., 
4); and nearly 87% (resp., 99%) of acyclic chemical com-
pounds with up to 50 non-hydrogen atoms in PubChem 
have the 2-branch height at most 1 (resp., 2). This 
implies that k = 2 is sufficient to cover most of chemi-
cal acyclic graphs. For k = 2 , over 92% of 2-fringe-trees 
of chemical compounds with up to 100 non-hydrogen 
atoms in PubChem obey the following size constraint:

We formulate an MILP in Stage  4 that, given a tar-
get value y∗ , infers a vector x∗ ∈ Z

K
+ with ψN (x∗) = y∗ 

and a chemical acyclic graph G∗ = (H ,α,β) ∈ G with 
f (G∗) = x∗ . We here specify some of the features of a 
graph G∗ ∈ G such as the number of non-hydrogen atoms 
in order to control the graph structure of target graphs 
to be inferred and to simplify MILP formulations. In this 
paper, we specify the following features on a graph G ∈ G : 
a set � of chemical elements, a set Ŵ< of adjacency-con-
figurations, the maximum degree, the number of non-
hydrogen atoms, the diameter, the k-branch height and 
the k-branch-leaf number for a branch-parameter k.

(1)
n(T ) ≤ 2 deg

T
(r)+ 2 for each 2-fringe-tree T with the root r.
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More formally, given specified integers n∗ , 
dmax , dia∗ , k∗ , bh∗ , bl∗ ∈ Z other than � and Ŵ , let 
H(n∗, dmax, dia

∗, k∗, bh∗, bl∗) denote the set of acyclic 
graphs H such that

The maximum degree of a vertex in H is at most 3 
when dmax = 3 (or equal to 4 when dmax = 4),
The number n(H) of vertices in H is n∗,
The diameter dia(H) of H is dia∗,
The k∗-branch height bhk∗(H) is bh∗,
The k∗-branch-leaf number blk∗(H) is bl∗ and
(1) holds.

To design Stage  4 for our class G , we for-
mulate an MILP M(x, g; C2) that infers a 
chemical graph G∗ = (H ,α,β) ∈ G with 
H ∈ H(n∗, dmax, dia

∗, k∗, bh∗, bl∗) for a given specifica-
tion (�,Ŵ, n∗, dmax, dia

∗, k∗, bh∗, bl∗) . The details will 
be given in "MILPs for chemical acyclic graphs with 
bounded branch-height" section and Appendix C.

Design of Stage  5, i.e., generating chemical graphs 
G∗ that satisfy f (G∗) = x∗ for a given feature vector 
x∗ ∈ Z

K
+ is still challenging for a relatively large instance 

with size n(G∗) ≥ 20 . There have been proposed algo-
rithms for generating chemical graphs G∗ in Stage  5 
for the classes of graphs with cycle index 0 to 2 [5, 
22–24]. All of these are designed based on the branch-
and-bound method and can generate a target chemical 
graph with size n(G∗) ≤ 20 . To break this barrier, we 
newly employ the dynamic programming method for 
designing an algorithm in Stage 5 in order to generate 
a target chemical graph G∗ with size n(G∗) = 50 . For 
this, we further restrict the structure of acyclic graphs 
G so that the number bl2(G) of leaf 2-branches is at 
most 3. Among all acyclic chemical compounds with 
up to 50 non-hydrogen atoms in the chemical database 
PubChem, the ratio of the number of acyclic chemical 
compounds G with bl2(G) ≤ 2 (resp., bl2(G) ≤ 3 ) is 78% 
(resp., 95%). See "A new graph search algorithm" sec-
tion and Appendix  D for the details on the new algo-
rithm in Stage 5.

To conclude the description of the target graph class to 
be inferred by the inverse QSAR/QSPR framework devel-
oped in this paper, we summarize the global parameters 
in Table 3.

MILPs for chemical acyclic graphs with bounded 
branch‑height
In this section, we describe an idea of formulating an 
MILP M(x, g; C2) to infer a chemical acyclic graph G in 
the class G for a given specification (�,Ŵ, n∗, dmax, dia

∗, 
k∗, bh∗, bl∗) defined in the previous section. Please refer 

to Table  3 for a summary of the parameters that we 
assume to be fixed for a target graph.

Scheme graphs
Our new idea of constructing an acyclic graph H is as fol-
lows. See a rooted tree TB = T (dmax, dmax − 1, bh∗) in 
Fig. 4a.

•	 From the tree TB , we first choose a subtree T includ-
ing the root u1 . We use T as the k∗-branch-tree of H.

•	 Next, we choose some edges in the tree T and replace 
each of the edges e = uiuj with a path Pe between 
vertices ui and uj . Let T ∗ denote the resulting tree. 
We use T ∗ as the k∗-branch-subtree of H.

•	 Finally, we append to the tree T ∗ rooted trees with 
height at most k as the k∗-fringe-trees of H. The 
resulting tree is a required rooted tree H.

In our MILP, we prepare a binary variable for each of 
the vertices and edges in TB so that a subtree T of TB can 
be selected as one of the combinations of these binary 
values.

To represent a replacement of an edge e with a path Pe in 
our MILP, we introduce a path Pt∗ = (v1,1, v2,1, . . . , vt∗,1) 
of a sufficiently large length t∗ − 1 , and a set F of directed 
edges between the vertices in TB and Pt∗ as shown in 
Fig.  4a. We also introduce a binary variable for each of 
the vertices and edges in Pt∗ and F in our MILP. When 
an edge e = uiuj is replaced with a path Pe , we select 
an edge from ui to a vertex vh,1 in Pt∗ and an edge from 
a vertex vh+p,1 so that the edges (ui, vh,1) and (vh+p,1,uj) 
and the subpath (vh,1, vh+1,1, . . . , vh+p,1) of Pt∗ form a path 
Pe . Such a path Pe can be selected as one of the combi-
nations of these binary values. To append rooted trees to 
tree T ∗ , we prepare a rooted tree with a sufficiently large 
size at each vertex in TB and Pt∗ and introduce a binary 
variable for each of the vertices and edges in these rooted 

Table 3  Fixed parameters of target graphs

Symbol Designation

� A set of atom labels

Ŵ A set of adjacency configurations

n
∗ Number of vertices

dmax Maximum vertex degree, at most 3 and 
exactly 4, for dmax = 3 and dmax = 4 , 
respectively

dia∗ Graph diameter

k
∗ Branch parameter

bh∗ k
∗-branch height

bl∗ k
∗-branch-leaf number
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trees in our MILP. A rooted subtree from each of such 
rooted trees as a k∗-fringe-tree can be selected as one of 
the combinations of these binary values.

We call the graph that consists of all the above graphs 
TB , Pt∗ and the edge set F and the set of rooted trees at the 
vertices in TB and Pt∗ a scheme graph SG(dmax, k

∗, bh∗, t∗)

.
Figure 5a illustrates an acyclic graph H with n(H) = 37 , 

dia(H) = 17 , bh2(H) = 2 and bl2(H) = 3 , where the 
maximum degree of a vertex is 3. Figure  5b illustrates 
the 2-branch-tree of the acyclic graph H in Fig. 5a. Fig-
ure  5c illustrates a subgraph H ′ of the scheme graph 
SG(dmax, k

∗, bh∗, t∗ = n∗ − bl∗ − 1) such that H ′ is iso-
morphic to the acyclic graph H in Fig. 5a.

In this paper, we obtain the following result.

Theorem  2  Let � be a set of chemical elements, Ŵ 
be a set of adjacency-configurations, where |�| ≤ |Ŵ|

, and K = 2|�| + 2|Ŵ| + 50 . Given non-negative inte-
gers n∗ ≥ 3, dmax ∈ {3, 4}, dia∗ ≥ 3, k∗ ≥ 1, bh∗ ≥ 1 
and bl∗ ≥ 2, there is an MILP M(x, g; C2) that consists 
of variable vectors x ∈ R

K  and g ∈ R
q for an integer 

q = O(|Ŵ| · [(dmax − 1)bh
∗+k∗ + n∗ · (dmax − 1)max{bh∗ ,k∗})]) 

and a set C2 of constraints on x and g with size 

O(|Ŵ| + (dmax − 1)bh
∗+k∗ + n∗ · (dmax − 1)max{bh∗,k∗})) 

such that: (x∗, g∗) is feasible to M(x, g; C2) if and only if 
g∗ forms a chemical acyclic graph G = (H ,α,β) such that 
H ∈ H(n∗, dmax, dia

∗, k∗, bh∗, bl∗) and f (G) = x∗.

Note that our MILP requires only O(n∗) variables and 
constraints when the branch-parameter k∗ , the k∗-branch 
height and |Ŵ| are constant.

See Appendices  B and  C for the details of the MILP 
formulation and the set of all variables and constraints in 
the MILP formulation, respectively.

A new graph search algorithm
Previous methods of inferring chemical graphs [17–19] 
use a graph search algorithm based on the branch-and-
bound algorithm proposed by Fujiwara et  al. [5], where 
an enormous number of chemical graphs are constructed 
by repeatedly appending and removing a vertex one by 
one until a target chemical graph is constructed. Their 
algorithm cannot generate even one acyclic chemical 
graph when n(G) is larger than around 20.

b 

c
a

Fig. 4  An illustration of scheme graph SG(dmax, k
∗ , bh∗ , t∗) with dmax = 3 , k∗ = 2 , bh∗ = 2 , and t∗ = 5 , where the vertices in TB (resp., in Pt∗ ) are 

depicted with black (resp., gray) circles: a A base-tree TB and a link-path Pt∗ are joined with directed edges between them; b A tree Ss rooted at a 
vertex us = us,1 ∈ VB ; c A tree Tt rooted at a vertex vt = vt ,1 ∈ VP



Page 11 of 39Azam et al. Algorithms Mol Biol           (2021) 16:18 	

This section introduces a new dynamic programming 
method for designing an algorithm in Stage  5. We con-
sider the following aspects: 

(a)	 Treat acyclic graphs with a certain limited struc-
ture that frequently appears among chemical com-
pounds registered in the chemical database; and

(b)	 Instead of manipulating acyclic graphs directly, first 
compute the frequency vectors fff (G′) (sub-vectors 
of the feature vectors f (G′) , see Appendix  D) of 
subtrees G′ of all target acyclic graphs and then 
construct a limited number of target graphs G from 
the process of computing the vectors.

In (a), we choose a branch-parameter k∗ = 2 and treat 
acyclic graphs G that have a small 2-branch number 
such as bl2(G) ∈ [2, 3] and satisfy the size constraint  (1) 
on 2-fringe-trees. Figure 6a, b illustrate chemical acyclic 
graphs G with bl2(G) = 2 and bl2(G) = 3 , respectively.

We design a method in (b) based on the mechanism of 
dynamic programming in the following way. Define a fre-
quency vector fff (T ) of each chemical rooted tree T to be 
a vector that consists of the frequency of each chemical 
element a ∈ � , each adjacency-configuration a ∈ � , each 
bond-configuration µ ∈ Bc , and each degree dgi ∈ Dg in 
T. We are given a vector xxx∗ that is the frequency vector 
fff (G) of a chemical acyclic graph G to be inferred.

We first construct a set FT of chemical rooted trees 
with height at most k∗ = 2 and compute the frequency 
vector fff (T ) of each chemical rooted tree T ∈ FT to 
obtain the set W(FT) of frequency vectors fff (T ),T ∈ FT . 

Note that a large number of chemical rooted trees 
T ∈ FT maps to the same frequency vector www and the size 
|W(FT)| is considerably smaller than the size |FT|.

We next combine two chemical rooted trees 
Ta,Tb ∈ FT to construct a chemical tree Ta,b by joining 
their roots ra and rb with an edge e = rarb of a bond-mul-
tiplicity m, as illustrated in Fig. 6a. In fact, we compute 
only the feature vector fff (Ta,b) of such a tree Ta,b without 
directly treating the graph structures of Ta , Tb and Ta,b . 
For this, we add two frequency vectors wwwa,wwwb ∈ W(FT) 
together with an additional term from the bond-multi-
plicity m to obtain the frequency vector wwwa,b (= fff (Ta,b)) 
of such a tree Ta,b . Given such a vector wwwa,b , we can actu-
ally construct a chemical tree Ta,b with fff (Ta,b) = wwwa,b by 
choosing trees Ta,Tb ∈ FT and combining them with an 
edge of bond-multiplicity m.

Our algorithm for generating a chemical acy-
clic graph G with bl2(G) = 2 continues to compute a 
set W(p) of frequency vectors of chemical trees that 
can be obtained by combining p trees in FT for each 
p = 2, 3, . . . , ⌈(dia∗ − 5)/2⌉ . Finally, we find a vector pair 
(www1,www2) with www1 ∈ W(⌊(dia∗−5)/2⌋) and www2 ∈ W(⌈(dia∗−5)/2⌉) 
such that a vector with www1 , www2 and a bond-multiplicity 
m is equal to the given vector xxx∗ ; i.e., a chemical acyclic 
graph G with fff (G) = xxx∗ is obtained by joining chemical 
trees T 1 and T 2 with wwwi = fff (Ti), i = 1, 2 with an edge of 
bond-multiplicity m.

With a slight modification, the algorithm can generate 
a chemical acyclic graph G with bl2(G) = 3.

Appendix D presents the details of our new algorithms 
for generating acyclic graphs G with bl2(G) ∈ [2, 3].

a 

b

c 

Fig. 5  An illustration of selecting a subgraph H from the scheme graph SG(dmax, k
∗ , bh∗ , t∗ = n∗ − bl∗ − 1) : a An acyclic graph 

H ∈ H(n∗ , dmax, dia
∗ , k∗ , bh∗ , bl∗) with n∗ = 37 , dmax = 3 , dia∗(H) = 17 , k∗ = 2 , bh∗ = 2 and bl∗ = 3 , where the labels of some vertices indicate 

the corresponding vertices in the scheme graph SG(dmax, k
∗ , bh∗ , t∗) ; b The k∗-branch-tree of H for k∗ = 2 ; c An acyclic graph H′ selected from 

SG(dmax, k
∗ , bh∗ , t∗) as a graph that is isomorphic to H in (a)
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Experimental results
We implemented our method of Stages 1 to 5 for infer-
ring chemical acyclic graphs and conducted experi-
ments to evaluate the computational efficiency for 
three chemical properties π : octanol/water partition 
coefficient (Kow), boiling point (Bp) and heat of com-
bustion (Hc). We executed the experiments on a PC 
with Two Intel Xeon CPUs E5-1660 v3 @3.00GHz, 
32 GB of RAM running under OS: Ubuntu 14.04.6 LTS. 
We show 2D drawings of some of the inferred chemical 
graphs, where ChemDoodle version 10.2.0 was used for 
constructing the drawings.

Results on Phase 1.  We implemented Stages 1, 2, and 
3, in Phase 1 as follows.

Stage  1. We set a graph class G to be the set of all 
chemical acyclic graphs, and set a branch-parameter k∗ 
to be 2. For each property π ∈ { Kow, Bp, Hc} , we first 
select a set � of chemical elements and then collected 
a data set Dπ on chemical acyclic graphs over the set � 
of chemical elements provided by the Hazardous Sub-
stances Data Bank (HSDB) of PubChem. To construct 
the data set, we eliminated chemical compounds that 
have at most three carbon atoms or contain a charged 
element such as N+ or an element a ∈ � whose valence 
is different from our setting of valence function val.

Table 4 shows the size and range of data sets that we 
prepared for each chemical property in Stage 1, where 
we denote the following:

•	 π : one of the chemical properties Kow, Bp and Hc;
•	 � : the set of selected chemical elements (hydrogen 

atoms are added at the final stage);
•	 |Dπ | : the size of data set Dπ over � for property π;
•	 |Ŵ| : the number of different adjacency-configurations 

over the compounds in Dπ;
•	 [n, n] : the minimum and maximum number n(G) of 

non-hydrogen atoms over the compounds G in Dπ;
•	 [bl, bl] : the minimum and maximum numbers bl2(G) 

of leaf 2-branches over the compounds G in Dπ;
•	 [bh, bh] : the minimum and maximum values of the 

2-branch height bh2(G) over the compounds G in 
Dπ ; and

•	 [a, a] : the minimum and maximum values of a(G) for 
π over compounds G in Dπ.

Stage  2. We used a feature function f that consists of 
the descriptors defined in “Descriptors” section.

Stage 3. We used scikit-learn version 0.21.6 with 
Python 3.7.4 to construct ANNs N  where the tool and 
activation function are set to be MLPRegressor and 
ReLU, respectively. We tested several different architec-
tures of ANNs for each chemical property. To evaluate 
the performance of the resulting prediction function ψN  
with cross-validation, we partition a given data set Dπ 
into five subsets D(i)

π  , i ∈ [1, 5] randomly, where Dπ \ D(i)
π  

is used for a training set and D(i)
π  is used for a test set in 

five trials i ∈ [1, 5] . For a set {y1, y2, . . . , yN } of observed 

a
b

Fig. 6  An illustration of chemical acyclic graphs G with diameter dia∗ and bl2(G) = 2, 3 : a A chemical acyclic graph G with two leaf 2-branches v1 
and v2 ; b A chemical acyclic graph G with three leaf 2-branches v1, v2 and v3

Table 4  Results of Stage 1 in Phase 1

π � |Dπ | |Ŵ| [n, n] [bl, bl] [bh, bh] [a, a]

Kow C,O,N 216 10 [4, 28] [0, 2] [0, 4] [− 4.2, 8.23]

Bp C,O,N 172 10 [4, 26] [0, 1] [0, 3] [− 11.7, 404.84]

Hc C,O,N 128 6 [4, 26] [0, 1] [0, 2] [1346.4, 13304.5]
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values and a set {ψ1,ψ2, . . . ,ψN } of predicted values, we 
define the coefficient of determination to be 
R2 � 1−

∑
j∈[1,N ](yj−ψj)

2

∑
j∈[1,N ](yj−y)2

 , where y = 1
N

∑
j∈[1,N ] yj . Table 5 

shows the results on Stages 2 and 3, where

•	 K: the number of descriptors for the chemical com-
pounds in data set Dπ for property π;

•	 Activation: the choice of activation function;
•	 Architecture: (a, b, 1) consists of an input layer with 

a nodes, a hidden layer with b nodes and an output 
layer with a single node, where a is equal to the num-
ber K of descriptors;

•	 L-time: the average time (in seconds) to construct 
ANNs for each trial;

•	 test R2 (ave.): the average of coefficient of determina-
tion over the five tests; and

•	 test R2 (best): the largest value of coefficient of deter-
mination over the five test sets.

From Table  5, we see that the execution of Stage  3 was 
successful, where the average of test R2 is over 0.9 for all 
three chemical properties.

For each chemical property π , we selected the ANN N  
that attained the best test R2 score among the five ANNs 
to formulate an MILP M(x, y, z; C1) which will be used in 
Phase 2.

Results on Phase 2.  We implemented Stages 4 and 5 in 
Phase 2 as follows.

Stage 4. In this step, we solve the MILP M(x, y, g; C1, C2) 
formulated based on the ANN N  obtained in Phase 1. To 
solve an MILP in Stage 4, we use CPLEX version 12.10. 
In our experiment, we choose a target value y∗ ∈ [a, a] 
and fix or bound some descriptors in our feature vector 
as follows:

•	 Set the 2-leaf-branch number bl∗ to be each of 2 and 
3;

•	 Fix the instance size n∗ = n(G) to be each integer in 
{26, 32, 38, 44, 50};

•	 Set the diameter dia∗ = dia(G) be one of the integers 
in {⌈(2/5)n∗⌉, ⌈(3/5)n∗⌉}.

•	 Set the maximum degree dmax := 3 for 
dia∗ = ⌈(2/5)n∗⌉ and dmax := 4 for dia∗ = ⌈(3/5)n∗⌉;

•	 For each instance size n∗ , test a target value y∗π for 
each chemical property π ∈ { Kow, Bp, Hc}.

Based on the above setting, we generated six instances 
for each instance size n∗ . We set ε = 0.02 in Stage 4.

Tables  6, 7 (resp., Tables  8, 9) show the results on 
Stage 4 for bl∗ = 2 (resp., bl∗ = 3 ), where we denote the 
following:

•	 y∗π : a target value in [a, a] for a property π;
•	 n∗ : a specified number of vertices in [n, n];
•	 dia∗ : a specified diameter in {⌈(2/5)n∗⌉, ⌈(3/5)n∗⌉};
•	 IP-time: the time (sec.) to an MILP instance to find 

vectors x∗ and g∗.

We observe that most of the MILP instances with 
bl∗ = 2 , n∗ ≤ 50 and dia∗ ≤ 30 (resp., bl∗ = 3 , n∗ ≤ 50 
and dia∗ ≤ 30 ) are solved within one minute (resp., in a 
few minutes). The previously most efficient MILP for-
mulation for inferring chemical acyclic graphs due to 
Zhang  et  al. [19] could solve instances with a relatively 
small diameter of dia∗ = 9 for the case of dmax = 4 
and n∗ = 20 and dia∗ = 8 for the case of dmax = 3 and 
n∗ = 50 . Our new MILP formulation on chemical acy-
clic graphs with bounded 2-branch height considerably 
improved the tractable size of chemical acyclic graphs in 
Stage 4 for the inference problem (II-a).

Figure 7a–c illustrate some chemical acyclic graphs G 
with bl2(G) = 2 obtained in Stage 4 by solving an MILP. 
Remember that these chemical graphs obey the AD D 
defined in Appendix A.

Figure 8a–c illustrate some chemical acyclic graphs G 
with bl2(G) = 3 obtained in Stage 4 by solving an MILP.

Stage  5. In this stage, we execute our new graph 
search algorithms for generating target graphs 
G ∈ G(xxx∗) with bl2(G) ∈ {2, 3} for a given feature vector 
xxx∗ obtained in Stage 4.

We introduce a time limit of 10 minutes for each iter-
ation h in Step 2 and an execution of Steps 1 and 3 for 
bl∗ = 2 (resp., each iteration h in Steps 2 and 3 and δ1 in 
Step 4 and an execution of Steps 1 and 5 for bl∗ = 3 ). In 
the last step, we choose at most 100 feasible vector pairs 
and generate a target graph from each of these feasible 

Table 5  Results of Stages 2 and 3 in Phase 1

π K Activation Architecture L-Time test R2 (ave.) test R2 (best)

Kow 76 ReLU (76, 10, 1) 2.12 0.901 0.951

Bp 76 ReLU (76, 10, 1) 26.07 0.935 0.965

Hc 68 ReLU (68, 10, 1) 234.06 0.924 0.988
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vector pairs. We also impose an upper bound UB on 
the size |W| of a vector set W that we maintain during 
an execution of the algorithm. We executed the algo-
rithm for each of the three bounds UB = 106, 107, 108 
until a feasible vector pair is found or the running time 
exceeds a global time limitation of two hours.

When no feasible vector pair is found by the graph 
search algorithms, we output the target graph G∗ con-
structed from the vector g∗ in Stage 4.

Tables  6, 7 (resp., Tables  8, 9) show the results of 
Stage 5 for bl∗ = 2 (resp., bl∗ = 3 ), where we denote the 
following:

•	 #FP: the number of feasible vector pairs obtained 
by an execution of the graph search algorithm for a 
given feature vector xxx∗;

•	 G-LB: a lower bound on the number of all target 
graphs G ∈ G(xxx∗) for a given feature vector xxx∗;

a b

c
Fig. 7  An illustration of chemical acyclic graphs G with n(G) = 50 , bl2(G) = 2 and dmax = 4 obtained in Stage 4 by solving an MILP: a y∗Kow = 9 , 
dia(G) = ⌈(2/5)n∗⌉ = 20 ; b y∗Bp = 880 , dia(G) = n∗/2 = 25 ; c y∗Hc = 25000 , dia(G) = ⌈(3/5)n∗⌉ = 30

ba

c
Fig. 8  An illustration of chemical acyclic graphs G with n(G) = 50 , bl2(G) = 3 and dmax = 4 obtained in Stage 4 by solving an MILP: a y∗Kow = 9 , 
dia(G) = ⌈(2/5)n∗⌉ = 20 ; b y∗Bp = 880 , dia(G) = n∗/2 = 25 ; c y∗Hc = 25, 000 , dia(G) = ⌈(3/5)n∗⌉ = 30
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•	 # G: the number of all (or up to 100) chemical acy-
clic graphs G such that f (G) = x∗ (where at least 
one such graph G has been found from the vector 
g∗ in Stage 4);

•	 G-time: the running time (sec.) to execute Stage 5 
for a given feature vector xxx∗ , where “> 2 hours” 
means that the running time exceeds two hours.

Previously, an instance of chemical acyclic graphs with 
size n∗ up to 16 was solved in Stage  5 by Azam  et  al. 
[17]. For the classes of chemical graphs with cycle 
index 1 and 2, the maximum size of instances solved in 
Stage 5 by Ito et al. [17] and Zhu et al. [21] was around 
18 and 15, respectively. Our new algorithm based on 
dynamic programming solves instances with n∗ = 50 . 
In our experiments, we also computed a lower bound 

Table 6  Results of Stages 4 and 5 for bl∗ = 2 , dmax = 3 and dia∗ = ⌈ 2
5
n
∗⌉

π y∗ n∗ dia
∗ IP-time #FP G-LB #G G-time

Kow 4 26 11 3.95 11,780 2.4× 106 100 0.91

5 32 13 4.81 216 2.7× 104 100 10.64

7 38 16 7.27 19,931 4.2× 107 100 48.29

8 44 18 9.33 241,956 1.2× 1013 100 119.01

9 50 20 21.57 58,365 1.7× 1010 100 110.38

Bp 440 26 11 2.09 22,342 3.6× 107 100 2.9

550 32 13 3.94 748 5.9× 106 100 3.77

660 38 16 6.4 39,228 7.3× 108 100 151.25

770 44 18 7.21 138,076 3.0× 1012 100 182.66

880 50 20 9.49 106,394 3.0× 1010 100 217.18

Hc 13000 26 11 2.94 12 2.0× 101 12 0.04

16500 32 13 7.67 2722 1.2× 107 100 0.31

20000 38 16 10.5 1830 9.7× 105 100 1.06

23000 44 18 13.62 12,336 4.7× 108 100 142.02

25000 50 20 15.1 136,702 5.3× 1014 100 22.26

Table 7  Results of Stages 4 and 5 for bl∗ = 2 , dmax = 4 and dia∗ = ⌈ 3
5
n
∗⌉

π y∗ n∗ dia
∗ IP-time #FP G-LB #G G-time

Kow 4 26 16 16.21 4198 3.5× 105 100 1.18

5 32 20 24.74 1650 5.3× 106 100 0.69

7 38 23 38.88 154,408 9.5× 109 100 67.31

8 44 27 38.73 1,122,126 8.5× 1013 100 660.37

9 50 30 31.59 690,814 1.1× 1015 100 238.02

Bp 440 26 16 12.44 8156 2.6× 106 100 2.74

550 32 20 23.22 38,600 4.4× 108 100 12.72

660 38 23 20.62 52,406 1.1× 109 100 197.89

770 44 27 50.55 23,638 6.8× 108 100 244.56

880 50 30 48.37 40,382 2.2× 1011 100 884.99

Hc 13000 26 16 23.26 249 2.7× 103 100 0.06

16500 32 20 44.2 448 6.9× 104 100 0.63

20000 38 23 96.02 3330 6.1× 106 100 15.16

23000 44 27 82.34 43,686 1.5× 1010 100 152.96

25000 50 30 83.81 311,166 1.3× 1013 100 287.95
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G-LB on the number of target graphs. We observe that 
there are over 1010 or 1014 target graphs in some cases. 
Remember that these lower bounds are computed 
without actually generating each target graph one by 
one. So when a lower bound is enormously large, this 
would suggest that we may need to impose some more 
constraints on the structure of graphs or the range of 

descriptors to narrow a family of target graphs to be 
inferred.

An additional experiment We also conducted some 
additional experiment to demonstrate that our MILP-
based method is flexible to control conditions on infer-
ence of chemical graphs. In Stage  3, we constructed 

Table 8  Results of Stages 4 and 5 for bl∗ = 3 , dmax = 3 and dia∗ = ⌈ 2
5
n
∗⌉

π y∗ n∗ dia
∗ IP-time #FP G-LB #G G-time

Kow 4 26 11 3.1 511 3.6× 103 100 14.31

5 32 13 4.72 3510 6.8× 106 100 851.21

7 38 16 5.82 11,648 1.2× 108 100 612.86

8 44 18 9.69 17,239 2.2× 108 100 703.92

9 50 20 22.53 60,792 3.9× 1012 100 762.17

Bp 440 26 11 3.01 66 9.0× 102 66 902.77

550 32 13 4.29 308 1.0× 107 100 2238.62

660 38 16 5.86 303 1.8× 107 100 3061.11

770 44 18 14.39 19,952 4.7× 1010 100 678.26

880 50 20 10.39 17,993 7.1× 1012 100 4151.07

Hc 13000 26 11 3.05 340 1.5× 104 100 1.57

16500 32 13 5.81 600 3.1× 108 100 921.55

20000 38 16 15.67 18,502 6.2× 108 100 1212.54

23000 44 18 21.15 5064 6.9× 109 100 1279.95

25000 50 20 31.90 41,291 2.4× 1012 100 668.5

Table 9  Results of Stages 4 and 5 for bl∗ = 3 , dmax = 4 and dia∗ = ⌈ 3
5
n
∗⌉

π y∗ n∗ dia
∗ IP-time #FP G-LB #G G-time

Kow 4 26 16 9.94 100 2.5× 104 100 6.73

5 32 20 16.58 348 1.4× 108 100 3400.74

7 38 23 33.71 17,557 1.2× 1011 100 2652.38

8 44 27 34.28 0 0 1 >2 hours

9 50 30 68.74 80,411 6.4× 1015 100 6423.85

Bp 440 26 16 14.16 150 1.8× 105 100 29.72

550 32 20 18.94 305 1.4× 107 100 2641.9

660 38 23 21.15 1155 2.0× 109 100 4521.66

770 44 27 25.6 1620 4.3× 108 100 175.2

880 50 30 63.22 0 0 1 >2 hours

Hc 13000 26 16 31.87 12 2.7× 104 12 0.66

16500 32 20 41.03 392 3.4× 108 100 2480.34

20000 38 23 48.48 630 1.4× 105 100 105.59

23000 44 27 143.75 341 7.8× 108 100 5269.1

25000 50 30 315.91 10,195 3.8× 109 100 5697.08
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an ANN Nπ for each of the three chemical properties 
π ∈ { Kow, Bp, Hc} , and formulated the inverse prob-
lem of each ANN Nπ as an MILP Mπ . Since the set of 
descriptors is common to all three properties Kow, Bp 
and Hc, it is possible to infer a chemical acyclic graph 
G that satisfies a target value y∗π for each of the three 
properties at the same time (if one exists). We specify 
the size of graph so that n∗ = 50 , bl∗ = 2 , dia∗ = 25 
and dmax = 4 , and set target values with y∗Kow = 4.0 , 
y∗Bp = 400.0 and y∗Hc = 13000.0 in an MILP that con-
sists of the three MILP MKow , MHc and MBp . The 
MILP was solved in 18930 seconds and we obtained a 
chemical acyclic graph G illustrated in Fig. 9. We con-
tinued to execute Stage 5 for this instance to generate 
more target graphs G∗ . Table 10 shows that 100 target 
graphs are generated by our new dynamic program-
ming algorithm.

Concluding remarks
In this paper, we introduced a new measure, branch-
height of a tree, and showed that many chemical com-
pounds in the chemical database have a simple structure 
where the number of 2-branches is small. Based on this, 
we proposed a new method of applying the framework 
for inverse QSAR/QSPR [17–19] to the case of acyclic 
chemical graphs where Azam et al. [17] inferred chemical 
graphs with around 20 non-hydrogen atoms and Zhang 
et al. [19] solved an MILP of inferring a feature vector for 
an instance with diameter 9. In our method, we formu-
lated a new MILP in Stage 4 specialized for acyclic chem-
ical graphs with a small branch number and designed a 
new graph search algorithm in Stage  5 that computes 

frequency vectors of graphs in a dynamic programming 
scheme.

We implemented our new method and conducted 
some experiments on chemical properties such as 
octanol/water partition coefficient, boiling point and 
heat of combustion.

The resulting method improved the performance so 
that chemical graphs with around 50 non-hydrogen 
atoms and around diameter 30 can be inferred. Since 
there are many acyclic chemical compounds having large 
diameters, this is a significant improvement.

It is left as a future work to design MILPs and graph 
search algorithms based on the new idea of the paper for 
classes of graphs with a higher rank. Recently, a method 
for inferring a chemical cyclic graph with any rank has 
been designed by Akutsu and Nagamochi [27] based on 
the ideas in this paper. The method is also designed so 
that a target chemical graph to be inferred can be speci-
fied in a more flexible way, where we can include a pre-
scribed substructure of graphs such as a benzene ring 
into a target chemical graph while imposing constraints 
on a global topological structure of a target graph at the 
same time.

Appendix A: Statistical features of molecular 
structures
We observe the following features of the graph-theo-
retical structure of chemical graphs registered in the 
chemical database PubChem. Let DB(≤n) denote the set 
of chemical graphs with at most n non-hydrogen atoms 
that are registered in chemical database PubChem 
(downloaded a copy on March 21, 2019). The cycle index 
(or rank) of a chemical graph G = (H = (V ,E),α,β) is 
defined to be |E| − (|V | − 1) (i.e., the minimum number 
of edges to be removed to make the graph H acyclic). We 
call a chemical graph a rank-r chemical graph if the rank 
of the graph is r. The core of a chemical cyclic graph G is 
defined to be the induced subgraph G′ of G such that G′ 
consists of vertices in a cycle or vertices in a path joining 
two cycles. A vertex in the core (not in the core) is called 
a core vertex (resp., a non-core vertex). The edges not in 
the core of a chemical cyclic graph G form a collection 
of trees T, which we call a non-core tree. Each non-core 
tree contains exactly one core vertex and is regarded as 

Fig. 9  An illustration of a chemical acyclic graph G inferred for 
three chemical properties Kow, Bp and Hc simultaneously, where 
y∗Kow = 4.0 , y∗Bp = 400.0 and y∗Hc = 13000.0 , n∗ = 50 , bl∗ = 2 , 
dia∗ = 25 , and dmax = 4

Table 10  Results of Stages 4 and 5 for bl∗ = 2 , dmax = 4 , n∗ = 50 and dia∗ = 25

π y∗ n∗ dia
∗  IP-time  #FP  G-LB  #G  G-time

Kow 4 50 25 18930.46 117,548 2.4× 1011 100 423.53

Bp 400

Hc 1300
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a tree rooted at the core vertex. The k-branch height of a 
chemical cyclic graph G is defined to be the maximum of 
k-branch heights over all non-core trees.

Let ρr (%) denote the ratio of the number of chemical 
graphs with rank at most r ∈ [0, 4] to the number of all 
chemical graphs in PubChem. See Table 11.

Let ρ(d)
0  (%) denote the ratio of the number of chemi-

cal graphs in DB(≤100) such that the maximum degree is 
at most d ∈ [3, 4] to the number of all chemical graphs 
in DB(≤100) . Let ρ(d)

r  (%), r ∈ [1, 4] denote the ratio of 
the number of rank-r chemical graphs in DB(≤100) such 
that the maximum degree of a non-core vertex is at most 
d ∈ [3, 4] to the number of all rank-r chemical graphs in 
DB(≤100) . See Table 12.

Let ρr(k , h) (%), r ∈ [0, 4] , k = 2 , h ∈ [1, 2] denote 
the ratio of the number of rank-r chemical graphs in 
DB(≤50) such that the k-branch height is at most h to the 
number of all rank-r chemical graphs in DB(≤50) . See 
Table 13. We see that most chemical graphs G with at 
most 50 non-hydrogen atoms satisfy bh2(G) ≤ 2.

We show the distribution of 2-branch height over 
alkans CnH2n+2 . Let Aln(n) denote the set of all alkans 
with n carbon atoms, where |Aln(25)| = 36, 797, 588 . Let 
ρAln(2, h) (%), h ∈ [1, 4] denote the ratio of the number 
of alkans in Aln(25) such that the 2-branch height is at 
most h to the number of alkans in Aln(25) . See Table 14.

Let ρ2bt(δ) denote the ratio of the number of acyclic 
chemical graphs in DB(≤50) such that the degree of the 
root of the 2-branch-tree is δ ∈ [1, 4] to the number of all 
acyclic chemical graphs in DB(≤50) . See Table 15.

Among the 2-fringe-trees T of all acyclic chemical 
graphs in DB(≤100) , over 90% of them satisfy n ≤ 2d + 2 
for the number n = |V (T )| of non-hydrogen atoms in a 
2-fringe-tree T and the number d of non-hydrogen atoms 
adjacent to the root in T.

Let FT 0,2 denote the set of all 2-fringe-trees that 
appear in an acyclic chemical graph in DB(≤100) , and 
FT

(δ)
0,2 , δ ∈ [1, 3] denote the set of all 2-fringe-trees 

T ∈ FT 0,2 that have δ children (i.e., the degree of the 
root is δ ). Let ρ(δ)

2δ+2 (%) denote the ratio of the number of 
2-fringe-trees in FT

(δ)
0,2 that have at most 2δ + 2 vertices 

to the number of 2-fringe-trees in FT
(δ)
0,2 . See Table 16.

Appendix B: Formulating an MILP based on scheme 
graphs
This section shows how to formulate an MILP based on a 
scheme graph.

Scheme graphs
Let t∗ , s∗ , and c∗ , be integers such that

t
∗ = n

∗ − (bh
∗ − 1)− (k∗ + 1)bl

∗;
s
∗ = a(bc − 1)/(b− 1)+ 1 for a = dmax , b = dmax − 1 

and c = bh∗ ; and
c∗ = s∗ − 1.

Let a scheme graph SG(dmax, k
∗, bh∗, t∗) consist of 

a tree TB , a path Pt∗ , a set {Ss | s ∈ [1, s∗]} of trees, 
a set {Tt | t ∈ [1, t∗]} of trees, and a set of directed 
edges between TB and Pt∗ so that an acyclic graph 
H ∈ H(n∗, dmax, dia

∗, k∗, bh∗, bl∗) will be constructed in 
the following way: 

(i)	The k∗-branch-tree of H will be chosen as a subtree 
of TB = (VB,EB);

Table 11  The percentage ρr of the number of chemical 
compounds with rank at most r ∈ [0, 4] over all chemical 
compounds in PubChem

ρ0 ρ1 ρ2 ρ3 ρ4

2.9% 16.3% 44.5% 68.8% 84.7%

Table 12  The percentage ρ(d)
r  of the number of chemical compounds with rank r ∈ [0, 4] such that the maximum degree of a non-

core vertex is at most d ∈ [3, 4] over all rank-r chemical compounds in DB(≤100)

ρ
(3)
0

ρ
(4)
0

ρ
(3)
1

ρ
(4)
1

ρ
(3)
2

ρ
(4)
2

ρ
(3)
3

ρ
(4)
3

ρ
(3)
4

ρ
(4)
4

55.55% 99.85% 68.30% 99.97% 84.46% 99.99% 87.11% 99.99% 87.75% 99.99%

Table 13  The percentage ρr(k, h) (%) of the number of rank-r chemical graphs in DB(≤50) such that the k-branch height is at most h to 
the number of all rank-r chemical graphs in DB(≤50)

ρ0(2, 1) ρ0(2, 2) ρ1(2, 1) ρ1(2, 2) ρ2(2, 1) ρ3(2, 1) ρ4(2, 1)

87.23% 99.46% 88.13% 98.76% 96.39% 99.17% 99.43%
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(ii)	 Each k∗-fringe-tree rooted at a vertex us ∈ V (TB) of 
H will be chosen as a subtree of Ss;

(iii)	Each k∗-branch-path of H (except for its end-verti-
ces) will be chosen as a subpath of Pt∗ or as an edge 
in TB;

(iv)	Each k∗-fringe-tree rooted at a vertex vt ∈ V (Pt∗) of 
H will be chosen as a subtree of Tt ; and

(v)	 An edge (u,  v) directed from TB to Pt∗ will be 
selected as an initial edge of a k∗-branch-path of H 
and an edge (v,  u) directed from Pt∗ to TB will be 
selected as an ending edge of a k∗-branch-path of H.

More formally, each component of a scheme graph 
SG(dmax, k

∗, bh∗, t∗) is defined as follows. 

(i)	TB = (VB = {u1,u2, . . . ,us∗}, EB = {a1, a2, . . . , ac∗}) , 
called a base-tree is a tree rooted at a ver-
tex u1 that is isomorphic to the rooted tree 
T (dmax, dmax − 1, bh∗) . Regard TB as an ordered 
tree by introducing a total order for each set of sib-
lings and call the first (resp., last) child in a set of 
siblings the leftmost (resp. rightmost) child, which 
defines the leftmost (rightmost) path from the root 
u1 to a leaf in TB , as illustrated in Fig. 4a.

	 For each vertex us ∈ VB , let EB(s) denote the set 
of indices i of edges a(i) ∈ EB incident to us and 

CldB(s) denote the set of indices i of children 
ui ∈ VB of us in the tree TB.

	 For each integer d ∈ [0, k∗] , let VB(d) denote the set 
of indices s of vertices us ∈ VB whose depth is d in 
the tree TB , where VB(bh

∗) is the set of indices s of 
leaves us of TB.

	 Regard each edge ai ∈ EB as a directed edge (us,us′) 
from one end-vertex us of ai to the other end-vertex 
us′ of ai such that s = prt(s′) (i.e., us is the parent of 
us′ ), where head(i) and tail(i) denote the head us′ 
and tail us of edge ai ∈ EB , respectively.

	 For each index s ∈ [1, s∗] , let E+
B (s) (resp., E−

B (s) ) 
denote the set of indices i of edges ai ∈ EB such that 
the tail (resp., head) of ai is vertex us.

	 Let LB denote the set of indices of leaves of TB , and 
sleft (resp., sright ) denote the index s ∈ LB of the leaf 
us at which the leftmost (resp., rightmost) path from 
the root ends.

	 For each leaf us , s ∈ LB , let VB,s (resp., EB,s ) denote the 
set of indices s of non-root vertices us (resp., indices 
i of edges a(i) ∈ EB ) along the path from the root to 
the leaf us in the tree TB.

	 For the example of a base-tree TB with bh∗ = 2 in 
Fig.  4, it holds that LB = {5, 6, 7, 8, 9, 10} , sleft = 5 , 
sright = 10 , EB,sleft = {1, 4} and VB,sleft = {2, 5}.

(ii)	 Ss , s ∈ [1, s∗] is a tree rooted at vertex us ∈ VB 
in TB that is isomorphic to the rooted tree 
T (dmax − 1, dmax − 1, k∗) , as illustrated in Fig.  4b. 
Let us,i and e′s,i denote the vertex and edge in Ss that 
correspond to the i-th vertex and the i-th edge in 
T (dmax − 1, dmax − 1, k∗) , respectively. Regard each 
edge e′s,i as a directed edge (us,prt(i),us,i) . For this, 
each vertex us ∈ VB is also denoted by us,1.

(iii)	Pt∗ = (VP = {v1 , v2 , . . . , vt∗} , EP = {e2 , e3 , . . . , et∗}) , 
called a link-path with size t∗ is a directed path from 
vertex v1 to vertex vt∗ , as illustrated in Fig. 4a. Each 
edge et ∈ EP is directed from vertex vt−1 to vertex vt
.

(iv)	Tt , t ∈ [1, t∗] is a tree rooted at vertex vt in 
Pt∗ that is isomorphic to the rooted tree 
T (dmax − 2, dmax − 1, k∗) , as illustrated in Fig.  4c. 
Let vt,i and et,i denote the vertex and edge in Tt that 
correspond to the i-th vertex and the i-th edge in 
T (dmax − 2, dmax − 1, k∗) , respectively. Regard each 
edge et,i as a directed edge (vt,prt(i),ut,i) . For this, 
each vertex vt ∈ VP is also denoted by vt,1.

Table 14  The percentage ρAln(2, h) (%) of the number of alkans 
in Aln(25) such that the 2-branch height is at most h to the 
number of alkans in Aln(25)

ρAln(2, 1) ρAln(2, 2) ρAln(2, 3) ρAln(2, 4)

49.03% 97.67% 99.99% 100.00%

Table 15  The percentage ρ2bt(δ) of the number of acyclic 
chemical graphs in DB(≤50) such that the degree of the root 
of the 2-branch-tree is δ ∈ [1, 4] to the number of all acyclic 
chemical graphs in DB(≤50)

ρ2bt(1) ρ2bt(2) ρ2bt(3) ρ2bt(4)

6.39% 83.58% 9.30% 0.73%

Table 16  The percentage ρ(δ)
2δ+2 (%) of the number of 2-fringe-

trees in FT
(δ)
0,2 that have at most 2δ + 2 vertices to the number of 

2-fringe-trees in FT
(δ)
0,2

ρ
(1)
4

ρ
(2)
6

ρ
(3)
8

93.77% 93.99% 92.01%
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(v)	 For every pair (s,  t) with s ∈ [1, s∗] and t ∈ [1, t∗] , 
join vertices us and vt with directed edges (us, vt) 
and (vt ,us) , as illustrated in Fig. 4a.

We explain the basic idea of an MILP in Theorem 2. The 
MILP mainly consists of the following three types of 
constraints. 

	C1.	 Constraints for selecting an acyclic graph H as a 
subgraph of the scheme graph SG(dmax, k

∗, bh∗, t∗);

	C2.	 Constraints for assigning chemical elements to 
vertices and multiplicity to edges to determine a 
chemical graph G = (H ,α,β) ; and

	C3.	 Constraints for computing descriptors from the 
selected acyclic chemical graph G.

In the constraints of C1, more formally we prepare the 
following. 

	(i)	 In the scheme graph SG(dmax, k
∗, bh∗, t∗) , we 

prepare a binary variable u(s,  1) for each ver-
tex us = us,1 ∈ VB , s ∈ [1, s∗] so that vertex 
us = us,1 becomes a k∗-branch of a selected graph 
H if and only if u(s, 1) = 1 . The subgraph of the 
base-tree TB that consists of vertices us = us,1 
with u(s, 1) = 1 will be the k∗-branch-tree of 
the graph H. We also prepare a binary vari-
able a(i), i ∈ [1, c∗] for each edge ai ∈ EB , where 
c∗ = s∗ − 1 . For a pair of a vertex us,1 and a 
child us′,1 of us,1 such that u(s, 1) = u(s′, 1) = 1 , 
either the edge ai = (us,1,us′,1) is used in the 
selected graph H (when a(i) = 1 ) or a path 
Pi = (us,1, vt ′,1, vt ′+1,1, . . . , vt ′′,1,us′,1) from ver-
tex us,1 to vertex us′,1 is constructed in H with an 
edge (us,1, vt ′,1) , a subpath (vt ′,1, vt ′+1,1, . . . , vt ′′,1) 
of the link-path Pt∗ and an edge (vt ′′ ,1,us′,1) (when 
a(i) = 0 ). For example, vertices u1,1 and u2,1 are 
connected by a path P1 = (u1,1, v1,1, v2,1,u2,1) in 
the selected graph H ′ in Fig. 5c.

	(ii)	 Let

n
S
tree = 1+ (dmax − 1)((dmax − 1)k

∗
− 1)/(dmax − 2),

n
T
tree = 1+ (dmax − 2)((dmax − 1)k

∗
− 1)/(dmax − 2),

	  where nStree (resp., nTtree ) is the number of vertices 
in the rooted tree T (dmax − 1, dmax − 1, k∗) (resp., 
T (dmax − 2, dmax − 1, k∗) ). In each tree Ss , s ∈ [1, s∗] 
(resp., Tt , t ∈ [1, t∗] ) in the scheme graph, we pre-
pare a binary variable u(s,  i) (resp., v(t,  i)) for each 
vertex us,i , i ∈ [2, nStree] (resp., vt,i , i ∈ [2, nTtree] ) so 
that u(s, i) = 1 (resp., v(t, i) = 1 ) means that the cor-
responding vertex us,i (resp., vt,i ) is used as a vertex 
in a selected graph H. The (non-empty) subgraph of 
a tree Ss (resp., Tt ) that consists of vertices us,i with 

u(s, i) = 1 (resp., vt,i with v(t, i) = 1 ) will be a k∗
-fringe-tree of a selected graph H.

	(iii)	 In the link-path Pt∗ , we prepare a binary variable 
e(t), t ∈ [2, t∗] for each edge et,1 = (vt−1,1, vt,1) ∈ EP 
so that e(t) = 1 if and only if edge et,1 is used in 
some path Pi = (us,1, vt ′,1, vt ′+1,1, . . . , vt ′′,1,us′,1) 
constructed in (i).

	(iv)	 For each pair (s,  t) of s ∈ [1, s∗] and t ∈ [1, t∗] , we 
prepare a binary variable e(s,  t) (resp., e(t,  s)) so 
that e(s, t ′) = 1 (resp., e(t ′′, s) = 1 ) if and only if 
directed edge (us,1, vt ′,1) (resp., (vt ′′ ,1,us,1) ) is used 
as the first edge (resp., last edge) of some path 
Pi = (us,1, vt ′,1, vt ′+1,1, . . . , vt ′′,1,us′,1) constructed 
in (i).

Based on these, we include constraints with some more 
additional variables so that a selected subgraph H is a 
connected acyclic graph. See constraints (12) to (32) in 
Appendix C for the details.

In the constraints of C2, we prepare an integer variable 
α̃(u) for each vertex u in the scheme graph that repre-
sents the chemical element α(u) ∈ � if u is in a selected 
graph H (or α̃(u) = 0 otherwise) and an integer variable 
β̃(e) ∈ [0, 3] (resp., β̂(e) ∈ [0, 3] ) for each edge e (resp., 
e = e(s, t) or e(t,  s), s ∈ [1, s∗] , t ∈ [1, t∗] ) in the scheme 
graph that represents the multiplicity β(e) ∈ [1, 3] if e is 
in a selected graph H (or β̃(e) or β̂(e) takes 0 otherwise). 
This determines a chemical graph G = (H ,α,β) . Also we 
include constraints for a selected chemical graph G to 
satisfy the valence condition (α(u),α(v),β(uv)) ∈ Ŵ for 
each edge uv ∈ E . See constraints (33) to (47) in Appen-
dix C for the details.

In the constraints of  C3, we introduce a variable for 
each descriptor and constraints with some more vari-
ables to compute the value of each descriptor in f(G) for a 
selected chemical graph G. See constraints (48) to (75) in 
Appendix C for the details.

Appendix C: All constraints in an MILP formulation 
for chemical acyclic graphs
To formulate an MILP that represents a chemical graph, 
we distinguish a tuple (a,b,m) from a tuple (b,a,m) . 
For a tuple γ = (a,b,m) ∈ �×�× {1, 2, 3} , let γ  
denote the tuple (b,a,m) . Let Ŵ< � {γ | γ ∈ Ŵ>} . We 
call a tuple γ = (a,b,m) ∈ �×�× {1, 2, 3} proper if 
m ≤ min{val(a), val(b)} and m ≤ max{val(a), val(b)} − 1 , 
where the latter is assumed because otherwise G must 
consist of two atoms of a = b . Assume that each tuple 
γ ∈ Ŵ is proper. Let ǫ be a fictitious chemical element that 
represents null, call a tuple (a,b, 0) with a,b ∈ � ∪ {ǫ} 
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fictitious, and define Ŵ0 to be the set of all fictitious 
tuples; i.e., Ŵ0 = {(a,b, 0) | a,b ∈ � ∪ {ǫ}} . To repre-
sent chemical elements e ∈ � ∪ {ǫ} ∪ Ŵ in an MILP, we 
encode these elements e into some integers denoted by 
[e] . Assume that, for each element a ∈ � , [a] is a positive 
integer and that [ǫ] = 0.

Upper and lower bounds on descriptors
In our formulation of an MILP for inferring a vector x∗ in 
Stage 4, we fix the following descriptors as specified con-
stants: the number n(G) of vertices, the diameter dia(G) , 
and the number blk∗(G) of leaf k∗-leaf branches, which 
are set to be given integers n∗ , dia∗ , and bl∗ , respectively. 
For each of the other descriptors, we specify a lower 
bound LB and an upper bound UB on the value so that 
the descriptor takes a value from the range between LB 
and UB.

constants

•	 n∗ ≥ 5 : the size n(G) of G;
•	 LBt

dg(i), UB
t
dg(i) ∈ [0, n∗], i ∈ [1, 4], t ∈ {in, ex} : lower and 

upper bounds on the number dgti(G) of k∗-inter-
nal/k∗-external vertices of degree i in G;

•	 LBt
ce(a), UB

t
ce(a) ∈ [0, n∗] , a ∈ �, t ∈ {in, ex} : lower 

and upper bounds on the number cet
a
(G) of k∗-inter-

nal/k∗-external vertices v with α(v) = a in G;
•	 LBt

bd(m) , UBt
bd
(m) ∈ [0, n∗ − 1], m ∈ [2, 3],t ∈ {in, ex} : 

lower and upper bounds on the number bdtm(G) of k∗
-internal/k∗-external edges e with β(e) = m in G;

•	 LBt
ac(γ ), UBt

ac(γ ) ∈ [0, n∗ − 1], t ∈ {in, ex}, γ ∈ Ŵ< ∪ Ŵ= : 
lower and upper bounds on the number actγ (G) of k∗
-internal/k∗-external edges e with adjacency-configu-
ration γ in G;

•	 LBt
bc(µ), UB

t
bc(µ) ∈ [0, n∗ − 1], t ∈ {in, ex} , µ ∈ Bc : 

lower and upper bounds on the number bctµ(G) of 
k∗-internal/k∗-external edges e with bond-configura-
tion µ in G;

variables x for descriptors 

•	 dgin(i), dgex(i) ∈ [0, n∗] , i ∈ [1, 4] : dgin(i) (resp., 
dgex(i) ) represents dgini (G) (resp., dgexi (G));

•	 cein(a), ceex(a) ∈ [0, n∗] , a ∈ � : cein(a) (resp., 
ceex(a) ) represents cein

a
(G) (resp., ceex

a
(G));

•	 bdin(m), bdex(m) ∈ [0, 2n∗] , m ∈ [1, 3] : bdin(m) 
(resp., bdex(m) ) represents bdinm(G) (resp., bdexm (G));

•	 acin(γ ), acex(γ ) ∈ [0, n∗] , γ ∈ Ŵ< ∪ Ŵ= : acin(γ ) 
(resp., acex(γ ) ) represents acinγ (G) (resp., acexγ (G));

•	 bcin(µ), bcex(µ) ∈ [0, n∗ − 1] , µ ∈ Bc : bcin(µ) (resp., 
bcex(µ) ) represents bcinµ (G) (resp., bcexµ (G));

constraints 

We use the range-based method to define an applicabil-
ity domain for our method. For this, we find the range 
(the minimum and maximum) of each descriptor over all 
relevant chemical compounds and represent each range 
as a set of linear constraints in the constraint set C1 of our 
MILP formulation. Recall that Dπ stands for a set of chemi-
cal graphs used for constructing a prediction function. 
However, the number of examples in Dπ may not be large 
enough to capture a general feature on the structure of 
chemical graphs. For this, we also use some data set from 
the whole set DB of chemical graphs in a database. Let DB(i)

G  
denote the set of chemical graphs G ∈ DB ∩ G such that 
n(G) = i for each integer i ≥ 1 . Based on this, we assume 
that the given lower and upper bounds on the above 
descriptors satisfy the following. For each t ∈ {in, ex},

(2)
LBt

dg(i) ≤ dgt(i) ≤ UBt
dg(i), i ∈ [1, 4], t ∈ {in, ex},

(3)
LBt

ce(a) ≤ cet(a) ≤ UBt
ce(a), a ∈ �, t ∈ {in, ex},

(4)
LBt

bd(m) ≤ bdt(m) ≤ UBt
bd(m), m ∈ [2, 3], t ∈ {in, ex},

(5)
LBt

ac(γ ) ≤ act(γ ) ≤ UBt
ac(γ ), γ ∈ Ŵ, t ∈ {in, ex},

(6)
LBt

bc(µ) ≤ bct(µ) ≤ UBt
bc(µ), µ ∈ Bc, t ∈ {in, ex}.

(7)min
G∈Dπ∪DB

(n∗)
G

dgti(G)

n(G)
≤

LBt
dg(i)

n∗
≤

UBt
dg(i)

n∗
≤ max

G∈Dπ∪DB
(n∗)
G

dgti(G)

n(G)
,

i ∈ [1, 4],

(8)
min

G∈Dπ∪DB
(n∗)
G

cet
a
(G)

n(G)
≤

LBt
ce(a)

n∗
≤

UBt
ce(a)

n∗
≤ max

G∈Dπ∪DB
(n∗)
G

cet
a
(G)

n(G)
,

a ∈ �,
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Construction of scheme graph
We infer a subgraph H such that the maximum degree 
is dmax ∈ {3, 4} , n(H) = n∗ , bhk∗(H) = bh∗ , and 
blk∗(H) = bl∗ . For this, we first construct the scheme 
graph SG(dmax, k

∗, bh∗, t∗) . We then prepare a binary 
variable u(s, i) (resp., v(t, i)) for each vertex us,i in tree Ss 
(resp., vt,i in tree Tt).

Recall that when the two end-vertices of edge 
ai = (us,1,us′,1) ∈ EB = {a1, a2, . . . , ac∗} is connected in a 
selected subgraph H, either edge ai is directly used in H 
or a path Pi = (us,1, vt ′,1, vt ′+1,1, . . . , vt ′′,1,us′,1) from us,1 to 
us′,1 visiting some vertices in Pt∗ is constructed in H. We 
regard the index i of each edge ai ∈ EB = {a1, a2, . . . , ac∗} 
as the “color” of the edge, and define the color set of EB 
to be [1, c∗] . To introduce necessary linear constraints 
that can construct such a path Pi properly in our MILP, 
we assign the color i to the vertices vt ′,1, vt ′+1,1, . . . , vt ′′,1 
in Pt∗ when a path Pi = (us,1, vt ′,1, vt ′+1,1, . . . , vt ′′,1,us′,1) is 
used in H.

constants 
Integers dmax ∈ {3, 4} , n∗ ≥ 3 , dia∗ ≥ 3 , k∗ ≥ 1 , bh∗ ≥ 1 

and bl∗ ≥ 2;
variables 

•	 a(i) ∈ {0, 1} , i ∈ EB : a(i) represents edge ai ∈ EB 
( a(i) = 1 , i ∈ EB ) ( a(i) = 1 ⇔ edge ai is used in H);

•	 e(s, t), e(t, s) ∈ {0, 1} , s ∈ [1, s∗] , t ∈ [1, t∗] : e(s,  t) 
(resp., e(t,  s)) represents direction (us,1, vt,1) (resp., 

(9)
min

G∈Dπ∪DB
(n∗)
G

bdtm(G)

n(G)− 1
≤

LBt
bd(m)

n∗ − 1
≤

UBt
bd(m)

n∗ − 1
≤ max

G∈Dπ∪DB
(n∗)
G

bdtm(G)

n(G)− 1
,

m ∈ [2, 3],

(10)
min

G∈Dπ∪DB
(n∗)
G

actγ (G)

n(G)− 1
≤

LBt
ac(γ )

n∗ − 1
≤

UBt
ac(γ )

n∗ − 1
≤ max

G∈Dπ∪DB
(n∗)
G

actγ (G)

n(G)− 1
,

γ ∈ Ŵ,

(11)
min

G∈Dπ∪DB
(n∗)
G

bctµ(G)

n(G)− 1
≤

LBt
bc(µ)

n∗ − 1
≤

UBt
bc(µ)

n∗ − 1
≤ max

G∈Dπ∪DB
(n∗)
G

bctµ(G)

n(G)− 1
,

µ ∈ Bc.

(vt,1,us,1) ), where e(s, t) = 1 (resp., e(t, s) = 1 ) ⇔ 
edge us,1, vt,1 is used in H and direction (us,1, vt,1) 
(resp., (vt,1,us,1) ) is assigned to edge us,1vt,1;

•	 χ(t) ∈ [0, c∗] , t ∈ [1, t∗] : χ(t) represents the color 
c ∈ [0, c∗] assigned to vertex vt,1 ( χ(t) = c ⇔ vertex 
vt,1 is assigned color c, where χ(t) = c = 0 iff vt,1 is 
not in H);

•	 δclr(t, c) ∈ {0, 1} , t ∈ [1, t∗] , c ∈ [0, c∗] ( δclr(t, c) = 1 
⇔ χ(t) = c);

•	 clr(c) ∈ [0, t∗] , c ∈ [0, c∗] : the number of vertices vt,i 
with color c;

•	 degb+(s) ∈ [0, 4] , s ∈ [1, s∗] : the out-degree of vertex 
us,1 in the k∗-branch-subtree of H;

•	 degb-(s) ∈ [0, 4] , s ∈ [1, s∗] : the in-degree of vertex 
us,1 in the k∗-branch-subtree of H;

constraints 

(12)

∑

c∈[0,c∗]

δclr(t, c) = 1,
∑

c∈[0,c∗]

c · δclr(t, c) = χ(t), t ∈ [1, t∗],

(13)
∑

t∈[1,t∗]

δclr(t, c) = clr(c), c ∈ [0, c∗],

(14)t∗(1− a(i)) ≥ clr(i), i ∈ [1, c∗],

(15)e(s, t)+ e(t, s) ≤ 1, s ∈ [1, s∗], t ∈ [1, t∗],

(16)

∑

s∈[1,s∗]\{head(c)}

e(t, s) ≤ 1− δclr(t, c),
∑

s∈[1,s∗]\{tail(c)}

e(s, t) ≤ 1− δclr(t, c),

c ∈ [1, c∗], t ∈ [1, t∗],
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Selecting a subgraph
From the scheme graph SG(dmax, k

∗, bh∗, t∗) , we select 
a subgraph H such that n(H) = n∗ , dia(H) = dia∗ , 
bhk∗(H) = bh∗ , and blk∗(H) = bl∗.

constants 

•	 Integers dmax ∈ {3, 4} , n∗ ≥ 3 , dia∗ ≥ 3 , k∗ ≥ 1 , 
bh∗ ≥ 1 and bl∗ ≥ 2;

•	 For each tree Ss = T (dmax − 1, dmax − 1, k∗) , prepare

the set CldS(i) of the indices of children of a vertex vi;
the index prt(i) of the parent of a non-root vertex vi;
the set DsnS(d) of indices i of a vertex vi whose 
depth is d;
a proper set Pprc(dmax − 1, dmax − 1, k∗) of index 
pairs,

where we denote Pprc(dmax − 1, dmax − 1, k∗) by 
PS,prc;

•	 For each tree Tt = T (dmax − 2, dmax − 1, k∗) , prepare

the set CldT(i) of the indices of children of a vertex vi;
the index prt(i) of the parent of a non-root vertex vi;
a proper set Pprc(dmax − 2, dmax − 1, k∗) of index 
pairs,

where we denote Pprc(dmax − 2, dmax − 1, k∗) by 
PT ,prc;

variables 

(17)

∑

i∈E−
B (s)

a(i)+
∑

t∈[1,t∗]

e(t, s) = degb-(s),
∑

i∈E+
B (s)

a(i)+
∑

t∈[1,t∗]

e(s, t) = degb+(s),

degb-(s)+ degb+(s) ≤ dmax, s ∈ [1, s∗].

•	 σ(s) ∈ {0, 1} , s ∈ [1, s∗] : ( σ(s) = 1 ⇔ vertex us,1 is a 
non-leaf k∗-branch or a root);

•	 u(s, i) ∈ {0, 1} , s ∈ [1, s∗] , i ∈ [1, nStree] : u(s,  i) rep-
resents vertex us,i ( u(s, i) = 1 ⇔ vertex us,i is used in 
H and edge e′s,i (i ≥ 2) is used in H), ( u(s, 1) = 1 and 
σ(s) = 0 ⇔ vertex us,1 is a leaf k∗-branch);

•	 v(t, i) ∈ {0, 1} , t ∈ [1, t∗] , i ∈ [1, nTtree] : v(t,  i) repre-
sents vertex vt,i ( v(t, i) = 1 ⇔ vertex vt,i is used in H 
and edge et,i (i ≥ 2) is used in H);

•	 e(t) ∈ {0, 1} , t ∈ [1, t∗ + 1] : e(t) represents edge 
et,1 = vt−1,1vt,1 , where e1,1 and et∗+1,1 are fictitious 
edges ( e(t) = 1 ⇔ edge et,1 is used in H);

constraints 

(18)u(s, i) ≥ u(s, j), s ∈ [1, s∗], (i, j) ∈ PS,prc,

(19)v(t, i) ≥ v(t, j), t ∈ [1, t∗], (i, j) ∈ PT ,prc,

(20)

∑

s∈[1,s∗],i∈[1,nStree]

u(s, i)+
∑

t∈[1,t∗],i∈[1,nTtree]

v(t, i) = n∗,

(21)

∑

i∈[1,nStree]

u(s, i) ≤ 2+ 2
∑

j∈CldS(1)

u(s, j), s ∈ [1, s∗],

(22)

∑

i∈[1,nTtree]

v(t, i) ≤ 2+ 2
∑

j∈CldT(1)

v(t, j), t ∈ [1, t∗],

(23)

e(t + 1)+
∑

s∈[1,s∗]

e(t, s) = v(t, 1), e(t)+
∑

s∈[1,s∗]

e(s, t) = v(t, 1),

∑

c∈[1,c∗]

δclr(t, c) = v(t, 1),

(where e(1) = e(t∗ + 1) = 0), t ∈ [1, t∗],

(24)c∗ · (1− e(t + 1)) ≥ χ(t)− χ(t + 1) ≥ v(t, 1)− e(t + 1), t ∈ [1, t∗ − 1],
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Constraints (21) and (22) represent an extension of con-
straint  (1) on the size of 2-fringe-trees to the case of a 
general branch-parameter k∗.

(25)

a(i)+
∑

t∈[1,t∗]

e(t, i + 1) = u(i + 1, 1), i ∈ [1, c∗],

(26)σ(s) ≤ u(s, 1), s ∈ [1, s∗],

(27)σ(s) = u(s, 1) = 1, if us is the root ,

(28)
(dmax − 1)σ (s) ≥

∑

s′∈CldB(s)

u(s′, 1) ≥ 2σ(s),
∑

i∈DsnS(k∗)

u(s, i) ≥ u(s, 1)− σ(s),

s ∈ [1, s∗],us �= root,

(29)

∑

s∈[2,s∗]

(u(s, 1)− σ(s)) = bl∗,
∑

s∈VB(bh
∗)

u(s, 1) ≥ 1,

(30)
∑

s∈V
B,sleft

u(s, 1)+
∑

i∈E
B,sleft

clr(i) =
⌈dia∗

2

⌉
− k∗,

(31)
∑

s∈V
B,sright

u(s, 1)+
∑

i∈E
B,sright

clr(i) =
⌊dia∗

2

⌋
− k∗,

(32)
∑

i∈VB,s

u(i, 1)+
∑

i∈EB,s

clr(i) ≤
⌊dia∗

2

⌋
− k∗, s ∈ LB \ {sleft, sright}.

•	 β̃(i) ∈ [0, 3] , i ∈ [1, c∗] : β̃(i) represents the multi-
plicity of edge ai , where β̃(i) = 0 if edge ai is not in 
an inferred chemical graph G;

•	 β̃(p, i) ∈ [0, 3] , p ∈ [1, s∗ + t∗] , i ∈ [2, nStree] : β̃(p, i) 
with p ≤ s∗ (resp., p > s∗ ) represents the multiplic-
ity of edge e′p,i (resp., ep−s∗,i);

•	 β̃(t, 1) ∈ [0, 3] , t ∈ [1, t∗ + 1] : β̃(t, 1) represents the 

multiplicity of edge et,1;
•	 β̂(s, t) ∈ [0, 3] , s ∈ [1, s∗] , t ∈ [1, t∗] : β̂(s, t) repre-

sents the multiplicity of edge us,1vt,1;

constraints 

Assigning chemical elements and valence condition
We include constraints so that each vertex v in a 
selected graph H satisfies the valence condition; i.e., 
β(v) ≤ val(α(v)) . With these constraints, a chemical 
acyclic graph G = (H ,α,β) on a selected subgraph H 
will be constructed.

constants 

•	 A set � ∪ {ǫ} of chemical elements, where ǫ denotes 
null;

•	 A coding [a] , a ∈ � ∪ {ǫ} such that [ǫ] = 0 ; [a] ≥ 1 , 
a ∈ � ; and [a] �= [b] if a  = b ; Let [�] and [� ∪ {ǫ}] 
denote {[a] | a ∈ �} and {[a] | a ∈ � ∪ {ǫ}} , respec-
tively;

•	 A valence function: val : � → [1, 4];
•	 Let EB(s) denote the set of indices i of all edges 

ai ∈ EB adjacent to vertex us,1 in TB.

(33)a(i) ≤ β̃(i) ≤ 3a(i), i ∈ [1, c∗],

(34)
u(s, i) ≤ β̃(s, i) ≤ 3u(s, i), s ∈ [1, s∗], i ∈ [2, nStree],

(35)v(t, i) ≤ β̃(s∗ + t, i) ≤ 3v(t, i), t ∈ [1, t∗], i ∈ [2, nTtree],

(36)e(t) ≤ β̃(t, 1) ≤ 3e(t), t ∈ [1, t∗ + 1],

(37)e(s, t)+ e(t, s) ≤ β̂(s, t) ≤ 3e(s, t)+ 3e(t, s), s ∈ [1, s∗], t ∈ [1, t∗].

Assigning multiplicity
We prepare an integer variable β̃(e) or β̂(e) for each 
edge e in the scheme graph SG(dmax, k

∗, bh∗, t∗) to 
denote the multiplicity of e in a selected graph H and 
include necessary constraints for the variables to satisfy 
in H.

constants 

•	 Prepare functions tail and head such that 
ai = (utail(i),uhead(i)) ∈ EB;

•	 Assume that each edge in a tree Ss , s ∈ [1, s∗] (resp., 
Tt , t ∈ [1, t∗] ) is denoted by e′s,i (resp., et,i ) with the 
integer i ∈ [2, nStree] of the head us,i (resp., vt,i ) of the 
edge;

variables 
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variables 

•	 α̃(p, i) ∈ [� ∪ {ǫ}] , p ∈ [1, s∗ + t∗] , i ∈ [1, nStree] : 
α̃(p, i) with p ≤ s∗ (resp., p > s∗ ) represents α(up,i) 
(resp., α(vp−s∗,i));

•	 δα(p, i,a) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , i ∈ [1, nStree] , 
a ∈ � ∪ {ǫ} : δα(p, i,a) = 1 ⇔ α(up,i) = a for p ≤ s∗ 
and α(vp−s∗,i) = a for p > s∗;

•	 δ
β̃
(i,m) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , i ∈ [1, c∗] , 

m ∈ [0, 3] : δ
β̃
(i,m) = 1 ⇔ the multiplicity of edge ai 

in an inferred chemical graph G is m;
•	 δ

β̃
(p, i,m) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , i ∈ [2, nStree] , 

m ∈ [0, 3] : δ
β̃
(p, i,m) = 1 ⇔ the multiplicity of edge 

e′p,i , p ≤ s∗ (or ep−s∗,i , p > s∗ ) in G is m;

•	 δ
β̃
(t, 1,m) ∈ {0, 1} , t ∈ [1, t∗ + 1] , m ∈ [0, 3] : 

δ
β̃
(t, 1,m) = 1 ⇔ the multiplicity of edge et in G is q;

•	 δ
β̂
(s, t,m) ∈ {0, 1} , s ∈ [1, s∗] , t ∈ [1, t∗] , m ∈ [0, 3] : 

δ
β̂
(s, t,m) = 1 ⇔ the multiplicity of edge us,1vt,1 in G 

is m;

constraints 

(38)

∑

a∈�∪{ǫ}

δα(p, i,a) = 1, p ∈ [1, s∗ + t∗], i ∈ [1, nStree],

(39)
∑

a∈�∪{ǫ}

[a] · δα(p, i,a) = α̃(p, i), p ∈ [1, s∗ + t∗], i ∈ [1, nStree],

(40)

∑

m∈[0,3]

δ
β̃
(i, q) = 1,

∑

m∈[1,3]

m · δ
β̃
(i,m) = β̃(i), i ∈ [1, c∗],

Descriptors on mass, the numbers of elements and bonds
We include constraints to compute descriptors ms(G) , 
cea(G) ( a ∈ �) , bdm(G) ( m ∈ [2, 3] ) and nH(G) according 
to the definitions in "Modeling of chemical compounds" 
section.

constants 

•	 A function mass∗ : � → Z (we let mass(a) denote 
the observed mass of a chemical element a ∈ � , and 
define mass∗(a) = ⌊10 ·mass(a)⌋);

(41)

∑

m∈[0,3]

δ
β̃
(p, i,m) = 1,

∑

m∈[1,3]

m · δ
β̃
(p, i,m) = β̃(p, i),

p ∈ [1, s∗ + t∗], i ∈ [2, nStree],

(42)

∑

m∈[0,3]

δ
β̃
(t, 1, q) = 1,

∑

m∈[1,3]

m · δ
β̃
(t, 1,m)

= β̃(t, 1), t ∈ [1, t∗ + 1],

(43)

∑

m∈[0,3]

δ
β̂
(s, t,m) = 1,

∑

m∈[0,3]

mδ
β̂
(s, t,m) = β̂(s, t),

s ∈ [1, s∗], t ∈ [1, t∗],

(44)

∑

i∈EB(s)

β̃(i)+
∑

t∈[1,t∗]

β̂(s, t)+
∑

j∈CldS(1)

β̃(s, j) ≤
∑

a∈�

val(a) · δα(s, 1,a),

s ∈ [1, s∗],

(45)

∑

s∈[1,s∗]

β̂(s, t)+ β̃(t, 1)+ β̃(t + 1, 1)+
∑

j∈CldT(1)

β̃(s∗ + t, j) ≤
∑

a∈�

val(a)δα(s
∗ + t, 1,a),

t ∈ [1, t∗],

(46)β̃(s, i)+
∑

j∈CldS(i)

β̃(s, j) ≤
∑

a∈�

val(a)δα(s, i,a), s ∈ [1, s∗], i ∈ [2, nStree],

(47)

β̃(s∗ + t, i)+
∑

j∈CldT(i)

β̃(s∗ + t, j) ≤
∑

a∈�

val(a)δα(s
∗ + t, i,a),

t ∈ [1, t∗], i ∈ [2, nTtree].
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variables 

•	 Mass ∈ Z : Mass represents 
∑

v∈V mass∗(α(v));
•	 bd(m) ∈ [0, 2n∗] , m ∈ [1, 3];
•	 nH ∈ [0, 4n∗] : the number nH(G) of hydrogen atoms 

to be included to G;

constraints 

(48)

∑

p∈[1,s∗+t∗]

δα(p, 1,a) = cein(a),
∑

p∈[1,s∗+t∗],i∈[2,nStree]

δα(p, i,a) = ceex(a),

a ∈ �,

(49)
∑

a∈�

mass∗(a)(cein(a)+ ceex(a)) = Mass,

(50)

∑

i∈[1,c∗]

δ
β̃
(i, q)+

∑

s∈[1,s∗],t∈[1,t∗]

δ
β̂
(s, t, q)+

∑

t∈[2,t∗]

δ
β̃
(t, 1, q) = bdin(m),

∑

p∈[1,s∗+t∗],i∈[2,nStree]

δ
β̃
(p, i,m) = bdex(m),

m ∈ [1, 3],

(54)

2v(t, 1)+
∑

j∈CldT(1)

v(t, j) = deg(s∗ + t, 1), t ∈ [1, t∗],

(55)

v(t, i)+
∑

j∈CldT(i)

v(t, j) = deg(s∗ + t, i), t ∈ [1, t∗], i ∈ [2, nTtree],

Descriptor for the number of adjacency‑configurations
We include constraints to compute descriptors acγ (G) 
( γ = (a,b,m) ∈ Ŵ ) according to the definitions in "Mod-
eling of chemical compounds" section.

constants 

(56)

∑

d∈[0,4]

δdeg(p, i, d) = 1,
∑

d∈[1,4]

d · δdeg(p, i, d) = deg(p, i),

p ∈ [1, s∗ + t∗], i ∈ [1, nStree],

(57)

∑

p∈[1,s∗+t∗]

δdeg(p, 1, d) = dgin(d),

∑

p∈[1,s∗+t∗],i∈[2,nStree]

δdeg(p, i, d) = dgex(d), d ∈ [1, 4],

(58)
dgin(4)+ dgex(4) ≥ 1(resp., = 0)

when dmax = 4(resp., = 3).

Descriptor for the Number of Specified Degree
We include constraints to compute descriptors dgi(G) 
( i ∈ [1, 4] ) according to the definitions in "Modeling of 
chemical compounds" section. We also add constraints 
so that the maximum degree of a vertex in H is at most 3 
(resp., equal to 4) when dmax = 3 (resp., dmax = 4).

variables 

•	 deg(p, i) ∈ [0, 4] , p ∈ [1, s∗ + t∗] , i ∈ [1, nStree] : 
deg(p, i) represents degH (up,i) for p ≤ s∗ or 
degH (vp−s∗,i) for p > s∗;

•	 δdeg(p, i, d) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , i ∈ [1, nStree] , 
d ∈ [0, 4] : δdeg(p, i, d) = 1 ⇔ deg(p, i) = d;

constraints 

(51)

∑

a∈�

val(a)(cein(a)+ ce
ex(a))− 2(n∗ − 1+ bd

in(2)+ bd
ex(2)

+ 2bd
in(3)+ 2bd

ex(3)) = nH.

(52)

∑

i∈EB(s)

a(i)+
∑

t∈[1,t∗]

(e(s, t)+ e(t, s))+
∑

j∈CldS(1)

u(s, j) = deg(s, 1),

s ∈ [1, s∗],

(53)

u(s, i)+
∑

j∈CldS(i)

u(s, j) = deg(s, i), s ∈ [1, s∗], i ∈ [2, nStree],
•	 A set Ŵ = Ŵ< ∪ Ŵ= ∪ Ŵ> of proper tuples 

(a,b,m) ∈ �×�× [1, 3];
•	 The set Ŵ0 = {(a,b, 0) | a,b ∈ � ∪ {ǫ}};
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variables 

•	 δτ (i, γ ) ∈ {0, 1} , i ∈ [1, c∗] , γ ∈ Ŵ ∪ Ŵ0 : 
δτ (i, γ ) = 1 ⇔ edge ai is assigned tuple γ ; i.e., 
γ = (α̃(tail(i), 1), α̃(head(i), 1), β̃(i));

•	 δτ (t, 1, γ ) ∈ {0, 1} , t ∈ [2, t∗] , γ ∈ Ŵ ∪ Ŵ0 : 
δτ (t, 1, γ ) = 1 ⇔ edge et,1 is assigned tuple γ ; i.e., 
γ = (α̃(s∗ + t − 1, 1), α̃(s∗ + t, 1), β̃(t, 1));

•	 δτ (p, i, γ ) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , i ∈ [2, nStree] , 
γ ∈ Ŵ ∪ Ŵ0 : δτ (p, i, γ ) = 1 ⇔ edge e′p,i , p ≤ s∗ 
(or ep−s∗,i , p > s∗ ) is assigned tuple γ ; i.e., 
γ = (α̃(p, prt(i)), α̃(p, i), β̃(p, i));

•	 δτ̂ (s, t, γ ) ∈ {0, 1} , s ∈ [1, s∗] , t ∈ [1, t∗] , γ ∈ Ŵ ∪ Ŵ0 : 
δτ̂ (s, t, γ ) = 1 ⇔ edge us,1vt,1 is assigned tuple γ ; i.e., 
γ = (α̃(s, 1), α̃(s∗ + t, 1), β̂(s, t));

constraints 

(59)

∑

(a,b,m)∈Ŵ∪Ŵ0

[a]δτ (i, (a,b,m)) = α̃(tail(i), 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

[b]δτ (i, (a,b,m)) = α̃(head(i), 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

m · δτ (i, (a,b,m)) = β̃(i),

∑

γ∈Ŵ∪Ŵ0

δτ (i, γ ) = 1, i ∈ [1, c∗],

(60)

∑

(a,b,m)∈Ŵ∪Ŵ0

[a]δτ (t, 1, (a,b,m)) = α̃(s∗ + t − 1, 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

[b]δτ (t, 1, (a,b,m)) = α̃(s∗ + t, 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

m · δτ (t, 1, (a,b,m)) = β̃(t, 1),

∑

γ∈Ŵ∪Ŵ0

δτ (t, 1, γ ) = 1, t ∈ [2, t∗],

(61)

∑

(a,b,m)∈Ŵ∪Ŵ0

[a]δτ (p, i, (a,b,m)) = α̃(p, prt(i)),

∑

(a,b,m)∈Ŵ∪Ŵ0

[b]δτ (p, i, (a,b,m)) = α̃(p, i),

∑

(a,b,m)∈Ŵ∪Ŵ0

m · δτ (p, i, (a,b,m)) = β̃(p, i),

∑

γ∈Ŵ∪Ŵ0

δτ (p, i, γ ) = 1, p ∈ [1, s∗ + t∗], i ∈ [2, nStree],

(62)

∑

(a,b,m)∈Ŵ∪Ŵ0

[a]δτ̂ (s, t, (a,b,m)) = α̃(s, 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

[b]δτ̂ (s, t, (a,b,m)) = α̃(s∗ + t, 1),

∑

(a,b,m)∈Ŵ∪Ŵ0

m · δτ̂ (s, t, (a,b,m)) = β̂(s, t),

∑

γ∈Ŵ∪Ŵ0

δτ̂ (s, t, γ ) = 1, s ∈ [1, s∗], t ∈ [1, t∗],

(63)

∑

i∈[1,c∗]

(δτ (i, γ )+ δτ (i, γ ))+
∑

s∈[1,s∗],t∈[1,t∗]

(δτ̂ (s, t, γ )+ δτ̂ (s, t, γ ))

+
∑

t∈[2,t∗]

(δτ (t, 1, γ )+ δτ (t, 1, γ )) = acin(γ ), γ ∈ Ŵ<,

(64)

∑

i∈[1,c∗]

δτ (i, γ )+
∑

s∈[1,s∗],t∈[1,t∗]

δτ̂ (s, t, γ )+
∑

t∈[2,t∗]

δτ (t, 1, γ ) = acin(γ ),

γ ∈ Ŵ=,

(65)
∑

p∈[1,s∗+t∗],i∈[2,nStree]

(δτ (p, i, γ )+ δτ (p, i, γ )) = acex(γ ), γ ∈ Ŵ<,
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Descriptor for bond‑configuration
We include constraints to compute the descriptors for 
bond-configuration bdµ(G) , µ ∈ Bc , according to the 
definition.

variables 

•	 bc(µ) ∈ [0, n∗ − 1] , µ ∈ Bc;
•	 δdc(i, d, d

′,m) ∈ {0, 1} , i ∈ [1, c∗] , d, d′ ∈ [0, 4] , 
m ∈ [0, 3] : δdc(i, d, d′,m) = 1 ⇔ degH (utail(i)) = d , 
degH (uhead(i)) = d′ and β(ai) = m ∈ [1, 3] in G;

(66)

∑

p∈[1,s∗+t∗],i∈[2,nStree]

δτ (p, i, γ ) = acex(γ ), γ ∈ Ŵ=. •	 δdc(t, 1, d, d
′,m) ∈ {0, 1} , t ∈ [2, t∗] , d, d′ ∈ [0, 4] , 

m ∈ [0, 3] : δdc(t, 1, d, d′,m) = 1 ⇔ degH (vt−1,1) = d , 
degH (vt,1) = d′ and β(et,1) = m ∈ [1, 3] in G;

•	 δdc(p, i, d, d
′,m) ∈ {0, 1} , p ∈ [1, s∗ + t∗] , 

i ∈ [2, nStree] , d, d′ ∈ [0, 4] , m ∈ [0, 3] : 
δdc(p, i, d, d

′,m) = 1 ⇔ degH (up,prt(i)) = d , 
degH (up,i) = d′ and β(e′p,i) = m ∈ [1, 3] for p ≤ s∗ 
(or degH (vp−s∗,prt(i)) = d , degH (vp−s∗,i) = d′ and 
β(ep−s∗,i) = m ∈ [1, 3] for p > s∗ ) in G;

•	 δ
d̂c
(s, t, d, d′,m) ∈ {0, 1} , s ∈ [1, s∗] , t ∈ [1, t∗] , 

d, d′ ∈ [0, 4] , m ∈ [0, 3] : δ
d̂c
(s, t, d, d′, 1) = 1 

⇔ degH (us,1) = d , degH (vt,1) = d′ and 
β(us,1vt,1) = m ∈ [1, 3] in G;

constraints 

(67)

∑

d,d′∈[0,4],m∈[0,3]

δdc(i, d, d
′,m) = 1,

∑

d,d′∈[0,4],m∈[0,3]

m · δdc(i, d, d
′,m) = β̃(i),

∑

d∈[1,4],d′∈[0,4],m∈[0,3]

d · δdc(i, d, d
′,m) = deg(tail(i), 1),

∑

d∈[0,4],d′∈[1,4],m∈[0,3]

d′ · δdc(i, d, d
′,m) = deg(head(i), 1), i ∈ [1, c∗],

(68)

∑

d,d′∈[0,4],m∈[0,3]

δdc(t, 1, d, d
′,m) = 1,

∑

d,d′∈[0,4],m∈[0,3]

m · δdc(t, 1, d, d
′,m) = β̃(t, 1),

∑

d∈[1,4],d′∈[0,4],m∈[0,3]

d · δdc(t, 1, d, d
′,m) = deg(s∗ + t − 1, 1),

∑

d∈[0,4],d′∈[1,4],m∈[0,3]

d′ · δdc(t, 1, d, d
′,m) = deg(s∗ + t, 1), t ∈ [2, t∗],

(69)
∑

d, d′ ∈ [0, 4],
m ∈ [0, 3]

δdc(p, i, d, d
′,m) = 1, p ∈ [1, s∗ + t∗], i ∈ [2, nStree],

(70)

∑

d, d′ ∈ [0, 4],
m ∈ [0, 3]

m · δdc(s, i, d, d
′,m) = β̃(s, i), s ∈ [1, s∗], i ∈ [2, nStree],

(71)

∑

d, d′ ∈ [0, 4],
m ∈ [0, 3]

m · δdc(s
∗ + t, i, d, d′,m) = β̃(s∗ + t, i), t ∈ [1, t∗], i ∈ [2, nTtree],
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Appendix D: Descriptions of new graph search 
algorithms
Multi‑rooted trees and frequency vectors
For a finite set A of elements, let ZA

+ denote the set of 
functions www : A → Z+ . A function www ∈ Z

A
+ is called a non-

negative integer vector (or a vector) on A and the value xxx(a) 
for an element a ∈ A is called the entry of xxx for a ∈ A . For 
a vector www ∈ Z

A
+ and an element a ∈ A , let www + 111a (resp., 

(72)

∑

d ∈ [1, 4], d′ ∈ [0, 4],
m ∈ [0, 3]

d · δdc(p, i, d, d
′,m) = deg(p, prt(i)),

∑

d ∈ [0, 4], d′ ∈ [1, 4],
m ∈ [0, 3]

d′ · δdc(t, i, d, d
′,m) = deg(p, i), p ∈ [1, s∗ + t∗], i ∈ [2, nStree],

(73)

∑

d,d′∈[1,4],m∈[0,3]

δ
d̂c
(s, t, d, d′,m) = 1,

∑

d,d′∈[1,4],m∈[0,3]

m · δ
d̂c
(s, t, d, d′,m) = β̂(s, t),

∑

d∈[1,4],d′∈[0,4],m∈[0,3]

d · δ
d̂c
(s, t, d, d′,m) = deg(s, 1),

∑

d∈[0,4],d′∈[1,4],m∈[0,3]

d′ · δ
d̂c
(s, t, d, d′,m) = deg(s∗ + t, 1),

s ∈ [1, s∗], t ∈ [1, t∗],

(74)

∑

i∈[1,c∗]

(δdc(i, d, d
′,m)+ δdc(i, d

′, d,m))

+
∑

t∈[2,t∗]

(δdc(t, 1, d, d
′,m)+ δdc(t, 1, d

′, d,m))

+
∑

s∈[1,s∗],t∈[1,t∗]

(δ
d̂c
(s, t, d, d′,m)+ δ

d̂c
(s, t, d′, d,m)) = bcin(µ),

∑

p∈[1,s∗+t∗],i∈[2,nStree]

(δdc(p, i, d, d
′,m)+ δdc(p, i, d

′, d,m)) = bcex(µ),

µ = (d, d′,m) ∈ Bc, d < d′,

(75)

∑

i∈[1,c∗]

δdc(i, d, d,m)+
∑

t∈[2,t∗]

δdc(t, 1, d, d,m)

+
∑

s∈[1,s∗],t∈[1,t∗]

δ
d̂c
(s, t, d, d,m) = bcin(µ),

∑

p∈[1,s∗+t∗],i∈[2,nStree]

δdc(p, i, d, d,m) = bcex(µ), µ = (d, d,m) ∈ Bc.

www − 111a ) denote the vector www′ such that www′(a) = www(a)+ 1 
(resp., www′(a) = www(a)− 1 ) and www′(b) = www(b) for the other 
elements b ∈ A \ {a} . For a vector www ∈ Z

A
+ and a sub-

set B ⊆ A , let www[B] denote the projection of www to B; i.e., 
www[B] ∈ Z

B
+ such that www[B](b) = www(b) , b ∈ B.

Let Bc denote the set of tuples 
µ = (d1, d2, k) ∈ [1, 4] × [1, 4] × [1, 3] (bond-configu-
ration) such that max{d1, d2} + k ≤ 4 . For two tuples 
µ = (d1, d2, k),µ

′ = (d′1, d
′
2, k

′) ∈ Bc , we write µ ≥ µ′ if
max{d1, d2} ≥ max{d′1, d

′
2}   , 

min{d1, d2} ≥ min{d′1, d
′
2} and k ≥ k ′,

and write µ > µ′ if
µ ≥ µ′ and µ  = µ′.

Let Dg = {dg1, dg2, dg3, dg4} , where dgi denotes the 
number of vertices with degree i.

Henceforth we deal with vectors www that have their wwwin 
and wwwex components, both wwwin,wwwex ∈ Z

�∪Ŵ∪Bc∪Dg
+  , and 

for convenience we write www = (wwwin,wwwex) in the sense of 
concatenation.

For a vector xxx = (xxxin,xxxex) with xxxin,xxxex ∈ Z
�∪Ŵ∪Bc∪Dg
+  , 

let G(xxx) denote the set of chemical acyclic graphs G 
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whose 2-internal (resp., 2-external) vertices/edges are 
determined by the vector xxxin (resp., xxxex ); i.e., G satisfies 
the following:

cein
a
(G) = xxxin(a) and ceex

a
(G) = xxxex(a) for each 

chemical element a ∈ �,
acinγ (G) = xxxin(γ ) and acexγ (G) = xxxex(γ ) for each 
adjacency-configuration γ ∈ Ŵ,
bcinµ (G) = xxxin(µ) and bcexµ (G) = xxxex(µ) for each 
bond-configuration µ ∈ Bc,
dgini (G) = xxxin(dgi) and dgexi (G) = xxxex(dgi) for each 
degree dgi ∈ Dg.

Throughout the section, let k∗ = 2 be a branch-
parameter, xxx∗ = (xxx∗in,xxx

∗
ex) be a given feature vector 

with xxx∗in,xxx
∗
ex ∈ Z

�∪Ŵ∪Bc∪Dg
+  , and dia∗ be an integer. 

We infer a chemical acyclic graph G ∈ G(xxx∗) such that 

bl2(G) ∈ [2, 3] and the diameter of G is dia∗ , where 
n∗ =

∑
a∈�(xxx

∗
in(a)+ xxx∗ex(a)) . Note that any other 

descriptors of G ∈ G(xxx∗) can be determined by the entries 
of vector xxx∗.

To infer a chemical acyclic graph G ∈ G(xxx∗) , we con-
sider a connected subgraph T of G that consists of

Our method first generates a set FT of all possible rooted 
trees T that can be a 2-fringe-tree of a chemical graph 
G ∈ G(xxx∗) , and then extends the trees T by repeatedly 
appending a tree in FT until a chemical graph G ∈ G(xxx∗) 
is formed. In the extension, we actually manipulate the 
“frequency vectors” of trees defined below.

(76)

- a subtree of the 2-branch-subtree G′ of G and
- the 2-fringe-trees rooted at vertices in G′.

a an internal-subtree 

d an end-fringe-tree c an end-subtree 

b an internal-fringe-tree 

Fig. 10  An illustration of subtrees T of a chemical acyclic graph G in Fig. 6a, where the vertices/edges in T are depicted by solid lines: a An 
internal-subtree T of G; b An internal-fringe-tree T of G; c An end-subtree T of G; d An end-fringe-tree T of G 

Fig. 11  An illustration of combining two bi-rooted trees T1 = Twww1 and T2 = Twww2 with a new edge with multiplicity m joining vertices r1(T1) and 
r1(T2) to construct a target graph G, where ai ∈ � , di ∈ [1, dmax − 1] , mi ∈ [di , val(ai)− 1] , i = 1, 2 , and m ∈ [1,min{3, val(a1)−m1, val(a2)−m2}]
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To specify which part of a given tree T plays the role of 
2-internal vertices/edges or 2-external vertices/edges in a 
chemical graph G ∈ G(xxx∗) to be inferred, we designate at 
most three vertices r1(T ) , r2(T ) , and r3(T ) , in T as ter-
minals, and call T rooted (resp., bi-rooted and tri-rooted) 
if the number of terminals is one (resp., two and three). 
For a rooted tree (resp., bi- or tri-rooted tree) T, let Ṽin 
denote the set of vertices contained in a path between 
two terminals of T, Ẽin denote the set of edges in T 
between two vertices in Ṽin , and define Ṽex � V (T ) \ Ṽin 
and Ẽex � E(T ) \ Ẽin . For a bi- or tri-rooted tree T, define 
the backbone path PT of T to be the path of T between 
vertices r1(T ) and r2(T ).

Given a chemical acyclic graph T, define fff t(T ) , 
t ∈ {in, ex} , to be the vector www ∈ Z

�∪Ŵ∪Bc∪Dg
+  that con-

sists of the following entries:

•	 www(a) = |{v ∈ Ṽt | α(v) = a}| , a ∈ �,
•	

www(γ ) = |{uv ∈ Ẽt | {α(u),α(v)} = {a,b},β(uv) = q}| , 
γ = (a,b, q) ∈ Ŵ,

•	 www(µ) = |{uv ∈ Ẽt | {deg
T
(u), deg

T
(v)} = {d, d′},β(uv) = m}|   , 

µ = (d, d′,m) ∈ Bc,
•	 www(dgi) = |{v ∈ Ṽt | degT (v) = i}| , dgi ∈ Dg.

Define fff (T ) � (fff in(T ), fff ex(T )) . The entry for an element 
e ∈ � ∪ Ŵ ∪ Bc ∪ Dg in fff t(T ) , t ∈ {in, ex} is denoted by 
fff t(e;T ) . For a subset B of � ∪ Ŵ ∪ Bc ∪ Dg , let fff t[B](T ) 
denote the projection of fff t(T ) onto B.

Our aim is to generate all chemical bi-rooted (resp., tri-
rooted) trees T with diameter dia∗ such that fff (T ) = xxx∗.

A new algorithm for computing chemical bi‑rooted trees G 
with bl2(G) = 2

This section describes a sketch of our new graph search 
algorithm for the case of bl2(G) = 2 . See Appendix “A 
sketch of algorithm for computing chemical tri-rooted 
trees G with bl2(G) = 3” for a sketch of a new algorithm 
for the case of bl2(G) = 3.

We call a chemical graph G ∈ G(xxx∗) with diameter dia∗ 
and bl2(G) = 2 a target graph.

A chemical acyclic graph G with bl2(G) = 2 has exactly 
two leaf 2-branches vi , i = 1, 2 , where the length of the 
path between the two leaf 2-branches v1 and v2 of a tar-
get graph G is dia∗ − 2k∗ = dia∗ − 4 . We observe that a 
connected subgraph T of a target graph G that satisfies 
(76) for bl2(G) = 2 is a chemical rooted or bi-rooted tree 
with roots u and v, where possibly u = v . We call such a 
subgraph T an internal-subtree (resp., end-subtree) of G if 
neither (resp., one) of u and v is a 2-branch in G. When 
u = v , we call an internal-subtree (resp., end-subtree) T 
of G an internal-fringe-tree (resp., end-fringe-tree) of   G. 

Figure 10a–d illustrates an internal-subtree, an internal-
fringe-tree, an end-subtree and an end-fringe-tree of G.

Let δ1 = ⌊dia
∗−5
2 ⌋ and δ2 = dia∗ − 5− δ1 = ⌈dia

∗−5
2 ⌉ . 

We regard a target graph G ∈ G(xxx∗) with bl2(G) = 2 and 
diameter dia∗ as a combination of two chemical bi-rooted 
trees T1 and T2 with ℓ(PTi) = δi , i = 1, 2 , joined by an 
edge e = r1(T1)r1(T2) , as illustrated in Fig. 11.

We start with generating chemical rooted trees and 
then iteratively extend chemical bi-rooted trees T with 
ℓ(PT ) = 1, 2, . . . , δ1 , before we finally combine two 
chemical bi-rooted trees T1 and T2 with ℓ(PTi) = δi . To 
describe our algorithm, we introduce some notation.

•	 Let T (xxx∗) denote the set of all bi-rooted trees 
T (where possibly r1(T ) = r2(T ) ) such that 
fff in(T ) ≤ xxx∗in and fff ex(T ) ≤ xxx∗ex , which is a necessary 
condition for T to be an internal-subtree or end-sub-
tree of a target graph G ∈ G(xxx∗).

•	 Let FT  denote the set of all rooted trees T ∈ T (xxx∗) 
that can be a 2-fringe-tree of a target graph G, where 
T satisfies the size constraint (1) of 2-fringe-trees.

•	 For each integer h ∈ [1, dia∗ − 4] , let T (h)
end denote the 

set of all bi-rooted trees T ∈ T (xxx∗) that can be an 
end-subtree of a target graph G such that ℓ(PT ) = h , 
and each 2-fringe-tree Tv rooted at a vertex v in PT 
belongs to FT .

The idea of our new algorithm is to compute only the 
set W(h)

end of frequency vectors www of end trees, whose size 
|W

(h)
end| is much more restricted than that of  T (h)

end . We 
compute the set W(h)

end of frequency vectors www of trees in 
T

(h)
end iteratively for each integer h ≥ 0 . During the compu-

tation, we keep a sample of a tree Twww for each frequency 
vector www so that a final step can construct some num-
ber of target graphs G by assembling these sample trees. 
Based on this, we generate target graphs G ∈ G(xxx∗) by the 
following steps: 

1.		  (i)	 Compute FT  by a branch-and-bound 
procedure that generates all possible rooted 
trees T ∈ T (xxx∗) (where r1(T ) = r2(T ) ) 
that can be a 2-fringe-tree of a target graph 
G ∈ G(xxx∗);

	 (ii)	 Compute the set W(0) of all vectors 
www = (wwwin,wwwex) such that wwwin = fff in(T ) and 
wwwex = fff ex(T ) for some tree T ∈ FT  , and 
let W(0)

end ⊆ W(0) be those trees with height 
exactly 2;

	 (iii)	 For each vector www = (wwwin,wwwex) ∈ W(0) , choose 
a sample tree Twww ∈ FT  such that wwwin = fff in(T ) 
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and wwwex = fff ex(T ) , and store these sample 
trees;

2.	 For each integer h = 1, 2, . . . , δ2 , iteratively execute 
the next: 

	 (i)	 Compute the set W
(h)
end of all vectors 

www = (wwwin,wwwex) such that wwwin = fff in(T ) and 
wwwex = fff ex(T ) for some bi-rooted tree T ∈ T

(h)
end , 

where such a vector www is obtained from a com-
bination of vectors www′ ∈ W(0) and www′′ ∈ W

(h−1)
end

;
	 (ii)	 For each vector www ∈ W

(h)
end , store a sample tree 

Twww , which is obtained from a combination of 
sample trees Twww′ with www′ ∈ W(0) and Twww′′ with 
www′′ ∈ W

(h−1)
end ;

3.	 We call a pair of vectors www1 ∈ W
(δ1)

end and www2 ∈ W
(δ2)

end 
feasible, if it admits a target graph G ∈ G(xxx∗) such 
that www1

in +www2
in ≤ xxx∗in and www1

ex +www2
ex ≤ xxx∗ex . Find the 

set Wpair of all feasible pairs of vectors www1 and www2;
4.	 For each feasible vector pair (www1,www2) ∈ Wpair , con-

struct a corresponding target graph G by combining 
the corresponding samples trees Twww1 and Twww2 , as illus-
trated in Fig. 11.

Detailed descriptions of the five steps in the above 
algorithm can be found in Appendix  “Case of two leaf 
2-branches”.

For a relatively large instance with n∗ ≥ 40 and 
dia∗ ≥ 20 , the number |Wpair| of feasible vector pairs in 
Step 4 is still very large. In fact, the size |W(h)

end| of a vector 
set W(h)

end to be computed in Step 2 can also be considera-
bly large during an execution of the algorithm. For such a 
case, we impose a time limitation on the running time for 
computing W(h)

end and a memory limitation on the number 
of vectors stored in a vector set W(h)

end . With these limita-
tions, we can compute only a limited subset Ŵ

(h)

end of each 
vector set W(h)

end in Step 2. Even with such a subset Ŵ
(h)

end , 
we still can find a large size of a subset Ŵpair of Wpair in 
Step 3.

Our algorithm also delivers a lower bound on the num-
ber of all target graphs G ∈ G(xxx∗) in the following way. In 
Step 1, we also compute the number t(www) of trees T ∈ FT  
such that www = fff (T ) for each www ∈ W(0) . In Step 2, when a 
vector www is constructed from two vectors www′ and www′′ , we 
iteratively compute the number t(www) of trees T such that 
www = fff (T ) by t(www) := t(www′)× t(www′′) . In Step 3, when a fea-
sible vector pair (www1,www2) ∈ Wpair is obtained, we know 
that the number of the corresponding target graphs G is 
t(www1)× t(www2) . Possibly we compute a subset Ŵpair of 
Wpair in Step  3. Then (1/2)

∑
(www1,www2)∈Ŵpair

t(www1)× t(www2) 
gives a lower bound on the number of target graphs 
G ∈ G(xxx∗) , where we divided by 2 since an axially sym-
metric target graph G can correspond to two vector pairs 
in Wpair.

Fig. 12  An illustration of combining a tri-rooted T1 = Twww1 and a bi-rooted tree T2 = Twww2 with a new edge joining vertices r3(T1) and r1(T2) to 
construct a target graph G 
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A sketch of algorithm for computing chemical tri‑rooted 
trees G with bl2(G) = 3

We call a chemical graph G ∈ G(xxx∗) with diameter dia∗ 
and bl2(G) = 3 a target graph. Let n∗inl �

∑
a∈� xxx∗in(a) , 

which is the number of 2-internal vertices in a target 
graph G ∈ G(xxx∗).

A chemical acyclic graph G with bl2(G) = 3 has exactly 
three leaf 2-branches vi , i = 1, 2, 3 , and exactly one 
2-internal vertex v4 adjacent to three 2-internal verti-
ces v′i , i = 1, 2, 3 , as illustrated in Fig.  6(b). We call ver-
tex v4 the joint-vertex of G. Without loss of generality 
assume that the length of the path Pv1,v2 between v1 and 
v2 is dia∗ − 4 and that the length of the path Pv1,v′1 is not 
smaller than that of Pv2,v′2.

Analogously with the case of bl2(G) = 2 , we define 
internal-subtree (resp., end-subtree, internal-fringe-tree, 
and end-fringe-tree) of G, to be a connected subgraph 
G′ that satisfies (76). Observe that G can be partitioned 
into three end-subtrees Ti , i = 1, 2, 3 , the 2-fringe-tree 
T4 rooted at the joint-vertex v4 and three edges v′iv4 , 
i = 1, 2, 3 , where the backbone path PTi connects leaf 
2-branch vi and vertex v′i . In particular, we call the end-
subtree of G that consists of T1 , T2 , T4 , and edges v′iv4 , 
i = 1, 2 , the main-subtree of G, which consists of the 
path Pv1,v2 and all the 2-fringe-trees rooted at vertices 
in Pv1,v2 . We call T3 the co-subtree of G.

Let δi , i = 1, 2, 3 denote the length of the backbone 
path of Ti . Note that

δ1 + δ2 + 2 = dia∗ − 4 and 
δ1 ≥ δ2 ≥ δ3 = n∗inl − dia∗ + 2,

from which it follows that
δ2 ∈ [δ3, ⌊dia

∗/2⌋ − 3] and 
δ1 ∈ [⌈dia∗/2⌉ − 3, dia∗ − 6− δ3].

We regard a target graph G ∈ G(xxx∗) with bl2(G) = 3 
and diameter dia∗ as a combination of the main-subtree 
and the co-subtree joined with an edge. We represent 
the co-subtree as a chemical bi-rooted tree T with 
ℓ(PT ) = δ3 . We represent the main-subtree of a target 
graph G as a tri-rooted tree T with ℓ(PT ) = dia− 4 
so that terminals r1(T ) , r2(T ) , and  r3(T ) , correspond 
to the two leaf 2-branches and the joint-vertex of  G, 
respectively.

We start with generating chemical rooted trees and 
then iteratively extend chemical bi-rooted trees T with 
ℓ(PT ) = 1, 2, . . . , dia∗ − 6− δ3 , before we combine two 
chemical bi-rooted trees T ′ and T ′′ to obtain a chemical 
tri-rooted tree T1 with ℓ(PT1) = δi , and finally, combine a 
chemical tri-rooted tree T1 and a chemical bi-rooted tree 
T2 with ℓ(PT2) = δ3 , to obtain a target graph G ∈ G(xxx∗).

Analogously with the case of bl2(G) = 2 , we define the 
set T (xxx∗) of all bi-rooted trees T, the set FT  of all rooted 

a b f e d c h g 

Fig. 13  An illustration of fictitious rooted trees T [+p] , p ∈ [1, 3] for rooted trees T with r = r1(T ) = r2(T ) and d = degT (r) , where a dashed line 
depicts a fictitious edge incident to the terminal r1(T ) = r2(T ) : (a) T [+1] and d = 1 ; (b) T [+1] and d = 2 ; (c) T [+1] and d = 3 ; (d) T [+2] and d = 0 ; 
(e) T [+2] and d = 1 ; (f) T [+2] and d = 2 ; (g) T [+3] and d = 0 ; (h) T [+3] and d = 1

a b 

Fig. 14  An illustration of fictitious trees T [+q] and T �+1� for bi-rooted trees and tri-rooted trees T: a T [+q] of a bi-rooted tree T; b T �+1� of a 
tri-rooted tree T 
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trees T ∈ T (xxx∗) that can be a 2-fringe-tree of a target 
graph G and the set T (h)

end , h ∈ [1, dia∗ − 6− δ3] , of all bi-
rooted trees T ∈ T (xxx∗) that can be an end-subtree of a 
target graph G such that ℓ(PT ) = h.

We generate target graphs G ∈ G(xxx∗) by the following 
steps: 

1.	 Analogously with Step 1 for the case of bl2(G) = 2 , 
compute the set FT  by a branch-and-bound algo-
rithm as described in "Step 1: Enumeration of 
2-fringe-trees" section, and the set W(0) of all vec-
tors www = (wwwin,wwwex) such that wwwin = fff in(T ) and 
wwwex = fff ex(T ) for some tree T ∈ FT  . For each vec-
tor www ∈ W(0) , store a sample tree Twww ∈ FT  , and let 
W

(0)
end ⊆ W(0) be the set of feature vectors of possible 

end-trees with height 2;
2.	 For each integer h = 1, 2, . . . , dia∗ − 6− δ3 , compute 

the set W(h)
end of all vectors www = (wwwin,wwwex) such that 

wwwin = fff in(T ) and wwwex = fff ex(T ) for some bi-rooted 
tree T ∈ T

(h)
end . For each vector www ∈ W

(h)
end , store a 

sample tree Twww;
3.	 For each integer h ∈ [⌈dia∗/2⌉ − 2, dia∗ − 5− δ3] , 

compute the set W(h)
end+2 of all vectors www = (wwwin,wwwex) 

such that wwwin = fff in(T ) and wwwex = fff ex(T ) of some bi-
rooted tree T with ℓ(PT ) = h that represents an end-
subtree rooted at the joint-vertex. For each vector 
www ∈ W

(h)
end+2 , store a sample tree Twww;

4.	 For each integer δ1 ∈ [⌈dia∗/2⌉ − 3, dia∗ − 6− δ3] , 
compute the set W(δ1+1)

main  of all vectors www = (wwwin,wwwex) 
such that wwwin = fff in(T ) and wwwex = fff ex(T ) for some 
tri-rooted tree T that represents the main-subtree 
such that the length of the path Pr2(T ),r3(T ) between 
terminals r2(T ) and r3(T ) is δ1 + 1 . For each vector 
www ∈ W

(δ1+1)
main  , store a sample tree Twww;

5.	 We call a pair of vectors www1 ∈ W
(δ1+1)
main  and www2 ∈ W

(δ3)

end 
feasible if it admits a target graph G ∈ G(xxx∗) such that 
www1
in +www2

in ≤ xxx∗in and www1
ex +www2

ex ≤ xxx∗ex . Find the set 
Wpair of all feasible pairs of vectors www1 and www2;

6.	 For each feasible vector pair (www1,www2) ∈ Wpair , con-
struct a corresponding target graph G by combining 
the samples trees Twww1 and Twww2 , which correspond to 
the main-subtree and the co-subtree of a target graph 
G, respectively, as illustrated in Fig. 12.

Detailed descriptions of the six steps in the above 
algorithm can be found in Appendix  “Case of three leaf 
2-branches”.

Frequency vectors of fictitious trees
Let T be a chemical bi-rooted or tri-rooted tree, where 
we regard a rooted tree T as a bi-rooted tree with 
r1(T ) = r2(T ) for a notational convenience. Recall that our 
algorithm generates a target graph G ∈ G(xxx∗) as a super-
graph of T, where one of terminals r1(T ) and r2(T ) can be 
a 2-branch of G. We assume that the second terminal r2(T ) 
will be a 2-branch of G in such a case in our algorithms.

For an integer p ∈ [1, 3] , let T [+p] denote a fictitious 
chemical graph obtained from T by regarding the degree 
of terminal r1(T ) as degT (r1(T ))+ p . Figure  13 (resp., 
Fig.  14a) illustrates fictitious trees T [+p] in the case of 
r1(T ) = r2(T ) (resp., r1(T )  = r2(T ) ). The frequency vec-
tors fff in(T [+p]) and fff ex(T [+p]) are obtained as follows: 
Let d = degT (r1(T )) , vi , i ∈ [1, d] , denote the neigh-
bors of r1(T ) , and di = degT (vi) , mi = β(r1(T )vi) , and 
µi = (d, di,mi) , µ′

i = (d + p, di,mi) , i ∈ [1, d].
For r1(T ) = r2(T ) and d′ = d + p,

fff in(T [+p]) = fff in(T )+ 111dgd′ − 111dgd   ,   
fff ex(T [+p]) = fff ex(T )+

∑

1≤i≤d

(111µ′
i
− 111µi).

For r1(T )  = r2(T ) and d′ = d + p , where vd denotes the 
vertex in PT ,

fff in(T [+1]) = fff in(T )+ 111dgd′ − 111dgd + 111µ′
d
− 111µd

,
fff ex(T [+1]) = fff ex(T )+

∑

1≤i≤d−1

(111µ′
i
− 111µi).

Let T be a chemical tri-rooted tree, where the third ter-
minal r3(T ) is in the backbone path PT between vertices 
r1(T ) and r2(T ) . Let T �+1� denote a fictitious chemical 
graph obtained from T by regarding the degree of ter-
minal r3(T ) as degT (r3(T ))+ 1 . Figure  14b illustrates a 
fictitious tri-rooted tree T �+1� . The frequency vectors 
fff in(T �+1�) and fff ex(T �+1�) are obtained as follows: Let 
d = degT (r3(T )) , vi , i ∈ [1, d] , denote the neighbors of 
r3(T ) , where vd−1 and vd are contained in the path PT . For 
each index i ∈ [1, d] , let di = degT (vi) , mi = β(r3(T )vi) , 
µi = (d, di,mi) , and µ′

i = (d + 1, di,mi).
Then

(77)

fff in(T �+1�) = fff in(T )+ 111dg(d+1) − 111dgd +
∑

i∈[d−1,d]

(111µ′
i
− 111µi),

fff ex(T �+1�) = fff ex(T )+
∑

i≤[1,d−2]

(111µ′
i
− 111µi).
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Sets of frequency vectors
For an element a ∈ � and integers d ∈ [0, dmax − 2] 
and m ∈ [d, val(a)− 1] , let W

(0)
inl (a, d,m) (resp., 

W
(0)
inl+3(a, d,m) ) denote the set of frequency vectors 

(fff in(T [+2]), fff ex(T [+2])) (resp., (fff in(T [+3]), fff ex(T [+3])) ) 
of a chemical rooted tree T such that

r1(T ) = r2(T ) , the height of T is at most 2,
α(r1(T )) = a , degT (r1(T )) = d , and β(r1(T )) = m.

Recall that β(u) =
∑

uv∈E β(uv) , defined in “Preliminary” 
section.

For an element a ∈ � and integers d ∈ [1, dmax − 1] , 
m ∈ [d, val(a)− 1] , and h ≥ 0 , let W

(h)
end(a, d,m) 

(resp., W
(h)
end+2(a, d,m) ) denote the set of fre-

quency vectors (fff in(T [+1]), fff ex(T [+1])) (resp., 
(fff in(T [+2]), fff ex(T [+2])) ) of chemical bi-rooted trees T 
such that

α(r1(T )) = a , degT (r1(T )) = d , β(r1(T )) = m , 
ℓ(PT ) = h and
if h = 0 then the height of the tree T ′ rooted at r2(T ) 
is 2.

Case of two leaf 2‑branches
Step 1: Enumeration of 2‑fringe‑trees
The main task of Step  1 is to compute for each 
tuple (a, d,m) of an element a ∈ � and inte-
gers d ∈ [1, dmax − 1] (resp., d ∈ [0, dmax − 2] ) and 
m ∈ [d, val(a)− 1] (resp., m ∈ [d, val(a)− 2] ), the set 
W

(0)
end(a, d,m) (resp., W

(0)
inl (a, d,m) ) of all frequency 

vectors fff (T [+1]) (resp., fff (T [+2]) ) of chemical 
rooted trees T such that r1(T ) = r2(T ) , α(r1(T )) = a , 
degT (r1(T )) = d and β(r1(T )) = m.

Step 1 first computes the set FT  of all possible chemi-
cal rooted trees T ∈ T (xxx∗) (where r1(T ) = r2(T ) ) that 

can be a 2-fringe-tree of a target graph G ∈ G(xxx∗) . For 
this, we design a branch-and-bound procedure where 
we append a new vertex one by one to construct a rooted 
tree with only one child. To design a bounding proce-
dure, we derive a property of the structure of chemical 
rooted trees that can be a 2-fringe-tree of a target graph.

Let G0 be a chemical rooted tree with a termi-
nal r0 = r1(G0) = r2(G0) , where fff in(α(r0);G0) = 1 
and fff in(a;G0) = 0 , a ∈ � \ {α(r0)} and 
fff in(γ ;G0) = 0 , γ ∈ Ŵ . For a vector xxx = (xxxin,xxxex) with 
xxxin,xxxex ∈ Z

�∪Ŵ∪Bc∪Dg
+  , we call G0 xxx-extensible if some 

chemical acyclic graph G ∈ G(xxx) contains G0 as a sub-
graph of a 2-fringe-tree T rooted at r0 in G.

We use the next condition as a bounding procedure 
when we generate chemical rooted trees in Step 1.

Lemma 3  For a branch-parameter k = 2, let 
xxx∗ = (xxx∗in,xxx

∗
ex) be a vector with xxx∗in,xxx

∗
ex ∈ Z

�∪Ŵ∪Bc∪Dg
+ , and 

G0 be a chemical rooted tree rooted at a vertex r0 such that 
fff (G0) ≤ xxx∗ . 

	(i)	 Graph G0 is xxx∗-extensible only when the next holds 
for any subset �′ ⊆ � : 

a b c d 
Fig. 15  An illustration of rooted trees T with height at most 2 and only one child satisfying the size constraint: a case of n(T ) = 2 ; b case of 
n(T ) = 3 ; c case of n(T ) = 4 ; d case of n(T ) = 5

Fig. 16  An illustration of appending a rooted tree T ′ to a bi-rooted 
tree T ′′ to compute a vector www ∈ W

(h)
end(a, d,m) from the frequency 

vectors www′ = fff (T ′[+2]) ∈ W
(0)
inl (a, d − 1,m′) of a rooted tree T ′ and 

www′′ = fff (T ′′[+1]) ∈ W
(h−1)
end (b, d′′ ,m′′) of a bi-rooted tree T ′′
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	(ii)	 Let G1 denote the chemical rooted tree obtained 
from G0 by appending a new atom with an ele-
ment b ∈ � to an atom with an element a ∈ � in 
G0 with a multiplicity q; i.e., we join an atom a in G0 
and a new atom b with an adjacency-configuration 
(a,b, q) . Then G1 is xxx∗-extensible only when the 
next holds:
xxx∗ex(a)− fff ex(a;G0) ≤ nbnbnb(a)− 1

	  for
	
nbnbnb(a) =

∑

γ = (a,b,m) ∈ Ŵ :

b �= a ∈ �

(xxx∗ex(γ )− fff ex(γ ;G0))+ 2
∑

γ=(a,a,m)∈Ŵ

(xxx∗ex(γ )− fff ex(γ ;G0))

.
Proof 

	(i)	 Assume that G0 is a subgraph of a 2-fringe-tree T in 
some chemical graph G ∈ G(xxx∗) so that T is rooted 
at r0 . The left-hand side means the number of the 
remaining 2-external vertices with elements in �′ 
in the 2-fringe-trees in G. Each of such atoms has 
a neighbor in the connected graph G. The right-
hand side indicates an upper bound on the number 
of 2-external edges joining elements in �′ in the 
2-fringe-trees in G.

	(ii)	 Note that fff ex[�∪Ŵ](G1) = fff ex[�∪Ŵ](G0)+ 111b + 111γ . 
For �′ = {a} , the left-hand side in Eq.  (78) is 
xxx∗ex(a)− fff ex(a;G0) , which remains unchanged 
if a  = b (resp., is reduced by 1 if a = b ); and the 
right-hand side in (78) is nbnbnb(a) , which is reduced 
by 1 if a  = b (resp., is reduced by 2 if a = b ). That 
is, the left-hand side minus the right-hand side in 
(78) is always reduced by 1. This gives the required 
necessary condition for G1 to be xxx∗-extensible.

                                                                                                  �
 

Figure 15 illustrates all graph structures of rooted trees 
T with height at most 2 and only one child satisfying 
the size constraint (1). For each element a ∈ � , we enu-
merate chemical trees T ∈ T (xxx∗) rooted at vertex r with 
α(r) = a that has only one child by a branch-and-bound 

(78)

∑

a∈�′

(xxx∗ex(a)− fff ex(a;G0)) ≤
∑

γ = (a,b,m) ∈ Ŵ :

a ∈ �′,b ∈ � \�′

(xxx∗ex(γ )− fff ex(γ ;G0))

+ 2
∑

γ = (a,b,m) ∈ Ŵ :

a,b ∈ �′

(xxx∗ex(γ )− fff ex(γ ;G0)).

algorithm. Let Ta denote the set of resulting rooted trees 
for each root element a ∈ �.

We next enumerate chemical trees T ∈ T (xxx∗) rooted 
at vertex r with α(r) = a that has two or three children 
by generating a combination of two or three graphs in Ta . 
During generating graphs, our bounding procedure tests 
whether the current graph satisfies the necessary condi-
tion in Lemma 3(ii).

Finally, we compute the following sets:

for each element a ∈ � , integers d ∈ [1, dmax − 1] , 
m ∈ [d, val(a)− 1] , the set W

(0)
end(a, d,m) of fre-

quency vectors fff (T [+1]) for rooted trees T ∈ Ta with 
degT (r) = d and height 2;

for each element a ∈ � , integers d ∈ [0, dmax − 2] , 
m ∈ [d, val(a)− 2] , the set W

(0)
inl (a, d,m) of fre-

quency vectors fff (T [+2]) for rooted trees T ∈ Ta with 
degT (r) = d and height at most 2.

For each vector www ∈ W
(0)
end(a, d,m) (resp., 

www ∈ W
(0)
inl (a, d,m) ), we store a sample tree Twww.

We remark that the size of the set FT  depends on 
the vector xxx∗ . However, since the height of trees is lim-
ited to 2, the degree is at most 3 or 4, and the size con-
straint  (1) on fringe trees in "Our target graph class" 
section, the size of the set FT  is fairly limited.

Step 2: Generation of frequency vectors of end‑subtrees
The main task of Step 2 is to compute the following sets 
in the ascending order of h = 1, 2, . . . , δ2 : 

For elements a ∈ � , integers d ∈ [1, dmax − 1] , 
m ∈ [d, val(a)− 1] , and h ∈ [1, δ2] , the sets W(h)

end(a, d,m) 
of all frequency vectors fff (T [+1]) of chemical bi-
rooted trees T ∈ T (xxx∗) such that α(r1(T )) = a , 
degT (r1(T )) = d , β(r1(T )) = m and ℓ(PT ) = h.

Observe that each vector www = (wwwin,wwwex) ∈ W
(h)

end
(a, d,m) 

is obtained from a combination of 
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vectors www′ = (www′
in,www

′
ex) ∈ W

(0)
inl (a, d − 1,m′) and 

www′′ = (www′′
in,www

′′
ex) ∈ W

(h−1)
end (b, d′′,m′′) such that

m′ ≤ val(a)− 2 , 1 ≤ m−m′ ≤ val(b)−m′′,
wwwin = www′

in +www′′
in + 111γ + 111µ ≤ xxx∗in   , 

wwwex = www′
ex +www′′

ex ≤ xxx∗ex
for γ = (a,b,m−m′) ∈ Ŵ and 
µ = (d + 1, d′′ + 1,m−m′) ∈ Bc.

Figure  16 illustrates this process of computing a vector 
www ∈ W

(h)
end(a, d,m).

For each vector www ∈ W
(h)
end(a, d,m) obtained 

from a combination www′ ∈ W
(0)
inl (a, d − 1,m′) and 

www′′ ∈ W
(h−1)
end (b, d′′,m′′) , we construct a sample tree Twww 

from their sample trees Twww′ and Twww′′.

Step 3: Enumeration of feasible vector pairs
A feasible pair of vectors is defined to be a pair 
of vectors wwwi = (wwwi

in,www
i
ex) ∈ W

(δi)

end(ai, di,mi) , 
ai ∈ � , di ∈ [1, dmax − 1] , mi ∈ [di, val(ai)− 1] , 
i = 1, 2 that admits an adjacency-configura-
tion γ = (a1,a2,m) ∈ Ŵ and a bond-configura-
tion µ = (d1 + 1, d2 + 1,m) ∈ Bc with an integer 
m ∈ [1,min{3, val(a1)−m1, val(a2)−m2}] such that

xxx∗in = www1
in +www2

in + 111γ + 111µ and xxx∗ex = www1
ex +www2

ex,

or equivalently www1 is equal to the vector 
(xxx∗in −www2

in − 111γ − 111µ,xxx
∗
ex −www1

ex) , which we call the (γ ,µ)
-complement of www2 , and denote it by www2.

The main task of Step  3 is to enumerate all feasible 
vector pairs (www1,www2) , wwwi ∈ W

(δi)

end(ai, di,mi) with ai ∈ � , 
di ∈ [1, dmax − 1] , mi ∈ [di, val(ai)− 1] , i = 1, 2.

To efficiently search for a feasible pair of vec-
tors in two sets W

(δi)

end(ai, di,mi) , i = 1, 2 , we first 
compute the (γ ,µ)-complement vector www of each 

vector www ∈ W
(δ2)

end (a2, d2,m2) for each pair of 
γ = (a1,a2,m) ∈ Ŵ and µ = (d1 + 1, d2 + 1,m) ∈ Bc 
with m ∈ [1,min{3, val(a1)−m1, val(a2)−m2}] , and 
denote by W(δ2)

end  the set of the resulting (γ ,µ)-comple-
ment vectors. Observe that (www1,www2) is a feasible vector 
pair if and only if www1 = www2 . To find such pairs, we merge 
the sets W(δ1)

end (a1, d1,m1) and W(δ2)

end  into a sorted list Lγ ,µ . 
Then each feasible vector pair (www1,www2) appears as a con-
secutive pair of vectors www1 and www2 in the list Lγ ,µ.

Step 4: Construction of chemical graphs
The task of Step 4 is to construct for each feasible vector 
pair wwwi ∈ W

(δi)

end(ai, di,mi) , i = 1, 2 such that www1 is equal 
to the (γ = (a1,a2,m),µ)-complement vector www2 of www2 , 
construct a target graph T(www1,www2) ∈ G(xxx∗) by combin-
ing the sample trees Ti = Twwwi of vectors wwwi with an edge 
e = r1(T1)r1(T2) such that β(e) = m . Figure 11 illustrates 
two sample trees Ti , i = 1, 2 to be combined with a new 
edge e = r1(T1)r1(T2).

Case of three leaf 2‑branches
Step 1: Enumeration of 2‑fringe‑trees
The main task of Step 1 is to compute the following sets:

for each tuple (a, d,m) of an element a ∈ � and 
integers d ∈ [1, dmax − 1] (resp., d ∈ [0, dmax − 2] 
and d ∈ [0, dmax − 3] ) and m ∈ [d, val(a)− 1] (resp., 
m ∈ [d, val(a)− 2] and m ∈ [d, val(a)− 3] ), the set 
W

(0)
end(a, d,m) (resp., W(0)

inl (a, d,m) and W(0)
inl+3(a, d,m) ) 

of all frequency vectors fff (T [+1]) (resp., fff (T [+2]) 
and fff (T [+3]) ) of chemical rooted trees T such that 
r1(T ) = r2(T ) , α(r1(T )) = a , degT (r1(T )) = d and 
β(r1(T )) = m . For each vector www ∈ W

(0)
end(a, d,m) (resp., 

www ∈ W
(0)
inl (a, d,m) and www ∈ W

(0)
inl+3(a, d,m) ), we store a 

sample tree Twww . This step can be designed in a similar way 
as Step 1 for the case of bl2(G) = 2.

Fig. 17  An illustration of computing the frequency vector www = fff (T �+1�) ∈ W
(δ1+1)
main (a, d,m) of a tri-rooted tree T from the frequency vectors 

www1 = fff (T1[+2]) ∈ W
(δ1+1)
end+2 (a, d − 1,m′′) and www2 = fff (T2[+1]) ∈ W

(δ2)

end (a
′ , d′ ,m′) for bi-rooted trees T1 and T2
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Step 5: Enumeration of feasible vector pairs
Analogously with the case of bl2(G) = 2 , a feasi-
ble pair of vectors is defined to be a pair of vec-
tors www1 = (www1

in,www
1
ex) ∈ W

(δ1+1)
main (a1, d1,m1) , 

and www2 = (www2
in,www

2
ex) ∈ W

(δ3)

end (a2, d2,m2) , 
δ1 ∈ [⌈dia∗/2⌉ − 3, dia∗ − 6− δ3] , ai ∈ � , 
di ∈ [1, dmax − 1] , mi ∈ [di, val(ai)− 1] , 
i = 1, 2 that admits an adjacency-configura-
tion γ = (a1,a2,m) ∈ Ŵ and a bond-configura-
tion µ = (d1 + 1, d2 + 1,m) ∈ Bc with an integer 
m ∈ [1,min{3, val(a1)−m1, val(a2)−m2}] such that

xxx∗in = www1
in +www2

in + 111γ + 111µ and xxx∗ex = www1
ex +www2

ex.

Step  5 computes the set of all feasible vector pairs 
(www1,www2) by using a sorting algorithm as in the Step 4 for 
the case of bl2(G) = 2.

Step 6: Construction of chemical graphs
Analogously with Step 4 for the case of bl2(G) = 2 , Step 6 
constructs a target graph T(www1,www2) ∈ G(xxx∗) for each fea-
sible vector pair (www1,www2) by combining the sample trees 
Ti = Twwwi of vectors wwwi with a new edge e = r1(T1)r1(T2).
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Step 2: Generation of frequency vectors of end‑subtrees
Analogously with Step  2 for the case of bl2(G) = 2 , 
Step 2 computes the following sets in the ascending order 
of h = 1, 2, . . . , dia∗ − 6− δ3:

For elements a ∈ � , integers d ∈ [1, dmax − 1] , 
m ∈ [d, val(a)− 1] , i = 1, 2 , and h ∈ [1, dia∗ − 6− δ3] , 
the sets W(h)

end(a, d,m) of all frequency vectors fff (T [+1]) 
of chemical bi-rooted trees T ∈ T (xxx∗) such that 
α(r1(T )) = a , degT (r1(T )) = d , β(r1(T )) = m and 
ℓ(PT ) = h.

For each vector www ∈ W
(h)
end(a, d,m) , we construct a sam-

ple tree Twww from their sample trees Twww′ and Twww′′.

Step 3: Generation of frequency vectors of end‑subtrees 
with two fictitious edges
The main task of Step 3 is to compute the following sets:

For elements a ∈ � , integers d ∈ [1, dmax − 2] , 
m ∈ [d, val(a)− 2] and h ∈ [⌈dia∗/2⌉ − 2, dia∗ − 5− δ3] , 
the sets W

(h)
end+2(a, d,m) of all frequency vectors 

of bi-rooted trees T [+2] such that α(r1(T )) = a , 
degT (r1(T )) = d , β(r1(T )) = m and ℓ(PT ) = h . For each 
vector www ∈ W

(h)
end+2(a, d,m) , we store a sample tree Twww . 

This step can be designed in a similar way as Step 3 for 
the case of bl2(G) = 2.

Step 4: Enumeration of frequency vectors of main‑subtrees
For an element a ∈ � , and integers 
d ∈ [2, dmax − 1] , m ∈ [d, val(a)− 1] , and 
δ1 ∈ [⌈dia∗/2⌉ − 3, dia∗ − 6− δ3] , define W(δ1+1)

main (a, d,m) 
to be the set of the frequency vectors fff (T �+1�) of chemi-
cal tri-rooted trees T such that

α(r1(T )) = a , degT (r1(T )) = d , β(r1(T )) = m , 
ℓ(PT ) = dia∗ − 4 and
the length of the path Pr2(T ),r3(T ) between vertices 
r2(T ) and r3(T ) is δ1 + 1.

See Fig. 12 for the structure of a main-tree. Such a chemi-
cal tri-rooted graph T corresponds to the main-subtree 
of a target graph G ∈ G(xxx∗).

The main task of Step  4 is to compute the 
sets W

(δ1+1)
main (a, d,m) , a ∈ � , d ∈ [2, dmax − 1] , 

m ∈ [d, val(a)− 1] , δ1 ∈ [⌈dia∗/2⌉ − 3, dia∗ − 6− δ3] . 
Each vector www ∈ W

(δ1+1)
main (a, d,m) can be obtained from 

a combination of vectors www1 ∈ W
(δ1+1)
end+2 (a, d − 1,m′′) 

and www2 ∈ W
(δ2)

end (a
′, d′,m′) such that δ1 + δ2 = dia∗ − 4 

and δ1 ≥ δ2 , as illustrated in Fig.  17. For each vector 
www ∈ W

(δ1+1)
main (a, d,m) , we store a sample tree Twww . This step 

can be designed in a similar way as Step 3 for the case of 
bl2(G) = 2.

https://github.com/ku-dml/mol-infer
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