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Abstract

The rearrangement distance is a method to compare genomes of different species. Such distance is the number

of rearrangement events necessary to transform one genome into another. Two commonly studied events are the
transposition, which exchanges two consecutive blocks of the genome, and the reversal, which reverts a block of the
genome. When dealing with such problems, seminal works represented genomes as sequences of genes without
repetition. More realistic models started to consider gene repetition or the presence of intergenic regions, sequences
of nucleotides between genes and in the extremities of the genome. This work explores the transposition and reversal
events applied in a genome representation considering both gene repetition and intergenic regions. We define two
problems called Minimum Common Intergenic String Partition and Reverse Minimum Common Intergenic String
Partition. Using a relation with these two problems, we show a ® (k)-approximation for the Intergenic Transposition
Distance, the Intergenic Reversal Distance, and the Intergenic Reversal and Transposition Distance problems, where k
is the maximum number of copies of a gene in the genomes. Our practical experiments on simulated genomes show

that the use of partitions improves the estimates for the distances.
Keywords: Genome rearrangement, Intergenic regions, Reversal

Introduction

In the field of Computational Biology, when analyzing the
relationship between two genomes, one can estimate the
evolutionary distance by calculating the number of muta-
tions necessary to transform one genome into another.
These mutations can be non-conservative (i.e., affect the
quantity of genetic material), which is the case of inser-
tion, deletion, duplication, or substitution of individual
nucleotides [1-3], or the mutations can be conservative
(i.e., do not insert or remove genetic material), which is
the case of the conservative genome rearrangement events
[4], which affect only the order and orientation of genes
in the genome.
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Some conservative events affect a single chromosome,
such as the reversal, which inverts a sequence of genes,
and the transposition, which exchanges the position
of two consecutive sequences of genes. There are also
events that may affect more than one chromosome, such
as translocation, which swaps extremities of two chro-
mosomes. The translocation and reversal events can be
simulated by the Double-Cut-and-Join (DC]J) [5] opera-
tion, which cuts the genome at two positions and cre-
ates two new adjacencies by joining the four extremities
affected by these cuts. This work focuses on the reversal
and transposition events, consequently, we only consider
genomes with a single chromosome.

When comparing genomes with a rearrangement-
based distance, one must select a rearrangement model
(i.e., the set of allowed rearrangement events) and find a
representation for the genomes suitable to the selected
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model. With a given model, a rearrangement distance
problem aims at finding the minimum number of allowed
rearrangement events necessary to transform one
genome into another.

Genomes can be represented by a string, where each
character represents a gene. There may be multiple genes
represented by the same characters, those genes consti-
tute a gene family.

If we assume that there are no replicated characters,
the characters are usually represented by integer num-
bers, and a string of size n corresponds to a permutation
of numbers from 1 to n. In this case, when comparing
two genomes G and H of size n, one of them is repre-
sented by the identity permutation ¢ = (12 ... n) and
the other by a permutation 7. Consequently, finding the
rearrangement distance is equivalent to finding the mini-
mum number of allowed rearrangement events necessary
to sort the permutation 7.

A string (or a permutation) may also include informa-
tion regarding gene orientation, and such information
is encoded as signs, + or —, associated with each char-
acter. In this case, we have a signed string (or a signed
permutation).

When there are replicated characters, two common
approaches are adopted to transform the strings into
permutations. The first selects an exemplar of each gene
family [6], and the second establishes a correspondence
between characters of both strings [7, 8], which allows
us to discriminate between multiple copies of the same
character. The second approach has the advantage of los-
ing less information but can only be applied when such
correspondence can be established. In the presence of
non-conservative events, the correspondence between
genes may not be possible, and a preprocessing step is
required to eliminate genes present in only one of the
genomes.

In biological terms, this correspondence is called an
orthologous assignment. The distance between permuta-
tions resulting from an orthologous assignment gives us
a valid upper bound for the distance between the original
strings. As there are multiple possible assignments, there
are some strategies to find assignments that lead to lower
distances [7, 8].

Recent works [9, 10] argue that considering the size of
intergenic regions (i.e., number of nucleotides between
genes and in the extremities of the genome) improves
the estimated distances. When the sizes of intergenic
regions are taken into account, the genome representa-
tion includes a string representing the gene sequence and
a sequence of integers corresponding to the size of each
intergenic region.

Each combination of genome representation and rear-
rangement model defines a different rearrangement
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distance problem. Table 1 shows a summary of results
from the literature, considering different rearrangement
distance problems and the contributions of the present
work (last three rows). For each problem, we mention
whether there is a known polynomial-time algorithm or
an NP-hardness proof and, in the last case, what is the
best known approximation factor for that problem.

It is worth mentioning that, to ensure an approxima-
tion, the distance between strings takes into account the
result of the string partition problems [26]. Such prob-
lems seek to split two strings into sub-strings that can
be concatenated in different orders to form the original
strings. The way in which the sub-strings appear in each
original string defines the problem. If the sub-strings
must appear in the same orientation in both original
strings, we have the MINIMUM COMMON STRING PAR-
TITION problem. If the sub-strings can appear inverted
in the original strings, we have the SIGNED MINIMUM
COMMON STRING PARTITION problem when consider-
ing signed strings, and the REVERSE MINIMUM COMMON
STRING PARTITION problem when considering unsigned
strings.

If there is an £-approximation for the MINIMUM coM-
MON STRING PARTITION problem, then there exists a 3¢
-approximation for the TRANSPOSITION DISTANCE ON
STRINGS problem [21]. Similarly, if there is an £-approxi-
mation for the SIGNED MINIMUM COMMON STRING PAR-
TITION problem, then there exists a 2¢-approximation for
the REVERSAL DISTANCE ON SIGNED STRINGS problem
[7]. The same relation can be applied to the REVERSAL
DISTANCE ON STRINGS and the REVERSE MINIMUM COM-
MON STRING PARTITION problems [26].

The best known approximation algorithms for the par-
tition problems have factors in O(log nlog™* 1) [27], where
n is the size of the string, and in © (k) [20], where &k is the
maximum number of copies of a character in the string.

This work describes approximation algorithms for the
INTERGENIC TRANSPOSITION DISTANCE, INTERGENIC
REVERSAL DISTANCE, and INTERGENIC REVERSAL AND
TRANSPOSITION DISTANCE problems, where the rep-
resentation of the genomes takes into account both
repeated genes and intergenic regions. Initially, we pre-
sent some definitions and formalize the problems. Next,
we generalize the MINIMUM COMMON STRING PARTI-
TION and the REVERSE MINIMUM COMMON STRING PAR-
TITION problems to consider intergenic regions. We also
present relations between the partitions and distance
problems that consider intergenic regions and describe
a © (k)-approximation algorithm for the partition prob-
lems ensuring a O (k)-approximation for the distance
problems. Finally, we performed some practical tests
on simulated genomes to evaluate the improvement in
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Table 1 Summary of results for rearrangement problems
Problem Rearrangement model Genome representation Complexity Best known

approximation
factor

Sorting Permutations by Transpositions
Sorting Permutations by Reversals
Sorting Signed Permutations by Reversals

Sorting Permutations by Reversals and
Transpositions

Sorting Signed Permutations by Reversals
and Transpositions

Transposition Distance on Strings
Reversal Distance on Strings
Signed Reversal Distance on Strings

Sorting Permutations by Intergenic
Transpositions

Sorting Permutations by Intergenic
Reversals

Sorting Signed Permutations by Inter-
genic Reversals

Sorting Permutations by Intergenic Rever-
sals and Transpositions

Sorting Signed Permutations by Inter-
genic Reversals and Transpositions

Intergenic Reversal Distance on Strings

Intergenic Transposition Distance on
Strings

Intergenic Reversal and Transposition
Distance on Strings

Transpositions

Reversals

Reversals

Reversals and transpositions

Reversals and transpositions

Transpositions
Reversals
Reversals
Transpositions

Reversals

Reversals

Reversals and transpositions
Reversals and transpositions
Reversals

Transposition

Reversal and transposition

Permutation
Permutation
Signed permutation
Permutation

Signed permutation

String

String

Signed string

Permutation and sequence of integers

Permutation and sequence of integers
Signed permutation and sequence of
integers

Permutation and sequence of integers
Signed permutation and sequence of
integers

String and sequence of integers

String and sequence of integers

String and sequence of integers

NP-hard [11]
NP-hard [13]
P[15]

NP-hard [16]

NP-hard [16]

NP-hard
NP-hard
NP-hard [22]
NP-hard [23]

NP-hard [24]
NP-hard [16]
NP-hard [24]
NP-hard [25]
NP-hard

(Theorem 1)
NP-hard
(Theorem 1)
NP-hard
(Theorem 1)

1.375112]
1.375[14]

283344 ¢€[17,18]
2[19]

12k9 (20, 21]
16k [20]
16k9(7,20]
3.5[23]

4 [24]

2[16]

4.5[24]

3[25]

6k (Corollary 2)
8k (Corollary 4)

9k“ (Corollary 5)

“Some approximations depend on k, which is the maximum number of copies of a character in the string.

bAsymptotic approximation

the estimates for the distances caused by the partition
algorithms.

Definitions

In the following definitions we use ordered sequences
of elements (lists). The number of elements in a list X
is denoted by |X|, and an element at the i-th position
of a list X is denoted by X;. The list Y = rev(X) is equal
to the list X in the reverse order (i.e., |X| = |Y|and Y; =
Xix|-i+1, V1 < i < |X]|). A list of characters is called a
string.

Given a string S, the set Xg of distinct elements of S is
the alphabet of S and each element of X is called label.
The occurrence of a label « in a string S is the num-
ber of characters of S with label ¢, and is denoted by
occ(w, S). The maximum occurrence of any character in S
is occ(S) = maxgexg(occ(a, S)). A character whose label
has occurrence one is called a singleton, and a character
whose label has occurrence at least two is called a rep-
lica. Two strings S and P are balanced if ¥s = Xp and

occ(a, S) = occ(a, P),Va € Xg. In other words, balanced
strings are formed by the same characters in possibly dif-
ferent orders.

When modeling genomes, we consider the intergenic
regions between genes represented by their sizes. Usually,
an actual genome starts and ends with intergenic regions
but, to construct our representation, we include two arti-
ficial genes in the beginning and end of the genome. In
this process, usually called extension or capping, we use
the same pair of genes for any genome.

Formally, a genome G = (g1,81,82,-..,81—1,8») With
size n is an interleaved sequence of n genes (g1,...,%x)
and # — 1 intergenic regions (g1, .. .,Z,—1). We represent
a genome G = (S, S) with a string S and a list of integers
S, such that:

+ The gene g; is represented by the character S; of S, for
1<i<n

« The intergenic region g; is represented by the integer
S'iofg,forl <i<n-1
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Two genomes G = (S, §) and 'H = (P, f’) are called co-
tailed if they have the same initial and final gene (i.e.,
S$1 = Prand S, = P,,). Note that, any two genomes result-
ing from an extension are co-tailed.

The reverse of a genome G = (S, §), denoted by rev(G),
is a genome represented by the lists rev(S) and rev(S‘). We
say that two genomes G and H are equal (G = H) if their
correspondent strings and their correspondent integer
lists are equal. Additionally, we say that two genomes G
and H are congruent (G = H) if G =H or G = rev(H).
Figure 1 shows an example of a genome and its reverse.

Given a genome §G=(S, 3'), the subgenome
GY = (S¥ ,3‘7 ) is the portion of genome G between the
genes g and g. Consequently, the subgenome G is rep-
resented by lists §* and S§*/, such that:

Sy =S V1<k<j—1+1

k <
§) =S VI<k<)j—1

A genome G contains another genome H if H is equal to
some subgenome of G. We denote that relation by H C G.
We also use H ¢ G to indicate that G does not contain H.

Let us define an operation of a combination of genomes
(exemplified in Fig. 2). We say that a genome K =(Q Q)

is a cotnbination of two genomes G =(S,S) and
‘H = (P,P)if:
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+ Qis the concatenation of the strings S and P.

+ Qs formed by the list S followed by an integer (rep-
resenting the size of the intergenic region between
the two genomes) and then followed by the list P.

Two genomes G = (S, 5) and H = (P, 13) of size n are
balanced if:

+ The strings S and P are balanced.
+ The sum of the integers correspondent to intergenic
regions are the same, i.e., Y i1 Si=> o P;

Given two balanced genomes G = (S, S)and H = (P, P),
an orthologous assignment & between them is a mapping
between genes, i.e., for each gene S; of S there is a cor-
respondent gene £(S;) in P. We denote the intergenic
region after the gene £(S;) by & (S;). Each singleton from
S is associated with the singleton of same label from P.
Each replica from S must be associated with a replica of
same label from P. Note that there are multiple ways to
perform the association for a replica. Figure 3 shows an
orthologous assignment between two genomes G and H.
Consider a genome G = (S, S) of size n and the num-
bers i,j,k,x,y,z,with2§i<j<k§n,0§x§§i,1,
0<y< 51;1, and 0<z< §k_1. The intergenic

=1 (s Y a(sYa(a s i{a)s(a)2(r)

extension process are represented by the characters /and F

rev(g):€)2(A)3(A)1(0)3(A>4(B)1(B)5(§>

Fig.1 AgenomeG = (5,5), withS=[/BBACAAF]and S= [51431 3 2] and its reverse rev(G). The two new genes included in the

Q
I

K=

B)1(a)s(B)3s

Fig.2 The genomesG = ([B A B],[1 3])and H = ([C D A],[2 2]) combined to form the genome KL = ([B A B C D A],[1 3 3 2 2]). Note that, an
intergenic region with size 3 was created during the combination. Besides, the genome /C contains the genomes G (G = K3 and H (H = K*)

) i(a)3(s) n=(cJ2(n]2(a

C)2(D)2(A
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transposition T((;]y];)) is an operation that transforms G into

a genome gr((;’y’;)) = (5,5, where:
=[S1...8i-18 ... Sk—1Si ... Sj—1Sk...Sul
Sl = [Sl...gi_z x+y’ S'/'...S'k,z z 4+

E,‘...S]’_z y+z/ Sk ..

. S}’I—l]y
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with & =S;_; —x, y = S'j_l —y, and 7z = Sk,l —z.
Figure 4 shows a generic intergenic transposition and
an example of an intergenic transposition applied in a
genome G.

Consider a genome G = (S, S') of size n and the num-
bers l,],x,y, with2<i<j<n-1, O<x<Sl 1, and

0<y< S The intergenic reversal p((x]y)) is an operation

that transforms G into a genome G. ,o((x”y)) = (S, S/), where:

EORORORONORORONC)

H=(CDEAEBDE]L[331121
are associated with each other, i.e, £(X') = X))

EOROBEOROROBRORONE

Fig. 3 One of the possible orthologous assignments between two balanced genomesG = ([AEBC D E D E],[1 221 3 2 3])and
3]). The superscripts on each gene represent the assignment (characters with same label and same index

@) & (E) - (Sim1) ala’ (E)

G ()

SEHOEO)

OBnOmIrO)

G ) (5:)

SrEQECy

) 3

g:@)QB(B

ROEIC

D )01 (@

Gr (246)

g1 - (3) i (cT5(») é ()1 (1) ; (»)

(24

Fig. 4 A generic representation of an intergenic transposition followed by the application of the intergenic transposition f(zzo) on the genome
G=(BBACDALI5 143 1])resulting in the genome G.z555) = (I8 C D B A AL[4 3 3 13])

OHOEIEHOENOm PO
OHNOEIMOENQPEO
HOHEOIONEEON0

(24) _
G.p3) =

OHONOHNOK OO

Fig. 5 A generic representation of an intergenic reversal foIIovved by the application of the intergenic reversal p(3 it )on the genome
G=(BBACDALI5 143 1])resulting mthegenomegp(sw =(BCABDA]L[44141)
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S/2[51...55_1Sj...5i...5n]
S = [51...51;2 x+y 5'1;1...5‘,‘ x +y §,+1...§,,,1],

with ' =8,_; —x and y = .§j —y. Figure 5 shows a
generic reversal and an example of a reversal applied in
a genome G.

As shown in the following problem statements, we
are interested in finding the minimum number of inter-
genic operations necessary to transform one genome into
another. We assume that the genomes come from the
extension process and, consequently, they are co-tailed.

INTERGENIC TRANSPOSITION DISTANCE (ITD)

Input: Two balanced co-tailed genomes G and
H.

Goal: Find a minimum size sequence of
intergenic transpositions that transforms G into

H.

INTERGENIC REVERSAL DISTANCE (IRD)

Input: Two balanced co-tailed genomes G and
H.

Goal: Find a minimum size sequence of
intergenic reversals that transforms G into H.

INTERGENIC REVERSAL AND TRANSPOSITION
Distance (IRTD)

Input: Two balanced co-tailed genomes G and
H.

Goal: Find a minimum size sequence of
intergenic reversals and intergenic
transpositions that transforms G into H.

Theorem 1 The ITR, IRD and IRTD problems belong to
the NP-hard class.

Proof
Directly from the fact that the correspondent problems on
permutations are in the NP-hard class [23, 24]. O

The minimum number of intergenic transpositions
necessary to transform one genome G into another
genome H is called the intergenic transposition distance,
and it is denoted by dz7 (G, H). Similarly, the minimum
number of intergenic reversals necessary to transform
one genome G into another genome H is called the inter-
genic reversals distance, and it is denoted by dzr (G, H).
Also, the minimum number of operations that are either
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intergenic reversals or intergenic transpositions neces-
sary to transform one genome G into another genome
'H is called the intergenic reversals and transposition dis-
tance, and it is denoted by dzr 7 (G, H).

Intergenic Partition
In order to develop a solution for the ITD, IRD, and
IRTD problems we studied two related problems called
MINIMUM COMMON INTERGENIC STRING PARTITION and
REVERSE MINIMUM COMMON INTERGENIC STRING PAR-
TITION. To define those problems, we consider the fol-
lowing two types of intergenic partitions of two balanced
genomes.

An direct intergenic partition between two balanced
genomes G = (S, §) and H = (P, i’) is a pair of genome
sequences (S, P) such that:

1 The genomes of S when combined correspond to the
genome G.

2 The genomes of P when combined correspond to the
genome H.

3 It is possible to change the order of the genomes of S
to obtain the genomes of P (i.e., there is at least one
permutation ¢, from the numbers 1 to |S|, such that
P;, = S@,V 1<i<|S).

A reverse intergenic partition between two balanced
genomes G = (S,S) and H = (P, P) is a pair of genome
sequences (S, P) such that:

1 The genomes of S when combined correspond to the
genome G.

2 The genomes of P when combined correspond to the
genome H.

3 It is possible to change the order and orientation of
the genomes of S to obtain the genomes of P (ie.,
there is at least one permutation ¢, from the num-
bers 1 to|S|, such that P; = Sy, V1 <i < |S)).

In both intergenic partitions, the genomes correspondent
to elements of S and P are called blocks, and are subge-
nomes of G and 'H, respectively. As the blocks of S must
be combined to form G, the blocks must follow the order
in which they appear in G. Additionally, every gene must
appear in some block. Some intergenic regions, on the
other hand, do not appear in S, those are the regions that
must be included during the combination of the blocks.
As these regions mark the points where the genome G
is split into blocks, we call them breakpoints of S. The
breakpoints of P have a similar definition. Two break-
points X; and }u’] are called equivalent if the surrounding
genes are equal, i.e., X; = Y; and Xj41 = Yiy1. Addition-
ally, two breakpoints X; and f/, are called congruent if they
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have the same surrounding genes in possibly different
positions, i.e., X; = Y;and X;411 = Yj41, or X; = Y41 and
Xit1 =Y.

The cost(S,P) of an intergenic partition (S,P) is the
number of breakpoints of S. The cost can also be calcu-
lated by the number of blocks in S minus one. Note that,
as a consequence of the third condition, both sequences
S and P must have the same number of blocks and, con-
sequently, the cost would be the same if we consider P
instead of S.

An intergenic partition is minimal if no two consecu-
tive blocks can be combined to form an intergenic par-
tition with smaller cost. An orthologous assignment
between two genomes G and H associates genes of G with
genes of H and, consequently, induces a unique minimal
intergenic partition between G and ‘H.

Given a orthologous assignment £ between two bal-
anced genomes G = (S, S)and ‘H = (P, P), and the mini-
mal intergenic partition (S, P) between G and H induced
by &, we can distinguish between two types of breakpoint
from S. A breakpoint S; is called hard if the genes £(S;)
and £(S;+1) are adjacent in P. A breakpoint is called soft if
it is not hard, and a hard breakpoint is called overcharged,
if S; > é(gi), or undercharged, if S < & (Si). Additionally,

we say that an intergenic transposition 1:((;]),];)) applied to G

removes b breakpoints of S if cost (R, Q) = cost(S,P) — b,
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where (R, Q) is the partition between f((;]),l;))g and H
induced by the assignment &.

Example 1

An direct intergenic partition (S,PP) of two genomes
g=(@, S) and H = (P,IB) of cost 3. Figure 6 shows a
graphical representation of the partition (S, P) and a pos-
sible orthologous assignment capable of inducing that
partition.

S =[AEBCDEDE] S = [1221323]

P=[CDEAEBDE] P =1[3311213]

S = [[AEBL[12) (CL[D (IDELI3D (IDEL[3D]

P = [(CL[D (DEL3D ([AEB][12]) ([DE],[3D]
Example 2

A reverse intergenic partition (S,P) of two genomes
G =(S,8) and H = (P,P) of cost 3. Figure 7 shows a
graphical representation of the partition (S,P) and a pos-
sible orthologous assignment capable of inducing that
partition.

g

@)1(E1

N——A
[\
VN
(2)
Lo

H:

©
HOHORORORONOH

Fig. 6 A graphical representation of the direct intergenic partition from Example 1. The intergenic regions with dashed lines are the breakpoints
and each block is shown in a different color. The superscripts on each gene represent an assignment capable of inducing the partition. The
breakpoint between genes C'and D'is an undercharged hard breakpoint, and the remaining breakpoints are soft

SOHONOHOIOHROECOEOHONC)
Fig. 7 A graphical representation of the direct intergenic partition from Example 2. The intergenic regions with dashed lines are the breakpoints
and each block is shown in a different color. The superscripts on each gene represent an assignment capable of inducing the partition
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S=1021221323]

P=1[43112113]
([AED], [13)])

[AEBCAEDED]

[CDEAAEBDE]

S = [[AEB],[21])) (CLLD
([ED], [3D]

P = [(CL[D

([ED],[3D]

(IDEA),[31]) ([AEB][21])

We are interested in the minimum cost direct inter-
genic partition and in the minimum cost reverse inter-
genic partition, as shown in the following problem
statements.

MINIMUM COMMON INTERGENIC STRING
ParTITION (MCISP)

Input: Two balanced genomes G and H.
Goal: Find a minimum cost direct intergenic
partition between G and H.

REVERSE MINIMUM COMMON INTERGENIC
STRING PARTITION (RMCISP)

Input: Two balanced genomes G and H.
Goal: Find a minimum cost reverse intergenic
partition between G and H.

When we do not consider intergenic regions, the
genomes may be represented only by the strings. In that
case, there are analogous definitions for partitions.

A direct partition of two balanced strings S and P is a
pair of string sequences (S, IP) such that:

1 The strings of S when concatenated correspond to
the string S.

2 'The strings of P when concatenated correspond to
the string P.

3 It is possible to change the order of the strings of S
to obtain the strings of IP (i.e., there is at least one
permutation ¢, from the numbers 1 to S|, such that
P; =S¢, V1 <i<]|[S).

A reverse partition of two balanced strings S and P is a
pair of string sequences (S, P) such that:

1 The strings of S when concatenated correspond to
the string S.

2 The strings of P when concatenated correspond to
the string P.

3 It is possible to change the order and orientation of
the strings of S to obtain the strings of IP (i.e., there is
at least one permutation ¢, from the numbers 1 to|[S],
such that P; = Sy, or P; = rev(Sy,), V1 < i < [S)).
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In both cases, the cost of a partition is |[S| — 1 and there
are problems focused on minimizing that cost.

MINIMUM COMMON STRING PARTITION
(MCSP)
Input: Two balanced strings S and P.

Goal: Find a minimum cost direct partition
between S and P.

REVERSE MINIMUM COMMON STRING
ParriTION (RMCSP)

Input: Two balanced strings S and P.
Goal: Find a minimum cost reverse partition
between S and P.

The MCSP and RMCSP problems belong to the NP-
hard class [28].

Theorem 2
hard class.

The MCISP problem belongs to the NP-

Proof Given an integer p, the decision version of the
problems MCSP and MCISP aim at finding a direct parti-
tion and direct intergenic partition, respectively, of cost
p. Considering the decision versions, let us reduce the
MCSP problem to the MCISP problem.

Let the strings S and P be an instance of the MCSP prob-
lem. We construct an instance of the MCISP problem by
adding the integer list S and P, of size |S| — 1, composed
only by zeros. Note that, there is a partition of size p
between S and P if and only if there is a direct intergenic
partition of size p between (S, S)and (P, P).O

Theorem 3
hard class.

The RMCISP problem belongs to the NP-

Proof Analogous to the proof of Theorem 2 considering
the RMCSP problem instead of MCSP. [

Correspondence between partition and distance
problems

This section presents a correspondence between the
partition and distance problems. Such correspondence
allows us to adapt an approximation for the MCISP prob-
lem to obtain an approximation for the ITD problem, and
to adapt an approximation for the RMCISP problem to
obtain approximations for the IRD and IRTD problems.
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The following lemmas establish lower bounds for the dis-
tances based on partitions cost.

Lemma 1 Let (S,P) be a minimal direct intergenic
partition induced by an orthologous assignment between
two balanced genomes G = (S, 5) and H = (P, 13) For any
intergenic transposition 7:((96']); Z)), the minimal dzrect] gnter—
genic partition (R, Q) between the genomes G. ‘L'(x']J; 2) and
'H, induced by the same orthologous assignment, respects

the restriction cost(R, Q) > cost(S,P) — 3.

Proof As the direct intergenic partition (R, Q) must
be induced by the same assignment of (S,PP), we can
only reduce the cost of the direct intergenic partition by
moving the blocks to allow their combination. The inter-
genic transposition may be able to combine three pairs of
blocks: the block ending in S;_; with the block starting in
Sj; the block ending in S;_; with the block starting in S;;
and the block ending in S;_; with the block starting in Sk.
In the best case, if all three combinations occur, we have
cost(R, Q) = cost(S,P) — 3.00

Lemma 2 Let (S,P) be a minimal reverse intergenic
partition induced by an orthologous assignment between
two balanced genomes G = &S ,S) and H = (P, P). For any
intergenic transposition r(x 5,2y the minimal reversekinter-
genic partition (R, Q) between the genomes G. ‘L'(x'; 2) and
'H, induced by the same orthologous assignment, respects
the restriction cost(R, Q) > cost(S,P) — 3.

Proof Analogous to the proof of Lemma 1.1

Lemma 3 Let (S,IP) be a minimal reverse intergenic
partition induced by an orthologous assignment between
two balanced genomes G = (S, S) and H = (P,P). For
any intergenic reversal p((x y the minimal reverse inter-
genic partition (R, Q) hetween the genomes G. ,o(x ) and H,
induced by the same orthologous assignment, respects the
restriction cost(R, Q) > cost(S,P) —

Proof Similar to the proof of Lemma 1, considering
that the intergenic reversal ,0( )) can combine up to two
pairs of blocks: the block endmg in S;_; with the block
ending in S; and the block starting in S;;; with the block
starting in S;. [

Lemma 4  Let (S,P) be a direct intergenic partition of
minimum cost between two balanced genomes G = (S, §)
and H = (P, P). Any sequence of intergenic transpositions
that transforms S into P must have size at least w.

Proof Consider a sequence of k intergenic transposi-
tions capable of transforming G into H. Such sequence
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establishes an orthologous assignment between G and
‘H. The assignment is recovered by verifying, for each
character of S, the new position in P, after the intergenic
transpositions are applied.

Let (R,Q) be the minimal direct intergenic partition
induced from the orthologous assignment. We know that
%RQ) < k, because each intergenic transposition can
remove at most 3 breakpoints (Lemma 1) and k inter-
genic transpositions are sufficient to turn R into Q (i.e., k
intergenic transpositions can remove all breakpoints). As

(S,P) is a minimum cost direct intergenic partition, we
have I(SP)I < \(JR@)I <k.O

Lemma 5 Let (S,P) be a reverse intergenic partition of
minimum cost between two balanced genomes G = (S, S)
and H = (P, P). Any sequence of intergenic reversals that
transforms S into P must have size at least w.

Proof Analogous to the proof of Lemma 4, but using
Lemma 3 instead of Lemma 1.

Lemma 6  Let (S, P) be a reverse intergenic partition of
minimum cost between two balanced genomes G = (S, S)
and 'H = (P, P). Any sequence composed of intergenic
reversals and intergenic transpositions that transforms S
into P must have size at least “’“(S ),

Proof Analogous to the proof of Lemma 4, but using
lemmas 2 and 3 instead of Lemma 1.

The next lemmas show upper bounds for the distances
based on the cost of the partitions.

Lemma 7 (Brito et al. [24]) Let G = (S, S") be a genome.
Given a sequence of two intergenic transpositions

((;:;]/;_kl) k+1), ((;r; l+k_qlb+1 k+D) , applied in this order, it is
’ i itk—j" k

possible to find values for ¢, ¢j, dr, ¢}, ¢z+k , ¢y to per-
Jorm any redistribution of nucleotides wzthm regions S,
S/', dl’ld Sk.

Note that, after the two intergenic transpositions
describe in Lemma 7, the string S remains the same.

Lemma 8 Given two genomes G = (S, S') and

= (P,i)), and an orthologous assignment & between
them. Let (S,P) be the minimal direct partition derived
from the orthologous assignment E. If S has a soft break-
point S; such that S; > &£(S;), then we can apply an
intergenic transposition in G that removes at least one
breakpoint from S. Furthermore, if S has at least 4 soft
breakpoints and there is no breakpoint S,, 7 i, such that
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3', > g(é,,), we can choose an intergenic transposition that
does not create overcharged breakpoints.

Proof Consider the gene S; of S, such that the genes
&(S;) and £(Sj) are adjacent in P and the position of
&(Sj) in P is greater than the position of £(S;). Note that
Sj # Siy1, otherwise this would be a hard breakpoint.
Be51des note that S, 11s a breakpoint.

Initially, suppose that j > i. Let Sebea breakpoint such
that k < i or k > j. Such breakpoint must exist, otherwise
(5"1,...,5,') and (5,-,...,5,,) would have no breakpoints
and, since £(S;) and £(S;) are adjacent and S; # S; 1, there
is no valid value for S; 1.

If k < i, an intergenic transposition r(gc]izzljlﬂ’} ) turns the
pairs (Sg, Si+1), (Sj—1,Sk+1), and (S;,S;) adjacent in the
new genome. Also, we can set x, ¥, and z to ensure that
the intergenic region between §; and §; is not a break-
point, since S; > E(S,) Note that no breakpoints are
introduced, since the affected pairs are all breakpoints.
Additionally, let us assume that the region between Sj
and S;;+1 would become an overcharged breakpoint, that
S has at least 4 breakpoints, and that there is no break-
point Sy r # i, such that Sy > S(ér) In that case, let S;

be a breakpoint with £ # i, £ #j — 1, anc} £ # k. We can
replace the intergenic transposition r((;;rz)wr » to ensure

that no overcharged breakpoints are added. Each case
leads to an intergenic transposition choice as follows:

o If £ <k, we can use the intergenic transposition
(+1L,i+1,)
(%,9,2)

and (S;, ;) adjacent in the new genome. Note that the
region between Sy and S;41 is not a hard breakpoint,
because Sy already comes before S;41 in P.

to turn the pairs (S¢, Siv1), (Sj—1,Se+1)s

« If £>j, we can use the intergenic transposition

((;:;,12'5’6“) to turn the pairs (S;S)), (Se,Sit1), and

(Sj-1,Se+1) adjacent in the new genome.

o If € >k and £ < i, we can use the intergenic trans-

+1,i+1,)
position t(xyz)

to turn the pairs (S¢, Sit1),
(Sj-1,Se+1), and (S, Sj) adjacent in the new genome.
o« If £>1iand £ <j—1, we can use the intergenic

transposition r((f ;ZI)ZH D 6 turn the pairs (S, Si+1),

(Se> Sk+1), and (S;, Se+1) adjacent in the new genome.
In that case, we do not have (S;, S;), but we can set x,

¥, and z to ensure that the intergenic region between
St and S;41 is not a breakpoint. We also ensure that
the region between S; and Sy4; is not a hard break-
point, because S; already comes after S; in P.
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Note that, if the region between S; 1 and S, S;—1 and
Se+1, or S¢ and Sg 1 becomes a hard breakpoint, we can
choose the values of %, ¥, and z to ensure that it becomes
an undercharged breakpoint. o

If k > j, an intergenic transposition t&;}z’;’kﬂ) turns the
pairs (S;,S;), (Sk>Siv1), and (Sj—1,Sk+1) adjacent in the
new genome. Also, we can set x, y, and z to ensure that
the intergenic region between S; and §; is not a break-
point, since S; > & (S,) Additionally, if S has at least 4
breakpoints and there is no breakpoint S,, r # i, such
that S, > & (Er), we may replace the intergenic transposi-
tion, as in the previous case, to ensure that it does not
create overcharged breakpoints.

Now, suppose that i > ;. Let Sk be a breakpoint such
that kK < i and k >j. Such breakpoint must exist, oth-
erwise (§j,...,§i) would have no breakpoints, which
is a contradiction because the position of £(S;) in P is
greater than the position of £(S;). An intergenic transpo-

(j,k+1,i4+1)
sition T(x 5,2)

turns the pairs (Sj—1, Sk+1), (Si, ), and
(Sk, Si+1) adjacent in the new genome. Also, we can set
x,y, and z to ensure that the intergenic region between S;
and §; is not a breakpoint, since S; > $(§ ;). Additionally,
ifS has at least 4 breakpoints and there is no breakpoint

Sy, r # i, such that Sy > E(S ), we may replace the inter-
genic transposition, as in the previous case, to ensure
that it does not create overcharged breakpoints. [

Lemma9 Given two genomesG = (S, 5') and H = (P, 13),
and an orthologous assignment & between them, it is possi-
ble to turn G into H using at most cost (S, P) + 1 intergenic
transpositions, where (S, P) is the minimal direct partition
derived from the orthologous assignment .

Proof We will describe how to apply at most
cost(S,P) + 1 intergenic transpositions in G to remove all
breakpoints from S and, consequently, to turn G into H.
The intergenic transpositions are applied according to the
following cases:

1 If there are two or more overcharged breakpoints in
S: Let S;and S] be two overcharged breakpoints and
let Sk be another breakpoint in S (such breakpoint
must exist since there are overcharged breakpoints).
We can use two intergenic transpositions (Lemma 7)
to move the exceeding nucleotides from S; and §j to
the intergenic region St

2 If there exists a soft breakpoint 57,- in S such that
5} > & (Ei): We can use one intergenic transposition
(Lemma 8) to remove at least one breakpoint from
S. Note that if there is no overcharged breakpoint
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this case must occur, otherwise the amount of inter-
genic region in § would be greater than the amount
of intergenic region in P, which is not possible.

3 If there exists only one overcharged breakpoint
S,- in S and there exists no soft breakpoint S; in
S such that S; > 5(5}): In that case 5} must have
E(g'j) + > pep £(b) — bnucleotides, where B is the set
of breakpoints distinct from S',-, otherwise the amount
of intergenic region in S would be different from the
amount of intergenic region in P. We consider two
sub-cases:

(a) If there is an undercharged breakpoint §k:
From the quantity of nucleotides on §,-, we have
§j + ék > E(J?f) + E(&). If there exists another
breakpoint Sy, then we can use two intergenic
transpositions (Lemma 7) to move the neces-
sary number of nucleotides from S"j to S"k and
the exceeding number of nucleotides from S"j to
S¢. Otherwise, since these are the only break-
points, we have Sj + §k = S(S}) + s(Sk). We
can use two intergenic transpositions to redis-
tribute the number of nucleotides between
these two regions and remove these two break-
points as well.

(b) If there is no undercharged breakpoint: There
exist at least 3 soft breakpoints, because there
must exist a soft breakpoint to ensure the cor-
rect quantity of nucleotides and there is no
direct intergenic partition with only 1 or 2
soft breakpoints. In that case, we can use two
intergenic transpositions (Lemma 7) to move
the exceeding number of nucleotides from 5}
to a soft breakpoint. Afterwards, we can apply
intergenic transpositions from Lemma 8 to
remove all soft breakpoints and ensure that
no overcharged breakpoint is inserted while
there are at least 4 breakpoints. When there
are 3 breakpoints, at least one will be removed
and the others will become hard breakpoints.
As there are no longer soft breakpoints the
remaining breakpoints will be removed by
cases 1 and 3(a).

With one exception, we remove at least one break-
point per intergenic transposition. In this way, we can
transform G = (S, S’) into H = (P,P) using at most
cost(S,P) + 1 intergenic transpositions. [

Lemma 10 (Brito et al. [24]) Given two genomes
G=(S,S) and H = (P,ZUJ), and an orthologous assign-
ment & between them, it is possible to turn G into H using
at most 2cost (S, P) intergenic reversals, where (S, P) is the
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minimal reverse partition derived from the orthologous
assignment &.

Lemma 11 (Brito et al. [24]) Given two genomes
g=(@, S) and H = (P, 13), and an orthologous assign-
ment & between them, it is possible to turn G into 'H using
at most %cost(S, P) intergenic reversals or intergenic trans-
positions, where (S,P) is the minimal reverse partition
derived from the orthologous assignment &.

With the bounds presented on the previous lemmas,
we can establish a relation between partition and dis-
tance problems.

Theorem 4  An {-approximation for the MCISP prob-
lem ensures an asymptotic 3€-approximation for the [ITD
problem.

Proof Let G = (S, S) and ‘H = (P, P) be two co-tailed
genomes and let p be the size of the minimum direct
intergenic partition between G and H. An algorithm
for the MCISP problem with approximation factor ¢
returns a direct intergenic partition (S,P), such that
p < cost(S,P) < ¢p.

By Lemma 9, it is always possible to transform G
into H with k intergenic transpositions, such that
k < cost(S,P) + 1. Additionally, by Lemma 4, we
know that dz7(G,’H) > %. Consequently, we have
dr7(G,H) < k < 3tdz7(G,H) +1.0

As a consequence of lemmas 4 and 9, we have an
asymptotic 3-approximation for the intergenic transpo-
sition distance when there are no repeated genes. The
best approximation factor known in the literature for that
problem is 3.5 [23].

Theorem 5  An l-approximation for the RMCISP prob-
lem ensures a 4L-approximation for the IRD problem.

Proof Let G = (S, S) and H = (P, P) be two co-tailed
genomes and let p be the size of the minimum reverse
intergenic partition between G and H. An algorithm
for the RMCISP problem with approximation factor £
returns a reverse intergenic partition (S,PP), such that
p < cost(S,P) < Ip.

By Lemma 10, it is always possible to transform G into
‘H with k intergenic reversals, such that k < 2cost(S, P).
Additionally, by Lemma 5, we know that dzz (G, H) > §.
Consequently, we have dz (G, H) < k < 4drr (G, 'H).O
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Theorem 6  An {-approximation for the RMCISP prob-
lem ensures a 4.5¢-approximation for the IRTD problem.

Proof Let G = (S, S) and H = (P, P) be two co-tailed
genomes and let p be the size of the minimum reverse
intergenic partition between G and H. An algorithm
for the RMCISP problem with approximation factor £
returns a reverse intergenic partition (S,PP), such that
p < cost(S,P) < ¢p.

By Lemma 11, it is always possible to transform G
into H with k intergenic reversals or intergenic trans-
positions, such that k < %cost(S, P). Additionally, by
Lemma 6, we know that dzr7 (G, H) > %7. So, we have
dir7(G,'H) <k <4.50dr7(G,H).0

2k-approximation for MCISP
This section presents an algorithm for the MCISP prob-
lem between two genomes G = (S,8) and H = (P, P)
with an approximation factor of 2k, where k = occ(S).
The algorithm was partially inspired by the Kolman and
Walen algorithm [20] that does not consider intergenic
regions.

In order to describe the algorithm we need two
functions:

+ subgen(G, X): the number of subgenomes of G
equal to X (each of these subgenomes is an occur-
rence of X).

weight(G, H, X) = subgen(g, X) — subgen(H, X)

a value indicating how many occurrences of X" are in
excess in G or in H. If the value is positive G has more
occurrences of X than H. If the value is negative H
has more occurrences of X than G.

The function weight can be generalized to work on two
sequences S and P of genomes:
sl P

weight(S,P, X) = Z subgen(S;, X) — Z subgen(P;, X)
i=1 i=1

Lemma 12  Given two genomes G = (S, 5'), H = (P, 13),
and a pair (S,P) of genome sequences, such that it satis-
fies the conditions 1 and 2 of direct intergenic partition,
we have that (S, P) satisfies the condition 3 if and only if
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weight(S,P, X) = 0 for all genomes X contained in G or
inH.

Proof First, we argue that if the third condition is sat-
isfied then weight(S,P,X) =0. Assuming the third
condition is satisfied, we have a permutation ¢, from the
numbers 1 to S}, such that ’; =Sy, V1 <i < [S].

Let X be a genome such that ¥ CG or X C 'H. In
weight(S,P, X'), we are only going to count an occur-
rence of X' in G if it is a subgenome of some block of S.
Similarly, we are only going to count an occurrence of X
in H if it is a subgenome of some block of P.

Note that, the counted occurrences of X' in G are in a
one-to-one correspondence with the counted occur-
rences of H. More precisely, for a subgenome SZ’ of a
block S, such that SZI = X there is a subgenome IP’;lk of
a block Pyg,, such that IP’;;’ = X. Conversely, for a subge-
nome IP’;{k of a block Py, such that P!/ = X, there is a
subgenome S;(’/ of a block Sy, such that SZI = X. Conse-
quently, weight(S,P, X) = 0, for every genome &, such
that ¥ C Gor X C 'H.

Now we prove that if weight (S, P, X) = 0 then the third
condition is satisfied. By contradiction let us assume that

there is no one-to-one correspondence between blocks of
S and blocks of P.

The impossibility of a correspondence may happen by
four reasons: (i) there is a block in S that is not equal to
any block of IP; (i) there is a genome X" correspondent to
r blocks of S, but £ < r blocks of P; (iii) there is a block
in P not equal to any block of S; (iv) there is a genome
X correspondent to r blocks of P, but £ < r blocks of S.
Without loss of generality, we consider only the first two
cases.

In case (i), assume that S; is the biggest block of S not
equal to any block of P. As weight (S, P, S;) = 0, we have
ZEI subgen(S;, Sj) = Z‘El subgen(P;,S;).  Conse-
quently, P must have a copy of S; in one of its blocks. Let
IPs be a block with such copy, i.e.,, S; C Ps. If Py # S, then
S must have a copy of P, because weight(S,P,Ps) = 0.
This means that S has at least two copies of S; and we
must have another copy of S; in IP. Following that argu-
ment eventually P must have a block equal to S;, contra-
dicting the assumption of case (i).
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In case (ii) we can establish a correspondence between
the ¢ blocks of IP and some of the r blocks of S. We have
at least one block of S without a correspondent in P. If we
ignore the blocks with correspondences when calculating
the weights, the same argument of case (i) leads to a con-
tradiction. [

Given two genomes G and H, we can easily construct a
pair of genomes sequences (S, P) satisfying the first two
conditions of direct intergenic partition. We just have
to choose which intergenic regions of G and H will be
the breakpoints of S and PP, respectively. By Lemma 12,
to ensure that (S,P) is a direct intergenic partition of
G and H, we must choose the breakpoints such that
weight(S,P, X) = 0 for all genomes X of G or ‘H.

Let Tg,1 be the set of all genomes X, such that X C G
or X C 'H, and weight(G, H,X) # 0 and consider the
subset TR = (X € Tg |V ¢ X,VY € Tgy, Y # X).
Note that, to include a breakpoint in some occurrence
of a genome Y € Tg \ g‘;‘;, it suffices to include a
breakpoint in the correspondent occurrence of a genome
X e T‘g“iﬁ, X C Y. For that reason, we start by including
breakpoints in elements of T““n In fact, the following
lemma ensures that we must 1nclude at least one break-
point for each element of Trmn

Lemma 13 [n order to construct a direct intergenic par-
tition (S,IP) of two genomes G and H, we must include a
breakpoint in at least one copy of every element X € ‘é“,‘;
Proof For a genome X e Tgmn, let
k = weight (G, H, X). To ensure that
weight(S,P,X) =0, if kK > 0 then we must include
breakpoints in at least k copies of X in G, otherwise, if
k < 0, we must include breakpoints in at least —k copies
of X in H. As weight (G, H, X) # 0, we must include at
least one breakpoint in G or in H, and the lemma follows.
O

It may be necessary to include a breakpoint in more
than one occurrence of a genome X’ € Tmln We define
break(X) as the breakpoint associated w1th the genome
X, and when we include a breakpoint in an occurrence of
X we always select a breakpoint equivalent to break (X).

To include the breakpoints, we not only must know
the genomes contained in G or H with initially non-zero
weight, but also keep track of genomes that acquire a
non-zero weight after the inclusion of a breakpoint.
For that, we generalize the sets Tg » and Tm‘ﬁ to con-
sider genome sequences. Given two genome sequences
S and P, the set Tsp comprises of genomes &', such
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that X CS;, for 1 <i<|[S|, or X CPj, for 1 <j <[P,
and weight(S,P, X') # 0. Additionally, we have the set

P = (X e TsplV ¢ X, VY € Tsp, Y # X).

Let us define break(X) for a genome X € Tm"‘ If
X e T‘é‘y‘;_}, break(X) is already defined, otherw1se, there
must be at least one breakpoint included in some occur-
rence of X' in G or H, so break(X) is equivalent to the
first breakpoint included in some occurrence of X'

The algorithm that selects the breakpoints (Algo-
rithm 1) works as follows. Initially we consider two
sequences S° = [G] and P° = [H], each with a single
block. At the i-th step, we produce the sequences S’ and
P! including a breakpoint in the sequences S~ and Pi~!
based on the following rules:

+ The breakpoint is included in an occurrence of a
genome X € T'S‘}“} pi-t

o If weight(S™L,P1 X) > 0, the selected occur-
rence of X must come from G.

o If weight(S™L,P1, X) <0, the selected occur-
rence of X must come from H.

+ The selected breakpoint must be equivalent to

break(X).

The algorithm continues until weight(SLPLX) =0
for all genomes X of G or H, i.e., until (Si, PY) becomes a
direct intergenic partition.

Let us briefly discuss the time complexity of Algo-
rithm 1. Let # be the size of the input strings. First, we
consider the complexity to build T®#. Using the suffix
tree data structure [29] (constructed in time O(n)),
subgen(g, X) is computed in O(n) time, and, conse-
quently, so is weight (G, H, X). Similarly, for a genome
Y, we can recover the genomes X’ contained in G or H,
such that ) C X, in O(n) time. Since there are 21> subge-
nomes of G and H, the set Tmln can be constructed in
O(n®) time. We can also store Wthh subgenomes belong
to the set Tg‘fpﬁ in a suffix tree allowing the update of
Tg}‘ﬁl in O(n) time. Additionally, we can store the known
breakpoints in a binary search tree so it is possible to
recover break(&X’) in O(nlog n) time. The initialization of
Algorithm 1 (lines 1 to 4) takes O(#®) time, the loop from
lines 5 to 16 is repeated at most O(x) times, because there
are at most 2z breakpoints, and each iteration takes at
most O(nlogn) time, since searching the breakpoint
takes time O(nlogn) and updating T'S‘}‘]g, takes linear
time. Consequently, Algorithm 1 has time complexity
o).
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Algorithm 1: 2k-approximation for MCISP

Data: Two balanced genomes G and H
Result: A direct intergenic partition between G and H

1 SO [g]

2 PO« [H]

310

a TR, < TEH

5 while (S¢,P?) is not a direct intergenic partition do

6 i—i+1

7 X < a genome from Té?i'i,PFl

8 if weight(S*"1,PP~1 X) > 0 then

9 Si7! « ablock of § containing an occurrence of X’
10 S + sequence S*~1 with the inclusion of a

breakpoint equivalent to break(X) in Si~1

11 Pt pi-1
12 else

13 Pi~! + a block of P containing an occurrence of X
14 St §i1

15 P? « sequence P~ with the inclusion of a

breakpoint equivalent to break(X) in Pi 1

16 Tmin . ndate TR

sipi Gio1 pi-1 to consider the new
breakpoint

17 return (S¢,P?)

Example 3

Execution of Algorithm 1 with genomes G = (S, S) and
‘H = (P,P). In a genome X, the intergenic region corre-
spondent to break(X) is marked in bold.

SO

P =

T,

Pl
Tz,

SZ

T3,

min
TSS,PS

S6
IP)6

min
T§6,JP>6

87

min
TS7,JP7

SS

]P)S

T,
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=[IBABCBCF] §=10[1323132]

=[IBCABBCF] P=1[1302432]

= {([B A],[3]), (IA B C],[2 3]), ([C B],[1]),
(([1 B C],[1 3DIC Al [0D), ([B B], [4D}

= [(IBABCBCF],[1323132])]
[(UBCABBCF],[1302432))]

- i

= [(/B],[1]) ([ABCBCF],[23132])]

= p°

= {([A B CL,[2 3]), (IC B],[1]), (I{ B CL,[1 3]),
([C Al [0D), (B B], [4D}
= [(IB], 11D (ALl (BCBCF],3132)]
= p!
= {([C B],[1]), (I B C],11 3], ([C AL [OD),
([B B, [4]), (IA B], [2])}

= [(UBL, (1D (ALLD (BCLI3D,
(IBCFL,[32D]

= Pp?
= {( B C],[1 3]), ([C A],[0D), ([B B], [4]),
([A B],[2])}

=S3
= [({,[1) (BCABBCF],[302432])]
= {([C A],[0]), (IB B], [4]), (IA B],[2]),
(I Bl [1D)}
= st
= [(UL[D (BC),[8) ([ABBCF],[2432)])]

= {([B B], [4]), ([A B],[2]), (I B],[1]}

= S°

= [(UL,[D BCLI[3D, ([AB],[2D
([BCF],[32]D]

= {([A B],[2D), (I B],[1D)}

= S°

= [(UL[D BCLIBD [ALLD {BLLD
([BCFJ,[32])]

= {({ B],[1])}

= [(UL[D «BLLD {ALLD (BCLI3D
([BCFJ,[32])]

= P’

= {}
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Lemma 14 Algorithm 1 produces a direct intergenic
partition of two genomes G = (S,S) and H = (P,P),
including at most 2k|' TG} | breakpoints, where k = occ(S).

Proof Initially, we show that the algorithm stops pro-
ducing a direct intergenic partition, i.e., eventually
weight (S, P, X) = 0. At every step we reduce the
occurrence of at least one genome in S or in P/ and, while
weight (S, P, X) #0, there is an element in Tg}’iﬁi
where we can insert a breakpoint. As the number of
occurrences of genomes in Sf and in P’ is finite, integer,
non-negative, and always decreasing, eventually the algo-
rithm stops with weight (S}, P4, X) = 0.

Now, we show that we include at most 2k|Tm“‘| break-
points. Every breakpoint is included in an occurrence of a
genome from Tg‘i,‘; or is equivalent to an already included
breakpoint. Consequently, every breakpoint is equivalent
to break(X) for some X € Tmlrl As there is a maximum
of k copies for each gene in g and a maximum of k cop-
ies for each gene in H, every breakpoint is equivalent to
a maximum of 2k — 1 other breakpoints, so we include at
most 2k|T‘g“,i7'}| breakpoints. [

Theorem 7  Algorithm 1 has an approximation fac-
tor of 2k for the MCISP problem between the genomes
G =(S,S)and H = (P,P), where k = occ(S).

Proof Directly from lemmas 13 and 14. [

Corollary 1 Algorithm 1 has an approximation factor
of 2k for the MCSP problem between the string S and P,
where k = occ(S).

Proof Using the same reduction presented in Theo-
rem 2, but considering the optimization versions of the
problems, we can apply Algorithm 1 to the MCSP prob-
lem and ensure the approximation factor 2k. [

It is worth noting that we improve the previously
known © (k) approximation of MCSP [20] from 4k to 2k.

Corollary 2 Algorithm 1, in combination with the
algorithm described in Lemma 9, ensures an asymptotic
approximation factor of 6k for the ITD problem between
the genomes G = (S, S) and H = (P, P), where k = occ(S).

Proof Directly from theorems 4 and 7.1
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2k-approximation for RMCISP

We can adapt Algorithm 1 to approximate the RMCISP
problem. The main point of the adaptation is to use congru-
ence of genomes instead of equality and substitute the rela-
tion X C G with a new relation X C G, such that ¥ C— G
if ¥ C Gorrev(X) C G. Using this relation, the functions
and sets from the previous section must be adapted:

+ subgen(G, X) is now the number of subgenomes of
G congruent to X (i.e., equal to X or to rev(X)). Con-
sequently, weight considers now this new subgen
function.

+ Tgis now the set of all genomes X, such that X C G
or X C H, and weight(G, H, X') # 0. Additionally,
T = (X € Tgu|YZ X, VY € Tg, Y # X}

(Tmm is adapted in a similar manner).

Some other adaptations must be made on Algorithm 1. Line
5 must check if (S, P) is a reverse intergenic partition instead
of a direct intergenic partition. In lines 9 and 13, the block
must contain an occurrence of X or rev(X), and the break-
point in lines 10 and 14 must be congruent to break(X)
instead of equivalent to break(X’). Next, we show analo-
gous results to the ones presented in the previous section.

Lemma 15  Given two genomes G = (S, §), H = (P, j’),
and a pair (S,P) of genome sequences, such that it satis-
fies conditions 1 and 2 of reverse intergenic partition,
we have that (S,IP) satisfies condition 3 if and only if
weight(S,P, X) = 0 for all genomes X, such that X _ G
orX C H.

Proof First, we argue that if the third condition is sat-
isfied then weight(S,P,X) =0. Assuming the third
condition is satisfied, we have a permutation ¢, from the
numbers 1 to S}, such that P; =Sy, V1 <i < [S|.

Let X be a genome such that X C G or X C 'H. In
weight(S,P, X'), we are only going to count an occur-
rence of X' or rev(X') in G if it is a subgenome of some block
of S. Similarly, we are only going to count an occurrence of
X or rev(X)in H if it is a subgenome of some block of P.

Note that the counted occurrences of X or rev(X) in G
are in a one-to-one correspondence with the counted
occurrences in H. More precisely, for a subgenome S’ of
a block Sy such that Sk’ = &, there is a subgenome Pj }
of a block IP’@(, such that Pl}k = X. Conversely, for a sub—
genome IP’ , of a block Pg,, such that ]P’” = X there is a
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subgenome Szj of a block S, such that SZJ = X. Conse-
quently, weight(S,P, X) = 0 for every genome X, such
that ¥ C Gor X C H.

Now we prove that if weight (S, P, X) = 0 then the third
condition is satisfied. By contradiction let us assume that

there is no one-to-one correspondence between blocks of
S and blocks of IP.

The impossibility of a correspondence may happen by
four reasons: (i) there is a block in S that is not congruent
to any block of P; (i) there is a genome X" congruent to r
blocks of S, but it is congruent to £ < r blocks of P; (iii)
there is a block in P not congruent to any block of S; (iv)
there is a genome X congruent to r blocks of P, but it is
congruent to £ < r blocks of S. Without loss of generality,
we consider only the first two cases.

In case (i), assume that S; is the biggest block of S not
congruent to any block of]P’ As welght(S P,S;) =0, we
have Z _, subgen(S;, ) = Z 1 subgen(P,,Sj) Con-
sequently, > must have a copy of S; or rev(S;) in one of its
blocks. Let P; be a block with such copy, i.e, S; C Ps. If
Py 2 S), then S must have a copy of IP; or rev(IPs), because
weight(S,P,Ps) = 0. This means that S has at least two
copies of S; or rev(S;) and we must have another copy of
S; or rev(S;) in IP. Following that argument, eventually P
must have a block equal to S; or rev(S;), contradicting the
assumption of case (7).

In case (ii) we can establish a correspondence between
the ¢ blocks of IP and some of the r blocks of S. We have
at least one block of S without a correspondent in P. If we
ignore the blocks with correspondences when calculating
the weights, the same argument of case (i) leads to a con-
tradiction. [J

Lemma 16 In order to construct a reverse inter-
genic partition (S,P) of two genomes G and 'H, we must
include a breakpoint in at least one copy of every element
X e T‘g‘“ﬂ

Proof For a genome X e Tgn, let
k = weight(G, H, X). To ensure that
weight(S,P,X) =0, if kK > 0, then we must include
breakpoints in at least k copies of X or rev(X’) in G, other-
wise, if kK < 0, we must include breakpoints in at least —k
copies of X or rev(X) in H. Asweight (G, H, X) # 0, we
must include at least one breakpoint in G or in H, and the
lemma follows. [
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Lemma 17 The adaptation of Algorithm 1 produces
a direct intergenic partition of two genomes G = (S, S)
and H = (P, i)), including at most 2k|Tm‘“\ breakpoints,
where k = occ(S).

Proof We know the algorithm stops producing a
reverse intergenic partition for the same reason stated
in Lemma 14. Additionally, every breakpoint is included
in an occurrence of a genome from T““{; or is congruent
to an already included breakpoint. Consequently, every
breakpoint is congruent to break (X) for some X’ € Tmm
As there is a maximum of k copies for each gene in G and a
maximum of k copies for each gene in H, every breakpoint
is congruent to a maximum of 2k — 1 other breakpoints,
so we include at most 2k|Tmln | breakpoints. [

Theorem 8 The adaptation of Algorithm 1 has an
approximation factor of 2k for the RMCISP problem
between the genomes G = (S, S) and H = (P,P), where
k = occ(S).

Proof Directly from lemmas 16 and 17.

Corollary 3 The adaptation of Algorithm 1 has an
approximation factor of 2k for the RMCSP problem
between the string S and P, where k = occ(S).

Proof Applying a reduction, as in Corollary 1, we can
apply the adaptation of Algorithm 1 to the RMCSP prob-
lem and ensure the approximation factor 2k. (]

It is worth noting that we improve the previously
known O (k) approximation of RMCSP [20] from 8k to 2k.

Corollary 4 The adaptation of Algorithm 1 combined
with the algorithm described by Brito et al. [24] for the
Sorting Permutations by Intergenic Reversals problem
ensures an approximation factor of 8k for the IRD prob-
lem between the strings S and P, where k = occ(S).

Proof Directly from theorems 5 and 8. [

Corollary 5 The adaptation of Algorithm 1 com-
bined with the algorithm described by Brito et al. [24]
for the Sorting Permutations by Intergenic Reversals and
Transpositions problem ensures an approximation fac-
tor of 9k for the IRTD problem between the genomes
G = (S,8) and H = (P, P), where k = occ(S).

Proof Directly from theorems 6 and 8.
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Experimental results

This section presents the results of our algorithms
applied in databases of simulated genomes. Our partition
algorithm was implemented in Haskell and the experi-
ments were conducted on a PC equipped with a 2.3GHz
Intel® Xeon® CPU E5-2470 v2, with 40 cores and 32 GB
of RAM, running Ubuntu 18.04.2. We constructed one
database for each rearrangement model: TRANS for
intergenic transpositions, REV for intergenic reversals,
and REVTRANS for intergenic reversals and transpo-
sitions. Each database has 40 sets of 100 genome pairs,
and each set is defined by the size m of its correspondent
alphabet and a number o of applied operations. Each pair
of genomes was constructed as follows:

1 For the source genome G = (S, §), we constructed
the string S by selecting 100 characters from a uni-
form distribution of m characters (correspondent
to an alphabet ¥, such that ¥5 C X), each charac-
ter could be selected more than once. Afterwards,
we constructed the list S by randomly choosing
each intergenic region from integers in the interval
[0, 100], each integer had the same probability of
being chosen.

2 For the target genome H = (P, P), we apply o opera-
tions in S. The type of operation depends on the
database. In the TRANS database, we applied o inter-
genic transpositions ‘L'((;/y];)), where the values of , j, k,
%, ¥, and z were randomly chosen. In the REV data-

base, we applied o intergenic reversals p((;]y)) where
the values i, j, x, and y were randomly chosen. In
the REVTRANS database we applied L%J intergenic
reversals and [§] intergenic transpositions. These
operations were aplied in a random order and the
parameters of each one were randomly chosen.

3 We performed the extension process by adding two
extra characters in the extremities of the source and
target genomes to ensure that they are co-tailed.
Note that both genomes have a final size of 102.

In these tests, for each pair of genomes from the TRANS
database, we computed the direct intergenic partition
from our algorithm, and for each pair of genomes from
REV and TRANSREV databases, we computed the
reverse intergenic partition from our algorithm. After-
wards, we produced 100 orthologous assignments capa-
ble of inducing each partition. We ensured that each
possible assignment had the same probability of being
chosen.

For each assignment, we computed the distance
between the genomes using the assignment. The dis-
tances are computed by a different algorithm for each
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database: for the TRANS database, we used the algorithm
described in Lemma 9 (implemented in C++); for the
REV and REVTRANS databases, we used the algorithms
for reversals and reversals and transpositions from Brito
et al. [24] (implemented in Python), respectively.

To compare with the distances that do not consider the
partitions, we also produced, for each genome pair, 100
assignments that do not take into account the partitions.
We computed the distances for each of these assignments
as well.

Tables 2, 3, and 4 show the distances for the TRANS,
REV, and REVTRANS databases, respectively. Each line
corresponds to a set of 100 genome pairs; the first two
columns indicate, respectively, the number of operations
and the size of the alphabet used to generated the set.
The following seven columns present the results consid-
ering the partitions. For each genome pair, we consider
the minimum and average distance from all 100 assign-
ments. For each set, we report the minimum (Min.), aver-
age (Avg.), and maximum (Max.) for those two values.
We also report the average time, in seconds, necessary
to produce the partition and compute the 100 distances.
The last seven columns present the same values for the
distances that do not consider the partitions. In that case,
the time reported refers only to calculating the distances.

Figures 8, 9, and 10 show box plots with the average
distances for the TRANS, REV, and REVTRANS data-
bases, respectively.

From Table 2 and Fig. 8, we see that in the TRANS
database the distances considering the partitions are
lower than the distances that do not take the partitions
into account. For sets generated with 25 transpositions,
the minimum distances without partition are, on average,
at least 39% higher than the minimum distances with par-
tition. For the average distance, the difference is at least
60% on average. The difference between the distances
decreases as the number of operations or the size of the
alphabet increases. For sets generated with 100 transpo-
sitions and alphabet of size 10, the minimum and aver-
age distances without partition are on average 8% higher
than the minimum or average distances with partition.
For sets generated with 100 transpositions and alphabet
of size 100, the minimum distances without partition
are on average 3% higher than the minimum distances
with partition. For the average distance, the difference
is 5% on average. It is worth mentioning that with 100
operations we have an extreme case, where each origin
genome is considerably shuffled to produce the corre-
sponding target genome of the pair. It is also interesting
that with smaller alphabets, when the number of repli-
cas increases, the advantage of using the partitions also
increases. Looking at the running times, we see that, for
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Table 2 Distances for the ITD problem with and without the use of our partition algorithm

oP 1Z| With partition Without partition

Minimum distance Average distance Time  Minimum distance Average distance Time
Min.  Avg. Max. Min. Avg. Max. Min.  Avg. Max. Min. Avg. Max.

25 10 42 47.83 57 43.64 4945 58.80 022 94 96.91 98 99.93 100.19 100.52 0.02
25 20 38 4807 61 3985 4961 6179 022 88 9342 96 97.99 98.63 9941 001
25 30 39 47.85 55 40.71 49.27 56.62 0.22 84 88.89 92 94.72 96.27 97.49 0.02
25 40 39 48.53 57 40.85 49.91 58.67 022 77 84.97 88 89.56 93.60 95.62 0.01
25 50 41 4838 55 4254 4959 5687 022 69 81.20 87 86.35 90.66 9387 001
25 60 40 48.56 57 40.68 49.69 58.79 0.23 70 77.84 84 81.71 88.00 93.21 0.01
25 70 40 4794 54 4042 4885 5596 022 68 74.88 84 80.36 85.60 9140 001
25 80 40 48.29 56 40.00 49.20 57.03 0.23 62 71.84 78 77.62 83.26 88.35 0.01
25 90 39 48.53 55 39.57 49.36 56.89 022 61 70.86 81 74.31 81.82 88.77 0.01
25 100 41 4885 56 4125 4961 56.80  0.23 58 68.29 77 7195 79.51 8620 001
50 10 64 7152 80 65.79 73.08 80.86 033 96 98.03 99 100.20 100.46 100.80 0.01
50 20 63 7217 80 6562 7368 8179 033 92 95.51 98 98.71 9957 10030  0.02
50 30 66 72.38 82 67.76 73.86 83.79 032 90 93.19 96 96.83 98.40 99.75 0.01
50 40 62 71.98 82 63.84 73.55 82.87 033 85 91.14 95 93.56 96.89 99.07 0.02
50 50 62 7225 80 6370 7374 8097 033 84 8944 94 92.76 95.60 98.03 001
50 60 60 71.51 81 6197 73.01 82.74 033 82 87.18 92 89.80 94.03 97.91 0.01
50 70 64 7196 80 6564 7356 8180 033 79 85.89 90 8746 92.80 9579 001
50 80 65 72.04 83 65.81 73.66 84.78 033 78 84.64 91 87.05 91.79 96.90 0.01
50 90 62 71.64 80 62.70 7314 80.91 033 76 83.25 90 84.45 90.39 95.29 0.01
50 100 65 7204 82 6590 7352 8385 034 75 82.74 89 83.25 89.98 9472 001
75 10 76 84.41 92 7753 86.00 93.90 0.38 96 98.26 100 100.23 100.58 100.82 0.02
75 20 76 84.71 91 7765 8628 9191 038 94 96.95 99 9950  100.15 10054 001
75 30 76 84.36 92 76.83 85.91 92.88 0.38 92 9552 98 97.47 99.39 10043 0.01
75 40 79 84.87 92 80.75 8643 93.70 0.39 91 94.51 97 97.46 98.76 100.09 0.02
75 50 77 85.04 95 78.83 86.67 95.83 0.38 90 93.66 98 94.47 98.02 100.16 0.02
75 60 76 84.01 91 7766 8555 9280 038 89 92.21 96 94.24 97.07 9944 001
75 70 79 84.99 92 80.71 86.48 93.80 0.38 86 92.01 95 90.84 96.64 98.65 0.01
75 80 77 85.06 93 78.92 86.63 94.82 0.39 86 91.26 96 92.84 95.90 98.98 0.01
75 9% 74 85.41 93 7685 8693 9478 040 85 90.93 97 90.58 95.78 9925 001
75 100 74 84.52 94 74.70 86.12 94.78 0.39 81 90.00 96 89.03 95.05 98.69 0.01
100 0 82 90.80 96 8372 9240 9686 041 97 9868 100 10043 10067 10094  0.02
100 20 83 91.23 97 84.71 92.87 98.91 0.41 95 97.87 99 99.57 10041 100.83 0.02
100 30 86 91.55 97 87.74 93.15 98.84 0.41 95 97.33 99 98.93 100.10 100.72 0.02
100 40 86 9172 98 87.81 9325 9880 042 94 96.58 99 98.53 99.72 10060  0.02
100 50 84 91.17 98 85.83 92.71 99.77 042 91 95.73 99 96.15 99.13 100.72 0.02
100 60 85 9149 98 86.77 9296 9972 042 90 95.18 99 95.77 9874 10024  0.02
100 70 83 91.54 98 84.67 93.07 99.76 042 86 95.05 99 91.77 9841 100.60 0.01
100 80 84 91.20 99 85.67 92.81 99.77 042 90 94.40 99 95.22 98.01 100.50 0.01
100 9% 87 9149 96 8756 9310 9781 043 91 94.35 98 95.19 9787 10010 001
100 100 86 91.71 98 87.85 93.21 98.85 043 91 94.16 98 94.98 97.65 100.33 0.01

the transposition model, we must pay a small cost to pro-
duce better distances using the partitions.

From Table 3 and Fig. 9, we see that in the REV data-
base the distances considering the partitions are still
lower than the distances that do not take the partitions

into account, and the differences between distances are
higher for this database. For sets generated with 25 rever-
sals, the minimum distances without partition are, on
average, at least 149% higher than the minimum distances
with partition. For the average distance, the difference is
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Table 3 Distances for the IRD problem with and without the use of our partition algorithm

oP 1] With partition

Without Partition

Minimum Distance Average Distance Time  Minimum Distance Average Distance Time

Min.  Avg. Max.  Min. Avg. Max. Min.  Avg. Max.  Min. Avg. Max.
25 0 27 3338 41 3065 3720 4707 535 98 10044 102 10515 10584 10682 1443
25 20 27 3264 38 2944 3536 4136 511 93 98.04 101 10256 10456 10580 1421
25 30 28 3255 38 2925 3490 4069 499 88 95.02 99 99.35 10259 10450 1383
25 40 28 3291 39 2800 3465 4048 498 84 92.17 98 95.01 10047 10407  13.71
25 50 28 3262 38 2800 3413 3942 496 80 89.46 96 92.96 98.65 10258  13.26
25 60 27 3261 39 2700 3385 4081 494 78 87.57 98 91.02 97.03 10422 1299
25 70 28 3235 39 2800 3364 4090 493 73 85.74 94 87.39 9504 10130 1271
25 80 27 3269 38 2804 3358 3950 497 72 83.86 95 84.09 9349 10154 1240
25 %0 27 3279 38 2700 3355 4039 494 72 8231 92 82.03 91.70 9934 1203
25 100 28 3278 38 2800 3348 3924 492 66 81.82 95 80.16 9152 10139 1204
50 10 54 6094 68 5667 6424 7166 938 98 10083 103 10548 10604 10686 1448
50 20 52 5996 68 5580 6324 7277 929 97 9930 101 10380  105.11 106.16 1437
50 30 51 5991 70 5345 6303  73.07 922 92 9756 100 10159  104.05 10635 1419
50 40 51 5986 68 5322 6293 7184 928 90 9572 100 99.79 10276 10498 1393
50 50 50 5970 67 5183 6282 7134 908 89 9404 100 9750 10147 10442 1373
50 60 54 5969 67 55.81 6255  69.59 913 84 92.74 99 93.63 100.16 10508 1344
50 70 52 5948 65 5402 6242 6931 902 84 9146 98 9273 99.12 10350 1334
50 80 51 5930 68 5304 6205 7122 891 83 90.18 97 91.74 9789 10389  13.12
50 90 53 5965 66 5503 6223 6875 9.01 79 89.12 95 89.68 9690 10252 1299
50 100 51 5868 65 5330 6124 6884 896 77 88.71 98 86.47 9652 10228  13.00
75 10 67 75.02 81 69.82 7841 8389  11.51 99 10133 103 10540 10617 10667 1452
75 20 67 7519 83 7095 7860 8692 1143 97 99.94 102 104.55 105.55 10639 1435
75 30 67 7470 83 7008 7823 8672 1156 94 9879 102 10379 10489 10620 1433
75 40 68 7563 82 7068 7910 8596 1153 93 9820 101 101.55 10417 10573 14.23
75 50 68 7452 82 7073 7793 8480 1137 89 96.76 100 99.61 10313 10525  14.08
75 60 67 7507 84 7177 7833 8808 1144 90 95.81 100 9814 10243 10560 1387
75 70 63 7503 85 6525 7832 8319 1144 86 9535 100 9733 10191 10508  14.00
75 80 67 7470 81 6933 7770 8476 1131 86 94.74 99 9542 10116 10535 1365
75 90 68 7497 82 7067 7794 8561 1150 87 94.00 99 96.41 10067 10691 13.73
75 100 65 7449 82 6930 7759 8582 1118 84 9334 100 92.97 99.93 10394 1348
100 10 77 8354 91 8065 8727 9542 1312 98 101.23 103 105.77  106.25 10679 1456
100 20 77 8334 90 8043 8714 9344 1289 97 10065 103 10404 10580 10669 1445
100 30 75 8373 91 7856 8741 9477 1317 97 99.67 102 10277 10530 10659 1439
100 40 77 8378 92 7985 8743 9610 1289 94 98.77 101 10029 10446 10672  14.20
100 50 76 8376 91 8052 8736 9546 1302 %4 9842 102 10086 10417 10655 1425
100 60 77 8405 91 7973 8758 9506 1312 93 9750 101 9996 10351 10593 1405
100 70 77 8440 92 7993 8791 95.21 1297 93 9738 101 99.26  103.16 10634  14.03
100 80 76 8395 92 7982 8746 9558 1295 91 9694 101 9799 10277 10572 1391
100 90 77 8410 93 80.15 8750 9768 1284 93 96.56 101 99.07 10237 10641 13.80
100 100 74 8409 90 7645 8745 9349 1302 89 96.41 101 9620 10210 10584 1387

at least 173% on average. Again, the difference between
the distances decreases as the number of operations or
the size of the alphabet increases, however, even in sets
generated with 100 reversals and alphabet of size 100,
the minimum distances with partition are on average

14% higher than the minimum distances with partition.
For the average distance, the difference is 16% on aver-
age. In the REV database, we see that the running time
considering the partition was lower than the running
time without the partition. This happened because the
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Table 4 Distances for the IRTD problem with and without the use of our partition algorithm

oP 1Z| With partition Without partition

Minimum distance Average distance Time  Minimum distance Average distance Time

Min.  Avg. Max. Min. Avg. Max. Min.  Avg. Max. Min. Avg. Max.
25 10 34 42.01 52 35.07 43.70 52.51 6.86 95 97.08 98 99.61 100.12 100.50 12.59
25 20 32 4189 50 3253 4338  51.06 674 91 9479 98 97.78 99.10 99.84 1253
25 30 34 41.79 48 34.74 43.18 49.83 6.76 85 92.07 96 95.73 97.69 99.68 12.39
25 40 34 4139 47 3555 42.60 48.38 6.78 81 89.38 94 91.59 9591 98.63 12.31
25 50 35 4197 48 3500 4303 5070 668 79 8764 94 89.88 94.51 9858 1228
25 60 37 41.65 48 37.00 42.60 48.27 6.64 77 85.67 93 87.68 93.16 97.16 12.07
25 70 34 4173 49 3498 4268 4944 673 73 8257 92 85.13 90.79 9724 1184
25 80 37 42.26 49 37.54 43.05 50.05 6.83 69 8144 89 79.81 89.54 95.94 11.73
25 90 35 4157 48 3576 42.34 48.57 6.62 71 79.51 89 79.79 87.65 9532 11.54
25 100 35 4184 48 36.00 4257 4922 6.71 66 7931 89 77.86 8745 94.45 1143
50 10 59 66.72 75 60.61 6791 76.42 10.13 95 97.64 99 99.91 100.26 100.50 12.59
50 20 57 6693 74 5860 6814 7467 1003 94 96.08 98 98.93 9963 10039 1250
50 30 60 67.11 76 61.56 68.25 77.61 10.10 90 94.31 97 97.01 98.73 99.85 1245
50 40 56 66.21 73 56.47 67.35 74.62 9.97 86 92.72 96 95.12 97.72 99.91 12.36
50 50 59 6679 74 6041 6796 7560 1004 87 9176 96 94.44 96.98 9949 1229
50 60 57 66.32 75 57.74 67.39 76.48 10.12 81 89.80 94 9217 95.72 98.76 1233
50 70 53 66.66 75 5377 6786 7661 988 83 8943 95 88.72 94.97 98.51 12.16
50 80 59 66.69 72 59.68 67.74 73.50 9.84 77 88.68 95 89.37 94.34 98.27 12.25
50 90 53 66.24 75 54.56 67.30 76.58 10.09 80 87.89 94 87.04 93.64 97.91 12.16
50 100 59 6636 76 5944 6733 7659 985 80 8703 94 87.12 9281 96.63 12.06
75 10 71 79.44 86 72.64 80.61 86.68 11.86 96 97.82 99 100.07 100.35 100.61 12.62
75 20 74 7992 88 7453 8105 8875 1184 95 96.88 99 98.85 99.94 10045 12.55
75 30 71 79.72 87 72.55 80.99 88.57 11.94 92 95.69 98 97.62 99.37 100.19 12.50
75 40 69 7947 88 70.51 80.64 89.64 11.84 90 94.72 97 96.37 98.67 99.91 1243
75 50 70 80.38 88 70.72 8149 89.60 12.00 86 93.89 97 95.04 98.09 100.15 12.44
75 60 72 80.04 89 7259 8113 8967 1188 88 9355 97 94.59 97.71 9960 1243
75 70 72 80.72 89 72.52 81.78 89.68 12.00 88 92.89 97 93.54 97.06 99.82 1229
75 80 71 79.91 89 72.68 81.05 89.76 11.86 87 91.95 97 9333 96.27 99.12 12.44
75 % 73 79.81 88 7365 8084 8863 1198 88 91.74 96 92.58 96.00 99.04 1237
75 100 73 80.26 89 73.63 81.32 90.53 11.84 85 91.36 96 90.71 95.55 99.20 12.18
100 10 80 8623 95 8056 8744  96.71 1320 97 98.18 99 10013 10042 10072 1262
100 20 81 86.61 94 81.70 87.78 94.59 13.26 95 97.20 99 99.28 100.09 100.56 12.54
100 30 79 87.14 93 80.63 88.39 93.81 13.29 94 96.59 98 98.59 99.73 100.30 12.59
100 40 80 8715 92 8157 8831 9367 1319 93 9584 98 97.28 9929 10017 1250
100 50 79 86.92 93 80.53 88.02 94.68 13.18 91 95.26 97 96.09 98.81 100.18 1247
100 60 79 8714 93 8047 8827 9456 1315 90 9489 98 96.08 9852  100.15 1242
100 70 81 87.61 92 82.67 88.71 93.64 13.21 90 94.70 98 94.98 98.21 100.08 12.37
100 80 78 87.98 96 79.69 89.09 96.57 13.47 91 94.55 97 95.46 98.01 99.97 12.50
100 9% 79 87.04 93 8066 8822 9365 13.16 89 9414 97 93.84 97.64 99.72 1232
100 100 78 87.46 93 80.53 88.50 94.68 13.13 88 93.65 98 92.55 97.19 100.04 12.24

100 runs of the distance algorithm were slower than the  be smaller than the number of breakpoints considering a
partition algorithm, and using assignments that consider =~ random assignment.

the partition tends to reduce the running time of the dis- From Table 4 and Fig. 10, we see that in the
tance algorithm as the number of breakpoints tends to REVTRANS database the distances considering the
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Fig. 8 Average distances for the ITD problem with and without the use of our partition algorithm
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Fig. 9 Average distances for the IRD problem with and without the use of our partition algorithm

partitions are still lower than the distances that do not
take the partitions into account. The differences were
higher than those from the TRANS database, but smaller
than those from the REV database. For sets generated
with 25 operations, the minimum distances without par-
tition are, on average, at least 90% higher than the mini-
mum distances with partition. For the average distance,
the difference is at least 105% on average. Again, the dif-
ference between the distances decreases as the number of
operations or the size of the alphabet increases. In sets

generated with 100 operations and alphabet of size 100,
the minimum distances with partition are on average 7%
higher than the minimum distances with partition. For
the average distance, the difference is 10% on average. For
the set generated with at most 75 operations, the running
time considering the partition was lower than the run-
ning time without the partition.

Considering all results, we see that the partitions
improve the distances and the improvement is higher for
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smaller alphabets or closer genomes (genomes that can
be turned into one another with fewer operations). We
can also see that with partitions, we have either a small
cost in the running time, when the distance algorithm
takes less time than the partition algorithm, or a large
gain in running time, when the distance algorithm takes
more time than the partition algorithm.

Conclusion
We defined the INTERGENIC TRANSPOSITION DISTANCE
(ITD), the INTERGENIC REVERSAL DISTANCE (IRD), the
INTERGENIC REVERSAL AND TRANSPOSITION DISTANCE
(IRTD), the MINIMUM COMMON INTERGENIC STRING
PARTITION (MCISP), and the REVERSE MINIMUM COM-
MON INTERGENIC STRING PARTITION (RMCISP) prob-
lems. Next, we described a relation between the partition
and distance problems and a ® (k)-approximation for the
MCISP and RMCISP problems ensuring a © (k)-approxi-
mation for the ITD, IRD, and IRTD problems. Our algo-
rithm for the MCISP and RMCISP problems may also be
applied to the MCSP and RMCSP problems, which do
not consider intergenic regions, improving a previously
known approximation. We also performed practical tests
on simulated genomes, showing that the distances calcu-
lated considering the partitions were lower than the dis-
tances calculated without taking partitions into account.
As future works, one can extend our approach by con-
sidering the orientation of the genes. Additionally, one
possible approach to overcome the balanced genome
restriction is to consider non-conservative events,
such as insertion and deletion, similarly to the work of

Alexandrino et al. [30] with the Intergenic Reversal Dis-
tance without gene repetition.
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