
Siqueira et al. Algorithms Mol Biol (2021) 16:21
https://doi.org/10.1186/s13015-021-00200-w

RESEARCH

Approximation algorithm for rearrangement
distances considering repeated genes
and intergenic regions
Gabriel Siqueira*  , Alexsandro Oliveira Alexandrino  , Andre Rodrigues Oliveira  and Zanoni Dias   

Abstract 

The rearrangement distance is a method to compare genomes of different species. Such distance is the number
of rearrangement events necessary to transform one genome into another. Two commonly studied events are the
transposition, which exchanges two consecutive blocks of the genome, and the reversal, which reverts a block of the
genome. When dealing with such problems, seminal works represented genomes as sequences of genes without
repetition. More realistic models started to consider gene repetition or the presence of intergenic regions, sequences
of nucleotides between genes and in the extremities of the genome. This work explores the transposition and reversal
events applied in a genome representation considering both gene repetition and intergenic regions. We define two
problems called Minimum Common Intergenic String Partition and Reverse Minimum Common Intergenic String
Partition. Using a relation with these two problems, we show a �(k)-approximation for the Intergenic Transposition
Distance, the Intergenic Reversal Distance, and the Intergenic Reversal and Transposition Distance problems, where k
is the maximum number of copies of a gene in the genomes. Our practical experiments on simulated genomes show
that the use of partitions improves the estimates for the distances.

Keywords:  Genome rearrangement, Intergenic regions, Reversal

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
In the field of Computational Biology, when analyzing the
relationship between two genomes, one can estimate the
evolutionary distance by calculating the number of muta-
tions necessary to transform one genome into another.
These mutations can be non-conservative (i.e., affect the
quantity of genetic material), which is the case of inser-
tion, deletion, duplication, or substitution of individual
nucleotides [1–3], or the mutations can be conservative
(i.e., do not insert or remove genetic material), which is
the case of the conservative genome rearrangement events
[4], which affect only the order and orientation of genes
in the genome.

Some conservative events affect a single chromosome,
such as the reversal, which inverts a sequence of genes,
and the transposition, which exchanges the position
of two consecutive sequences of genes. There are also
events that may affect more than one chromosome, such
as translocation, which swaps extremities of two chro-
mosomes. The translocation and reversal events can be
simulated by the Double-Cut-and-Join (DCJ) [5] opera-
tion, which cuts the genome at two positions and cre-
ates two new adjacencies by joining the four extremities
affected by these cuts. This work focuses on the reversal
and transposition events, consequently, we only consider
genomes with a single chromosome.

When comparing genomes with a rearrangement-
based distance, one must select a rearrangement model
(i.e., the set of allowed rearrangement events) and find a
representation for the genomes suitable to the selected

Open Access

Algorithms for
Molecular Biology

*Correspondence: gabriel.siqueira@ic.unicamp.br
Institute of Computing, University of Campinas, Campinas, Brazil

http://orcid.org/0000-0001-5745-399X
http://orcid.org/0000-0002-6320-9747
http://orcid.org/0000-0002-0568-1859
http://orcid.org/0000-0003-3333-6822
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00200-w&domain=pdf

Page 2 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

model. With a given model, a rearrangement distance
problem aims at finding the minimum number of allowed
rearrangement events necessary to transform one
genome into another.

Genomes can be represented by a string, where each
character represents a gene. There may be multiple genes
represented by the same characters, those genes consti-
tute a gene family.

If we assume that there are no replicated characters,
the characters are usually represented by integer num-
bers, and a string of size n corresponds to a permutation
of numbers from 1 to n. In this case, when comparing
two genomes G and H of size n, one of them is repre-
sented by the identity permutation ι = (1 2 . . . n) and
the other by a permutation π . Consequently, finding the
rearrangement distance is equivalent to finding the mini-
mum number of allowed rearrangement events necessary
to sort the permutation π.

A string (or a permutation) may also include informa-
tion regarding gene orientation, and such information
is encoded as signs, + or −, associated with each char-
acter. In this case, we have a signed string (or a signed
permutation).

When there are replicated characters, two common
approaches are adopted to transform the strings into
permutations. The first selects an exemplar of each gene
family [6], and the second establishes a correspondence
between characters of both strings [7, 8], which allows
us to discriminate between multiple copies of the same
character. The second approach has the advantage of los-
ing less information but can only be applied when such
correspondence can be established. In the presence of
non-conservative events, the correspondence between
genes may not be possible, and a preprocessing step is
required to eliminate genes present in only one of the
genomes.

In biological terms, this correspondence is called an
orthologous assignment. The distance between permuta-
tions resulting from an orthologous assignment gives us
a valid upper bound for the distance between the original
strings. As there are multiple possible assignments, there
are some strategies to find assignments that lead to lower
distances [7, 8].

Recent works [9, 10] argue that considering the size of
intergenic regions (i.e., number of nucleotides between
genes and in the extremities of the genome) improves
the estimated distances. When the sizes of intergenic
regions are taken into account, the genome representa-
tion includes a string representing the gene sequence and
a sequence of integers corresponding to the size of each
intergenic region.

Each combination of genome representation and rear-
rangement model defines a different rearrangement

distance problem. Table 1 shows a summary of results
from the literature, considering different rearrangement
distance problems and the contributions of the present
work (last three rows). For each problem, we mention
whether there is a known polynomial-time algorithm or
an NP-hardness proof and, in the last case, what is the
best known approximation factor for that problem.

It is worth mentioning that, to ensure an approxima-
tion, the distance between strings takes into account the
result of the string partition problems [26]. Such prob-
lems seek to split two strings into sub-strings that can
be concatenated in different orders to form the original
strings. The way in which the sub-strings appear in each
original string defines the problem. If the sub-strings
must appear in the same orientation in both original
strings, we have the minimum common string par-
tition problem. If the sub-strings can appear inverted
in the original strings, we have the signed minimum
common string partition problem when consider-
ing signed strings, and the reverse minimum common
string partition problem when considering unsigned
strings.

If there is an ℓ-approximation for the minimum com-
mon string partition problem, then there exists a 3ℓ
-approximation for the transposition distance on
strings problem [21]. Similarly, if there is an ℓ-approxi-
mation for the signed minimum common string par-
tition problem, then there exists a 2ℓ-approximation for
the reversal distance on signed strings problem
[7]. The same relation can be applied to the reversal
distance on strings and the reverse minimum com-
mon string partition problems [26].

The best known approximation algorithms for the par-
tition problems have factors in O(log n log∗ n) [27], where
n is the size of the string, and in �(k) [20], where k is the
maximum number of copies of a character in the string.

This work describes approximation algorithms for the
intergenic transposition distance, intergenic
reversal distance, and intergenic reversal and
transposition distance problems, where the rep-
resentation of the genomes takes into account both
repeated genes and intergenic regions. Initially, we pre-
sent some definitions and formalize the problems. Next,
we generalize the minimum common string parti-
tion and the reverse minimum common string par-
tition problems to consider intergenic regions. We also
present relations between the partitions and distance
problems that consider intergenic regions and describe
a �(k)-approximation algorithm for the partition prob-
lems ensuring a �(k)-approximation for the distance
problems. Finally, we performed some practical tests
on simulated genomes to evaluate the improvement in

Page 3 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

the estimates for the distances caused by the partition
algorithms.

Definitions
In the following definitions we use ordered sequences
of elements (lists). The number of elements in a list X
is denoted by |X|, and an element at the i-th position
of a list X is denoted by Xi . The list Y = rev(X) is equal
to the list X in the reverse order (i.e., |X | = |Y | and Yi =
X|X |−i+1, ∀1 ≤ i ≤ |X | ). A list of characters is called a
string.

Given a string S, the set �S of distinct elements of S is
the alphabet of S and each element of �S is called label.
The occurrence of a label α in a string S is the num-
ber of characters of S with label α , and is denoted by
occ(α, S) . The maximum occurrence of any character in S
is occ(S) = maxα∈�S (occ(α, S)) . A character whose label
has occurrence one is called a singleton, and a character
whose label has occurrence at least two is called a rep-
lica. Two strings S and P are balanced if �S = �P and

occ(α, S) = occ(α,P),∀α ∈ �S . In other words, balanced
strings are formed by the same characters in possibly dif-
ferent orders.

When modeling genomes, we consider the intergenic
regions between genes represented by their sizes. Usually,
an actual genome starts and ends with intergenic regions
but, to construct our representation, we include two arti-
ficial genes in the beginning and end of the genome. In
this process, usually called extension or capping, we use
the same pair of genes for any genome.

Formally, a genome G = (g1, ğ1, g2, . . . , ğn−1, gn) with
size n is an interleaved sequence of n genes ( g1, . . . , gn )
and n− 1 intergenic regions ( ̆g1, . . . , ğn−1 ). We represent
a genome G = (S, S̆) with a string S and a list of integers
S̆ , such that:

•	 The gene gi is represented by the character Si of S, for
1 ≤ i ≤ n.

•	 The intergenic region ği is represented by the integer
S̆i of S̆ , for 1 ≤ i ≤ n− 1.

Table 1  Summary of results for rearrangement problems

aSome approximations depend on k, which is the maximum number of copies of a character in the string.
bAsymptotic approximation

Problem Rearrangement model Genome representation Complexity Best known
approximation
factor

Sorting Permutations by Transpositions Transpositions Permutation NP-hard [11] 1.375 [12]

Sorting Permutations by Reversals Reversals Permutation NP-hard [13] 1.375 [14]

Sorting Signed Permutations by Reversals Reversals Signed permutation P [15] –

Sorting Permutations by Reversals and
Transpositions

Reversals and transpositions Permutation NP-hard [16] 2.8334+ ǫ [17, 18]

Sorting Signed Permutations by Reversals
and Transpositions

Reversals and transpositions Signed permutation NP-hard [16] 2 [19]

Transposition Distance on Strings Transpositions String NP-hard 12ka [20, 21]

Reversal Distance on Strings Reversals String NP-hard 16ka [20]

Signed Reversal Distance on Strings Reversals Signed string NP-hard [22] 16ka [7, 20]

Sorting Permutations by Intergenic
Transpositions

Transpositions Permutation and sequence of integers NP-hard [23] 3.5 [23]

Sorting Permutations by Intergenic
Reversals

Reversals Permutation and sequence of integers NP-hard [24] 4 [24]

Sorting Signed Permutations by Inter-
genic Reversals

Reversals Signed permutation and sequence of
integers

NP-hard [16] 2 [16]

Sorting Permutations by Intergenic Rever-
sals and Transpositions

Reversals and transpositions Permutation and sequence of integers NP-hard [24] 4.5 [24]

Sorting Signed Permutations by Inter-
genic Reversals and Transpositions

Reversals and transpositions Signed permutation and sequence of
integers

NP-hard [25] 3 [25]

Intergenic Reversal Distance on Strings Reversals String and sequence of integers NP-hard
(Theorem 1)

6ka,b (Corollary 2)

Intergenic Transposition Distance on
Strings

Transposition String and sequence of integers NP-hard
(Theorem 1)

8ka (Corollary 4)

Intergenic Reversal and Transposition
Distance on Strings

Reversal and transposition String and sequence of integers NP-hard
(Theorem 1)

9ka (Corollary 5)

Page 4 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

Two genomes G = (S, S̆) and H = (P, P̆) are called co-
tailed if they have the same initial and final gene (i.e.,
S1 = P1 and Sn = Pn ). Note that, any two genomes result-
ing from an extension are co-tailed.

The reverse of a genome G = (S, S̆) , denoted by rev(G) ,
is a genome represented by the lists rev(S) and rev(S̆) . We
say that two genomes G and H are equal ( G = H ) if their
correspondent strings and their correspondent integer
lists are equal. Additionally, we say that two genomes G
and H are congruent ( G ∼= H ) if G = H or G = rev(H) .
Figure 1 shows an example of a genome and its reverse.

Given a genome G = (S, S̆) , the subgenome
Gi,j = (Si,j , S̆i,j) is the portion of genome G between the
genes gi and gj . Consequently, the subgenome Gi,j is rep-
resented by lists Si,j and S̆i,j , such that:

A genome G contains another genome H if H is equal to
some subgenome of G . We denote that relation by H ⊂ G .
We also use H ⊂ G to indicate that G does not contain H.

Let us define an operation of a combination of genomes
(exemplified in Fig. 2). We say that a genome K = (Q, Q̆)
is a combination of two genomes G = (S, S̆) and
H = (P, P̆) if:

S
i,j
k = Si+k−1, ∀1 � k � j − 1+ 1

S̆
i,j
k = S̆i+k−1, ∀1 � k � j − 1

•	 Q is the concatenation of the strings S and P.
•	 Q̆ is formed by the list S̆ followed by an integer (rep-

resenting the size of the intergenic region between
the two genomes) and then followed by the list P̆.

Two genomes G = (S, S̆) and H = (P, P̆) of size n are
balanced if:

•	 The strings S and P are balanced.
•	 The sum of the integers correspondent to intergenic

regions are the same, i.e.,
∑n

i=1 S̆i =
∑n

i=1 P̆i

Given two balanced genomes G = (S, S̆) and H = (P, P̆) ,
an orthologous assignment ξ between them is a mapping
between genes, i.e., for each gene Si of S there is a cor-
respondent gene ξ(Si) in P. We denote the intergenic
region after the gene ξ(Si) by ξ(S̆i) . Each singleton from
S is associated with the singleton of same label from P.
Each replica from S must be associated with a replica of
same label from P. Note that there are multiple ways to
perform the association for a replica. Figure 3 shows an
orthologous assignment between two genomes G and H.

Consider a genome G = (S, S̆) of size n and the num-
bers i, j, k, x, y, z, with 2 ≤ i < j < k ≤ n , 0 ≤ x ≤ S̆i−1 ,
0 ≤ y ≤ S̆j−1 , and 0 ≤ z ≤ S̆k−1 . The intergenic

5143132 III5555BBB1111BBB4444AAA3333CCC1111AAA3333AAA2222FFFrev(G) =

2313415 FFF22AAA33AAA11CCC33AAA44BBB11BBB5555IIIG =

Fig. 1  A genome G = (S, S̆) , with S = [I B B A C A A F] and S̆ = [5 1 4 3 1 3 2] , and its reverse rev(G) . The two new genes included in the
extension process are represented by the characters I and F 

22331 A2222D22C33B3333A11BK =

22 A222D2222CH =31 B333A111BG =

Fig. 2  The genomes G = ([B A B], [1 3]) and H = ([C D A], [2 2]) combined to form the genome K = ([B A B C D A], [1 3 3 2 2]) . Note that, an
intergenic region with size 3 was created during the combination. Besides, the genome K contains the genomes G ( G = K1,3 ) and H ( H = K4,6)

Page 5 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

transposition τ (i,j,k)(x,y,z) is an operation that transforms G into

a genome G.τ (i,j,k)(x,y,z) = (S′, S̆′) , where:

S′ = [S1 . . . Si−1 Sj . . . Sk−1 Si . . . Sj−1 Sk . . . Sn]

S̆′ = [S̆1 . . . S̆i−2 x + y′

−−−−
S̆j . . . S̆k−2 z + x′

−−−−

S̆i . . . Sj−2 y+ z′

−−−−
Sk . . . Sn−1],

with x′ = S̆i−1 − x , y′ = S̆j−1 − y , and z′ = S̆k−1 − z .
Figure 4 shows a generic intergenic transposition and
an example of an intergenic transposition applied in a
genome G.

Consider a genome G = (S, S̆) of size n and the num-
bers i, j, x, y, with 2 ≤ i < j ≤ n− 1 , 0 ≤ x ≤ S̆i−1 , and
0 ≤ y ≤ S̆j . The intergenic reversal ρ(i,j)

(x,y) is an operation

that transforms G into a genome G.ρ(i,j)
(x,y) = (S′, S̆′) , where:

3121133 E3E3E33333D2D2D2111B1B1B1222E1E1E1111A1A1A11111E2E2E23333D1D1D13333C1C1C1H =

3231221 E3E3E333D2D2D222E2E2E233D1D1D111C1C1C122B1B1B122E1E1E11111A1A1A1G =

Fig. 3  One of the possible orthologous assignments between two balanced genomes G = ([A E B C D E D E], [1 2 2 1 3 2 3]) and
H = ([C D E A E B D E], [3 3 1 1 2 1 3]) . The superscripts on each gene represent the assignment (characters with same label and same index
are associated with each other, i.e., ξ(X i) = X

i)

31334 AAA33AAA1111BBB33DDD33CCC44BBBG.τ (2,4,6)(2,2,0) =

0|132|212|3 AAA00||11DDD33CCC22||22AAA1111BBB2|222|||33BBBG =

. . .y|z′. . .z|x′. . .x|y′. . .S̆1 SnSnSn

..SkSkSky|z′yyy|||zzz′′′Sj−1j−1SSSj−1SS.. SSSiSiSiz|x′zzz|||xxx′′′Sk−1k−1SSk−1SS.. SSSjSjSSjxx||yy′′Si−1i−1SSi−1SS.. SSS2S2S2S̆̆SSS11S1S1S1

. . .z|z′. . .y|y′. . .x|x′. . .S̆1 SnSnSn

..SkSkSkzz||zz′′Sk−1k−1SSk−1SS.. SSSjSjSSjyy||yy′′Sj−1j−1SSSj−1SS.. SSSiSiSi|xx|||xx′′Si−1i−1SSi−1SS.. SSS2S2S2S1˘̆SSS111S1S1S1

Fig. 4  A generic representation of an intergenic transposition followed by the application of the intergenic transposition τ (2,4,6)(2,2,0) on the genome
G = ([B B A C D A], [5 1 4 3 1]) resulting in the genome G .τ (2,4,6)(2,2,0) = ([B C D B A A], [4 3 3 1 3])

14144 AAA11DDD44BBB11AAA4444CCC44BBBG.ρ(2,4)(3,1) =

11|2413|2 AAA1111DDD11||22CCC44AAA1111BBB233||222BBBG =

. . .x′|y′. . .x|y. . .S̆1 SnSnSn

..Sj+1j+1SSSj+1SSxx′′||yy′′ SSSSSiSiSi
..SjSjSSj|xx||yySi−1i−1SSi−1SS.. SSSSS2S2S21˘̆SS111S1S1S1

. . .y|y′. . .x|x′. . .S̆1 SnSnSn

..Sj+1j+1SSSj+1
′ SSyy||yy′′′ SSSSSjSjSSj....SiSiSix|x′xxx|||xxx′′′Si−1i−1SSi−1. SS... SSSSS2S2S21˘̆SS111S1S1S1

Fig. 5  A generic representation of an intergenic reversal followed by the application of the intergenic reversal ρ(2,4)

(3,1) on the genome
G = ([B B A C D A], [5 1 4 3 1]) resulting in the genome G .ρ(2,4)

(3,1) = ([B C A B D A], [4 4 1 4 1])

Page 6 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

with x′ = S̆i−1 − x and y′ = S̆j − y . Figure 5 shows a
generic reversal and an example of a reversal applied in
a genome G.

As shown in the following problem statements, we
are interested in finding the minimum number of inter-
genic operations necessary to transform one genome into
another. We assume that the genomes come from the
extension process and, consequently, they are co-tailed.

Theorem 1  The ITR, IRD and IRTD problems belong to
the NP-hard class.

Proof
Directly from the fact that the correspondent problems on
permutations are in the NP-hard class [23, 24]. �

The minimum number of intergenic transpositions
necessary to transform one genome G into another
genome H is called the intergenic transposition distance,
and it is denoted by dIT (G,H) . Similarly, the minimum
number of intergenic reversals necessary to transform
one genome G into another genome H is called the inter-
genic reversals distance, and it is denoted by dIR(G,H) .
Also, the minimum number of operations that are either

S′ = [S1 . . . Si−1 Sj . . . Si . . . Sn]

S̆′ = [S̆1 . . . S̆i−2 x + y
−−−−

S̆j−1 . . . S̆i x
′ + y′

−−−−
S̆j+1 . . . S̆n−1],

intergenic reversals or intergenic transpositions neces-
sary to transform one genome G into another genome
H is called the intergenic reversals and transposition dis-
tance, and it is denoted by dIRT (G,H).

Intergenic Partition
In order to develop a solution for the ITD, IRD, and
IRTD problems we studied two related problems called
minimum common intergenic string partition and
reverse minimum common intergenic string par-
tition. To define those problems, we consider the fol-
lowing two types of intergenic partitions of two balanced
genomes.

An direct intergenic partition between two balanced
genomes G = (S, S̆) and H = (P, P̆) is a pair of genome
sequences (S,P) such that:

1	 The genomes of S when combined correspond to the
genome G.

2	 The genomes of P when combined correspond to the
genome H.

3	 It is possible to change the order of the genomes of S
to obtain the genomes of P (i.e., there is at least one
permutation φ , from the numbers 1 to |S| , such that
Pi = Sφi , ∀ 1 ≤ i ≤ |S|).

A reverse intergenic partition between two balanced
genomes G = (S, S̆) and H = (P, P̆) is a pair of genome
sequences (S,P) such that:

1	 The genomes of S when combined correspond to the
genome G.

2	 The genomes of P when combined correspond to the
genome H.

3	 It is possible to change the order and orientation of
the genomes of S to obtain the genomes of P (i.e.,
there is at least one permutation φ , from the num-
bers 1 to |S| , such that Pi

∼= Sφi , ∀ 1 ≤ i ≤ |S|).

In both intergenic partitions, the genomes correspondent
to elements of S and P are called blocks, and are subge-
nomes of G and H , respectively. As the blocks of S must
be combined to form G , the blocks must follow the order
in which they appear in G . Additionally, every gene must
appear in some block. Some intergenic regions, on the
other hand, do not appear in S , those are the regions that
must be included during the combination of the blocks.
As these regions mark the points where the genome G
is split into blocks, we call them breakpoints of S . The
breakpoints of P have a similar definition. Two break-
points X̆i and Y̆j are called equivalent if the surrounding
genes are equal, i.e., Xi = Yi and Xi+1 = Yi+1 . Addition-
ally, two breakpoints X̆i and Y̆j are called congruent if they

Page 7 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

have the same surrounding genes in possibly different
positions, i.e., Xi = Yi and Xi+1 = Yi+1 , or Xi = Yi+1 and
Xi+1 = Yi.

The cost(S,P) of an intergenic partition (S,P) is the
number of breakpoints of S . The cost can also be calcu-
lated by the number of blocks in S minus one. Note that,
as a consequence of the third condition, both sequences
S and P must have the same number of blocks and, con-
sequently, the cost would be the same if we consider P
instead of S.

An intergenic partition is minimal if no two consecu-
tive blocks can be combined to form an intergenic par-
tition with smaller cost. An orthologous assignment
between two genomes G and H associates genes of G with
genes of H and, consequently, induces a unique minimal
intergenic partition between G and H.

Given a orthologous assignment ξ between two bal-
anced genomes G = (S, S̆) and H = (P, P̆) , and the mini-
mal intergenic partition (S,P) between G and H induced
by ξ , we can distinguish between two types of breakpoint
from S . A breakpoint S̆i is called hard if the genes ξ(Si)
and ξ(Si+1) are adjacent in P. A breakpoint is called soft if
it is not hard, and a hard breakpoint is called overcharged,
if S̆i > ξ(S̆i) , or undercharged, if S̆i < ξ(S̆i) . Additionally,
we say that an intergenic transposition τ (i,j,k)(x,y,z) applied to G
removes b breakpoints of S if cost(R,Q) = cost(S,P)− b ,

where (R,Q) is the partition between τ (i,j,k)(x,y,z).G and H
induced by the assignment ξ.

Example 1

An direct intergenic partition (S,P) of two genomes
G = (S, S̆) and H = (P, P̆) of cost 3. Figure 6 shows a
graphical representation of the partition (S,P) and a pos-
sible orthologous assignment capable of inducing that
partition.

Example 2

A reverse intergenic partition (S,P) of two genomes
G = (S, S̆) and H = (P, P̆) of cost 3. Figure 7 shows a
graphical representation of the partition (S,P) and a pos-
sible orthologous assignment capable of inducing that
partition.

S = [A E B C D E D E] S̆ = [1 2 2 1 3 2 3]

P = [C D E A E B D E] P̆ = [3 3 1 1 2 1 3]

S = [([AE B], [1 2]) ([C], []) ([DE], [3]) ([DE], [3])]

P = [([C], []) ([DE], [3]) ([AE B], [1 2]) ([DE], [3])]

3121133 E3E3E333D2D2D211B1B1B1222E1E1E111A1A1A11111E2E2E233D1D1D133C1C1C1H =

3231221 E3E3E3333D2D2D2222E2E2E2333D1D1D1111C1C1C1222B1B1B1222E1E1E11111A1A1A1G =

Fig. 6  A graphical representation of the direct intergenic partition from Example 1. The intergenic regions with dashed lines are the breakpoints
and each block is shown in a different color. The superscripts on each gene represent an assignment capable of inducing the partition. The
breakpoint between genes C1 and D1 is an undercharged hard breakpoint, and the remaining breakpoints are soft

321221213 E3E3E3333D2D2D2222B1B1B11111E1E1E12222A1A1A1222C1C1C1111B2B2B2222A2A2A2111E2E2E2333D1D1D1H =

313141112 D2D2D23333E3E3E31111D1D1D13333E2E2E21111A2A2A24444B2B2B21111C1C1C11111B1B1B11111E1E1E12222A1A1A1G =

Fig. 7  A graphical representation of the direct intergenic partition from Example 2. The intergenic regions with dashed lines are the breakpoints
and each block is shown in a different color. The superscripts on each gene represent an assignment capable of inducing the partition

Page 8 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

We are interested in the minimum cost direct inter-
genic partition and in the minimum cost reverse inter-
genic partition, as shown in the following problem
statements.

When we do not consider intergenic regions, the
genomes may be represented only by the strings. In that
case, there are analogous definitions for partitions.

A direct partition of two balanced strings S and P is a
pair of string sequences (S,P) such that:

1	 The strings of S when concatenated correspond to
the string S.

2	 The strings of P when concatenated correspond to
the string P.

3	 It is possible to change the order of the strings of S
to obtain the strings of P (i.e., there is at least one
permutation φ , from the numbers 1 to |S| , such that
Pi = Sφi , ∀ 1 ≤ i ≤ |S|).

A reverse partition of two balanced strings S and P is a
pair of string sequences (S,P) such that:

1	 The strings of S when concatenated correspond to
the string S.

2	 The strings of P when concatenated correspond to
the string P.

3	 It is possible to change the order and orientation of
the strings of S to obtain the strings of P (i.e., there is
at least one permutation φ , from the numbers 1 to |S| ,
such that Pi = Sφi or Pi = rev(Sφi) , ∀ 1 ≤ i ≤ |S|).

S = [A E B C A E D E D] S̆ = [2 1 2 2 1 3 2 3]

P = [C D E A A E B D E] P̆ = [4 3 1 1 2 1 1 3]

S = [([AE B], [2 1]) ([C], []) ([AE D], [1 3])

([E D], [3])]

P = [([C], []) ([DE A], [3 1]) ([AE B], [2 1])

([E D], [3])]

In both cases, the cost of a partition is |S| − 1 and there
are problems focused on minimizing that cost.

The MCSP and RMCSP problems belong to the NP-
hard class [28].

Theorem 2  The MCISP problem belongs to the NP-
hard class.

Proof  Given an integer p, the decision version of the
problems MCSP and MCISP aim at finding a direct parti-
tion and direct intergenic partition, respectively, of cost
p. Considering the decision versions, let us reduce the
MCSP problem to the MCISP problem.

Let the strings S and P be an instance of the MCSP prob-
lem. We construct an instance of the MCISP problem by
adding the integer list S̆ and P̆ , of size |S| − 1 , composed
only by zeros. Note that, there is a partition of size p
between S and P if and only if there is a direct intergenic
partition of size p between (S, S̆) and (P, P̆) . �

Theorem 3  The RMCISP problem belongs to the NP-
hard class.

Proof  Analogous to the proof of Theorem 2 considering
the RMCSP problem instead of MCSP. �

Correspondence between partition and distance
problems
This section presents a correspondence between the
partition and distance problems. Such correspondence
allows us to adapt an approximation for the MCISP prob-
lem to obtain an approximation for the ITD problem, and
to adapt an approximation for the RMCISP problem to
obtain approximations for the IRD and IRTD problems.

Page 9 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

The following lemmas establish lower bounds for the dis-
tances based on partitions cost.

Lemma 1  Let (S,P) be a minimal direct intergenic
partition induced by an orthologous assignment between
two balanced genomes G = (S, S̆) and H = (P, P̆) . For any
intergenic transposition τ (i,j,k)(x,y,z) , the minimal direct inter-
genic partition (R,Q) between the genomes G.τ (i,j,k)(x,y,z) and
H , induced by the same orthologous assignment, respects
the restriction cost(R,Q) ≥ cost(S,P)− 3.

Proof  As the direct intergenic partition (R,Q) must
be induced by the same assignment of (S,P) , we can
only reduce the cost of the direct intergenic partition by
moving the blocks to allow their combination. The inter-
genic transposition may be able to combine three pairs of
blocks: the block ending in Si−1 with the block starting in
Sj ; the block ending in Sk−1 with the block starting in Si ;
and the block ending in Sj−1 with the block starting in Sk .
In the best case, if all three combinations occur, we have
cost(R,Q) = cost(S,P)− 3 . �

Lemma 2  Let (S,P) be a minimal reverse intergenic
partition induced by an orthologous assignment between
two balanced genomes G = (S, S̆) and H = (P, P̆) . For any
intergenic transposition τ (i,j,k)(x,y,z) , the minimal reverse inter-
genic partition (R,Q) between the genomes G.τ (i,j,k)(x,y,z) and
H , induced by the same orthologous assignment, respects
the restriction cost(R,Q) ≥ cost(S,P)− 3.

Proof  Analogous to the proof of Lemma 1. �

Lemma 3  Let (S,P) be a minimal reverse intergenic
partition induced by an orthologous assignment between
two balanced genomes G = (S, S̆) and H = (P, P̆) . For
any intergenic reversal ρ(i,j)

(x,y) , the minimal reverse inter-
genic partition (R,Q) between the genomes G.ρ(i,j)

(x,y) and H ,
induced by the same orthologous assignment, respects the
restriction cost(R,Q) ≥ cost(S,P)− 2.

Proof  Similar to the proof of Lemma 1, considering
that the intergenic reversal ρ(i,j)

(x,y) can combine up to two
pairs of blocks: the block ending in Si−1 with the block
ending in Sj and the block starting in Sj+1 with the block
starting in Si . �

Lemma 4  Let (S,P) be a direct intergenic partition of
minimum cost between two balanced genomes G = (S, S̆)
and H = (P, P̆) . Any sequence of intergenic transpositions
that transforms S into P must have size at least cost(S,P)3 .

Proof  Consider a sequence of k intergenic transposi-
tions capable of transforming G into H . Such sequence

establishes an orthologous assignment between G and
H . The assignment is recovered by verifying, for each
character of S, the new position in P, after the intergenic
transpositions are applied.

Let (R,Q) be the minimal direct intergenic partition
induced from the orthologous assignment. We know that
cost(R,Q)

3 ≤ k , because each intergenic transposition can
remove at most 3 breakpoints (Lemma 1) and k inter-
genic transpositions are sufficient to turn R into Q (i.e., k
intergenic transpositions can remove all breakpoints). As
(S,P) is a minimum cost direct intergenic partition, we
have |(S,P)|3 ≤ |(R,Q)|

3 ≤ k . �

Lemma 5  Let (S,P) be a reverse intergenic partition of
minimum cost between two balanced genomes G = (S, S̆)
and H = (P, P̆) . Any sequence of intergenic reversals that
transforms S into P must have size at least cost(S,P)2 .

Proof  Analogous to the proof of Lemma 4, but using
Lemma 3 instead of Lemma 1. �

Lemma 6  Let (S,P) be a reverse intergenic partition of
minimum cost between two balanced genomes G = (S, S̆)
and H = (P, P̆) . Any sequence composed of intergenic
reversals and intergenic transpositions that transforms S
into P must have size at least cost(S,P)3 .

Proof  Analogous to the proof of Lemma 4, but using
lemmas 2 and 3 instead of Lemma 1. �

The next lemmas show upper bounds for the distances
based on the cost of the partitions.

Lemma 7  (Brito et al. [24]) Let G = (S, S̆) be a genome.
Given a sequence of two intergenic transpositions
τ
(i+1,j+1,k+1)
(φi ,φj ,φk)

, τ (i+1,i+k−j+1,k+1)

(φ′
i ,φ

′
i+k−j ,φ

′
k)

 , applied in this order, it is

possible to find values for φi,φj ,φk ,φ′
i , φ

′
i+k−j ,φ

′
k to per-

form any redistribution of nucleotides within regions S̆i ,
S̆j , and S̆k.

Note that, after the two intergenic transpositions
describe in Lemma 7, the string S remains the same.

Lemma 8  Given two genomes G = (S, S̆) and
H = (P, P̆) , and an orthologous assignment ξ between
them. Let (S,P) be the minimal direct partition derived
from the orthologous assignment ξ . If S has a soft break-
point S̆i such that S̆i ≥ ξ(S̆i) , then we can apply an
intergenic transposition in G that removes at least one
breakpoint from S . Furthermore, if S has at least 4 soft
breakpoints and there is no breakpoint S̆r , r = i , such that

Page 10 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

S̆r ≥ ξ(S̆r) , we can choose an intergenic transposition that
does not create overcharged breakpoints.

Proof  Consider the gene Sj of S, such that the genes
ξ(Si) and ξ(Sj) are adjacent in P and the position of
ξ(Sj) in P is greater than the position of ξ(Si) . Note that
Sj = Si+1 , otherwise this would be a hard breakpoint.
Besides, note that S̆j−1 is a breakpoint.

Initially, suppose that j > i . Let S̆k be a breakpoint such
that k < i or k ≥ j . Such breakpoint must exist, otherwise
(S̆1, . . . , S̆i) and (S̆j , . . . , S̆n) would have no breakpoints
and, since ξ(Si) and ξ(Sj) are adjacent and Sj = Si+1 , there
is no valid value for Si+1.

If k < i , an intergenic transposition τ (k+1,i+1,j)
(x,y,z) turns the

pairs (Sk , Si+1), (Sj−1, Sk+1) , and (Si, Sj) adjacent in the
new genome. Also, we can set x, y, and z to ensure that
the intergenic region between Si and Sj is not a break-
point, since S̆i ≥ ξ(S̆i) . Note that no breakpoints are
introduced, since the affected pairs are all breakpoints.
Additionally, let us assume that the region between Sk
and Si+1 would become an overcharged breakpoint, that
S has at least 4 breakpoints, and that there is no break-
point S̆r , r = i , such that S̆r ≥ ξ(S̆r) . In that case, let S̆ℓ
be a breakpoint with ℓ = i , ℓ = j − 1 , and ℓ = k . We can
replace the intergenic transposition τ (k+1,i+1,j)

(x,y,z) to ensure
that no overcharged breakpoints are added. Each case
leads to an intergenic transposition choice as follows:

•	 If ℓ < k , we can use the intergenic transposition
τ
(ℓ+1,i+1,j)
(x,y,z) to turn the pairs (Sℓ, Si+1) , (Sj−1, Sℓ+1) ,

and (Si, Sj) adjacent in the new genome. Note that the
region between Sℓ and Si+1 is not a hard breakpoint,
because Sk already comes before Si+1 in P.

•	 If ℓ ≥ j , we can use the intergenic transposition
τ
(i+1,j,ℓ+1)
(x,y,z) to turn the pairs (Si, Sj) , (Sℓ, Si+1) , and
(Sj−1, Sℓ+1) adjacent in the new genome.

•	 If ℓ > k and ℓ < i , we can use the intergenic trans-
position τ

(ℓ+1,i+1,j)
(x,y,z) to turn the pairs (Sℓ, Si+1) ,

(Sj−1, Sℓ+1) , and (Si, Sj) adjacent in the new genome.
•	 If ℓ > i and ℓ < j − 1 , we can use the intergenic

transposition τ (k+1,i+1,ℓ+1)
(x,y,z) to turn the pairs (Sk , Si+1) ,

(Sℓ, Sk+1) , and (Si, Sℓ+1) adjacent in the new genome.
In that case, we do not have (Si, Sj) , but we can set x,
y, and z to ensure that the intergenic region between
Sk and Si+1 is not a breakpoint. We also ensure that
the region between Si and Sℓ+1 is not a hard break-
point, because Sj already comes after Si in P.

Note that, if the region between Sj−1 and Sk+1 , Sj−1 and
Sℓ+1 , or Sℓ and Sk+1 becomes a hard breakpoint, we can
choose the values of x, y, and z to ensure that it becomes
an undercharged breakpoint.
If k ≥ j , an intergenic transposition τ (i+1,j,k+1)

(x,y,z) turns the
pairs (Si, Sj) , (Sk , Si+1) , and (Sj−1, Sk+1) adjacent in the
new genome. Also, we can set x, y, and z to ensure that
the intergenic region between Si and Sj is not a break-
point, since S̆i ≥ ξ(S̆i) . Additionally, if S has at least 4
breakpoints and there is no breakpoint S̆r , r = i , such
that S̆r ≥ ξ(S̆r) , we may replace the intergenic transposi-
tion, as in the previous case, to ensure that it does not
create overcharged breakpoints.

Now, suppose that i > j . Let S̆k be a breakpoint such
that k < i and k ≥ j . Such breakpoint must exist, oth-
erwise (S̆j , . . . , S̆i) would have no breakpoints, which
is a contradiction because the position of ξ(Sj) in P is
greater than the position of ξ(Si) . An intergenic transpo-
sition τ (j,k+1,i+1)

(x,y,z) turns the pairs (Sj−1, Sk+1), (Si, Sj) , and
(Sk , Si+1) adjacent in the new genome. Also, we can set
x, y, and z to ensure that the intergenic region between Si
and Sj is not a breakpoint, since S̆i ≥ ξ(S̆i) . Additionally,
if S has at least 4 breakpoints and there is no breakpoint
S̆r , r = i , such that S̆r ≥ ξ(S̆r) , we may replace the inter-
genic transposition, as in the previous case, to ensure
that it does not create overcharged breakpoints. �

Lemma 9  Given two genomes G = (S, S̆) and H = (P, P̆) ,
and an orthologous assignment ξ between them, it is possi-
ble to turn G into H using at most cost(S,P)+ 1 intergenic
transpositions, where (S,P) is the minimal direct partition
derived from the orthologous assignment ξ.

Proof  We will describe how to apply at most
cost(S,P)+ 1 intergenic transpositions in G to remove all
breakpoints from S and, consequently, to turn G into H .
The intergenic transpositions are applied according to the
following cases:

1	 If there are two or more overcharged breakpoints in
S : Let S̆i and S̆j be two overcharged breakpoints and
let S̆k be another breakpoint in S (such breakpoint
must exist since there are overcharged breakpoints).
We can use two intergenic transpositions (Lemma 7)
to move the exceeding nucleotides from S̆i and S̆j to
the intergenic region S̆k.

2	 If there exists a soft breakpoint S̆i in S such that
S̆i ≥ ξ(S̆i) : We can use one intergenic transposition
(Lemma 8) to remove at least one breakpoint from
S . Note that if there is no overcharged breakpoint

Page 11 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

this case must occur, otherwise the amount of inter-
genic region in S̆ would be greater than the amount
of intergenic region in P̆ , which is not possible.

3	 If there exists only one overcharged breakpoint
S̆j in S and there exists no soft breakpoint S̆i in
S such that S̆i ≥ ξ(S̆i) : In that case S̆j must have
ξ(S̆j)+

∑

b∈B ξ(b)− b nucleotides, where B is the set
of breakpoints distinct from S̆j , otherwise the amount
of intergenic region in S̆ would be different from the
amount of intergenic region in P̆ . We consider two
sub-cases:

(a)	 If there is an undercharged breakpoint S̆k :
From the quantity of nucleotides on S̆j , we have
S̆j + S̆k ≥ ξ(S̆j)+ ξ(S̆k) . If there exists another
breakpoint S̆ℓ , then we can use two intergenic
transpositions (Lemma 7) to move the neces-
sary number of nucleotides from S̆j to S̆k and
the exceeding number of nucleotides from S̆j to
S̆ℓ . Otherwise, since these are the only break-
points, we have S̆j + S̆k = ξ(S̆j)+ ξ(S̆k) . We
can use two intergenic transpositions to redis-
tribute the number of nucleotides between
these two regions and remove these two break-
points as well.

(b)	 If there is no undercharged breakpoint: There
exist at least 3 soft breakpoints, because there
must exist a soft breakpoint to ensure the cor-
rect quantity of nucleotides and there is no
direct intergenic partition with only 1 or 2
soft breakpoints. In that case, we can use two
intergenic transpositions (Lemma 7) to move
the exceeding number of nucleotides from S̆j
to a soft breakpoint. Afterwards, we can apply
intergenic transpositions from Lemma 8 to
remove all soft breakpoints and ensure that
no overcharged breakpoint is inserted while
there are at least 4 breakpoints. When there
are 3 breakpoints, at least one will be removed
and the others will become hard breakpoints.
As there are no longer soft breakpoints the
remaining breakpoints will be removed by
cases 1 and 3(a).

With one exception, we remove at least one break-
point per intergenic transposition. In this way, we can
transform G = (S, S̆) into H = (P, P̆) using at most
cost(S,P)+ 1 intergenic transpositions. �
Lemma 10  (Brito et al. [24]) Given two genomes
G = (S, S̆) and H = (P, P̆) , and an orthologous assign-
ment ξ between them, it is possible to turn G into H using
at most 2cost(S,P) intergenic reversals, where (S,P) is the

minimal reverse partition derived from the orthologous
assignment ξ.

Lemma 11  (Brito et al. [24]) Given two genomes
G = (S, S̆) and H = (P, P̆) , and an orthologous assign-
ment ξ between them, it is possible to turn G into H using
at most 32 cost(S,P) intergenic reversals or intergenic trans-
positions, where (S,P) is the minimal reverse partition
derived from the orthologous assignment ξ.

With the bounds presented on the previous lemmas,
we can establish a relation between partition and dis-
tance problems.

Theorem 4  An ℓ-approximation for the MCISP prob-
lem ensures an asymptotic 3ℓ-approximation for the ITD
problem.

Proof  Let G = (S, S̆) and H = (P, P̆) be two co-tailed
genomes and let p be the size of the minimum direct
intergenic partition between G and H . An algorithm
for the MCISP problem with approximation factor ℓ
returns a direct intergenic partition (S,P) , such that
p ≤ cost(S,P) ≤ ℓp.

By Lemma 9, it is always possible to transform G
into H with k intergenic transpositions, such that
k ≤ cost(S,P)+ 1 . Additionally, by Lemma 4, we
know that dIT (G,H) ≥

p
3 . Consequently, we have

dIT (G,H) ≤ k ≤ 3ℓdIT (G,H)+ 1 . �

As a consequence of lemmas 4 and 9, we have an
asymptotic 3-approximation for the intergenic transpo-
sition distance when there are no repeated genes. The
best approximation factor known in the literature for that
problem is 3.5 [23].

Theorem 5  An ℓ-approximation for the RMCISP prob-
lem ensures a 4ℓ-approximation for the IRD problem.

Proof  Let G = (S, S̆) and H = (P, P̆) be two co-tailed
genomes and let p be the size of the minimum reverse
intergenic partition between G and H . An algorithm
for the RMCISP problem with approximation factor ℓ
returns a reverse intergenic partition (S,P) , such that
p ≤ cost(S,P) ≤ ℓp.

By Lemma 10, it is always possible to transform G into
H with k intergenic reversals, such that k ≤ 2cost(S,P) .
Additionally, by Lemma 5, we know that dIR(G,H) ≥

p
2 .

Consequently, we have dIR(G,H) ≤ k ≤ 4ℓdIR(G,H) . �

Page 12 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

Theorem 6  An ℓ-approximation for the RMCISP prob-
lem ensures a 4.5ℓ-approximation for the IRTD problem.

Proof  Let G = (S, S̆) and H = (P, P̆) be two co-tailed
genomes and let p be the size of the minimum reverse
intergenic partition between G and H . An algorithm
for the RMCISP problem with approximation factor ℓ
returns a reverse intergenic partition (S,P) , such that
p ≤ cost(S,P) ≤ ℓp.

By Lemma 11, it is always possible to transform G
into H with k intergenic reversals or intergenic trans-
positions, such that k ≤ 3

2 cost(S,P) . Additionally, by
Lemma 6, we know that dIRT (G,H) ≥

p
3 . So, we have

dIRT (G,H) ≤ k ≤ 4.5ℓdIRT (G,H) . �

2k‑approximation for MCISP
This section presents an algorithm for the MCISP prob-
lem between two genomes G = (S, S̆) and H = (P, P̆)
with an approximation factor of 2k, where k = occ(S) .
The algorithm was partially inspired by the Kolman and
Waleń algorithm [20] that does not consider intergenic
regions.

In order to describe the algorithm we need two
functions:

•	 subgen(G,X) : the number of subgenomes of G
equal to X (each of these subgenomes is an occur-
rence of X).

•	
weight(G,H,X) = subgen(G,X)− subgen(H,X) :
a value indicating how many occurrences of X are in
excess in G or in H . If the value is positive G has more
occurrences of X than H . If the value is negative H
has more occurrences of X than G.

The function weight can be generalized to work on two
sequences S and P of genomes:

Lemma 12  Given two genomes G = (S, S̆) , H = (P, P̆) ,
and a pair (S,P) of genome sequences, such that it satis-
fies the conditions 1 and 2 of direct intergenic partition,
we have that (S,P) satisfies the condition 3 if and only if

weight(S,P,X) =

|S|
∑

i=1

subgen(Si ,X)−

|P|
∑

i=1

subgen(Pi ,X)

weight(S,P,X) = 0 for all genomes X contained in G or
in H.

Proof  First, we argue that if the third condition is sat-
isfied then weight(S,P,X) = 0 . Assuming the third
condition is satisfied, we have a permutation φ , from the
numbers 1 to |S| , such that Pi = Sφi , ∀ 1 ≤ i ≤ |S|.

Let X be a genome such that X ⊂ G or X ⊂ H . In
weight(S,P,X) , we are only going to count an occur-
rence of X in G if it is a subgenome of some block of S .
Similarly, we are only going to count an occurrence of X
in H if it is a subgenome of some block of P.

Note that, the counted occurrences of X in G are in a
one-to-one correspondence with the counted occur-
rences of H . More precisely, for a subgenome Si,jk of a
block Sk , such that Si,jk = X there is a subgenome Pi,j

φk
 of

a block Pφk , such that Pi,j
φk

= X  . Conversely, for a subge-
nome Pi,j

φk
 of a block Pφk , such that Pi,j

φk
= X  , there is a

subgenome Si,jk of a block Sk , such that Si,jk = X  . Conse-
quently, weight(S,P,X) = 0 , for every genome X  , such
that X ⊂ G or X ⊂ H.

Now we prove that if weight(S,P,X) = 0 then the third
condition is satisfied. By contradiction let us assume that
there is no one-to-one correspondence between blocks of
S and blocks of P.

The impossibility of a correspondence may happen by
four reasons: (i) there is a block in S that is not equal to
any block of P ; (ii) there is a genome X correspondent to
r blocks of S , but ℓ < r blocks of P ; (iii) there is a block
in P not equal to any block of S ; (iv) there is a genome
X correspondent to r blocks of P , but ℓ < r blocks of S .
Without loss of generality, we consider only the first two
cases.

In case (i), assume that Sj is the biggest block of S not
equal to any block of P . As weight(S,P, Sj) = 0 , we have
∑|S|

i=1 subgen(Si, Sj) =
∑|P|

i=1 subgen(Pi, Sj) . Conse-
quently, P must have a copy of Sj in one of its blocks. Let
Ps be a block with such copy, i.e., Sj ⊂ Ps . If Ps = Sj , then
S must have a copy of Ps , because weight(S,P,Ps) = 0 .
This means that S has at least two copies of Sj and we
must have another copy of Sj in P . Following that argu-
ment eventually P must have a block equal to Sj , contra-
dicting the assumption of case (i).

Page 13 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

In case (ii) we can establish a correspondence between
the ℓ blocks of P and some of the r blocks of S . We have
at least one block of S without a correspondent in P . If we
ignore the blocks with correspondences when calculating
the weights, the same argument of case (i) leads to a con-
tradiction. �

Given two genomes G and H , we can easily construct a
pair of genomes sequences (S,P) satisfying the first two
conditions of direct intergenic partition. We just have
to choose which intergenic regions of G and H will be
the breakpoints of S and P , respectively. By Lemma 12,
to ensure that (S,P) is a direct intergenic partition of
G and H , we must choose the breakpoints such that
weight(S,P,X) = 0 for all genomes X of G or H.

Let TG,H be the set of all genomes X  , such that X ⊂ G
or X ⊂ H , and weight(G,H,X) = 0 and consider the
subset T

min
G,H = {X ∈ TG,H|Y �⊂ X , ∀Y ∈ TG,H,Y �= X } .

Note that, to include a breakpoint in some occurrence
of a genome Y ∈ TG,H \ Tmin

G,H , it suffices to include a
breakpoint in the correspondent occurrence of a genome
X ∈ T

min
G,H,X ⊂ Y . For that reason, we start by including

breakpoints in elements of Tmin
G,H . In fact, the following

lemma ensures that we must include at least one break-
point for each element of Tmin

G,H.

Lemma 13  In order to construct a direct intergenic par-
tition (S,P) of two genomes G and H , we must include a
breakpoint in at least one copy of every element X ∈ T

min
G,H.

Proof  For a genome X ∈ TG,H , let
k = weight(G,H,X) . To ensure that
weight(S,P,X) = 0 , if k > 0 then we must include
breakpoints in at least k copies of X in G , otherwise, if
k < 0 , we must include breakpoints in at least −k copies
of X in H . As weight(G,H,X) = 0 , we must include at
least one breakpoint in G or in H , and the lemma follows.
�

It may be necessary to include a breakpoint in more
than one occurrence of a genome X ∈ T

min
G,H . We define

break(X) as the breakpoint associated with the genome
X  , and when we include a breakpoint in an occurrence of
X we always select a breakpoint equivalent to break(X).

To include the breakpoints, we not only must know
the genomes contained in G or H with initially non-zero
weight, but also keep track of genomes that acquire a
non-zero weight after the inclusion of a breakpoint.
For that, we generalize the sets TG,H and Tmin

G,H to con-
sider genome sequences. Given two genome sequences
S and P , the set TS,P comprises of genomes X  , such

that X ⊂ Si , for 1 ≤ i ≤ |S| , or X ⊂ Pj , for 1 ≤ j ≤ |P| ,
and weight(S,P,X) = 0 . Additionally, we have the set
T
min

S,P = {X ∈ TS,P|Y �⊂ X , ∀Y ∈ TS,P,Y �= X }.
Let us define break(X) for a genome X ∈ T

min

S,P  . If
X ∈ T

min
G,H , break(X) is already defined, otherwise, there

must be at least one breakpoint included in some occur-
rence of X in G or H , so break(X) is equivalent to the
first breakpoint included in some occurrence of X .

The algorithm that selects the breakpoints (Algo-
rithm 1) works as follows. Initially we consider two
sequences S0 = [G] and P0 = [H] , each with a single
block. At the i-th step, we produce the sequences Si and
Pi including a breakpoint in the sequences Si−1 and Pi−1
based on the following rules:

•	 The breakpoint is included in an occurrence of a
genome X ∈ T

min

Si−1,Pi−1.
•	 If weight(Si−1,Pi−1,X) > 0 , the selected occur-

rence of X must come from G.
•	 If weight(Si−1,Pi−1,X) < 0 , the selected occur-

rence of X must come from H.
•	 The selected breakpoint must be equivalent to

break(X).

The algorithm continues until weight(Si,Pi,X) = 0
for all genomes X of G or H , i.e., until (Si,Pi) becomes a
direct intergenic partition.

Let us briefly discuss the time complexity of Algo-
rithm 1. Let n be the size of the input strings. First, we
consider the complexity to build Tmin

G,H . Using the suffix
tree data structure [29] (constructed in time O(n)),
subgen(G,X) is computed in O(n) time, and, conse-
quently, so is weight(G,H,X) . Similarly, for a genome
Y , we can recover the genomes X contained in G or H ,
such that Y ⊂ X  , in O(n) time. Since there are 2n2 subge-
nomes of G and H , the set Tmin

G,H can be constructed in
O(n3) time. We can also store which subgenomes belong
to the set Tmin

Si ,Pi
 in a suffix tree allowing the update of

T
min

Si ,Pi
 in O(n) time. Additionally, we can store the known

breakpoints in a binary search tree so it is possible to
recover break(X) in O(n log n) time. The initialization of
Algorithm 1 (lines 1 to 4) takes O(n3) time, the loop from
lines 5 to 16 is repeated at most O(n) times, because there
are at most 2n breakpoints, and each iteration takes at
most O(n log n) time, since searching the breakpoint
takes time O(n log n) and updating Tmin

Si ,Pi
 takes linear

time. Consequently, Algorithm 1 has time complexity
O(n3).

Page 14 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

Example 3

Execution of Algorithm 1 with genomes G = (S, S̆) and
H = (P, P̆) . In a genome X  , the intergenic region corre-
spondent to break(X) is marked in bold.

S = [I B A B C B C F] S̆ = [1 3 2 3 1 3 2]

P = [I B C A B B C F] P̆ = [1 3 0 2 4 3 2]

T
min

G,H = {([B A], [3]), ([A B C], [2 3]), ([C B], [1]),

(([I B C], [1 3])[C A], [0]), ([B B], [4])}

S0 = [([I B ABC BC F], [1 3 2 3 1 3 2])]

P0 = [([I B C ABBC F], [1 3 0 2 4 3 2])]

T
min

S0 ,P0
= T

min

G,H

S1 = [([I B], [1]) ([ABC BC F], [2 3 1 3 2])]

P1 = P0

T
min

S1,P1
= {([A B C], [2 3]), ([C B], [1]), ([I B C], [1 3]),

([C A], [0]), ([B B], [4])}

S2 = [([I B], [1]) ([A], []) ([BC BC F], 3 1 3 2)]

P2 = P1

T
min

S2 ,P2
= {([C B], [1]), ([I B C], [1 3]), ([C A], [0]),

([B B], [4]), ([A B], [2])}

S3 = [([I B], [1]) ([A], []) ([BC], [3]),

([BC F], [3 2])]

P3 = P2

T
min

S3,P3
= {([I B C], [1 3]), ([C A], [0]), ([B B], [4]),

([A B], [2])}

S4 = S3

P4 = [([I], []) ([BC ABBC F], [3 0 2 4 3 2])]

T
min

S4 ,P4
= {([C A], [0]), ([B B], [4]), ([A B], [2]),

([I B], [1])}

S5 = S4

P5 = [([I], []) ((BC), [3]) ([ABBC F], [2 4 3 2])]

T
min

S5,P5
= {([B B], [4]), ([A B], [2]), ([I B], [1])}

S6 = S5

P6 = [([I], []) ([BC], [3]), ([AB], [2])

([BC F], [3 2])]

T
min

S6,P6
= {([A B], [2]), ([I B], [1])}

S7 = S6

P7 = [([I], []) ([BC], [3]) ([A], []) ([B], [])

([BC F], [3 2])]

T
min

S7,P7
= {([I B], [1])}

S8 = [([I], []) ([B], []) ([A], []) ([BC], [3])

([BC F], [3 2])]

P8 = P7

T
min

S8,P8
= {}

Page 15 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

Lemma 14  Algorithm 1 produces a direct intergenic
partition of two genomes G = (S, S̆) and H = (P, P̆) ,
including at most 2k|Tmin

G,H| breakpoints, where k = occ(S).

Proof  Initially, we show that the algorithm stops pro-
ducing a direct intergenic partition, i.e., eventually
weight(Si,Pi,X) = 0 . At every step we reduce the
occurrence of at least one genome in Si or in Pi and, while
weight(Si,Pi,X) = 0 , there is an element in Tmin

Si ,Pi

where we can insert a breakpoint. As the number of
occurrences of genomes in Si and in Pj is finite, integer,
non-negative, and always decreasing, eventually the algo-
rithm stops with weight(Si,Pi,X) = 0.

Now, we show that we include at most 2k|Tmin
G,H| break-

points. Every breakpoint is included in an occurrence of a
genome from Tmin

G,H or is equivalent to an already included
breakpoint. Consequently, every breakpoint is equivalent
to break(X) for some X ∈ T

min
G,H . As there is a maximum

of k copies for each gene in G and a maximum of k cop-
ies for each gene in H , every breakpoint is equivalent to
a maximum of 2k − 1 other breakpoints, so we include at
most 2k|Tmin

G,H| breakpoints. �

Theorem 7  Algorithm 1 has an approximation fac-
tor of 2k for the MCISP problem between the genomes
G = (S, S̆) and H = (P, P̆) , where k = occ(S).

Proof  Directly from lemmas 13 and 14. �

Corollary 1  Algorithm 1 has an approximation factor
of 2k for the MCSP problem between the string S and P,
where k = occ(S).

Proof  Using the same reduction presented in Theo-
rem 2, but considering the optimization versions of the
problems, we can apply Algorithm 1 to the MCSP prob-
lem and ensure the approximation factor 2k. �

It is worth noting that we improve the previously
known �(k) approximation of MCSP [20] from 4k to 2k.

Corollary 2  Algorithm 1, in combination with the
algorithm described in Lemma 9, ensures an asymptotic
approximation factor of 6k for the ITD problem between
the genomes G = (S, S̆) and H = (P, P̆) , where k = occ(S).

Proof  Directly from theorems 4 and 7. �

2k‑approximation for RMCISP
We can adapt Algorithm 1 to approximate the RMCISP
problem. The main point of the adaptation is to use congru-
ence of genomes instead of equality and substitute the rela-
tion X ⊂ G with a new relation X ⊏ G , such that X ⊏ G
if X ⊂ G or rev(X) ⊂ G . Using this relation, the functions
and sets from the previous section must be adapted:

•	 subgen(G,X) is now the number of subgenomes of
G congruent to X (i.e., equal to X or to rev(X) ). Con-
sequently, weight considers now this new subgen
function.

•	 TG,H is now the set of all genomes X  , such that X ⊏ G
or X ⊏ H , and weight(G,H,X) = 0 . Additionally,
T
min
G,H = {X ∈ TG,H|Y �⊏ X , ∀Y ∈ TG,H,Y �= X }

( Tmin

S,P is adapted in a similar manner).

Some other adaptations must be made on Algorithm 1. Line
5 must check if (S,P) is a reverse intergenic partition instead
of a direct intergenic partition. In lines 9 and 13, the block
must contain an occurrence of X or rev(X) , and the break-
point in lines 10 and 14 must be congruent to break(X)
instead of equivalent to break(X) . Next, we show analo-
gous results to the ones presented in the previous section.

Lemma 15  Given two genomes G = (S, S̆) , H = (P, P̆) ,
and a pair (S,P) of genome sequences, such that it satis-
fies conditions 1 and 2 of reverse intergenic partition,
we have that (S,P) satisfies condition 3 if and only if
weight(S,P,X) = 0 for all genomes X  , such that X ⊏ G
or X ⊏ H.

Proof  First, we argue that if the third condition is sat-
isfied then weight(S,P,X) = 0 . Assuming the third
condition is satisfied, we have a permutation φ , from the
numbers 1 to |S| , such that Pi

∼= Sφi , ∀ 1 ≤ i ≤ |S|.

Let X be a genome such that X ⊏ G or X ⊏ H . In
weight(S,P,X) , we are only going to count an occur-
rence of X or rev(X) in G if it is a subgenome of some block
of S . Similarly, we are only going to count an occurrence of
X or rev(X) in H if it is a subgenome of some block of P.

Note that the counted occurrences of X or rev(X) in G
are in a one-to-one correspondence with the counted
occurrences in H . More precisely, for a subgenome Si,jk of
a block Sk such that Si,jk ∼= X  , there is a subgenome Pi,j

φk

of a block Pφk , such that Pi,j
φk

∼= X  . Conversely, for a sub-
genome Pi,j

φk
 of a block Pφk , such that Pi,j

φk
∼= X there is a

Page 16 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

subgenome Si,jk of a block Sk , such that Si,jk ∼= X  . Conse-
quently, weight(S,P,X) = 0 for every genome X  , such
that X ⊏ G or X ⊏ H.

Now we prove that if weight(S,P,X) = 0 then the third
condition is satisfied. By contradiction let us assume that
there is no one-to-one correspondence between blocks of
S and blocks of P.

The impossibility of a correspondence may happen by
four reasons: (i) there is a block in S that is not congruent
to any block of P ; (ii) there is a genome X congruent to r
blocks of S , but it is congruent to ℓ < r blocks of P ; (iii)
there is a block in P not congruent to any block of S ; (iv)
there is a genome X congruent to r blocks of P , but it is
congruent to ℓ < r blocks of S . Without loss of generality,
we consider only the first two cases.

In case (i), assume that Sj is the biggest block of S not
congruent to any block of P . As weight(S,P, Sj) = 0 , we
have

∑|S|
i=1 subgen(Si, Sj) =

∑|P|
i=1 subgen(Pi, Sj) . Con-

sequently, P must have a copy of Sj or rev(Sj) in one of its
blocks. Let Ps be a block with such copy, i.e., Sj ⊏ Ps . If
Ps ∼= Sj , then S must have a copy of Ps or rev(Ps ), because
weight(S,P,Ps) = 0 . This means that S has at least two
copies of Sj or rev(Sj) and we must have another copy of
Sj or rev(Sj) in P . Following that argument, eventually P
must have a block equal to Sj or rev(Sj) , contradicting the
assumption of case (i).

In case (ii) we can establish a correspondence between
the ℓ blocks of P and some of the r blocks of S . We have
at least one block of S without a correspondent in P . If we
ignore the blocks with correspondences when calculating
the weights, the same argument of case (i) leads to a con-
tradiction. �

Lemma 16  In order to construct a reverse inter-
genic partition (S,P) of two genomes G and H , we must
include a breakpoint in at least one copy of every element
X ∈ T

min
G,H.

Proof  For a genome X ∈ TG,H , let
k = weight(G,H,X) . To ensure that
weight(S,P,X) = 0 , if k > 0 , then we must include
breakpoints in at least k copies of X or rev(X) in G , other-
wise, if k < 0 , we must include breakpoints in at least −k
copies of X or rev(X) in H . As weight(G,H,X) = 0 , we
must include at least one breakpoint in G or in H , and the
lemma follows. �

Lemma 17  The adaptation of Algorithm 1 produces
a direct intergenic partition of two genomes G = (S, S̆)
and H = (P, P̆) , including at most 2k|Tmin

G,H| breakpoints,
where k = occ(S).

Proof  We know the algorithm stops producing a
reverse intergenic partition for the same reason stated
in Lemma 14. Additionally, every breakpoint is included
in an occurrence of a genome from Tmin

G,H or is congruent
to an already included breakpoint. Consequently, every
breakpoint is congruent to break(X) for some X ∈ T

min
G,H .

As there is a maximum of k copies for each gene in G and a
maximum of k copies for each gene in H , every breakpoint
is congruent to a maximum of 2k − 1 other breakpoints,
so we include at most 2k|Tmin

G,H| breakpoints. �

Theorem 8  The adaptation of Algorithm 1 has an
approximation factor of 2k for the RMCISP problem
between the genomes G = (S, S̆) and H = (P, P̆) , where
k = occ(S).

Proof  Directly from lemmas 16 and 17. �

Corollary 3  The adaptation of Algorithm 1 has an
approximation factor of 2k for the RMCSP problem
between the string S and P, where k = occ(S).

Proof  Applying a reduction, as in Corollary 1, we can
apply the adaptation of Algorithm 1 to the RMCSP prob-
lem and ensure the approximation factor 2k. �

It is worth noting that we improve the previously
known �(k) approximation of RMCSP [20] from 8k to 2k.

Corollary 4  The adaptation of Algorithm 1 combined
with the algorithm described by Brito et al. [24] for the
Sorting Permutations by Intergenic Reversals problem
ensures an approximation factor of 8k for the IRD prob-
lem between the strings S and P, where k = occ(S).

Proof  Directly from theorems 5 and 8. �

Corollary 5  The adaptation of Algorithm 1 com-
bined with the algorithm described by Brito et al. [24]
for the Sorting Permutations by Intergenic Reversals and
Transpositions problem ensures an approximation fac-
tor of 9k for the IRTD problem between the genomes
G = (S, S̆) and H = (P, P̆) , where k = occ(S).

Proof  Directly from theorems 6 and 8. �

Page 17 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

Experimental results
This section presents the results of our algorithms
applied in databases of simulated genomes. Our partition
algorithm was implemented in Haskell and the experi-
ments were conducted on a PC equipped with a 2.3GHz
Intel® Xeon® CPU E5-2470 v2, with 40 cores and 32 GB
of RAM, running Ubuntu 18.04.2. We constructed one
database for each rearrangement model: TRANS for
intergenic transpositions, REV for intergenic reversals,
and REVTRANS for intergenic reversals and transpo-
sitions. Each database has 40 sets of 100 genome pairs,
and each set is defined by the size m of its correspondent
alphabet and a number o of applied operations. Each pair
of genomes was constructed as follows:

1	 For the source genome G = (S, S̆) , we constructed
the string S by selecting 100 characters from a uni-
form distribution of m characters (correspondent
to an alphabet � , such that �S ⊂ � ), each charac-
ter could be selected more than once. Afterwards,
we constructed the list S̆ by randomly choosing
each intergenic region from integers in the interval
[0, 100], each integer had the same probability of
being chosen.

2	 For the target genome H = (P, P̆) , we apply o opera-
tions in S. The type of operation depends on the
database. In the TRANS database, we applied o inter-
genic transpositions τ (i,j,k)(x,y,z) , where the values of i, j, k,
x, y, and z were randomly chosen. In the REV data-
base, we applied o intergenic reversals ρ(i,j)

(x,y) , where
the values i, j, x, and y were randomly chosen. In
the REVTRANS database we applied

⌊

o
2

⌋

 intergenic
reversals and

⌈

o
2

⌉

 intergenic transpositions. These
operations were aplied in a random order and the
parameters of each one were randomly chosen.

3	 We performed the extension process by adding two
extra characters in the extremities of the source and
target genomes to ensure that they are co-tailed.
Note that both genomes have a final size of 102.

In these tests, for each pair of genomes from the TRANS
database, we computed the direct intergenic partition
from our algorithm, and for each pair of genomes from
REV and TRANSREV databases, we computed the
reverse intergenic partition from our algorithm. After-
wards, we produced 100 orthologous assignments capa-
ble of inducing each partition. We ensured that each
possible assignment had the same probability of being
chosen.

For each assignment, we computed the distance
between the genomes using the assignment. The dis-
tances are computed by a different algorithm for each

database: for the TRANS database, we used the algorithm
described in Lemma 9 (implemented in C++); for the
REV and REVTRANS databases, we used the algorithms
for reversals and reversals and transpositions from Brito
et al. [24] (implemented in Python), respectively.

To compare with the distances that do not consider the
partitions, we also produced, for each genome pair, 100
assignments that do not take into account the partitions.
We computed the distances for each of these assignments
as well.

Tables 2, 3, and 4 show the distances for the TRANS,
REV, and REVTRANS databases, respectively. Each line
corresponds to a set of 100 genome pairs; the first two
columns indicate, respectively, the number of operations
and the size of the alphabet used to generated the set.
The following seven columns present the results consid-
ering the partitions. For each genome pair, we consider
the minimum and average distance from all 100 assign-
ments. For each set, we report the minimum (Min.), aver-
age (Avg.), and maximum (Max.) for those two values.
We also report the average time, in seconds, necessary
to produce the partition and compute the 100 distances.
The last seven columns present the same values for the
distances that do not consider the partitions. In that case,
the time reported refers only to calculating the distances.

Figures 8, 9, and 10 show box plots with the average
distances for the TRANS, REV, and REVTRANS data-
bases, respectively.

From Table 2 and Fig. 8, we see that in the TRANS
database the distances considering the partitions are
lower than the distances that do not take the partitions
into account. For sets generated with 25 transpositions,
the minimum distances without partition are, on average,
at least 39% higher than the minimum distances with par-
tition. For the average distance, the difference is at least
60% on average. The difference between the distances
decreases as the number of operations or the size of the
alphabet increases. For sets generated with 100 transpo-
sitions and alphabet of size 10, the minimum and aver-
age distances without partition are on average 8% higher
than the minimum or average distances with partition.
For sets generated with 100 transpositions and alphabet
of size 100, the minimum distances without partition
are on average 3% higher than the minimum distances
with partition. For the average distance, the difference
is 5% on average. It is worth mentioning that with 100
operations we have an extreme case, where each origin
genome is considerably shuffled to produce the corre-
sponding target genome of the pair. It is also interesting
that with smaller alphabets, when the number of repli-
cas increases, the advantage of using the partitions also
increases. Looking at the running times, we see that, for

Page 18 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

the transposition model, we must pay a small cost to pro-
duce better distances using the partitions.

From Table 3 and Fig. 9, we see that in the REV data-
base the distances considering the partitions are still
lower than the distances that do not take the partitions

into account, and the differences between distances are
higher for this database. For sets generated with 25 rever-
sals, the minimum distances without partition are, on
average, at least 149% higher than the minimum distances
with partition. For the average distance, the difference is

Table 2  Distances for the ITD problem with and without the use of our partition algorithm

OP |�| With partition Without partition

Minimum distance Average distance Time Minimum distance Average distance Time

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

25 10 42 47.83 57 43.64 49.45 58.80 0.22 94 96.91 98 99.93 100.19 100.52 0.02

25 20 38 48.07 61 39.85 49.61 61.79 0.22 88 93.42 96 97.99 98.63 99.41 0.01

25 30 39 47.85 55 40.71 49.27 56.62 0.22 84 88.89 92 94.72 96.27 97.49 0.02

25 40 39 48.53 57 40.85 49.91 58.67 0.22 77 84.97 88 89.56 93.60 95.62 0.01

25 50 41 48.38 55 42.54 49.59 56.87 0.22 69 81.20 87 86.35 90.66 93.87 0.01

25 60 40 48.56 57 40.68 49.69 58.79 0.23 70 77.84 84 81.71 88.00 93.21 0.01

25 70 40 47.94 54 40.42 48.85 55.96 0.22 68 74.88 84 80.36 85.60 91.40 0.01

25 80 40 48.29 56 40.00 49.20 57.03 0.23 62 71.84 78 77.62 83.26 88.35 0.01

25 90 39 48.53 55 39.57 49.36 56.89 0.22 61 70.86 81 74.31 81.82 88.77 0.01

25 100 41 48.85 56 41.25 49.61 56.80 0.23 58 68.29 77 71.95 79.51 86.20 0.01

50 10 64 71.52 80 65.79 73.08 80.86 0.33 96 98.03 99 100.20 100.46 100.80 0.01

50 20 63 72.17 80 65.62 73.68 81.79 0.33 92 95.51 98 98.71 99.57 100.30 0.02

50 30 66 72.38 82 67.76 73.86 83.79 0.32 90 93.19 96 96.83 98.40 99.75 0.01

50 40 62 71.98 82 63.84 73.55 82.87 0.33 85 91.14 95 93.56 96.89 99.07 0.02

50 50 62 72.25 80 63.70 73.74 80.97 0.33 84 89.44 94 92.76 95.60 98.03 0.01

50 60 60 71.51 81 61.97 73.01 82.74 0.33 82 87.18 92 89.80 94.03 97.91 0.01

50 70 64 71.96 80 65.64 73.56 81.80 0.33 79 85.89 90 87.46 92.80 95.79 0.01

50 80 65 72.04 83 65.81 73.66 84.78 0.33 78 84.64 91 87.05 91.79 96.90 0.01

50 90 62 71.64 80 62.70 73.14 80.91 0.33 76 83.25 90 84.45 90.39 95.29 0.01

50 100 65 72.04 82 65.90 73.52 83.85 0.34 75 82.74 89 83.25 89.98 94.72 0.01

75 10 76 84.41 92 77.53 86.00 93.90 0.38 96 98.26 100 100.23 100.58 100.82 0.02

75 20 76 84.71 91 77.65 86.28 91.91 0.38 94 96.95 99 99.50 100.15 100.54 0.01

75 30 76 84.36 92 76.83 85.91 92.88 0.38 92 95.52 98 97.47 99.39 100.43 0.01

75 40 79 84.87 92 80.75 86.43 93.70 0.39 91 94.51 97 97.46 98.76 100.09 0.02

75 50 77 85.04 95 78.83 86.67 95.83 0.38 90 93.66 98 94.47 98.02 100.16 0.02

75 60 76 84.01 91 77.66 85.55 92.80 0.38 89 92.21 96 94.24 97.07 99.44 0.01

75 70 79 84.99 92 80.71 86.48 93.80 0.38 86 92.01 95 90.84 96.64 98.65 0.01

75 80 77 85.06 93 78.92 86.63 94.82 0.39 86 91.26 96 92.84 95.90 98.98 0.01

75 90 74 85.41 93 76.85 86.93 94.78 0.40 85 90.93 97 90.58 95.78 99.25 0.01

75 100 74 84.52 94 74.70 86.12 94.78 0.39 81 90.00 96 89.03 95.05 98.69 0.01

100 10 82 90.80 96 83.72 92.40 96.86 0.41 97 98.68 100 100.43 100.67 100.94 0.02

100 20 83 91.23 97 84.71 92.87 98.91 0.41 95 97.87 99 99.57 100.41 100.83 0.02

100 30 86 91.55 97 87.74 93.15 98.84 0.41 95 97.33 99 98.93 100.10 100.72 0.02

100 40 86 91.72 98 87.81 93.25 98.80 0.42 94 96.58 99 98.53 99.72 100.60 0.02

100 50 84 91.17 98 85.83 92.71 99.77 0.42 91 95.73 99 96.15 99.13 100.72 0.02

100 60 85 91.49 98 86.77 92.96 99.72 0.42 90 95.18 99 95.77 98.74 100.24 0.02

100 70 83 91.54 98 84.67 93.07 99.76 0.42 86 95.05 99 91.77 98.41 100.60 0.01

100 80 84 91.20 99 85.67 92.81 99.77 0.42 90 94.40 99 95.22 98.01 100.50 0.01

100 90 87 91.49 96 87.56 93.10 97.81 0.43 91 94.35 98 95.19 97.87 100.10 0.01

100 100 86 91.71 98 87.85 93.21 98.85 0.43 91 94.16 98 94.98 97.65 100.33 0.01

Page 19 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

at least 173% on average. Again, the difference between
the distances decreases as the number of operations or
the size of the alphabet increases, however, even in sets
generated with 100 reversals and alphabet of size 100,
the minimum distances with partition are on average

14% higher than the minimum distances with partition.
For the average distance, the difference is 16% on aver-
age. In the REV database, we see that the running time
considering the partition was lower than the running
time without the partition. This happened because the

Table 3  Distances for the IRD problem with and without the use of our partition algorithm

OP |�| With partition Without Partition

Minimum Distance Average Distance Time Minimum Distance Average Distance Time

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

25 10 27 33.38 41 30.65 37.20 47.07 5.35 98 100.44 102 105.15 105.84 106.82 14.43

25 20 27 32.64 38 29.44 35.36 41.36 5.11 93 98.04 101 102.56 104.56 105.80 14.21

25 30 28 32.55 38 29.25 34.90 40.69 4.99 88 95.02 99 99.35 102.59 104.50 13.83

25 40 28 32.91 39 28.00 34.65 40.48 4.98 84 92.17 98 95.01 100.47 104.07 13.71

25 50 28 32.62 38 28.00 34.13 39.42 4.96 80 89.46 96 92.96 98.65 102.58 13.26

25 60 27 32.61 39 27.00 33.85 40.81 4.94 78 87.57 98 91.02 97.03 104.22 12.99

25 70 28 32.35 39 28.00 33.64 40.90 4.93 73 85.74 94 87.39 95.04 101.30 12.71

25 80 27 32.69 38 28.04 33.58 39.50 4.97 72 83.86 95 84.09 93.49 101.54 12.40

25 90 27 32.79 38 27.00 33.55 40.39 4.94 72 82.31 92 82.03 91.70 99.34 12.03

25 100 28 32.78 38 28.00 33.48 39.24 4.92 66 81.82 95 80.16 91.52 101.39 12.04

50 10 54 60.94 68 56.67 64.24 71.66 9.38 98 100.83 103 105.48 106.04 106.86 14.48

50 20 52 59.96 68 55.80 63.24 72.77 9.29 97 99.30 101 103.80 105.11 106.16 14.37

50 30 51 59.91 70 53.45 63.03 73.07 9.22 92 97.56 100 101.59 104.05 106.35 14.19

50 40 51 59.86 68 53.22 62.93 71.84 9.28 90 95.72 100 99.79 102.76 104.98 13.93

50 50 50 59.70 67 51.83 62.82 71.34 9.08 89 94.04 100 97.50 101.47 104.42 13.73

50 60 54 59.69 67 55.81 62.55 69.59 9.13 84 92.74 99 93.63 100.16 105.08 13.44

50 70 52 59.48 65 54.02 62.42 69.31 9.02 84 91.46 98 92.73 99.12 103.50 13.34

50 80 51 59.30 68 53.04 62.05 71.22 8.91 83 90.18 97 91.74 97.89 103.89 13.12

50 90 53 59.65 66 55.03 62.23 68.75 9.01 79 89.12 95 89.68 96.90 102.52 12.99

50 100 51 58.68 65 53.30 61.24 68.84 8.96 77 88.71 98 86.47 96.52 102.28 13.00

75 10 67 75.02 81 69.82 78.41 83.89 11.51 99 101.33 103 105.40 106.17 106.67 14.52

75 20 67 75.19 83 70.95 78.60 86.92 11.43 97 99.94 102 104.55 105.55 106.39 14.35

75 30 67 74.70 83 70.08 78.23 86.72 11.56 94 98.79 102 103.79 104.89 106.20 14.33

75 40 68 75.63 82 70.68 79.10 85.96 11.53 93 98.20 101 101.55 104.17 105.73 14.23

75 50 68 74.52 82 70.73 77.93 84.80 11.37 89 96.76 100 99.61 103.13 105.25 14.08

75 60 67 75.07 84 71.77 78.33 88.08 11.44 90 95.81 100 98.14 102.43 105.60 13.87

75 70 63 75.03 85 65.25 78.32 88.19 11.44 86 95.35 100 97.33 101.91 105.08 14.00

75 80 67 74.70 81 69.33 77.70 84.76 11.31 86 94.74 99 95.42 101.16 105.35 13.65

75 90 68 74.97 82 70.67 77.94 85.61 11.50 87 94.00 99 96.41 100.67 106.91 13.73

75 100 65 74.49 82 69.30 77.59 85.82 11.18 84 93.34 100 92.97 99.93 103.94 13.48

100 10 77 83.54 91 80.65 87.27 95.42 13.12 98 101.23 103 105.77 106.25 106.79 14.56

100 20 77 83.34 90 80.43 87.14 93.44 12.89 97 100.65 103 104.04 105.80 106.69 14.45

100 30 75 83.73 91 78.56 87.41 94.77 13.17 97 99.67 102 102.77 105.30 106.59 14.39

100 40 77 83.78 92 79.85 87.43 96.10 12.89 94 98.77 101 100.29 104.46 106.72 14.20

100 50 76 83.76 91 80.52 87.36 95.46 13.02 94 98.42 102 100.86 104.17 106.55 14.25

100 60 77 84.05 91 79.73 87.58 95.06 13.12 93 97.50 101 99.96 103.51 105.93 14.05

100 70 77 84.40 92 79.93 87.91 95.21 12.97 93 97.38 101 99.26 103.16 106.34 14.03

100 80 76 83.95 92 79.82 87.46 95.58 12.95 91 96.94 101 97.99 102.77 105.72 13.91

100 90 77 84.10 93 80.15 87.50 97.68 12.84 93 96.56 101 99.07 102.37 106.41 13.80

100 100 74 84.09 90 76.45 87.45 93.49 13.02 89 96.41 101 96.20 102.10 105.84 13.87

Page 20 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

100 runs of the distance algorithm were slower than the
partition algorithm, and using assignments that consider
the partition tends to reduce the running time of the dis-
tance algorithm as the number of breakpoints tends to

be smaller than the number of breakpoints considering a
random assignment.

From Table 4 and Fig. 10, we see that in the
REVTRANS database the distances considering the

Table 4  Distances for the IRTD problem with and without the use of our partition algorithm

OP |�| With partition Without partition

Minimum distance Average distance Time Minimum distance Average distance Time

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

25 10 34 42.01 52 35.07 43.70 52.51 6.86 95 97.08 98 99.61 100.12 100.50 12.59

25 20 32 41.89 50 32.53 43.38 51.06 6.74 91 94.79 98 97.78 99.10 99.84 12.53

25 30 34 41.79 48 34.74 43.18 49.83 6.76 85 92.07 96 95.73 97.69 99.68 12.39

25 40 34 41.39 47 35.55 42.60 48.38 6.78 81 89.38 94 91.59 95.91 98.63 12.31

25 50 35 41.97 48 35.00 43.03 50.70 6.68 79 87.64 94 89.88 94.51 98.58 12.28

25 60 37 41.65 48 37.00 42.60 48.27 6.64 77 85.67 93 87.68 93.16 97.16 12.07

25 70 34 41.73 49 34.98 42.68 49.44 6.73 73 82.57 92 85.13 90.79 97.24 11.84

25 80 37 42.26 49 37.54 43.05 50.05 6.83 69 81.44 89 79.81 89.54 95.94 11.73

25 90 35 41.57 48 35.76 42.34 48.57 6.62 71 79.51 89 79.79 87.65 95.32 11.54

25 100 35 41.84 48 36.00 42.57 49.22 6.71 66 79.31 89 77.86 87.45 94.45 11.43

50 10 59 66.72 75 60.61 67.91 76.42 10.13 95 97.64 99 99.91 100.26 100.50 12.59

50 20 57 66.93 74 58.60 68.14 74.67 10.03 94 96.08 98 98.93 99.63 100.39 12.50

50 30 60 67.11 76 61.56 68.25 77.61 10.10 90 94.31 97 97.01 98.73 99.85 12.45

50 40 56 66.21 73 56.47 67.35 74.62 9.97 86 92.72 96 95.12 97.72 99.91 12.36

50 50 59 66.79 74 60.41 67.96 75.60 10.04 87 91.76 96 94.44 96.98 99.49 12.29

50 60 57 66.32 75 57.74 67.39 76.48 10.12 81 89.80 94 92.17 95.72 98.76 12.33

50 70 53 66.66 75 53.77 67.86 76.61 9.88 83 89.43 95 88.72 94.97 98.51 12.16

50 80 59 66.69 72 59.68 67.74 73.50 9.84 77 88.68 95 89.37 94.34 98.27 12.25

50 90 53 66.24 75 54.56 67.30 76.58 10.09 80 87.89 94 87.04 93.64 97.91 12.16

50 100 59 66.36 76 59.44 67.33 76.59 9.85 80 87.03 94 87.12 92.81 96.63 12.06

75 10 71 79.44 86 72.64 80.61 86.68 11.86 96 97.82 99 100.07 100.35 100.61 12.62

75 20 74 79.92 88 74.53 81.05 88.75 11.84 95 96.88 99 98.85 99.94 100.45 12.55

75 30 71 79.72 87 72.55 80.99 88.57 11.94 92 95.69 98 97.62 99.37 100.19 12.50

75 40 69 79.47 88 70.51 80.64 89.64 11.84 90 94.72 97 96.37 98.67 99.91 12.43

75 50 70 80.38 88 70.72 81.49 89.60 12.00 86 93.89 97 95.04 98.09 100.15 12.44

75 60 72 80.04 89 72.59 81.13 89.67 11.88 88 93.55 97 94.59 97.71 99.60 12.43

75 70 72 80.72 89 72.52 81.78 89.68 12.00 88 92.89 97 93.54 97.06 99.82 12.29

75 80 71 79.91 89 72.68 81.05 89.76 11.86 87 91.95 97 93.33 96.27 99.12 12.44

75 90 73 79.81 88 73.65 80.84 88.63 11.98 88 91.74 96 92.58 96.00 99.04 12.37

75 100 73 80.26 89 73.63 81.32 90.53 11.84 85 91.36 96 90.71 95.55 99.20 12.18

100 10 80 86.23 95 80.56 87.44 96.71 13.20 97 98.18 99 100.13 100.42 100.72 12.62

100 20 81 86.61 94 81.70 87.78 94.59 13.26 95 97.20 99 99.28 100.09 100.56 12.54

100 30 79 87.14 93 80.63 88.39 93.81 13.29 94 96.59 98 98.59 99.73 100.30 12.59

100 40 80 87.15 92 81.57 88.31 93.67 13.19 93 95.84 98 97.28 99.29 100.17 12.50

100 50 79 86.92 93 80.53 88.02 94.68 13.18 91 95.26 97 96.09 98.81 100.18 12.47

100 60 79 87.14 93 80.47 88.27 94.56 13.15 90 94.89 98 96.08 98.52 100.15 12.42

100 70 81 87.61 92 82.67 88.71 93.64 13.21 90 94.70 98 94.98 98.21 100.08 12.37

100 80 78 87.98 96 79.69 89.09 96.57 13.47 91 94.55 97 95.46 98.01 99.97 12.50

100 90 79 87.04 93 80.66 88.22 93.65 13.16 89 94.14 97 93.84 97.64 99.72 12.32

100 100 78 87.46 93 80.53 88.50 94.68 13.13 88 93.65 98 92.55 97.19 100.04 12.24

Page 21 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

partitions are still lower than the distances that do not
take the partitions into account. The differences were
higher than those from the TRANS database, but smaller
than those from the REV database. For sets generated
with 25 operations, the minimum distances without par-
tition are, on average, at least 90% higher than the mini-
mum distances with partition. For the average distance,
the difference is at least 105% on average. Again, the dif-
ference between the distances decreases as the number of
operations or the size of the alphabet increases. In sets

generated with 100 operations and alphabet of size 100,
the minimum distances with partition are on average 7%
higher than the minimum distances with partition. For
the average distance, the difference is 10% on average. For
the set generated with at most 75 operations, the running
time considering the partition was lower than the run-
ning time without the partition.

Considering all results, we see that the partitions
improve the distances and the improvement is higher for

With Partition Without Partition

25 50 75 100 25 50 75 100
0

25

50

75

100

Applied Operations (OP)

Av
er

ag
e

D
is

ta
nc

e

Fig. 8  Average distances for the ITD problem with and without the use of our partition algorithm

With Partition Without Partition

25 50 75 100 25 50 75 100
0

30

60

90

Applied Operations (OP)

Av
er

ag
e

D
is

ta
nc

e

Fig. 9  Average distances for the IRD problem with and without the use of our partition algorithm

Page 22 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21

smaller alphabets or closer genomes (genomes that can
be turned into one another with fewer operations). We
can also see that with partitions, we have either a small
cost in the running time, when the distance algorithm
takes less time than the partition algorithm, or a large
gain in running time, when the distance algorithm takes
more time than the partition algorithm.

Conclusion
We defined the intergenic transposition distance
(ITD), the intergenic reversal distance (IRD), the
intergenic reversal and transposition distance
(IRTD), the minimum common intergenic string
partition (MCISP), and the reverse minimum com-
mon intergenic string partition (RMCISP) prob-
lems. Next, we described a relation between the partition
and distance problems and a �(k)-approximation for the
MCISP and RMCISP problems ensuring a �(k)-approxi-
mation for the ITD, IRD, and IRTD problems. Our algo-
rithm for the MCISP and RMCISP problems may also be
applied to the MCSP and RMCSP problems, which do
not consider intergenic regions, improving a previously
known approximation. We also performed practical tests
on simulated genomes, showing that the distances calcu-
lated considering the partitions were lower than the dis-
tances calculated without taking partitions into account.

As future works, one can extend our approach by con-
sidering the orientation of the genes. Additionally, one
possible approach to overcome the balanced genome
restriction is to consider non-conservative events,
such as insertion and deletion, similarly to the work of

Alexandrino et al. [30] with the Intergenic Reversal Dis-
tance without gene repetition.

Acknowledgements
This work was supported by the National Council of Technological and
Scientific Development, CNPq (Grant 425340/2016-3), the Coordenação de
Aperfeiãoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001, and the São Paulo Research Foundation, FAPESP (Grants 2013/08293-7,
2015/11937-9, 2017/12646-3, and 2019/27331-3).

Authors contributions
First draft: GS. Proofs: GS, AOA, and ARO. Final manuscript: GS, AOA, ARO, and
ZD. All authors read and approved the final manuscript.

Availability of data and materials
The algorithms and datasets generated during the current study are available
in the following public repository: https://​github.​com/​compb​iogro​up/​Appro​
ximat​ion-​Algor​ithm-​for-​Rearr​angem​ent-​Dista​nces-​Consi​dering-​Repea​ted-​
Genes-​and-​Inter​genic-​Region.

Declarations

 Competing interests
The authors declare that they have no competing interests.

Received: 26 June 2021 Accepted: 31 August 2021

References
	1.	 Willing E, Stoye J, Braga MD. Computing the Inversion-Indel Distance.

IEEE/ACM transactions on computational biology and bioinformatics.
2020.

	2.	 Kahn C, Raphael B. Analysis of segmental duplications via duplication
distance. Bioinformatics. 2008;24(16):i133–8.

	3.	 Abdullah T, Faiza M, Pant P, Rayyan Akhtar M, Pant P. An analysis of single
nucleotide substitution in genetic codons–probabilities and outcomes.
Bioinformation. 2016;12(3):98–104.

With Partition Without Partition

25 50 75 100 25 50 75 100
0

25

50

75

100

Applied Operations (OP)

Av
er

ag
e

D
is

ta
nc

e

Fig. 10  Average distances for the IRTD problem with and without the use of our partition algorithm

https://github.com/compbiogroup/Approximation-Algorithm-for-Rearrangement-Distances-Considering-Repeated-Genes-and-Intergenic-Region
https://github.com/compbiogroup/Approximation-Algorithm-for-Rearrangement-Distances-Considering-Repeated-Genes-and-Intergenic-Region
https://github.com/compbiogroup/Approximation-Algorithm-for-Rearrangement-Distances-Considering-Repeated-Genes-and-Intergenic-Region

Page 23 of 23Siqueira et al. Algorithms Mol Biol (2021) 16:21 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	4.	 Fertin G, Labarre A, Rusu I, Tannier É, Vialette S. Combinatorics of genome
rearrangements. Computational molecular biology. London: The MIT
Press; 2009.

	5.	 Bergeron A, Mixtacki J, Stoye J. A Unifying View of Genome Rearrange-
ments. In: International Workshop on Algorithms in Bioinformatics.
Springer; 2006. p. 163–73.

	6.	 Sankoff D. Genome rearrangement with gene families. Bioinformatics.
1999;15(11):909–17.

	7.	 Chen X, Zheng J, Fu Z, Nan P, Zhong Y, Lonardi S, et al. Assignment of
orthologous genes via genome rearrangement. IEEE/ACM Trans Comput
Biol Bioinform. 2005;2(4):302–15.

	8.	 Siqueira G, Brito KL, Dias U, Dias Z. Heuristics for Genome Rearrangement
Distance with Replicated Genes. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics. 2021; p. 1.

	9.	 Biller P, Guéguen L, Knibbe C, Tannier E. Breaking good: accounting
for fragility of genomic regions in rearrangement distance estimation.
Genome Biol Evol. 2016;8(5):1427–39.

	10.	 Biller P, Knibbe C, Beslon G, Tannier E. Comparative Genomics on Artificial
Life. In: Pursuit of the Universal. Springer International Publishing; 2016. p.
35–44.

	11.	 Bulteau L, Fertin G, Rusu I. Sorting by transpositions is difficult. SIAM J
Discrete Math. 2012;26(3):1148–80.

	12.	 Elias I, Hartman TA. 1.375-approximation algorithm for sorting by transpo-
sitions. IEEE/ACM Trans Comput Biol Bioinfor. 2006;3(4):369–79.

	13.	 Caprara A. Sorting permutations by reversals and eulerian cycle decom-
positions. SIAM J Discrete Math. 1999;12(1):91–110.

	14.	 Berman P, Hannenhalli S, Karpinski M. 1.375-Approximation Algorithm
for Sorting by Reversals. In: Proceedings of the 10th Annual European
Symposium on Algorithms (ESA’2002). vol. 2461 of Lecture Notes in
Computer Science. Springer-Verlag Berlin Heidelberg New York; 2002. p.
200–210.

	15.	 Hannenhalli S, Pevzner PA. Transforming cabbage into turnip: polyno-
mial algorithm for sorting signed permutations by reversals. J ACM.
1999;46(1):1–27.

	16.	 Oliveira AR, Brito KL, Dias U, Dias Z. On the complexity of sorting by
reversals and tanspositions problems. J Comput Biol. 2019;26:1223–9.

	17.	 Rahman A, Shatabda S, Hasan M. An approximation algorithm for sorting
by reversals and transpositions. J Discrete Algorithms. 2008;6(3):449–57.

	18.	 Chen X. On sorting unsigned permutations by double-cut-and-joins. J
Combinatorial Optim. 2013;25(3):339–51.

	19.	 Walter MEMT, Dias Z, Meidanis J. Reversal and Transposition Distance of
Linear Chromosomes. In: Proceedings of the 5th International Sympo-
sium on String Processing and Information Retrieval (SPIRE’1998). Los
Alamitos, CA, USA: IEEE Computer Society; 1998. p. 96–102.

	20.	 Kolman P, Waleń T. Reversal Distance for Strings with Duplicates: Linear
Time Approximation Using Hitting Set. In: Proceedings of the 4th Interna-
tional Workshop on Approximation and Online Algorithms (WAOA’2006).
Springer Berlin Heidelberg; 2007. p. 279–289.

	21.	 Shapira D, Storer JA. Edit distance with move operations. Journal of
Discrete Algorithms. 2007;5(2):380–92.

	22.	 Radcliffe AJ, Scott AD, Wilmer EL. Reversals and transpositions over finite
alphabets. SIAM J Discrete Math. 2005;19(1):224–44.

	23.	 Oliveira AR, Jean G, Fertin G, Brito KL, Dias U, Dias Z. A 3.5-Approximation
Algorithm for Sorting by Intergenic Transpositions. In: Algorithms for
Computational Biology. Springer International Publishing; 2020. p. 16–28.

	24.	 Brito KL, Jean G, Fertin G, Oliveira AR, Dias U, Dias Z. Sorting by genome
rearrangements on both gene order and intergenic sizes. J Comput Biol.
2020;27(2):156–74.

	25.	 Oliveira AR, Jean G, Fertin G, Brito KL, Dias U, Dias Z. Sorting Permutations
by Intergenic Operations. IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics. 2021; p. 1.

	26.	 Kolman P, Waleń T. Approximating reversal distance for strings with
bounded number of duplicates. Discrete Appl Math. 2007;155(3):327–36.

	27.	 Cormode G, Muthukrishnan S. The string edit distance matching problem
with moves. ACM Trans Algorithms. 2007;3(1):1–19.

	28.	 Goldstein A, Kolman P, Zheng J. Minimum Common String Partition
Problem: Hardness and Approximations. In: Proceedings of the 15th
International Symposium on Algorithms and Computation (ISAAC’2004).
Springer Berlin Heidelberg; 2005. p. 484–495.

	29.	 Crochemore M, Lecroq T. Suffix Tree. In: Encyclopedia of Database Sys-
tems. US: Springer; 2009. p. 2876–80.

	30.	 Alexandrino AO, Brito KL, Oliveira AR, Dias U, Dias Z. Reversal Distance on
Genomes with Different Gene Content and Intergenic Regions Informa-
tion. In: Algorithms for Computational Biology. vol. 12715. Springer
International Publishing; 2021. p. 121–133.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Approximation algorithm for rearrangement distances considering repeated genes and intergenic regions
	Abstract
	Introduction
	Definitions
	Intergenic Partition
	Correspondence between partition and distance problems
	2k-approximation for MCISP
	2k-approximation for RMCISP
	Experimental results
	Conclusion
	Acknowledgements
	References

