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Abstract 

The rearrangement distance is a method to compare genomes of different species. Such distance is the number 
of rearrangement events necessary to transform one genome into another. Two commonly studied events are the 
transposition, which exchanges two consecutive blocks of the genome, and the reversal, which reverts a block of the 
genome. When dealing with such problems, seminal works represented genomes as sequences of genes without 
repetition. More realistic models started to consider gene repetition or the presence of intergenic regions, sequences 
of nucleotides between genes and in the extremities of the genome. This work explores the transposition and reversal 
events applied in a genome representation considering both gene repetition and intergenic regions. We define two 
problems called Minimum Common Intergenic String Partition and Reverse Minimum Common Intergenic String 
Partition. Using a relation with these two problems, we show a �(k)-approximation for the Intergenic Transposition 
Distance, the Intergenic Reversal Distance, and the Intergenic Reversal and Transposition Distance problems, where k 
is the maximum number of copies of a gene in the genomes. Our practical experiments on simulated genomes show 
that the use of partitions improves the estimates for the distances.
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Introduction
In the field of Computational Biology, when analyzing the 
relationship between two genomes, one can estimate the 
evolutionary distance by calculating the number of muta-
tions necessary to transform one genome into another. 
These mutations can be non-conservative (i.e., affect the 
quantity of genetic material), which is the case of inser-
tion, deletion, duplication, or substitution of individual 
nucleotides [1–3], or the mutations can be conservative 
(i.e., do not insert or remove genetic material), which is 
the case of the conservative genome rearrangement events 
[4], which affect only the order and orientation of genes 
in the genome.

Some conservative events affect a single chromosome, 
such as the reversal, which inverts a sequence of genes, 
and the transposition, which exchanges the position 
of two consecutive sequences of genes. There are also 
events that may affect more than one chromosome, such 
as translocation, which swaps extremities of two chro-
mosomes. The translocation and reversal events can be 
simulated by the Double-Cut-and-Join (DCJ) [5] opera-
tion, which cuts the genome at two positions and cre-
ates two new adjacencies by joining the four extremities 
affected by these cuts. This work focuses on the reversal 
and transposition events, consequently, we only consider 
genomes with a single chromosome.

When comparing genomes with a rearrangement-
based distance, one must select a rearrangement model 
(i.e., the set of allowed rearrangement events) and find a 
representation for the genomes suitable to the selected 
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model. With a given model, a rearrangement distance 
problem aims at finding the minimum number of allowed 
rearrangement events necessary to transform one 
genome into another.

Genomes can be represented by a string, where each 
character represents a gene. There may be multiple genes 
represented by the same characters, those genes consti-
tute a gene family.

If we assume that there are no replicated characters, 
the characters are usually represented by integer num-
bers, and a string of size n corresponds to a permutation 
of numbers from 1 to n. In this case, when comparing 
two genomes G and H of size n, one of them is repre-
sented by the identity permutation ι = (1 2 . . . n) and 
the other by a permutation π . Consequently, finding the 
rearrangement distance is equivalent to finding the mini-
mum number of allowed rearrangement events necessary 
to sort the permutation π.

A string (or a permutation) may also include informa-
tion regarding gene orientation, and such information 
is encoded as signs, + or −, associated with each char-
acter. In this case, we have a signed string (or a signed 
permutation).

When there are replicated characters, two common 
approaches are adopted to transform the strings into 
permutations. The first selects an exemplar of each gene 
family [6], and the second establishes a correspondence 
between characters of both strings [7, 8], which allows 
us to discriminate between multiple copies of the same 
character. The second approach has the advantage of los-
ing less information but can only be applied when such 
correspondence can be established. In the presence of 
non-conservative events, the correspondence between 
genes may not be possible, and a preprocessing step is 
required to eliminate genes present in only one of the 
genomes.

In biological terms, this correspondence is called an 
orthologous assignment. The distance between permuta-
tions resulting from an orthologous assignment gives us 
a valid upper bound for the distance between the original 
strings. As there are multiple possible assignments, there 
are some strategies to find assignments that lead to lower 
distances [7, 8].

Recent works [9, 10] argue that considering the size of 
intergenic regions (i.e., number of nucleotides between 
genes and in the extremities of the genome) improves 
the estimated distances. When the sizes of intergenic 
regions are taken into account, the genome representa-
tion includes a string representing the gene sequence and 
a sequence of integers corresponding to the size of each 
intergenic region.

Each combination of genome representation and rear-
rangement model defines a different rearrangement 

distance problem. Table  1 shows a summary of results 
from the literature, considering different rearrangement 
distance problems and the contributions of the present 
work (last three rows). For each problem, we mention 
whether there is a known polynomial-time algorithm or 
an NP-hardness proof and, in the last case, what is the 
best known approximation factor for that problem.

It is worth mentioning that, to ensure an approxima-
tion, the distance between strings takes into account the 
result of the string partition problems [26]. Such prob-
lems seek to split two strings into sub-strings that can 
be concatenated in different orders to form the original 
strings. The way in which the sub-strings appear in each 
original string defines the problem. If the sub-strings 
must appear in the same orientation in both original 
strings, we have the minimum common string par-
tition problem. If the sub-strings can appear inverted 
in the original strings, we have the signed minimum 
common string partition problem when consider-
ing signed strings, and the reverse minimum common 
string partition problem when considering unsigned 
strings.

If there is an ℓ-approximation for the minimum com-
mon string partition problem, then there exists a 3ℓ
-approximation for the transposition distance on 
strings problem [21]. Similarly, if there is an ℓ-approxi-
mation for the signed minimum common string par-
tition problem, then there exists a 2ℓ-approximation for 
the reversal distance on signed strings problem 
[7]. The same relation can be applied to the reversal 
distance on strings and the reverse minimum com-
mon string partition problems [26].

The best known approximation algorithms for the par-
tition problems have factors in O(log n log∗ n) [27], where 
n is the size of the string, and in �(k) [20], where k is the 
maximum number of copies of a character in the string.

This work describes approximation algorithms for the 
intergenic transposition distance, intergenic 
reversal distance, and intergenic reversal and 
transposition distance problems, where the rep-
resentation of the genomes takes into account both 
repeated genes and intergenic regions. Initially, we pre-
sent some definitions and formalize the problems. Next, 
we generalize the minimum common string parti-
tion and the reverse minimum common string par-
tition problems to consider intergenic regions. We also 
present relations between the partitions and distance 
problems that consider intergenic regions and describe 
a �(k)-approximation algorithm for the partition prob-
lems ensuring a �(k)-approximation for the distance 
problems. Finally, we performed some practical tests 
on simulated genomes to evaluate the improvement in 
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the estimates for the distances caused by the partition 
algorithms.

Definitions
In the following definitions we use ordered sequences 
of elements (lists). The number of elements in a list X 
is denoted by |X|, and an element at the i-th position 
of a list X is denoted by Xi . The list Y = rev(X) is equal 
to the list X in the reverse order (i.e., |X | = |Y | and Yi = 
X|X |−i+1, ∀1 ≤ i ≤ |X | ). A list of characters is called a 
string.

Given a string S, the set �S of distinct elements of S is 
the alphabet of S and each element of �S is called label. 
The occurrence of a label α in a string S is the num-
ber of characters of S with label α , and is denoted by 
occ(α, S) . The maximum occurrence of any character in S 
is occ(S) = maxα∈�S (occ(α, S)) . A character whose label 
has occurrence one is called a singleton, and a character 
whose label has occurrence at least two is called a rep-
lica. Two strings S and P are balanced if �S = �P and 

occ(α, S) = occ(α,P),∀α ∈ �S . In other words, balanced 
strings are formed by the same characters in possibly dif-
ferent orders.

When modeling genomes, we consider the intergenic 
regions between genes represented by their sizes. Usually, 
an actual genome starts and ends with intergenic regions 
but, to construct our representation, we include two arti-
ficial genes in the beginning and end of the genome. In 
this process, usually called extension or capping, we use 
the same pair of genes for any genome.

Formally, a genome G = (g1, ğ1, g2, . . . , ğn−1, gn) with 
size n is an interleaved sequence of n genes ( g1, . . . , gn ) 
and n− 1 intergenic regions ( ̆g1, . . . , ğn−1 ). We represent 
a genome G = (S, S̆) with a string S and a list of integers 
S̆ , such that:

•	 The gene gi is represented by the character Si of S, for 
1 ≤ i ≤ n.

•	 The intergenic region ği is represented by the integer 
S̆i of S̆ , for 1 ≤ i ≤ n− 1.

Table 1  Summary of results for rearrangement problems

aSome approximations depend on k, which is the maximum number of copies of a character in the string.
bAsymptotic approximation

Problem Rearrangement  model Genome representation Complexity Best known 
approximation 
factor

Sorting Permutations by Transpositions Transpositions Permutation NP-hard [11] 1.375 [12]

Sorting Permutations  by Reversals Reversals Permutation NP-hard [13] 1.375 [14]

Sorting Signed Permutations by Reversals Reversals Signed permutation P [15] –

Sorting Permutations by Reversals and 
Transpositions

Reversals and  transpositions Permutation NP-hard [16] 2.8334+ ǫ [17, 18]

Sorting Signed Permutations by Reversals 
and Transpositions

Reversals and transpositions Signed permutation NP-hard [16] 2 [19]

Transposition Distance on Strings Transpositions String NP-hard 12ka [20, 21]

Reversal Distance on Strings Reversals String NP-hard 16ka [20]

Signed Reversal Distance on Strings Reversals Signed string NP-hard [22] 16ka [7, 20]

Sorting Permutations by Intergenic 
Transpositions

Transpositions Permutation and sequence of integers NP-hard [23] 3.5 [23]

Sorting Permutations by Intergenic 
Reversals

Reversals Permutation and sequence of integers NP-hard [24] 4 [24]

Sorting Signed Permutations by Inter-
genic Reversals

Reversals Signed permutation and  sequence of 
integers

NP-hard [16] 2 [16]

Sorting Permutations by Intergenic Rever-
sals and Transpositions

Reversals and transpositions Permutation and sequence of integers NP-hard [24] 4.5 [24]

Sorting Signed Permutations by Inter-
genic Reversals and Transpositions

Reversals and transpositions Signed permutation and  sequence of 
integers

NP-hard [25] 3 [25]

Intergenic Reversal Distance on Strings Reversals String and  sequence of integers NP-hard
(Theorem 1)

6ka,b (Corollary 2)

Intergenic Transposition Distance on 
Strings

Transposition String and sequence of integers NP-hard
(Theorem 1)

8ka (Corollary 4)

Intergenic Reversal and Transposition 
Distance on Strings

Reversal and transposition String and sequence of integers NP-hard
(Theorem 1)

9ka (Corollary 5)
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Two genomes G = (S, S̆) and H = (P, P̆) are called co-
tailed if they have the same initial and final gene (i.e., 
S1 = P1 and Sn = Pn ). Note that, any two genomes result-
ing from an extension are co-tailed.

The reverse of a genome G = (S, S̆) , denoted by rev(G) , 
is a genome represented by the lists rev(S) and rev(S̆) . We 
say that two genomes G and H are equal ( G = H ) if their 
correspondent strings and their correspondent integer 
lists are equal. Additionally, we say that two genomes G 
and H are congruent ( G ∼= H ) if G = H or G = rev(H) . 
Figure 1 shows an example of a genome and its reverse.

Given a genome G = (S, S̆) , the subgenome 
Gi,j = (Si,j , S̆i,j) is the portion of genome G between the 
genes gi and gj . Consequently, the subgenome Gi,j is rep-
resented by lists Si,j and S̆i,j , such that:

A genome G contains another genome H if H is equal to 
some subgenome of G . We denote that relation by H ⊂ G . 
We also use H  ⊂ G to indicate that G does not contain H.

Let us define an operation of a combination of genomes 
(exemplified in Fig. 2). We say that a genome K = (Q, Q̆) 
is a combination of two genomes G = (S, S̆) and 
H = (P, P̆) if:

S
i,j
k = Si+k−1, ∀1 � k � j − 1+ 1

S̆
i,j
k = S̆i+k−1, ∀1 � k � j − 1

•	 Q is the concatenation of the strings S and P.
•	 Q̆ is formed by the list S̆ followed by an integer (rep-

resenting the size of the intergenic region between 
the two genomes) and then followed by the list P̆.

Two genomes G = (S, S̆) and H = (P, P̆) of size n are 
balanced if:

•	 The strings S and P are balanced.
•	 The sum of the integers correspondent to intergenic 

regions are the same, i.e., 
∑n

i=1 S̆i =
∑n

i=1 P̆i

Given two balanced genomes G = (S, S̆) and H = (P, P̆) , 
an orthologous assignment ξ between them is a mapping 
between genes, i.e., for each gene Si of S there is a cor-
respondent gene ξ(Si) in P. We denote the intergenic 
region after the gene ξ(Si) by ξ(S̆i) . Each singleton from 
S is associated with the singleton of same label from P. 
Each replica from S must be associated with a replica of 
same label from P. Note that there are multiple ways to 
perform the association for a replica. Figure 3 shows an 
orthologous assignment between two genomes G and H.

Consider a genome G = (S, S̆) of size n and the num-
bers i,  j,  k,  x,  y,  z, with 2 ≤ i < j < k ≤ n , 0 ≤ x ≤ S̆i−1 , 
0 ≤ y ≤ S̆j−1 , and 0 ≤ z ≤ S̆k−1 . The intergenic 

5143132 III5555BBB1111BBB4444AAA3333CCC1111AAA3333AAA2222FFFrev(G) =

2313415 FFF22AAA33AAA11CCC33AAA44BBB11BBB5555IIIG =

Fig. 1  A genome G = (S, S̆) , with S = [I B B A C A A F] and S̆ = [5 1 4 3 1 3 2] , and its reverse rev(G) . The two new genes included in the 
extension process are represented by the characters I and F 

22331 A2222D22C33B3333A11BK =

22 A222D2222CH =31 B333A111BG =

Fig. 2  The genomes G = ([B A B], [1 3]) and H = ([C D A], [2 2]) combined to form the genome K = ([B A B C D A], [1 3 3 2 2]) . Note that, an 
intergenic region with size 3 was created during the combination. Besides, the genome K contains the genomes G ( G = K1,3 ) and H ( H = K4,6)
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transposition τ (i,j,k)(x,y,z) is an operation that transforms G into 

a genome G.τ (i,j,k)(x,y,z) = (S′, S̆′) , where:

S′ = [S1 . . . Si−1 Sj . . . Sk−1 Si . . . Sj−1 Sk . . . Sn]

S̆′ = [S̆1 . . . S̆i−2 x + y′

−−−−
S̆j . . . S̆k−2 z + x′

−−−−

S̆i . . . Sj−2 y+ z′

−−−−
Sk . . . Sn−1],

with x′ = S̆i−1 − x , y′ = S̆j−1 − y , and z′ = S̆k−1 − z . 
Figure  4 shows a generic intergenic transposition and 
an example of an intergenic transposition applied in a 
genome G.

Consider a genome G = (S, S̆) of size n and the num-
bers i,  j,  x,  y, with 2 ≤ i < j ≤ n− 1 , 0 ≤ x ≤ S̆i−1 , and 
0 ≤ y ≤ S̆j . The intergenic reversal ρ(i,j)

(x,y) is an operation 

that transforms G into a genome G.ρ(i,j)
(x,y) = (S′, S̆′) , where:

3121133 E3E3E33333D2D2D2111B1B1B1222E1E1E1111A1A1A11111E2E2E23333D1D1D13333C1C1C1H =

3231221 E3E3E333D2D2D222E2E2E233D1D1D111C1C1C122B1B1B122E1E1E11111A1A1A1G =

Fig. 3  One of the possible orthologous assignments between two balanced genomes G = ([A E B C D E D E], [1 2 2 1 3 2 3]) and 
H = ([C D E A E B D E], [3 3 1 1 2 1 3]) . The superscripts on each gene represent the assignment (characters with same label and same index 
are associated with each other, i.e., ξ(X i) = X

i)

31334 AAA33AAA1111BBB33DDD33CCC44BBBG.τ (2,4,6)(2,2,0) =

0|132|212|3 AAA00||11DDD33CCC22||22AAA1111BBB2|222|||33BBBG =

. . .y|z′. . .z|x′. . .x|y′. . .S̆1 SnSnSn

.. .. ..SkSkSky|z′yyy|||zzz′′′Sj−1j−1SSSj−1SS.. .. .. SSSiSiSiz|x′zzz|||xxx′′′Sk−1k−1SSk−1SS.. .. .. SSSjSjSSjxx||yy′′Si−1i−1SSi−1SS.. .. .. SSS2S2S2S̆̆SSS11S1S1S1

. . .z|z′. . .y|y′. . .x|x′. . .S̆1 SnSnSn

.. .. ..SkSkSkzz||zz′′Sk−1k−1SSk−1SS.. .. .. SSSjSjSSjyy||yy′′Sj−1j−1SSSj−1SS.. .. .. SSSiSiSi|xx|||xx′′Si−1i−1SSi−1SS.. .. .. SSS2S2S2S1˘̆SSS111S1S1S1

Fig. 4  A generic representation of an intergenic transposition followed by the application of the intergenic transposition τ (2,4,6)(2,2,0) on the genome 
G = ([B B A C D A], [5 1 4 3 1]) resulting in the genome G .τ (2,4,6)(2,2,0) = ([B C D B A A], [4 3 3 1 3])

14144 AAA11DDD44BBB11AAA4444CCC44BBBG.ρ(2,4)(3,1) =

11|2413|2 AAA1111DDD11||22CCC44AAA1111BBB233||222BBBG =

. . .x′|y′. . .x|y. . .S̆1 SnSnSn

.. .. ..Sj+1j+1SSSj+1SSxx′′||yy′′ SSSSSiSiSi
.. .. ..SjSjSSj|xx||yySi−1i−1SSi−1SS.. .. .. SSSSS2S2S21˘̆SS111S1S1S1

. . .y|y′. . .x|x′. . .S̆1 SnSnSn

.. .. ..Sj+1j+1SSSj+1
′ SSyy||yy′′′ SSSSSjSjSSj.... .. ..SiSiSix|x′xxx|||xxx′′′Si−1i−1SSi−1. SS... .. .. SSSSS2S2S21˘̆SS111S1S1S1

Fig. 5  A generic representation of an intergenic reversal followed by the application of the intergenic reversal ρ(2,4)

(3,1) on the genome 
G = ([B B A C D A], [5 1 4 3 1]) resulting in the genome G .ρ(2,4)

(3,1) = ([B C A B D A], [4 4 1 4 1])
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with x′ = S̆i−1 − x and y′ = S̆j − y . Figure  5 shows a 
generic reversal and an example of a reversal applied in 
a genome G.

As shown in the following problem statements, we 
are interested in finding the minimum number of inter-
genic operations necessary to transform one genome into 
another. We assume that the genomes come from the 
extension process and, consequently, they are co-tailed.

Theorem 1  The ITR, IRD and IRTD problems belong to 
the NP-hard class.

Proof
Directly from the fact that the correspondent problems on 
permutations are in the NP-hard class [23, 24]. �

The minimum number of intergenic transpositions 
necessary to transform one genome G into another 
genome H is called the intergenic transposition distance, 
and it is denoted by dIT (G,H) . Similarly, the minimum 
number of intergenic reversals necessary to transform 
one genome G into another genome H is called the inter-
genic reversals distance, and it is denoted by dIR(G,H) . 
Also, the minimum number of operations that are either 

S′ = [S1 . . . Si−1 Sj . . . Si . . . Sn]

S̆′ = [S̆1 . . . S̆i−2 x + y
−−−−

S̆j−1 . . . S̆i x
′ + y′

−−−−
S̆j+1 . . . S̆n−1],

intergenic reversals or intergenic transpositions neces-
sary to transform one genome G into another genome 
H is called the intergenic reversals and transposition dis-
tance, and it is denoted by dIRT (G,H).

Intergenic Partition
In order to develop a solution for the ITD, IRD, and 
IRTD problems we studied two related problems called 
minimum common intergenic string partition and 
reverse minimum common intergenic string par-
tition. To define those problems, we consider the fol-
lowing two types of intergenic partitions of two balanced 
genomes.

An direct intergenic partition between two balanced 
genomes G = (S, S̆) and H = (P, P̆) is a pair of genome 
sequences (S,P) such that: 

1	 The genomes of S when combined correspond to the 
genome G.

2	 The genomes of P when combined correspond to the 
genome H.

3	 It is possible to change the order of the genomes of S 
to obtain the genomes of P (i.e., there is at least one 
permutation φ , from the numbers 1 to |S| , such that 
Pi = Sφi , ∀ 1 ≤ i ≤ |S|).

A reverse intergenic partition between two balanced 
genomes G = (S, S̆) and H = (P, P̆) is a pair of genome 
sequences (S,P) such that: 

1	 The genomes of S when combined correspond to the 
genome G.

2	 The genomes of P when combined correspond to the 
genome H.

3	 It is possible to change the order and orientation of 
the genomes of S to obtain the genomes of P (i.e., 
there is at least one permutation φ , from the num-
bers 1 to |S| , such that Pi

∼= Sφi , ∀ 1 ≤ i ≤ |S|).

In both intergenic partitions, the genomes correspondent 
to elements of S and P are called blocks, and are subge-
nomes of G and H , respectively. As the blocks of S must 
be combined to form G , the blocks must follow the order 
in which they appear in G . Additionally, every gene must 
appear in some block. Some intergenic regions, on the 
other hand, do not appear in S , those are the regions that 
must be included during the combination of the blocks. 
As these regions mark the points where the genome G 
is split into blocks, we call them breakpoints of S . The 
breakpoints of P have a similar definition. Two break-
points X̆i and Y̆j are called equivalent if the surrounding 
genes are equal, i.e., Xi = Yi and Xi+1 = Yi+1 . Addition-
ally, two breakpoints X̆i and Y̆j are called congruent if they 
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have the same surrounding genes in possibly different 
positions, i.e., Xi = Yi and Xi+1 = Yi+1 , or Xi = Yi+1 and 
Xi+1 = Yi.

The cost(S,P) of an intergenic partition (S,P) is the 
number of breakpoints of S . The cost can also be calcu-
lated by the number of blocks in S minus one. Note that, 
as a consequence of the third condition, both sequences 
S and P must have the same number of blocks and, con-
sequently, the cost would be the same if we consider P 
instead of S.

An intergenic partition is minimal if no two consecu-
tive blocks can be combined to form an intergenic par-
tition with smaller cost. An orthologous assignment 
between two genomes G and H associates genes of G with 
genes of H and, consequently, induces a unique minimal 
intergenic partition between G and H.

Given a orthologous assignment ξ between two bal-
anced genomes G = (S, S̆) and H = (P, P̆) , and the mini-
mal intergenic partition (S,P) between G and H induced 
by ξ , we can distinguish between two types of breakpoint 
from S . A breakpoint S̆i is called hard if the genes ξ(Si) 
and ξ(Si+1) are adjacent in P. A breakpoint is called soft if 
it is not hard, and a hard breakpoint is called overcharged, 
if S̆i > ξ(S̆i) , or undercharged, if S̆i < ξ(S̆i) . Additionally, 
we say that an intergenic transposition τ (i,j,k)(x,y,z) applied to G 
removes b breakpoints of S if cost(R,Q) = cost(S,P)− b , 

where (R,Q) is the partition between τ (i,j,k)(x,y,z).G and H 
induced by the assignment ξ.

Example 1

An direct intergenic partition (S,P) of two genomes 
G = (S, S̆) and H = (P, P̆) of cost 3. Figure  6 shows a 
graphical representation of the partition (S,P) and a pos-
sible orthologous assignment capable of inducing that 
partition.

Example 2

A reverse intergenic partition (S,P) of two genomes 
G = (S, S̆) and H = (P, P̆) of cost 3. Figure  7 shows a 
graphical representation of the partition (S,P) and a pos-
sible orthologous assignment capable of inducing that 
partition.

S = [A E B C D E D E] S̆ = [1 2 2 1 3 2 3]

P = [C D E A E B D E] P̆ = [3 3 1 1 2 1 3]

S = [([AE B], [1 2]) ([C], [ ]) ([DE], [3]) ([DE], [3])]

P = [([C], [ ]) ([DE], [3]) ([AE B], [1 2]) ([DE], [3])]

3121133 E3E3E333D2D2D211B1B1B1222E1E1E111A1A1A11111E2E2E233D1D1D133C1C1C1H =

3231221 E3E3E3333D2D2D2222E2E2E2333D1D1D1111C1C1C1222B1B1B1222E1E1E11111A1A1A1G =

Fig. 6  A graphical representation of the direct intergenic partition from Example 1. The intergenic regions with dashed lines are the breakpoints 
and each block is shown in a different color. The superscripts on each gene represent an assignment capable of inducing the partition. The 
breakpoint between genes C1 and D1 is an undercharged hard breakpoint, and the remaining breakpoints are soft

321221213 E3E3E3333D2D2D2222B1B1B11111E1E1E12222A1A1A1222C1C1C1111B2B2B2222A2A2A2111E2E2E2333D1D1D1H =

313141112 D2D2D23333E3E3E31111D1D1D13333E2E2E21111A2A2A24444B2B2B21111C1C1C11111B1B1B11111E1E1E12222A1A1A1G =

Fig. 7  A graphical representation of the direct intergenic partition from Example 2. The intergenic regions with dashed lines are the breakpoints 
and each block is shown in a different color. The superscripts on each gene represent an assignment capable of inducing the partition
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We are interested in the minimum cost direct inter-
genic partition and in the minimum cost reverse inter-
genic partition, as shown in the following problem 
statements. 

When we do not consider intergenic regions, the 
genomes may be represented only by the strings. In that 
case, there are analogous definitions for partitions.

A direct partition of two balanced strings S and P is a 
pair of string sequences (S,P) such that: 

1	 The strings of S when concatenated correspond to 
the string S.

2	 The strings of P when concatenated correspond to 
the string P.

3	 It is possible to change the order of the strings of S 
to obtain the strings of P (i.e., there is at least one 
permutation φ , from the numbers 1 to |S| , such that 
Pi = Sφi , ∀ 1 ≤ i ≤ |S|).

A reverse partition of two balanced strings S and P is a 
pair of string sequences (S,P) such that: 

1	 The strings of S when concatenated correspond to 
the string S.

2	 The strings of P when concatenated correspond to 
the string P.

3	 It is possible to change the order and orientation of 
the strings of S to obtain the strings of P (i.e., there is 
at least one permutation φ , from the numbers 1 to |S| , 
such that Pi = Sφi or Pi = rev(Sφi) , ∀ 1 ≤ i ≤ |S|).

S = [A E B C A E D E D] S̆ = [2 1 2 2 1 3 2 3]

P = [C D E A A E B D E] P̆ = [4 3 1 1 2 1 1 3]

S = [([AE B], [2 1]) ([C], [ ]) ([AE D], [1 3])

([E D], [3])]

P = [([C], [ ]) ([DE A], [3 1]) ([AE B], [2 1])

([E D], [3])]

In both cases, the cost of a partition is |S| − 1 and there 
are problems focused on minimizing that cost.

The MCSP and RMCSP problems belong to the NP-
hard class [28].

Theorem  2     The MCISP problem belongs to the NP-
hard class.

Proof  Given an integer p, the decision version of the 
problems MCSP and MCISP aim at finding a direct parti-
tion and direct intergenic partition, respectively, of cost 
p. Considering the decision versions, let us reduce the 
MCSP problem to the MCISP problem.

Let the strings S and P be an instance of the MCSP prob-
lem. We construct an instance of the MCISP problem by 
adding the integer list S̆ and P̆ , of size |S| − 1 , composed 
only by zeros. Note that, there is a partition of size p 
between S and P if and only if there is a direct intergenic 
partition of size p between (S, S̆) and (P, P̆) . �

Theorem 3     The RMCISP problem belongs to the NP-
hard class.

Proof  Analogous to the proof of Theorem 2 considering 
the RMCSP problem instead of MCSP. �

Correspondence between partition and distance 
problems
This section presents a correspondence between the 
partition and distance problems. Such correspondence 
allows us to adapt an approximation for the MCISP prob-
lem to obtain an approximation for the ITD problem, and 
to adapt an approximation for the RMCISP problem to 
obtain approximations for the IRD and IRTD problems. 
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The following lemmas establish lower bounds for the dis-
tances based on partitions cost.

Lemma 1     Let (S,P) be a minimal direct intergenic 
partition induced by an orthologous assignment between 
two balanced genomes G = (S, S̆) and H = (P, P̆) . For any 
intergenic transposition τ (i,j,k)(x,y,z) , the minimal direct inter-
genic partition (R,Q) between the genomes G.τ (i,j,k)(x,y,z) and 
H , induced by the same orthologous assignment, respects 
the restriction cost(R,Q) ≥ cost(S,P)− 3.

Proof  As the direct intergenic partition (R,Q) must 
be induced by the same assignment of (S,P) , we can 
only reduce the cost of the direct intergenic partition by 
moving the blocks to allow their combination. The inter-
genic transposition may be able to combine three pairs of 
blocks: the block ending in Si−1 with the block starting in 
Sj ; the block ending in Sk−1 with the block starting in Si ; 
and the block ending in Sj−1 with the block starting in Sk . 
In the best case, if all three combinations occur, we have 
cost(R,Q) = cost(S,P)− 3 . �

Lemma 2     Let (S,P) be a minimal reverse intergenic 
partition induced by an orthologous assignment between 
two balanced genomes G = (S, S̆) and H = (P, P̆) . For any 
intergenic transposition τ (i,j,k)(x,y,z) , the minimal reverse inter-
genic partition (R,Q) between the genomes G.τ (i,j,k)(x,y,z) and 
H , induced by the same orthologous assignment, respects 
the restriction cost(R,Q) ≥ cost(S,P)− 3.

Proof  Analogous to the proof of Lemma 1. �

Lemma 3     Let (S,P) be a minimal reverse intergenic 
partition induced by an orthologous assignment between 
two balanced genomes G = (S, S̆) and H = (P, P̆) . For 
any intergenic reversal ρ(i,j)

(x,y) , the minimal reverse inter-
genic partition (R,Q) between the genomes G.ρ(i,j)

(x,y) and H , 
induced by the same orthologous assignment, respects the 
restriction cost(R,Q) ≥ cost(S,P)− 2.

Proof  Similar to the proof of Lemma  1, considering 
that the intergenic reversal ρ(i,j)

(x,y) can combine up to two 
pairs of blocks: the block ending in Si−1 with the block 
ending in Sj and the block starting in Sj+1 with the block 
starting in Si . �

Lemma 4     Let (S,P) be a direct intergenic partition of 
minimum cost between two balanced genomes G = (S, S̆) 
and H = (P, P̆) . Any sequence of intergenic transpositions 
that transforms S into P must have size at least cost(S,P)3 .

Proof  Consider a sequence of k intergenic transposi-
tions capable of transforming G into H . Such sequence 

establishes an orthologous assignment between G and 
H . The assignment is recovered by verifying, for each 
character of S, the new position in P, after the intergenic 
transpositions are applied.

Let (R,Q) be the minimal direct intergenic partition 
induced from the orthologous assignment. We know that 
cost(R,Q)

3 ≤ k , because each intergenic transposition can 
remove at most 3 breakpoints (Lemma  1) and k inter-
genic transpositions are sufficient to turn R into Q (i.e., k 
intergenic transpositions can remove all breakpoints). As 
(S,P) is a minimum cost direct intergenic partition, we 
have |(S,P)|3 ≤ |(R,Q)|

3 ≤ k . �

Lemma 5    Let (S,P) be a reverse intergenic partition of 
minimum cost between two balanced genomes G = (S, S̆) 
and H = (P, P̆) . Any sequence of intergenic reversals that 
transforms S into P must have size at least cost(S,P)2 .

Proof  Analogous to the proof of Lemma  4, but using 
Lemma 3 instead of Lemma 1. �

Lemma 6    Let (S,P) be a reverse intergenic partition of 
minimum cost between two balanced genomes G = (S, S̆) 
and H = (P, P̆) . Any sequence composed of intergenic 
reversals and intergenic transpositions that transforms S 
into P must have size at least cost(S,P)3 .

Proof  Analogous to the proof of Lemma  4, but using 
lemmas 2 and 3 instead of Lemma 1. �

The next lemmas show upper bounds for the distances 
based on the cost of the partitions.

Lemma 7  (Brito et al. [24]) Let G = (S, S̆) be a genome. 
Given a sequence of two intergenic transpositions 
τ
(i+1,j+1,k+1)
(φi ,φj ,φk )

, τ (i+1,i+k−j+1,k+1)

(φ′
i ,φ

′
i+k−j ,φ

′
k )

 , applied in this order, it is 

possible to find values for φi,φj ,φk ,φ′
i , φ

′
i+k−j ,φ

′
k to per-

form any redistribution of nucleotides within regions S̆i , 
S̆j , and S̆k.

Note that, after the two intergenic transpositions 
describe in Lemma 7, the string S remains the same.

Lemma 8  Given two genomes G = (S, S̆) and 
H = (P, P̆) , and an orthologous assignment ξ between 
them. Let (S,P) be the minimal direct partition derived 
from the orthologous assignment ξ . If S has a soft break-
point S̆i such that S̆i ≥ ξ(S̆i) , then we can apply an 
intergenic transposition in G that removes at least one 
breakpoint from S . Furthermore, if S has at least 4 soft 
breakpoints and there is no breakpoint S̆r , r  = i , such that 
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S̆r ≥ ξ(S̆r) , we can choose an intergenic transposition that 
does not create overcharged breakpoints.

Proof  Consider the gene Sj of S, such that the genes 
ξ(Si) and ξ(Sj) are adjacent in P and the position of 
ξ(Sj) in P is greater than the position of ξ(Si) . Note that 
Sj  = Si+1 , otherwise this would be a hard breakpoint. 
Besides, note that S̆j−1 is a breakpoint.

Initially, suppose that j > i . Let S̆k be a breakpoint such 
that k < i or k ≥ j . Such breakpoint must exist, otherwise 
(S̆1, . . . , S̆i) and (S̆j , . . . , S̆n) would have no breakpoints 
and, since ξ(Si) and ξ(Sj) are adjacent and Sj  = Si+1 , there 
is no valid value for Si+1.

If k < i , an intergenic transposition τ (k+1,i+1,j)
(x,y,z)  turns the 

pairs (Sk , Si+1), (Sj−1, Sk+1) , and (Si, Sj) adjacent in the 
new genome. Also, we can set x, y, and z to ensure that 
the intergenic region between Si and Sj is not a break-
point, since S̆i ≥ ξ(S̆i) . Note that no breakpoints are 
introduced, since the affected pairs are all breakpoints. 
Additionally, let us assume that the region between Sk 
and Si+1 would become an overcharged breakpoint, that 
S has at least 4 breakpoints, and that there is no break-
point S̆r , r  = i , such that S̆r ≥ ξ(S̆r) . In that case, let S̆ℓ 
be a breakpoint with ℓ  = i , ℓ  = j − 1 , and ℓ  = k . We can 
replace the intergenic transposition τ (k+1,i+1,j)

(x,y,z)  to ensure 
that no overcharged breakpoints are added. Each case 
leads to an intergenic transposition choice as follows:

•	 If ℓ < k , we can use the intergenic transposition 
τ
(ℓ+1,i+1,j)
(x,y,z)  to turn the pairs (Sℓ, Si+1) , (Sj−1, Sℓ+1) , 

and (Si, Sj) adjacent in the new genome. Note that the 
region between Sℓ and Si+1 is not a hard breakpoint, 
because Sk already comes before Si+1 in P.

•	 If ℓ ≥ j , we can use the intergenic transposition 
τ
(i+1,j,ℓ+1)
(x,y,z)  to turn the pairs (Si, Sj) , (Sℓ, Si+1) , and 
(Sj−1, Sℓ+1) adjacent in the new genome.

•	 If ℓ > k and ℓ < i , we can use the intergenic trans-
position τ

(ℓ+1,i+1,j)
(x,y,z)  to turn the pairs (Sℓ, Si+1) , 

(Sj−1, Sℓ+1) , and (Si, Sj) adjacent in the new genome.
•	 If ℓ > i and ℓ < j − 1 , we can use the intergenic 

transposition τ (k+1,i+1,ℓ+1)
(x,y,z)  to turn the pairs (Sk , Si+1) , 

(Sℓ, Sk+1) , and (Si, Sℓ+1) adjacent in the new genome. 
In that case, we do not have (Si, Sj) , but we can set x, 
y, and z to ensure that the intergenic region between 
Sk and Si+1 is not a breakpoint. We also ensure that 
the region between Si and Sℓ+1 is not a hard break-
point, because Sj already comes after Si in P.

Note that, if the region between Sj−1 and Sk+1 , Sj−1 and 
Sℓ+1 , or Sℓ and Sk+1 becomes a hard breakpoint, we can 
choose the values of x, y, and z to ensure that it becomes 
an undercharged breakpoint.
If k ≥ j , an intergenic transposition τ (i+1,j,k+1)

(x,y,z)  turns the 
pairs (Si, Sj) , (Sk , Si+1) , and (Sj−1, Sk+1) adjacent in the 
new genome. Also, we can set x, y,   and z to ensure that 
the intergenic region between Si and Sj is not a break-
point, since S̆i ≥ ξ(S̆i) . Additionally, if S has at least 4 
breakpoints and there is no breakpoint S̆r , r  = i , such 
that S̆r ≥ ξ(S̆r) , we may replace the intergenic transposi-
tion, as in the previous case, to ensure that it does not 
create overcharged breakpoints.

Now, suppose that i > j . Let S̆k be a breakpoint such 
that k < i and k ≥ j . Such breakpoint must exist, oth-
erwise (S̆j , . . . , S̆i) would have no breakpoints, which 
is a contradiction because the position of ξ(Sj) in P is 
greater than the position of ξ(Si) . An intergenic transpo-
sition τ (j,k+1,i+1)

(x,y,z)  turns the pairs (Sj−1, Sk+1), (Si, Sj) , and 
(Sk , Si+1) adjacent in the new genome. Also, we can set 
x, y,  and z to ensure that the intergenic region between Si 
and Sj is not a breakpoint, since S̆i ≥ ξ(S̆i) . Additionally, 
if S has at least 4 breakpoints and there is no breakpoint 
S̆r , r  = i , such that S̆r ≥ ξ(S̆r) , we may replace the inter-
genic transposition, as in the previous case, to ensure 
that it does not create overcharged breakpoints. �

Lemma 9  Given two genomes G = (S, S̆) and H = (P, P̆) , 
and an orthologous assignment ξ between them, it is possi-
ble to turn G into H using at most cost(S,P)+ 1 intergenic 
transpositions, where (S,P) is the minimal direct partition 
derived from the orthologous assignment ξ.

Proof  We will describe how to apply at most 
cost(S,P)+ 1 intergenic transpositions in G to remove all 
breakpoints from S and, consequently, to turn G into H . 
The intergenic transpositions are applied according to the 
following cases: 

1	 If there are two or more overcharged breakpoints in 
S : Let S̆i and S̆j be two overcharged breakpoints and 
let S̆k be another breakpoint in S (such breakpoint 
must exist since there are overcharged breakpoints). 
We can use two intergenic transpositions (Lemma 7) 
to move the exceeding nucleotides from S̆i and S̆j to 
the intergenic region S̆k.

2	 If there exists a soft breakpoint S̆i in S such that 
S̆i ≥ ξ(S̆i) : We can use one intergenic transposition 
(Lemma  8) to remove at least one breakpoint from 
S . Note that if there is no overcharged breakpoint 
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this case must occur, otherwise the amount of inter-
genic region in S̆ would be greater than the amount 
of intergenic region in P̆ , which is not possible.

3	 If there exists only one overcharged breakpoint 
S̆j in S and there exists no soft breakpoint S̆i in 
S such that S̆i ≥ ξ(S̆i) : In that case S̆j must have 
ξ(S̆j)+

∑

b∈B ξ(b)− b nucleotides, where B is the set 
of breakpoints distinct from S̆j , otherwise the amount 
of intergenic region in S̆ would be different from the 
amount of intergenic region in P̆ . We consider two 
sub-cases: 

(a)	 If there is an undercharged breakpoint S̆k : 
From the quantity of nucleotides on S̆j , we have 
S̆j + S̆k ≥ ξ(S̆j)+ ξ(S̆k) . If there exists another 
breakpoint S̆ℓ , then we can use two intergenic 
transpositions (Lemma  7) to move the neces-
sary number of nucleotides from S̆j to S̆k and 
the exceeding number of nucleotides from S̆j to 
S̆ℓ . Otherwise, since these are the only break-
points, we have S̆j + S̆k = ξ(S̆j)+ ξ(S̆k) . We 
can use two intergenic transpositions to redis-
tribute the number of nucleotides between 
these two regions and remove these two break-
points as well.

(b)	 If there is no undercharged breakpoint: There 
exist at least 3 soft breakpoints, because there 
must exist a soft breakpoint to ensure the cor-
rect quantity of nucleotides and there is no 
direct intergenic partition with only 1 or 2 
soft breakpoints. In that case, we can use two 
intergenic transpositions (Lemma   7) to move 
the exceeding number of nucleotides from S̆j 
to a soft breakpoint. Afterwards, we can apply 
intergenic transpositions from Lemma  8 to 
remove all soft breakpoints and ensure that 
no overcharged breakpoint is inserted while 
there are at least 4 breakpoints. When there 
are 3 breakpoints, at least one will be removed 
and the others will become hard breakpoints. 
As there are no longer soft breakpoints the 
remaining breakpoints will be removed by 
cases 1 and 3(a).

With one exception, we remove at least one break-
point per intergenic transposition. In this way, we can 
transform G = (S, S̆) into H = (P, P̆) using at most 
cost(S,P)+ 1 intergenic transpositions. �
Lemma 10  (Brito et  al. [24]) Given two genomes 
G = (S, S̆) and H = (P, P̆) , and an orthologous assign-
ment ξ between them, it is possible to turn G into H using 
at most 2cost(S,P) intergenic reversals, where (S,P) is the 

minimal reverse partition derived from the orthologous 
assignment ξ.

Lemma 11  (Brito et  al. [24]) Given two genomes 
G = (S, S̆) and H = (P, P̆) , and an orthologous assign-
ment ξ between them, it is possible to turn G into H using 
at most 32 cost(S,P) intergenic reversals or intergenic trans-
positions, where (S,P) is the minimal reverse partition 
derived from the orthologous assignment ξ.

With the bounds presented on the previous lemmas, 
we can establish a relation between partition and dis-
tance problems.

Theorem 4     An ℓ-approximation for the MCISP prob-
lem ensures an asymptotic 3ℓ-approximation for the ITD 
problem.

Proof  Let G = (S, S̆) and H = (P, P̆) be two co-tailed 
genomes and let p be the size of the minimum direct 
intergenic partition between G and H . An algorithm 
for the MCISP problem with approximation factor ℓ 
returns a direct intergenic partition (S,P) , such that 
p ≤ cost(S,P) ≤ ℓp.

By Lemma  9, it is always possible to transform G 
into H with k intergenic transpositions, such that 
k ≤ cost(S,P)+ 1 . Additionally, by Lemma  4, we 
know that dIT (G,H) ≥

p
3 . Consequently, we have 

dIT (G,H) ≤ k ≤ 3ℓdIT (G,H)+ 1 . �

As a consequence of lemmas  4 and  9, we have an 
asymptotic 3-approximation for the intergenic transpo-
sition distance when there are no repeated genes. The 
best approximation factor known in the literature for that 
problem is 3.5 [23].

Theorem 5    An ℓ-approximation for the RMCISP prob-
lem ensures a 4ℓ-approximation for the IRD problem.

Proof  Let G = (S, S̆) and H = (P, P̆) be two co-tailed 
genomes and let p be the size of the minimum reverse 
intergenic partition between G and H . An algorithm 
for the RMCISP problem with approximation factor ℓ 
returns a reverse intergenic partition (S,P) , such that 
p ≤ cost(S,P) ≤ ℓp.

By Lemma  10, it is always possible to transform G into 
H with k intergenic reversals, such that k ≤ 2cost(S,P) . 
Additionally, by Lemma 5, we know that dIR(G,H) ≥

p
2 . 

Consequently, we have dIR(G,H) ≤ k ≤ 4ℓdIR(G,H) . �
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Theorem 6    An ℓ-approximation for the RMCISP prob-
lem ensures a 4.5ℓ-approximation for the IRTD problem.

Proof  Let G = (S, S̆) and H = (P, P̆) be two co-tailed 
genomes and let p be the size of the minimum reverse 
intergenic partition between G and H . An algorithm 
for the RMCISP problem with approximation factor ℓ 
returns a reverse intergenic partition (S,P) , such that 
p ≤ cost(S,P) ≤ ℓp.

By Lemma  11, it is always possible to transform G 
into H with k intergenic reversals or intergenic trans-
positions, such that k ≤ 3

2 cost(S,P) . Additionally, by 
Lemma  6, we know that dIRT (G,H) ≥

p
3 . So, we have 

dIRT (G,H) ≤ k ≤ 4.5ℓdIRT (G,H) . �

2k‑approximation for MCISP
This section presents an algorithm for the MCISP prob-
lem between two genomes G = (S, S̆) and H = (P, P̆) 
with an approximation factor of 2k, where k = occ(S) . 
The algorithm was partially inspired by the Kolman and 
Waleń algorithm [20] that does not consider intergenic 
regions.

In order to describe the algorithm we need two 
functions:

•	 subgen(G,X ) : the number of subgenomes of G 
equal to X  (each of these subgenomes is an occur-
rence of X).

•	
weight(G,H,X ) = subgen(G,X )− subgen(H,X ) : 
a value indicating how many occurrences of X  are in 
excess in G or in H . If the value is positive G has more 
occurrences of X  than H . If the value is negative H 
has more occurrences of X  than G.

The function weight can be generalized to work on two 
sequences S and P of genomes:

Lemma 12    Given two genomes G = (S, S̆) , H = (P, P̆) , 
and a pair (S,P) of genome sequences, such that it satis-
fies the conditions 1 and 2 of direct intergenic partition, 
we have that (S,P) satisfies the condition 3 if and only if 

weight(S,P,X ) =

|S|
∑

i=1

subgen(Si ,X )−

|P|
∑

i=1

subgen(Pi ,X )

weight(S,P,X ) = 0 for all genomes X  contained in G or 
in H.

Proof  First, we argue that if the third condition is sat-
isfied then weight(S,P,X ) = 0 . Assuming the third 
condition is satisfied, we have a permutation φ , from the 
numbers 1 to |S| , such that Pi = Sφi , ∀ 1 ≤ i ≤ |S|.

Let X  be a genome such that X ⊂ G or X ⊂ H . In 
weight(S,P,X ) , we are only going to count an occur-
rence of X  in G if it is a subgenome of some block of S . 
Similarly, we are only going to count an occurrence of X  
in H if it is a subgenome of some block of P.

Note that, the counted occurrences of X  in G are in a 
one-to-one correspondence with the counted occur-
rences of H . More precisely, for a subgenome Si,jk  of a 
block Sk , such that Si,jk = X  there is a subgenome Pi,j

φk
 of 

a block Pφk , such that Pi,j
φk

= X  . Conversely, for a subge-
nome Pi,j

φk
 of a block Pφk , such that Pi,j

φk
= X  , there is a 

subgenome Si,jk  of a block Sk , such that Si,jk = X  . Conse-
quently, weight(S,P,X ) = 0 , for every genome X  , such 
that X ⊂ G or X ⊂ H.

Now we prove that if weight(S,P,X ) = 0 then the third 
condition is satisfied. By contradiction let us assume that 
there is no one-to-one correspondence between blocks of 
S and blocks of P.

The impossibility of a correspondence may happen by 
four reasons: (i) there is a block in S that is not equal to 
any block of P ; (ii) there is a genome X  correspondent to 
r blocks of S , but ℓ < r blocks of P ; (iii) there is a block 
in P not equal to any block of S ; (iv) there is a genome 
X  correspondent to r blocks of P , but ℓ < r blocks of S . 
Without loss of generality, we consider only the first two 
cases.

In case (i), assume that Sj is the biggest block of S not 
equal to any block of P . As weight(S,P, Sj) = 0 , we have 
∑|S|

i=1 subgen(Si, Sj) =
∑|P|

i=1 subgen(Pi, Sj) . Conse-
quently, P must have a copy of Sj in one of its blocks. Let 
Ps be a block with such copy, i.e., Sj ⊂ Ps . If Ps  = Sj , then 
S must have a copy of Ps , because weight(S,P,Ps) = 0 . 
This means that S has at least two copies of Sj and we 
must have another copy of Sj in P . Following that argu-
ment eventually P must have a block equal to Sj , contra-
dicting the assumption of case (i).
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In case (ii) we can establish a correspondence between 
the ℓ blocks of P and some of the r blocks of S . We have 
at least one block of S without a correspondent in P . If we 
ignore the blocks with correspondences when calculating 
the weights, the same argument of case (i) leads to a con-
tradiction. �

Given two genomes G and H , we can easily construct a 
pair of genomes sequences (S,P) satisfying the first two 
conditions of direct intergenic partition. We just have 
to choose which intergenic regions of G and H will be 
the breakpoints of S and P , respectively. By Lemma  12, 
to ensure that (S,P) is a direct intergenic partition of 
G and H , we must choose the breakpoints such that 
weight(S,P,X ) = 0 for all genomes X  of G or H.

Let TG,H be the set of all genomes X  , such that X ⊂ G 
or X ⊂ H , and weight(G,H,X )  = 0 and consider the 
subset T

min
G,H = {X ∈ TG,H|Y �⊂ X , ∀Y ∈ TG,H,Y �= X } . 

Note that, to include a breakpoint in some occurrence 
of a genome Y ∈ TG,H \ Tmin

G,H , it suffices to include a 
breakpoint in the correspondent occurrence of a genome 
X ∈ T

min
G,H,X ⊂ Y . For that reason, we start by including 

breakpoints in elements of Tmin
G,H . In fact, the following 

lemma ensures that we must include at least one break-
point for each element of Tmin

G,H.

Lemma 13  In order to construct a direct intergenic par-
tition (S,P) of two genomes G and H , we must include a 
breakpoint in at least one copy of every element X ∈ T

min
G,H.

Proof  For a genome X ∈ TG,H , let 
k = weight(G,H,X ) . To ensure that 
weight(S,P,X ) = 0 , if k > 0 then we must include 
breakpoints in at least k copies of X  in G , otherwise, if 
k < 0 , we must include breakpoints in at least −k copies 
of X  in H . As weight(G,H,X )  = 0 , we must include at 
least one breakpoint in G or in H , and the lemma follows. 
�

It may be necessary to include a breakpoint in more 
than one occurrence of a genome X ∈ T

min
G,H . We define 

break(X ) as the breakpoint associated with the genome 
X  , and when we include a breakpoint in an occurrence of 
X  we always select a breakpoint equivalent to break(X ).

To include the breakpoints, we not only must know 
the genomes contained in G or H with initially non-zero 
weight, but also keep track of genomes that acquire a 
non-zero weight after the inclusion of a breakpoint. 
For that, we generalize the sets TG,H and Tmin

G,H to con-
sider genome sequences. Given two genome sequences 
S and P , the set TS,P comprises of genomes X  , such 

that X ⊂ Si , for 1 ≤ i ≤ |S| , or X ⊂ Pj , for 1 ≤ j ≤ |P| , 
and weight(S,P,X )  = 0 . Additionally, we have the set 
T
min

S,P = {X ∈ TS,P|Y �⊂ X , ∀Y ∈ TS,P,Y �= X }.
Let us define break(X ) for a genome X ∈ T

min

S,P  . If 
X ∈ T

min
G,H , break(X ) is already defined, otherwise, there 

must be at least one breakpoint included in some occur-
rence of X  in G or H , so break(X ) is equivalent to the 
first breakpoint included in some occurrence of X .

The algorithm that selects the breakpoints (Algo-
rithm  1) works as follows. Initially we consider two 
sequences S0 = [G] and P0 = [H] , each with a single 
block. At the i-th step, we produce the sequences Si and 
Pi including a breakpoint in the sequences Si−1 and Pi−1 
based on the following rules:

•	 The breakpoint is included in an occurrence of a 
genome X ∈ T

min

Si−1,Pi−1.
•	 If weight(Si−1,Pi−1,X ) > 0 , the selected occur-

rence of X  must come from G.
•	 If weight(Si−1,Pi−1,X ) < 0 , the selected occur-

rence of X  must come from H.
•	 The selected breakpoint must be equivalent to 

break(X ).

The algorithm continues until weight(Si,Pi,X ) = 0 
for all genomes X  of G or H , i.e., until (Si,Pi) becomes a 
direct intergenic partition.

Let us briefly discuss the time complexity of Algo-
rithm 1. Let n be the size of the input strings. First, we 
consider the complexity to build Tmin

G,H . Using the suffix 
tree data structure [29] (constructed in time O(n)), 
subgen(G,X ) is computed in O(n) time, and, conse-
quently, so is weight(G,H,X ) . Similarly, for a genome 
Y , we can recover the genomes X  contained in G or H , 
such that Y ⊂ X  , in O(n) time. Since there are 2n2 subge-
nomes of G and H , the set Tmin

G,H can be constructed in 
O(n3) time. We can also store which subgenomes belong 
to the set Tmin

Si ,Pi
 in a suffix tree allowing the update of 

T
min

Si ,Pi
 in O(n) time. Additionally, we can store the known 

breakpoints in a binary search tree so it is possible to 
recover break(X ) in O(n log n) time. The initialization of 
Algorithm 1 (lines 1 to 4) takes O(n3) time, the loop from 
lines 5 to 16 is repeated at most O(n) times, because there 
are at most 2n breakpoints, and each iteration takes at 
most O(n log n) time, since searching the breakpoint 
takes time O(n log n) and updating Tmin

Si ,Pi
 takes linear 

time. Consequently, Algorithm  1 has time complexity 
O(n3).
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Example 3

Execution of Algorithm  1 with genomes G = (S, S̆) and 
H = (P, P̆) . In a genome X  , the intergenic region corre-
spondent to break(X ) is marked in bold.

S = [I B A B C B C F ] S̆ = [1 3 2 3 1 3 2]

P = [I B C A B B C F ] P̆ = [1 3 0 2 4 3 2]

T
min

G,H = {([B A], [3]), ([A B C], [2 3]), ([C B], [1]),

(([I B C], [1 3])[C A], [0]), ([B B], [4])}

S0 = [([I B ABC BC F ], [1 3 2 3 1 3 2])]

P0 = [([I B C ABBC F ], [1 3 0 2 4 3 2])]

T
min

S0 ,P0
= T

min

G,H

S1 = [([I B], [1]) ([ABC BC F ], [2 3 1 3 2])]

P1 = P0

T
min

S1,P1
= {([A B C], [2 3]), ([C B], [1]), ([I B C], [1 3]),

([C A], [0]), ([B B], [4])}

S2 = [([I B], [1]) ([A], [ ]) ([BC BC F ], 3 1 3 2)]

P2 = P1

T
min

S2 ,P2
= {([C B], [1]), ([I B C], [1 3]), ([C A], [0]),

([B B], [4]), ([A B], [2])}

S3 = [([I B], [1]) ([A], [ ]) ([BC], [3]),

([BC F ], [3 2])]

P3 = P2

T
min

S3,P3
= {([I B C], [1 3]), ([C A], [0]), ([B B], [4]),

([A B], [2])}

S4 = S3

P4 = [([I], [ ]) ([BC ABBC F ], [3 0 2 4 3 2])]

T
min

S4 ,P4
= {([C A], [0]), ([B B], [4]), ([A B], [2]),

([I B], [1])}

S5 = S4

P5 = [([I], [ ]) ((BC), [3]) ([ABBC F ], [2 4 3 2])]

T
min

S5,P5
= {([B B], [4]), ([A B], [2]), ([I B], [1])}

S6 = S5

P6 = [([I], [ ]) ([BC], [3]), ([AB], [2])

([BC F ], [3 2])]

T
min

S6,P6
= {([A B], [2]), ([I B], [1])}

S7 = S6

P7 = [([I], [ ]) ([BC], [3]) ([A], [ ]) ([B], [ ])

([BC F ], [3 2])]

T
min

S7,P7
= {([I B], [1])}

S8 = [([I], [ ]) ([B], [ ]) ([A], [ ]) ([BC], [3])

([BC F ], [3 2])]

P8 = P7

T
min

S8,P8
= {}
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Lemma 14  Algorithm  1 produces a direct intergenic 
partition of two genomes G = (S, S̆) and H = (P, P̆) , 
including at most 2k|Tmin

G,H| breakpoints, where k = occ(S).

Proof  Initially, we show that the algorithm stops pro-
ducing a direct intergenic partition, i.e., eventually 
weight(Si,Pi,X ) = 0 . At every step we reduce the 
occurrence of at least one genome in Si or in Pi and, while 
weight(Si,Pi,X )  = 0 , there is an element in Tmin

Si ,Pi
 

where we can insert a breakpoint. As the number of 
occurrences of genomes in Si and in Pj is finite, integer, 
non-negative, and always decreasing, eventually the algo-
rithm stops with weight(Si,Pi,X ) = 0.

Now, we show that we include at most 2k|Tmin
G,H| break-

points. Every breakpoint is included in an occurrence of a 
genome from Tmin

G,H or is equivalent to an already included 
breakpoint. Consequently, every breakpoint is equivalent 
to break(X ) for some X ∈ T

min
G,H . As there is a maximum 

of k copies for each gene in G and a maximum of k cop-
ies for each gene in H , every breakpoint is equivalent to 
a maximum of 2k − 1 other breakpoints, so we include at 
most 2k|Tmin

G,H| breakpoints. �

Theorem  7     Algorithm  1 has an approximation fac-
tor of 2k for the MCISP problem between the genomes 
G = (S, S̆) and H = (P, P̆) , where k = occ(S).

Proof  Directly from lemmas 13 and 14. �

Corollary 1  Algorithm  1 has an approximation factor 
of 2k for the MCSP problem between the string S and P, 
where k = occ(S).

Proof  Using the same reduction presented in Theo-
rem  2, but considering the optimization versions of the 
problems, we can apply Algorithm 1 to the MCSP prob-
lem and ensure the approximation factor 2k. �

It is worth noting that we improve the previously 
known �(k) approximation of MCSP [20] from 4k to 2k.

Corollary 2  Algorithm  1, in combination with the 
algorithm described in Lemma  9, ensures an asymptotic 
approximation factor of 6k for the ITD problem between 
the genomes G = (S, S̆) and H = (P, P̆) , where k = occ(S).

Proof  Directly from theorems 4 and 7. �

2k‑approximation for RMCISP
We can adapt Algorithm  1 to approximate the RMCISP 
problem. The main point of the adaptation is to use congru-
ence of genomes instead of equality and substitute the rela-
tion X ⊂ G with a new relation X ⊏ G , such that X ⊏ G 
if X ⊂ G or rev(X ) ⊂ G . Using this relation, the functions 
and sets from the previous section must be adapted:

•	 subgen(G,X ) is now the number of subgenomes of 
G congruent to X  (i.e., equal to X  or to rev(X ) ). Con-
sequently, weight considers now this new subgen 
function.

•	 TG,H is now the set of all genomes X  , such that X ⊏ G 
or X ⊏ H , and weight(G,H,X )  = 0 . Additionally,  
T
min
G,H = {X ∈ TG,H|Y �⊏ X , ∀Y ∈ TG,H,Y �= X } 

( Tmin

S,P  is adapted in a similar manner).

Some other adaptations must be made on Algorithm 1. Line 
5 must check if (S,P) is a reverse intergenic partition instead 
of a direct intergenic partition. In lines 9 and 13, the block 
must contain an occurrence of X  or rev(X ) , and the break-
point in lines 10 and 14 must be congruent to break(X ) 
instead of equivalent to break(X ) . Next, we show analo-
gous results to the ones presented in the previous section.

Lemma 15    Given two genomes G = (S, S̆) , H = (P, P̆) , 
and a pair (S,P) of genome sequences, such that it satis-
fies conditions 1 and 2 of reverse intergenic partition, 
we have that (S,P) satisfies condition 3 if and only if 
weight(S,P,X ) = 0 for all genomes X  , such that X ⊏ G 
or X ⊏ H.

Proof  First, we argue that if the third condition is sat-
isfied then weight(S,P,X ) = 0 . Assuming the third 
condition is satisfied, we have a permutation φ , from the 
numbers 1 to |S| , such that Pi

∼= Sφi , ∀ 1 ≤ i ≤ |S|.

Let X  be a genome such that X ⊏ G or X ⊏ H . In 
weight(S,P,X ) , we are only going to count an occur-
rence of X  or rev(X ) in G if it is a subgenome of some block 
of S . Similarly, we are only going to count an occurrence of 
X  or rev(X ) in H if it is a subgenome of some block of P.

Note that the counted occurrences of X  or rev(X ) in G 
are in a one-to-one correspondence with the counted 
occurrences in H . More precisely, for a subgenome Si,jk  of 
a block Sk such that Si,jk ∼= X  , there is a subgenome Pi,j

φk
 

of a block Pφk , such that Pi,j
φk

∼= X  . Conversely, for a sub-
genome Pi,j

φk
 of a block Pφk , such that Pi,j

φk
∼= X  there is a 
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subgenome Si,jk  of a block Sk , such that Si,jk ∼= X  . Conse-
quently, weight(S,P,X ) = 0 for every genome X  , such 
that X ⊏ G or X ⊏ H.

Now we prove that if weight(S,P,X ) = 0 then the third 
condition is satisfied. By contradiction let us assume that 
there is no one-to-one correspondence between blocks of 
S and blocks of P.

The impossibility of a correspondence may happen by 
four reasons: (i) there is a block in S that is not congruent 
to any block of P ; (ii) there is a genome X  congruent to r 
blocks of S , but it is congruent to ℓ < r blocks of P ; (iii) 
there is a block in P not congruent to any block of S ; (iv) 
there is a genome X  congruent to r blocks of P , but it is 
congruent to ℓ < r blocks of S . Without loss of generality, 
we consider only the first two cases.

In case (i), assume that Sj is the biggest block of S not 
congruent to any block of P . As weight(S,P, Sj) = 0 , we 
have 

∑|S|
i=1 subgen(Si, Sj) =

∑|P|
i=1 subgen(Pi, Sj) . Con-

sequently, P must have a copy of Sj or rev(Sj) in one of its 
blocks. Let Ps be a block with such copy, i.e., Sj ⊏ Ps . If 
Ps  ∼= Sj , then S must have a copy of Ps or rev(Ps ), because 
weight(S,P,Ps) = 0 . This means that S has at least two 
copies of Sj or rev(Sj) and we must have another copy of 
Sj or rev(Sj) in P . Following that argument, eventually P 
must have a block equal to Sj or rev(Sj) , contradicting the 
assumption of case (i).

In case (ii) we can establish a correspondence between 
the ℓ blocks of P and some of the r blocks of S . We have 
at least one block of S without a correspondent in P . If we 
ignore the blocks with correspondences when calculating 
the weights, the same argument of case (i) leads to a con-
tradiction. �

Lemma 16  In order to construct a reverse inter-
genic partition (S,P) of two genomes G and H , we must 
include a breakpoint in at least one copy of every element 
X ∈ T

min
G,H.

Proof  For a genome X ∈ TG,H , let 
k = weight(G,H,X ) . To ensure that 
weight(S,P,X ) = 0 , if k > 0 , then we must include 
breakpoints in at least k copies of X  or rev(X ) in G , other-
wise, if k < 0 , we must include breakpoints in at least −k 
copies of X  or rev(X ) in H . As weight(G,H,X )  = 0 , we 
must include at least one breakpoint in G or in H , and the 
lemma follows. �

Lemma 17  The adaptation of Algorithm  1 produces 
a direct intergenic partition of two genomes G = (S, S̆) 
and H = (P, P̆) , including at most 2k|Tmin

G,H| breakpoints, 
where k = occ(S).

Proof  We know the algorithm stops producing a 
reverse intergenic partition for the same reason stated 
in Lemma  14. Additionally, every breakpoint is included 
in an occurrence of a genome from Tmin

G,H or is congruent 
to an already included breakpoint. Consequently, every 
breakpoint is congruent to break(X ) for some X ∈ T

min
G,H . 

As there is a maximum of k copies for each gene in G and a 
maximum of k copies for each gene in H , every breakpoint 
is congruent to a maximum of 2k − 1 other breakpoints, 
so we include at most 2k|Tmin

G,H| breakpoints. �

Theorem  8  The adaptation of Algorithm  1 has an 
approximation factor of 2k for the RMCISP problem 
between the genomes G = (S, S̆) and H = (P, P̆) , where 
k = occ(S).

Proof  Directly from lemmas 16 and 17. �

Corollary 3  The adaptation of Algorithm  1 has an 
approximation factor of 2k for the RMCSP problem 
between the string S and P, where k = occ(S).

Proof  Applying a reduction, as in Corollary  1, we can 
apply the adaptation of Algorithm 1 to the RMCSP prob-
lem and ensure the approximation factor 2k. �

It is worth noting that we improve the previously 
known �(k) approximation of RMCSP [20] from 8k to 2k.

Corollary 4  The adaptation of Algorithm  1 combined 
with the algorithm described by Brito et  al. [24] for the 
Sorting Permutations by Intergenic Reversals problem 
ensures an approximation factor of 8k for the IRD prob-
lem between the strings S and P, where k = occ(S).

Proof  Directly from theorems 5 and 8. �

Corollary 5  The adaptation of Algorithm  1 com-
bined with the algorithm described by Brito et  al. [24] 
for the Sorting Permutations by Intergenic Reversals and 
Transpositions problem ensures an approximation fac-
tor of 9k for the IRTD problem between the genomes 
G = (S, S̆) and H = (P, P̆) , where k = occ(S).

Proof  Directly from theorems 6 and 8. �
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Experimental results
This section presents the results of our algorithms 
applied in databases of simulated genomes. Our partition 
algorithm was implemented in Haskell and the experi-
ments were conducted on a PC equipped with a 2.3GHz 
Intel® Xeon® CPU E5-2470 v2, with 40 cores and 32 GB 
of RAM, running Ubuntu 18.04.2. We constructed one 
database for each rearrangement model: TRANS for 
intergenic transpositions, REV for intergenic reversals, 
and REVTRANS for intergenic reversals and transpo-
sitions. Each database has 40 sets of 100 genome pairs, 
and each set is defined by the size m of its correspondent 
alphabet and a number o of applied operations. Each pair 
of genomes was constructed as follows: 

1	 For the source genome G = (S, S̆) , we constructed 
the string S by selecting 100 characters from a uni-
form distribution of m characters (correspondent 
to an alphabet � , such that �S ⊂ � ), each charac-
ter could be selected more than once. Afterwards, 
we constructed the list S̆ by randomly choosing 
each intergenic region from integers in the interval 
[0,  100], each integer had the same probability of 
being chosen.

2	 For the target genome H = (P, P̆) , we apply o opera-
tions in S. The type of operation depends on the 
database. In the TRANS database, we applied o inter-
genic transpositions τ (i,j,k)(x,y,z) , where the values of i, j, k, 
x, y, and z were randomly chosen. In the REV data-
base, we applied o intergenic reversals ρ(i,j)

(x,y) , where 
the values i, j, x, and y were randomly chosen. In 
the REVTRANS database we applied 

⌊

o
2

⌋

 intergenic 
reversals and 

⌈

o
2

⌉

 intergenic transpositions. These 
operations were aplied in a random order and the 
parameters of each one were randomly chosen.

3	 We performed the extension process by adding two 
extra characters in the extremities of the source and 
target genomes to ensure that they are co-tailed. 
Note that both genomes have a final size of 102.

In these tests, for each pair of genomes from the TRANS 
database, we computed the direct intergenic partition 
from our algorithm, and for each pair of genomes from 
REV and TRANSREV databases, we computed the 
reverse intergenic partition from our algorithm. After-
wards, we produced 100 orthologous assignments capa-
ble of inducing each partition. We ensured that each 
possible assignment had the same probability of being 
chosen.

For each assignment, we computed the distance 
between the genomes using the assignment. The dis-
tances are computed by a different algorithm for each 

database: for the TRANS database, we used the algorithm 
described in Lemma  9 (implemented in C++); for the 
REV and REVTRANS databases, we used the algorithms 
for reversals and reversals and transpositions from Brito 
et al. [24] (implemented in Python), respectively.

To compare with the distances that do not consider the 
partitions, we also produced, for each genome pair, 100 
assignments that do not take into account the partitions. 
We computed the distances for each of these assignments 
as well.

Tables 2, 3, and 4 show the distances for the TRANS, 
REV, and REVTRANS databases, respectively. Each line 
corresponds to a set of 100 genome pairs; the first two 
columns indicate, respectively, the number of operations 
and the size of the alphabet used to generated the set. 
The following seven columns present the results consid-
ering the partitions. For each genome pair, we consider 
the minimum and average distance from all 100 assign-
ments. For each set, we report the minimum (Min.), aver-
age (Avg.), and maximum (Max.) for those two values. 
We also report the average time, in seconds, necessary 
to produce the partition and compute the 100 distances. 
The last seven columns present the same values for the 
distances that do not consider the partitions. In that case, 
the time reported refers only to calculating the distances. 

Figures  8,  9, and  10 show box plots with the average 
distances for the TRANS, REV, and REVTRANS data-
bases, respectively.

From Table  2 and Fig.  8, we see that in the TRANS 
database the distances considering the partitions are 
lower than the distances that do not take the partitions 
into account. For sets generated with 25 transpositions, 
the minimum distances without partition are, on average, 
at least 39% higher than the minimum distances with par-
tition. For the average distance, the difference is at least 
60% on average. The difference between the distances 
decreases as the number of operations or the size of the 
alphabet increases. For sets generated with 100 transpo-
sitions and alphabet of size 10, the minimum and aver-
age distances without partition are on average 8% higher 
than the minimum or average distances with partition. 
For sets generated with 100 transpositions and alphabet 
of size 100, the minimum distances without partition 
are on average 3% higher than the minimum distances 
with partition. For the average distance, the difference 
is 5% on average. It is worth mentioning that with 100 
operations we have an extreme case, where each origin 
genome is considerably shuffled to produce the corre-
sponding target genome of the pair. It is also interesting 
that with smaller alphabets, when the number of repli-
cas increases, the advantage of using the partitions also 
increases. Looking at the running times, we see that, for 
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the transposition model, we must pay a small cost to pro-
duce better distances using the partitions.

From Table 3 and Fig. 9, we see that in the REV data-
base the distances considering the partitions are still 
lower than the distances that do not take the partitions 

into account, and the differences between distances are 
higher for this database. For sets generated with 25 rever-
sals, the minimum distances without partition are, on 
average, at least 149% higher than the minimum distances 
with partition. For the average distance, the difference is 

Table 2  Distances for the ITD problem with and without the use of our partition algorithm

OP |�| With partition Without partition

Minimum distance Average distance Time Minimum distance Average distance Time

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

25 10 42 47.83 57 43.64 49.45 58.80 0.22 94 96.91 98 99.93 100.19 100.52 0.02

25 20 38 48.07 61 39.85 49.61 61.79 0.22 88 93.42 96 97.99 98.63 99.41 0.01

25 30 39 47.85 55 40.71 49.27 56.62 0.22 84 88.89 92 94.72 96.27 97.49 0.02

25 40 39 48.53 57 40.85 49.91 58.67 0.22 77 84.97 88 89.56 93.60 95.62 0.01

25 50 41 48.38 55 42.54 49.59 56.87 0.22 69 81.20 87 86.35 90.66 93.87 0.01

25 60 40 48.56 57 40.68 49.69 58.79 0.23 70 77.84 84 81.71 88.00 93.21 0.01

25 70 40 47.94 54 40.42 48.85 55.96 0.22 68 74.88 84 80.36 85.60 91.40 0.01

25 80 40 48.29 56 40.00 49.20 57.03 0.23 62 71.84 78 77.62 83.26 88.35 0.01

25 90 39 48.53 55 39.57 49.36 56.89 0.22 61 70.86 81 74.31 81.82 88.77 0.01

25 100 41 48.85 56 41.25 49.61 56.80 0.23 58 68.29 77 71.95 79.51 86.20 0.01

50 10 64 71.52 80 65.79 73.08 80.86 0.33 96 98.03 99 100.20 100.46 100.80 0.01

50 20 63 72.17 80 65.62 73.68 81.79 0.33 92 95.51 98 98.71 99.57 100.30 0.02

50 30 66 72.38 82 67.76 73.86 83.79 0.32 90 93.19 96 96.83 98.40 99.75 0.01

50 40 62 71.98 82 63.84 73.55 82.87 0.33 85 91.14 95 93.56 96.89 99.07 0.02

50 50 62 72.25 80 63.70 73.74 80.97 0.33 84 89.44 94 92.76 95.60 98.03 0.01

50 60 60 71.51 81 61.97 73.01 82.74 0.33 82 87.18 92 89.80 94.03 97.91 0.01

50 70 64 71.96 80 65.64 73.56 81.80 0.33 79 85.89 90 87.46 92.80 95.79 0.01

50 80 65 72.04 83 65.81 73.66 84.78 0.33 78 84.64 91 87.05 91.79 96.90 0.01

50 90 62 71.64 80 62.70 73.14 80.91 0.33 76 83.25 90 84.45 90.39 95.29 0.01

50 100 65 72.04 82 65.90 73.52 83.85 0.34 75 82.74 89 83.25 89.98 94.72 0.01

75 10 76 84.41 92 77.53 86.00 93.90 0.38 96 98.26 100 100.23 100.58 100.82 0.02

75 20 76 84.71 91 77.65 86.28 91.91 0.38 94 96.95 99 99.50 100.15 100.54 0.01

75 30 76 84.36 92 76.83 85.91 92.88 0.38 92 95.52 98 97.47 99.39 100.43 0.01

75 40 79 84.87 92 80.75 86.43 93.70 0.39 91 94.51 97 97.46 98.76 100.09 0.02

75 50 77 85.04 95 78.83 86.67 95.83 0.38 90 93.66 98 94.47 98.02 100.16 0.02

75 60 76 84.01 91 77.66 85.55 92.80 0.38 89 92.21 96 94.24 97.07 99.44 0.01

75 70 79 84.99 92 80.71 86.48 93.80 0.38 86 92.01 95 90.84 96.64 98.65 0.01

75 80 77 85.06 93 78.92 86.63 94.82 0.39 86 91.26 96 92.84 95.90 98.98 0.01

75 90 74 85.41 93 76.85 86.93 94.78 0.40 85 90.93 97 90.58 95.78 99.25 0.01

75 100 74 84.52 94 74.70 86.12 94.78 0.39 81 90.00 96 89.03 95.05 98.69 0.01

100 10 82 90.80 96 83.72 92.40 96.86 0.41 97 98.68 100 100.43 100.67 100.94 0.02

100 20 83 91.23 97 84.71 92.87 98.91 0.41 95 97.87 99 99.57 100.41 100.83 0.02

100 30 86 91.55 97 87.74 93.15 98.84 0.41 95 97.33 99 98.93 100.10 100.72 0.02

100 40 86 91.72 98 87.81 93.25 98.80 0.42 94 96.58 99 98.53 99.72 100.60 0.02

100 50 84 91.17 98 85.83 92.71 99.77 0.42 91 95.73 99 96.15 99.13 100.72 0.02

100 60 85 91.49 98 86.77 92.96 99.72 0.42 90 95.18 99 95.77 98.74 100.24 0.02

100 70 83 91.54 98 84.67 93.07 99.76 0.42 86 95.05 99 91.77 98.41 100.60 0.01

100 80 84 91.20 99 85.67 92.81 99.77 0.42 90 94.40 99 95.22 98.01 100.50 0.01

100 90 87 91.49 96 87.56 93.10 97.81 0.43 91 94.35 98 95.19 97.87 100.10 0.01

100 100 86 91.71 98 87.85 93.21 98.85 0.43 91 94.16 98 94.98 97.65 100.33 0.01
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at least 173% on average. Again, the difference between 
the distances decreases as the number of operations or 
the size of the alphabet increases, however, even in sets 
generated with 100 reversals and alphabet of size 100, 
the minimum distances with partition are on average 

14% higher than the minimum distances with partition. 
For the average distance, the difference is 16% on aver-
age. In the REV database, we see that the running time 
considering the partition was lower than the running 
time without the partition. This happened because the 

Table 3  Distances for the IRD problem with and without the use of our partition algorithm

OP |�| With partition Without Partition

Minimum Distance Average Distance Time Minimum Distance Average Distance Time

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

25 10 27 33.38 41 30.65 37.20 47.07 5.35 98 100.44 102 105.15 105.84 106.82 14.43

25 20 27 32.64 38 29.44 35.36 41.36 5.11 93 98.04 101 102.56 104.56 105.80 14.21

25 30 28 32.55 38 29.25 34.90 40.69 4.99 88 95.02 99 99.35 102.59 104.50 13.83

25 40 28 32.91 39 28.00 34.65 40.48 4.98 84 92.17 98 95.01 100.47 104.07 13.71

25 50 28 32.62 38 28.00 34.13 39.42 4.96 80 89.46 96 92.96 98.65 102.58 13.26

25 60 27 32.61 39 27.00 33.85 40.81 4.94 78 87.57 98 91.02 97.03 104.22 12.99

25 70 28 32.35 39 28.00 33.64 40.90 4.93 73 85.74 94 87.39 95.04 101.30 12.71

25 80 27 32.69 38 28.04 33.58 39.50 4.97 72 83.86 95 84.09 93.49 101.54 12.40

25 90 27 32.79 38 27.00 33.55 40.39 4.94 72 82.31 92 82.03 91.70 99.34 12.03

25 100 28 32.78 38 28.00 33.48 39.24 4.92 66 81.82 95 80.16 91.52 101.39 12.04

50 10 54 60.94 68 56.67 64.24 71.66 9.38 98 100.83 103 105.48 106.04 106.86 14.48

50 20 52 59.96 68 55.80 63.24 72.77 9.29 97 99.30 101 103.80 105.11 106.16 14.37

50 30 51 59.91 70 53.45 63.03 73.07 9.22 92 97.56 100 101.59 104.05 106.35 14.19

50 40 51 59.86 68 53.22 62.93 71.84 9.28 90 95.72 100 99.79 102.76 104.98 13.93

50 50 50 59.70 67 51.83 62.82 71.34 9.08 89 94.04 100 97.50 101.47 104.42 13.73

50 60 54 59.69 67 55.81 62.55 69.59 9.13 84 92.74 99 93.63 100.16 105.08 13.44

50 70 52 59.48 65 54.02 62.42 69.31 9.02 84 91.46 98 92.73 99.12 103.50 13.34

50 80 51 59.30 68 53.04 62.05 71.22 8.91 83 90.18 97 91.74 97.89 103.89 13.12

50 90 53 59.65 66 55.03 62.23 68.75 9.01 79 89.12 95 89.68 96.90 102.52 12.99

50 100 51 58.68 65 53.30 61.24 68.84 8.96 77 88.71 98 86.47 96.52 102.28 13.00

75 10 67 75.02 81 69.82 78.41 83.89 11.51 99 101.33 103 105.40 106.17 106.67 14.52

75 20 67 75.19 83 70.95 78.60 86.92 11.43 97 99.94 102 104.55 105.55 106.39 14.35

75 30 67 74.70 83 70.08 78.23 86.72 11.56 94 98.79 102 103.79 104.89 106.20 14.33

75 40 68 75.63 82 70.68 79.10 85.96 11.53 93 98.20 101 101.55 104.17 105.73 14.23

75 50 68 74.52 82 70.73 77.93 84.80 11.37 89 96.76 100 99.61 103.13 105.25 14.08

75 60 67 75.07 84 71.77 78.33 88.08 11.44 90 95.81 100 98.14 102.43 105.60 13.87

75 70 63 75.03 85 65.25 78.32 88.19 11.44 86 95.35 100 97.33 101.91 105.08 14.00

75 80 67 74.70 81 69.33 77.70 84.76 11.31 86 94.74 99 95.42 101.16 105.35 13.65

75 90 68 74.97 82 70.67 77.94 85.61 11.50 87 94.00 99 96.41 100.67 106.91 13.73

75 100 65 74.49 82 69.30 77.59 85.82 11.18 84 93.34 100 92.97 99.93 103.94 13.48

100 10 77 83.54 91 80.65 87.27 95.42 13.12 98 101.23 103 105.77 106.25 106.79 14.56

100 20 77 83.34 90 80.43 87.14 93.44 12.89 97 100.65 103 104.04 105.80 106.69 14.45

100 30 75 83.73 91 78.56 87.41 94.77 13.17 97 99.67 102 102.77 105.30 106.59 14.39

100 40 77 83.78 92 79.85 87.43 96.10 12.89 94 98.77 101 100.29 104.46 106.72 14.20

100 50 76 83.76 91 80.52 87.36 95.46 13.02 94 98.42 102 100.86 104.17 106.55 14.25

100 60 77 84.05 91 79.73 87.58 95.06 13.12 93 97.50 101 99.96 103.51 105.93 14.05

100 70 77 84.40 92 79.93 87.91 95.21 12.97 93 97.38 101 99.26 103.16 106.34 14.03

100 80 76 83.95 92 79.82 87.46 95.58 12.95 91 96.94 101 97.99 102.77 105.72 13.91

100 90 77 84.10 93 80.15 87.50 97.68 12.84 93 96.56 101 99.07 102.37 106.41 13.80

100 100 74 84.09 90 76.45 87.45 93.49 13.02 89 96.41 101 96.20 102.10 105.84 13.87
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100 runs of the distance algorithm were slower than the 
partition algorithm, and using assignments that consider 
the partition tends to reduce the running time of the dis-
tance algorithm as the number of breakpoints tends to 

be smaller than the number of breakpoints considering a 
random assignment.

From Table  4 and Fig.  10, we see that in the 
REVTRANS database the distances considering the 

Table 4  Distances for the IRTD problem with and without the use of our partition algorithm

OP |�| With partition Without partition

Minimum distance Average distance Time Minimum distance Average distance Time

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

25 10 34 42.01 52 35.07 43.70 52.51 6.86 95 97.08 98 99.61 100.12 100.50 12.59

25 20 32 41.89 50 32.53 43.38 51.06 6.74 91 94.79 98 97.78 99.10 99.84 12.53

25 30 34 41.79 48 34.74 43.18 49.83 6.76 85 92.07 96 95.73 97.69 99.68 12.39

25 40 34 41.39 47 35.55 42.60 48.38 6.78 81 89.38 94 91.59 95.91 98.63 12.31

25 50 35 41.97 48 35.00 43.03 50.70 6.68 79 87.64 94 89.88 94.51 98.58 12.28

25 60 37 41.65 48 37.00 42.60 48.27 6.64 77 85.67 93 87.68 93.16 97.16 12.07

25 70 34 41.73 49 34.98 42.68 49.44 6.73 73 82.57 92 85.13 90.79 97.24 11.84

25 80 37 42.26 49 37.54 43.05 50.05 6.83 69 81.44 89 79.81 89.54 95.94 11.73

25 90 35 41.57 48 35.76 42.34 48.57 6.62 71 79.51 89 79.79 87.65 95.32 11.54

25 100 35 41.84 48 36.00 42.57 49.22 6.71 66 79.31 89 77.86 87.45 94.45 11.43

50 10 59 66.72 75 60.61 67.91 76.42 10.13 95 97.64 99 99.91 100.26 100.50 12.59

50 20 57 66.93 74 58.60 68.14 74.67 10.03 94 96.08 98 98.93 99.63 100.39 12.50

50 30 60 67.11 76 61.56 68.25 77.61 10.10 90 94.31 97 97.01 98.73 99.85 12.45

50 40 56 66.21 73 56.47 67.35 74.62 9.97 86 92.72 96 95.12 97.72 99.91 12.36

50 50 59 66.79 74 60.41 67.96 75.60 10.04 87 91.76 96 94.44 96.98 99.49 12.29

50 60 57 66.32 75 57.74 67.39 76.48 10.12 81 89.80 94 92.17 95.72 98.76 12.33

50 70 53 66.66 75 53.77 67.86 76.61 9.88 83 89.43 95 88.72 94.97 98.51 12.16

50 80 59 66.69 72 59.68 67.74 73.50 9.84 77 88.68 95 89.37 94.34 98.27 12.25

50 90 53 66.24 75 54.56 67.30 76.58 10.09 80 87.89 94 87.04 93.64 97.91 12.16

50 100 59 66.36 76 59.44 67.33 76.59 9.85 80 87.03 94 87.12 92.81 96.63 12.06

75 10 71 79.44 86 72.64 80.61 86.68 11.86 96 97.82 99 100.07 100.35 100.61 12.62

75 20 74 79.92 88 74.53 81.05 88.75 11.84 95 96.88 99 98.85 99.94 100.45 12.55

75 30 71 79.72 87 72.55 80.99 88.57 11.94 92 95.69 98 97.62 99.37 100.19 12.50

75 40 69 79.47 88 70.51 80.64 89.64 11.84 90 94.72 97 96.37 98.67 99.91 12.43

75 50 70 80.38 88 70.72 81.49 89.60 12.00 86 93.89 97 95.04 98.09 100.15 12.44

75 60 72 80.04 89 72.59 81.13 89.67 11.88 88 93.55 97 94.59 97.71 99.60 12.43

75 70 72 80.72 89 72.52 81.78 89.68 12.00 88 92.89 97 93.54 97.06 99.82 12.29

75 80 71 79.91 89 72.68 81.05 89.76 11.86 87 91.95 97 93.33 96.27 99.12 12.44

75 90 73 79.81 88 73.65 80.84 88.63 11.98 88 91.74 96 92.58 96.00 99.04 12.37

75 100 73 80.26 89 73.63 81.32 90.53 11.84 85 91.36 96 90.71 95.55 99.20 12.18

100 10 80 86.23 95 80.56 87.44 96.71 13.20 97 98.18 99 100.13 100.42 100.72 12.62

100 20 81 86.61 94 81.70 87.78 94.59 13.26 95 97.20 99 99.28 100.09 100.56 12.54

100 30 79 87.14 93 80.63 88.39 93.81 13.29 94 96.59 98 98.59 99.73 100.30 12.59

100 40 80 87.15 92 81.57 88.31 93.67 13.19 93 95.84 98 97.28 99.29 100.17 12.50

100 50 79 86.92 93 80.53 88.02 94.68 13.18 91 95.26 97 96.09 98.81 100.18 12.47

100 60 79 87.14 93 80.47 88.27 94.56 13.15 90 94.89 98 96.08 98.52 100.15 12.42

100 70 81 87.61 92 82.67 88.71 93.64 13.21 90 94.70 98 94.98 98.21 100.08 12.37

100 80 78 87.98 96 79.69 89.09 96.57 13.47 91 94.55 97 95.46 98.01 99.97 12.50

100 90 79 87.04 93 80.66 88.22 93.65 13.16 89 94.14 97 93.84 97.64 99.72 12.32

100 100 78 87.46 93 80.53 88.50 94.68 13.13 88 93.65 98 92.55 97.19 100.04 12.24
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partitions are still lower than the distances that do not 
take the partitions into account. The differences were 
higher than those from the TRANS database, but smaller 
than those from the REV database. For sets generated 
with 25 operations, the minimum distances without par-
tition are, on average, at least 90% higher than the mini-
mum distances with partition. For the average distance, 
the difference is at least 105% on average. Again, the dif-
ference between the distances decreases as the number of 
operations or the size of the alphabet increases. In sets 

generated with 100 operations and alphabet of size 100, 
the minimum distances with partition are on average 7% 
higher than the minimum distances with partition. For 
the average distance, the difference is 10% on average. For 
the set generated with at most 75 operations, the running 
time considering the partition was lower than the run-
ning time without the partition.

Considering all results, we see that the partitions 
improve the distances and the improvement is higher for 
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Fig. 8  Average distances for the ITD problem with and without the use of our partition algorithm
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Fig. 9  Average distances for the IRD problem with and without the use of our partition algorithm
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smaller alphabets or closer genomes (genomes that can 
be turned into one another with fewer operations). We 
can also see that with partitions, we have either a small 
cost in the running time, when the distance algorithm 
takes less time than the partition algorithm, or a large 
gain in running time, when the distance algorithm takes 
more time than the partition algorithm.

Conclusion
We defined the intergenic transposition distance 
(ITD), the intergenic reversal distance (IRD), the 
intergenic reversal and transposition distance 
(IRTD), the minimum common intergenic string 
partition (MCISP), and the reverse minimum com-
mon intergenic string partition (RMCISP) prob-
lems. Next, we described a relation between the partition 
and distance problems and a �(k)-approximation for the 
MCISP and RMCISP problems ensuring a �(k)-approxi-
mation for the ITD, IRD, and IRTD problems. Our algo-
rithm for the MCISP and RMCISP problems may also be 
applied to the MCSP and RMCSP problems, which do 
not consider intergenic regions, improving a previously 
known approximation. We also performed practical tests 
on simulated genomes, showing that the distances calcu-
lated considering the partitions were lower than the dis-
tances calculated without taking partitions into account.

As future works, one can extend our approach by con-
sidering the orientation of the genes. Additionally, one 
possible approach to overcome the balanced genome 
restriction is to consider non-conservative events, 
such as insertion and deletion, similarly to the work of 

Alexandrino et al. [30] with the Intergenic Reversal Dis-
tance without gene repetition.
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