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Abstract 

Background:  sorting by transpositions (SBT) is a classical problem in genome rearrangements. In 2012, SBT was proven 
to be NP-hard and the best approximation algorithm with a 1.375 ratio was proposed in 2006 by Elias and Hartman 
(EH algorithm). Their algorithm employs simplification, a technique used to transform an input permutation π into a 
simple permutation π̂ , presumably easier to handle with. The permutation π̂ is obtained by inserting new symbols into 
π in a way that the lower bound of the transposition distance of π is kept on π̂ . The simplification is guaranteed to 
keep the lower bound, not the transposition distance. A sequence of operations sorting π̂ can be mimicked to sort π.

Results and conclusions:  First, using an algebraic approach, we propose a new upper bound for the transposition 
distance, which holds for all Sn . Next, motivated by a problem identified in the EH algorithm, which causes it, in sce-
narios involving how the input permutation is simplified, to require one extra transposition above the 1.375-approxi-
mation ratio, we propose a new approximation algorithm to solve SBT ensuring the 1.375-approximation ratio for all 
Sn . We implemented our algorithm and EH’s. Regarding the implementation of the EH algorithm, two other issues 
were identified and needed to be fixed. We tested both algorithms against all permutations of size n, 2 ≤ n ≤ 12 . The 
results show that the EH algorithm exceeds the approximation ratio of 1.375 for permutations with a size greater than 
7. The percentage of computed distances that are equal to transposition distance, computed by the implemented 
algorithms are also compared with others available in the literature. Finally, we investigate the performance of both 
implementations on longer permutations of maximum length 500. From the experiments, we conclude that maxi-
mum and the average distances computed by our algorithm are a little better than the ones computed by the EH 
algorithm and the running times of both algorithms are similar, despite the time complexity of our algorithm being 
higher.

Keywords:  Transposition Distance Problem, Sorting by Transpositions, Genome rearrangements, Approximation 
algorithms
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Background
It is known from previous research that the genomes 
of different species may present essentially the same 
set of genes in their DNA strands, although not in the 
same order [1, 2], suggesting the occurrence of muta-
tional events that affect large portions of DNA. These 

are presumably rare events and, therefore, may provide 
important clues for the reconstruction of the evolution-
ary history among species [3, 4]. One such event is the 
transposition, which swaps the position of two adja-
cent blocks of genes in one chromosome. Consider-
ing that there are no duplicated genes, each gene can 
be represented by an integer and the chromosome by 
a permutation, then the transposition distance 
problem (TDP) aims to find the minimum number of 
transpositions required to transform one chromosome 
into another. TDP can be reduced to the sorting by 
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transpositions problem (SBT) using the identity as 
the target permutation.

The first approximation algorithm to solve SBT was 
devised in 1998 by Bafna and Pevzer [5], with a 1.5 
ratio, based on the properties of a structure called the 
cycle graph. In 2006, Elias and Hartman [6] presented a 
1.375-approximation algorithm (EH algorithm) with time 
complexity O(n2) , the best known approximation solu-
tion so far for SBT. In 2012, Bulteau, Fertin and Rusu [7] 
demonstrated that SBT is NP-hard.

In a later study, the time complexity of the EH algo-
rithm was improved to O(n log n) by Cunha et  al. [8]. 
Improvements to the EH algorithm, including heuristics, 
were proposed by Dias and Dias [9, 10].

Other studies, using different approaches, other than 
the cycle graph, were also published. For instance, 
Hausen et al. [11] studied SBT using a structure named 
toric graph, which was previously devised by Erikson 
et  al. [12], used by the later ones to derive the upper 
bound of 

⌊

2n−2
3

⌋

 for the transposition diameter, the best 
known so far for SBT. Galvão and Dias [13] studied solu-
tions for SBT using three different structures: permuta-
tion codes, a concept previously introduced by 
Benoît-Gagné and Hamel [14]; breakpoint diagram,1 
introduced by Walter et  al. [15]; and longest increasing 
subsequence, introduced by Guyer et al. [16]. Rusu [17], 
on the other hand, used a structure called log-list, for-
merly devised with the name link-cut trees by Sleator and 
Tarjan [18], to derive another O(n log n) 1.375-approxi-
mation algorithm for SBT. In addition to these, recently, 
other studies have been proposed involving variations of 
the transposition event. As examples, Lintzmayer et  al. 
[19] studied the problem of sorting by prefix and 
sufix transpositions, as well as other problems com-
bining variations of the transposition event with varia-
tions of the reversal event. Oliveira et al. [20] studied the 
transposition distance between two genomes considering 
intergenic regions, a problem they called sorting per-
mutations by intergenic transpositions.

Meidanis and Dias [21] and Mira and Meidanis [22] 
were the first authors to propose the use of an algebraic 
approach to solve SBT, as an alternative to the methods 
based on the cycle graph. The goal was to provide a more 
formal approach for solving rearrangement problems 
using known results from the permutation groups the-
ory. Mira et al. [23] have shown the feasibility of using an 
algebraic approach to solve SBT by formalising the Bafna 
and Pevzner’s 1.5-approximation algorithm [5] using an 
algebraic tooling.

Regarding the studies using the cycle graph, after the 
work of Bafna and Pevzner [5], the use of simplifica-
tion [24–26] became predominant. Simplification was 
introduced to make it easier to deal with long cycles in 
the cycle graph. In Appendix 1, we show a side effect of 
simplification, which ultimately makes the EH algorithm, 
in certain scenarios, to require one extra transposition 
above the 1.375-approximation ratio and, therefore, we 
avoided its use in our work. To the best of our knowl-
edge, there is no tooling in the cycle graph literature to 
deal with long cycles, probably due to the predominance 
of simplification. For this reason, in this paper, we prefer 
to use an algebraic approach based on the work of Mira 
et  al. [23]. In it, we are able to handle with long cycles 
without having to insert new symbols into the original 
permutation.

This paper is organized as follows. First, we present a 
brief background on permutation groups, necessary to 
understand the algebraic approach used in our work, 
followed by an algebraic formalisation of SBT. Next, 
we propose a new upper bound for SBT, valid for all 
Sn , improving the upper bound devised by Bafna and 
Pevzner [5, 27]. Then, we propose a new approximation 
algorithm to solve SBT that ensures the 1.375-approxi-
mation for all Sn . Finally, we present experimental results 
on all permutations of length n, 2 ≤ n ≤ 12 , of imple-
mentations of the EH algorithm and ours. The percent-
age of computed distances that are equal to transposition 
distance computed by the EH algorithm and ours are 
compared with others available in the literature. We also 
investigate the performance of the implementations of 
both algorithms with longer permutations of sizes rang-
ing from 20 to 500, and compare the results with simi-
lar experiments conducted in other studies. Two other 
issues were found in the EH algorithm, one affecting both 
published versions [6, 28] and another one affecting only 
the journal version [28]. The issues are reported in the 
Appendix 3.

Permutation groups
The results presented next are classical in the literature 
and their proofs can be found in abstract algebra text-
books [29, 30].

The Symmetric Group Sn on a finite set E of n symbols 
is the group formed by all permutations on n distinct ele-
ments of E, defined as bijections from E to itself, under 
the operation of composition. The product of two permu-
tations is defined as their composition as functions. Thus, 

1  Do not confuse with breakpoint graph.
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if α and β are permutations in Sn , then α · β , or simply αβ , 
is the function that maps any element x of E to α(β(x)).

An element x ∈ E is said to be a fixed element of α ∈ Sn , 
if α(x) = x . If there exists a subset {c1, c2, . . . , cκ−1, cκ } of 
distinct elements of E, such that

and α fixes all other elements, then we call α a 
cycle. In cycle notation, this cycle is written as 
α = (c1 c2 . . . cκ−1 cκ ) , but any of (c2 . . . cκ−1 cκ c1) , ..., 
(cκ c1 c2 . . . cκ−1) denotes the same cycle α . The number 
κ is the length of α , denoted by |α| . In this case, α is also 
called a κ-cycle.

The support of a permutation α , denoted Supp(α) , is the 
subset of moved (not fixed) elements of E. Two permuta-
tions α and β are said disjoint, if Supp(α) ∩ Supp(β) = ∅ , 
i.e, if every symbol moved by one is fixed by the other. It 
is known that, if α and β are disjoint, then they commute 
as elements of Sn , under the composition operation.

Lemma 1  Every permutation in Sn can be written as 
a product of disjoint cycles. This representation, called 
disjoint cycle decomposition , is unique, regardless of the 
order in which the cycles are written in the representation.

For the sake of simplicity, a cycle β in or of a permuta-
tion α is a cycle in the disjoint cycle decomposition of α.

The identity permutation ι is the permutation fixing 
all elements of E. Fixed elements sometimes are omitted 
in the cycle notation. However, when necessary they are 
written as 1-cycles.

Theorem 2  Every permutation in Sn can be written as a 
(not unique) product of 2-cycles.

A permutation α is said to be even(odd) if it can be 
written as a product of an even(odd) number of 2-cycles.2 
Next, we present some important results related to the 
parity of permutations.

Theorem 3  If a permutation α is written as a product of 
an even(odd) number of 2-cycles, it cannot be written as a 
product of an odd(even) number 2-cycles.

Example 4  The permutation ρ = [4 8 3 7 2 6 1 5] , in 
cycle notation, is represented by ( 1 4 7 )( 2 8 5 )( 3 )( 6 ) . 

α(c1) = c2,α(c2) = c3, . . . ,α(cκ−1) = cκ ,α(cκ) = c1,

In this case, 3 and 6 are fixed elements and could be 
omitted in this notation. We can say that ρ can be writ-
ten, in unique form, as a product of two disjoint 3-cycles. 
This permutation could be written as product of other 
cycles, but these cycles would not be disjoint. Further-
more, ρ could be written as (1 7) (1 4) (2 5) (2 8), using 
four 2-cycles, and also as (1 7) (4 7) (1 7) (4 7) (2 5) (2 8), 
using six 2-cycles.

Theorem 5  If α , β ∈ Sn are permutations with the same 
parity, then the product αβ is even.

Proposition 6  Let γ be a κ-cycle. If κ is odd, then γ is an 
even permutation, otherwise γ is odd.

In order to avoid misunderstanding with the parity of 
cycles in the cycle graph formalism, which is opposite to 
the one classically used in permutation groups, we will 
always refer to the lengths of the cycles rather than their 
parity.

Algebraic formalisation of SBT
A permutation π = [π1 π2 . . . πn] can be represented in 
many different ways. In the genome rearrangement con-
text, where π models a chromosome, one of the most 
used representations of π is the cycle graph [5], denoted 
G(π) (a formal definition of G(π) can be found in the first 
section of Appendix 1). An alternative representation to 
the cycle graph is using the algebraic approach proposed 
by Mira et  al. [23], which is the one employed in this 
paper. In this approach, the permutation π is represented 
as the (n+ 1)-cycle π̄ = (0 π1 π2 . . . πn) and the identity 
as ῑ = ( 0 1 2 . . . n )3. A correspondence between the 
cycles of the product ῑπ̄−1 (presented in the sequel) and 
the set of cycles of G(π) is shown in the Appendix 2.

A 3-cycle τ = ( πi πj πk ) is said to be applicable on π̄ 
if the symbols πi , πj and πk appear in π̄ in the same cyclic 
order they are in τ , i.e., π̄ = (πi . . . πj . . . πk . . . ) [23]. 
The application of τ on π̄ means multiply τ by π̄ . Thus, 
and only in this case, the product τ π̄ is a (n+ 1)-cycle, 
such that the symbols between πi and πj−1 , including 
πi but not πj , in π̄ are “cut” and then “pasted” between 
πk−1 and πk , thus simulating a transposition on π̄ , as 
τ π̄ = ( πi πj πk )(π0π1 . . . πi−1πiπi+1 . . . πj−1πjπj+1 . . . 
πk−1πk . . . πn) = (π0π1 . . . πi−1πjπj+1 . . . πk−1πiπi+1 
. . . πj−1πk . . . πn).

Example 7  Let π̄ = ( 0 4 3 2 1 8 7 6 5 ) . The 
3-cycle τ = ( 0 2 7 ) is applicable to π̄ and thus 

2  A 2-cycle is commonly referred to as transposition in the algebra litera-
ture. In order to avoid misunderstanding with the terminology, in this paper, 
“transposition” always refers to swapping two adjacent blocks of symbols in a 
permutation. 3  Note that ῑ = ( 0 1 2 . . . n ) is not ι = (0)(1) · · · (n).



Page 4 of 17Silva et al. Algorithms for Molecular Biology            (2022) 17:1 

simulates a transposition. The application τ π̄ yields 
( 0 4 3 7 6 5 2 1 8 ) . Now consider the 3-cycle 
τ
′ = ( 0 1 2 ) . Note that τ ′ is not applicable to π̄ , and the 

result of the product τ ′π̄ is (0 4 3 7 6 5)(1 8)(2) , which 
is not a (n+ 1)-cycle and therefore does not represent a 
chromosome in our approach.

Given a (n+ 1)-cycle π̄ , the sorting by transposi-
tions problem (SBT) consists of finding the minimum 
number t, denoted d(π̄) , of transpositions represented 
as applicable 3-cycles needed to transform π̄ into 
ῑ = ( 0 1 2 . . . n ) , i.e.,

 From the equality above, multiplying both sides by π̄−1 , 
we have that

 Observe that by Proposition  6 and Theorem  5, the 
product of two cycles with the same length is an even 
permutation.

Proposition 8  The permutation ῑπ̄
−1 is an even 

permutation.

The 3-norm [22] of an even permutation α ∈ Sn , 
denoted by ||α||3 , corresponds to the smallest ℓ such 
that βℓ . . . β1 = α , where each βi , 1 ≤ i ≤ ℓ , is a 3-cycle. 
Denote by c◦odd(α) , the number of odd-length cycles, 
also including 1-cycles, in α , respectively. Mira and Mei-
danis [22] demonstrated the following result.

Lemma 9  (Mira and Meidanis [22])

As ῑπ̄−1 is an even permutation (Proposition 8), then, 
as a corollary, a lower bound for SBT is derived.

Lemma 10  (Mira and Meidanis [22]) If π̄ is a (n+ 1)-
cycle, then

New upper bound for SBT
In this section, we present our main results. We begin 
with some basic definitions and results concerning the 
ῑπ̄

−1 permutation. Next, we present a new upper bound 
for SBT and a new 1.375-approximation algorithm.

(1)τt . . . τ1π̄ = ῑ.

(2)τt . . . τ1 = ῑπ̄
−1

.

||α||3 =
n− c◦odd(α)

2
.

d(π̄) ≥ ||ῑπ̄−1||3

≥
n+ 1− c◦odd(ῑπ̄

−1
)

2
.

Cycles of ῑπ̄−1

Let γ be a cycle in ῑπ̄−1 . If γ = (a . . . b . . . c . . . ) and 
π̄
−1 = (a . . . c . . . b . . . ) , i.e., if the symbols a, b and 

c appear in γ in a cyclic order that is distinct from 
the one in π̄−1 , then we say (a,  b,  c) is an oriented tri-
plet and γ is an oriented cycle. Otherwise, if there 
is no oriented triplets in γ , then γ is an unoriented 
cycle. A cycle η = (η1 η2 . . . η|η|) is a segment of γ if 
γ = (η1 η2 . . . η|η| . . . ) . Observe that by definition, a cycle 
in ῑπ̄−1 is a segment of itself. Analogously, we define a 
segment of a cycle γ of ῑπ̄−1 as oriented or unoriented.

Let δ = (a b . . . ) and ǫ = (d e . . . ) be two cycles 
of ῑπ̄

−1 . If π̄
−1 = (a . . . e . . . b . . . d . . . ) , i.e., if the 

symbols of the pairs (a,  b) and (d,  e) occur in alter-
nate order in π̄−1 , we say these pairs intersect, and 
that δ and ǫ are intersecting cycles. A special case is 
when δ = (a b c . . . ) and ǫ = (d e f . . . ) are such that 
π̄
−1 = (a . . . e . . . b . . . f . . . c . . . d . . . ) , i.e., the symbols of 

the triplets (a, b, c) and (d, e, f) occur in alternate order in 
π̄
−1 . In this case, δ and ǫ are said to be interleaving cycles. 

Analogously, we define two segments of two ῑπ̄−1 cycles 
as intersecting or interleaving.

Example 11  Let π̄ = (0 8 7 6 5 1 4 9 3 2) and ῑπ̄−1 = (0 
3) (1 6 8) (2 4) (5 7 9). The cycles (0 3) and (2 4) are exam-
ples of intersecting cycles whereas (1 6 8) and (5 7 9) are 
interleaving cycles.

A κ-cycle in ῑπ̄−1 is called short if κ ≤ 3 ; otherwise, it is 
called long. Similarly, a segment of a cycle of ῑπ̄−1 can be 
short or long.

Observe that, from Eq. 2, ῑπ̄−1
τ1

−1
. . . τt

−1 = ι , i.e., the 
application of the transpositions τ1,. . .,τt sorting π̄ (i.e., 
transforming π̄ into ῑ ) can be seen as the incremental 
multiplication of ῑπ̄−1 by τ1−1 , . . . , τt−1.

Denote by �c◦odd(ῑπ̄
−1, τ ) , the difference c◦odd(ῑπ̄−1 

τ
−1

)− c◦odd(ῑπ̄
−1

).

Proposition 12  (Meidanis, Dias and Mira [21, 22]) If τ 
is an applicable 3-cycle then �c◦odd(ῑπ̄

−1, τ ) ∈ {−2, 0, 2}.

The maximum number of cycles in ῑπ̄−1 is obtained if 
and only if ῑπ̄−1 is the identity permutation ι . In this case, 
ι has n+ 1 cycles, being all odd-length (in particular, they 
are all of length 1).

We denote by µ-move an applicable 3-cycle τ such that 
�c◦odd(ῑπ̄

−1, τ ) = µ . According to the Proposition  12, 
the possible moves are (−2)-move, 0-move and 2-move.

Configurations and components
A configuration Ŵ is a disjoint product of segments of 
cycles of ῑπ̄−1 , such that there is no two segments in Ŵ 
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of the same cycle of ῑπ̄−1 . If ||Ŵ||3 ≤ 8 then Ŵ is said to be 
small; otherwise, big.

Example 13  Let π̄ = (0 6 5 3 2 1 8 7 4 9 14 13 12 11 10, so 
ῑπ̄

−1 = ( 0 11 13 )( 1 3 6 )( 2 4 8 )( 5 7 9 )( 10 12 14 ). 
The product ( 1 3 6 )( 2 4 8 ) is a small configuration of ̄ιπ̄−1.

A configuration Ŵ is connected if for any two segments 
γ1 and γm of Ŵ , there are segments γ2, . . . , γm−1 in Ŵ such 
that for each i ∈ [1,m− 1] , γi intersects or interleaves 
with γi+1 . Ŵ is said to be a component if it consists of only 
one oriented cycle that does not intersect or interleave 
any other cycle of ῑπ̄−1 ; or it consists of a maximal con-
nected configuration of ῑπ̄−1.

Example 14  Let π̄ = (0 6 5 3 2 1 8 7 4 9 14 13 12 11 
10) . As ̄ιπ̄−1 = ( 0 11 13 )( 1 3 6 )( 2 4 8 )( 5 7 9 )(10 12 
14), so ( 0 11 13 )( 10 12 14 ) and ( 1 3 6 )( 2 4 8 )( 5 7 9 ) 
are both components of ῑπ̄−1.

Let ( a b c )( d e f ) be a configuration of 
ῑπ̄

−1 consisting of two intersecting segments. If 
π̄
−1 = (a . . . e . . . b . . . f . . . c . . . d . . . ) , i.e., if ( a b c ) 

and ( d e f ) interleave, then we call it the unori-
ented interleaving pair. On the other hand, if 
π̄
−1 = (a . . . f . . . b . . . c . . . d . . . e . . . ) , i.e., ( a b c ) and 

( d e f ) only intersect but do not interleave, then we call 
it the unoriented intersecting pair.

Let ǫ = (a b . . . ) be a segment of a configuration Ŵ . We 
call the pair (a, b) an open gate in Ŵ , if there is no cycle 
(c d . . . ) in Ŵ such that (a,  b) and (c,  d) intersect; and 
there is no e ∈ Supp(ǫ) such that (a, b, e) is an oriented 
triplet. If Ŵ is a configuration not containing open gates, 
then it is a full configuration. Observe that the unoriented 
interleaving pair does not have open gates and therefore 
it is a full configuration. The unoriented intersecting pair, 
in its turn, has two open gates.

Sequences of applicable 3‑cycles
We also denote by (x, y)-sequence, for x ≥ y , a sequence 
of x applicable 3-cycles τ1 , . . . , τx such that, at least y of 
them are 2-moves. A (x,  y)-sequence is said to be a a

b
-sequence if x ≤ a and xy ≤ a

b
.

Example 15  Let π̄ = (0 4 8 3 7 2 6 1 5 9 14 13 12 
1110) , so ῑπ̄−1 = (0 11 13) (1 7 4) 4) (2 8 5) (3 9 6) (10 
12 14). The sequence τ1 = (1 4 7), τ2 = (2 8 5), τ3 = (1 
4 7), τ4 = ( 3 9 6 ) is a (4, 3)-sequence, which is also a 118
-sequence.

We say a configuration Ŵ allows the application of a a
b

-sequence if it is possible to write this sequence using the 
symbols of Supp(Ŵ).

Auxiliary results
The proofs of some results in this section and the next 
rely on the analysis of a huge number of cases. Since it 
is impracticable to enumerate and verify by hand all the 
cases, we implemented, as Elias and Hartman [6], some 
computer programs [31] to systematically generate the 
proofs. In order to facilitate the visualisation and general 
understanding, the proofs are available to the reader in 
the form of a friendly web interface [32].

Next we show some auxiliary results.

Corollary 16  If there is an oriented 3-cycle γ = ( a b c ) 
in ῑπ̄−1 , then ( a b c ) is a 2-move.

Proposition 17  If there is an even-length cycle in ῑπ̄−1 , 
then a 2-move exists.

Proof  Since ῑπ̄−1 is an even permutation (Proposi-
tion  8), then there is an even number of even-length 
cycles in ῑπ̄−1 . Let γ = (a b . . . ) and δ = (c d . . . ) be two 
even-length cycles of ῑπ̄−1 . We have two cases: 

(1)	 γ and δ intersect. In this case, we have that 
π̄
−1 = (a . . . d . . . b . . . c . . . ) . Then (a b c) is a 

2-move.
(2)	 γ and δ do not intersect. W.l.o.g, suppose 

π̄
−1 = (a . . . b . . . c . . . d . . . ) . In this case, (a c b) is 

a 2-move.� �

Lemma 18  If there is a 5-cycle γ = ( a d b e c ) in ῑπ̄−1 
such that (a,  b,  c) is an oriented triplet, then there is a 
2-move or a (3, 2)-sequence.

Proof  The possible distinct forms of π̄ relatively to the 
positions of the symbols of Supp(γ ) are listed below. For 
each one, there is either a 2-move or a (3, 2)-sequence. 

(1)	 π̄ = (a . . . b . . . c . . . d . . . e . . . ) . τ1 = ( a b c ) , 
τ2 = ( b c d ) , τ3 = ( c d e ).

(2)	 π̄ = (a . . . b . . . c . . . e . . . d . . . ) . τ1 = ( b e d ).
(3)	 π̄ = (a . . . b . . . e . . . c . . . d . . . ) . τ1 = ( a e c ).
(4)	 π̄ = (a . . . e . . . b . . . d . . . c . . . ) . τ1 = ( a d c ).
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(5)	 π̄ = (a . . . b . . . e . . . d . . . c . . . ) . τ1 = ( a d c ).
(6)	 π̄ = (a . . . d . . . b . . . e . . . c . . . ) . τ1 = ( a d b ).� �

Note that, by Lemma 18, if γ = ( a d b e c ) is an ori-
ented 5-cycle in ῑπ̄−1 such that (a, b, c) an oriented tri-
plet, then π̄ = (a . . . b . . . c . . . d . . . e . . . ) is the only form 
of π̄ , relatively to the positions of the symbols of Supp(γ ) , 
for which there is no 2-move. In this case, we call γ the 
bad oriented 5-cycle.

Lemma 19  If there is an odd-length κ-cycle 
γ = (a . . . b . . . c . . . ) in ῑπ̄−1 such that κ ≥ 7 and (a, b, c) 
is an oriented triplet, then there is either a 2-move or 
(4, 3)-sequence.

Proof  If (a b c) is a 2-move, then the lemma holds. 
There is only one case where ( a b c ) would not be a 
2-move. W.l.o.g, suppose that this case is

Vertical bars are used to indicate the locations where γ 
would be broken if ( a b c ) were applied on π̄ , and sub-
scripts to indicate the parity of the length of the result-
ing cycles. Note that the cycle γ can be rewritten as the 
product

There is only one form of π̄ relatively to the symbols of the 
support of ( a d e b f c g ) not allowing the application 
of a 2-move, which is π̄ = (a . . . e . . . f . . . g . . . d . . . b . . . 
c . . . ) . For this π̄ , τ1 = (a e f ) , τ2 = (d e f ) , τ3 = (b f d) , 
τ4 = (a c g) is (4, 3)-sequence of transpositions. �

Lemma 20  If ῑπ̄−1 �= ι , then a 2-move or (3, 2)-sequence 
exists.

Proof  If there is an even-length cycle in ῑπ̄−1 , then by 
Proposition  17, a 2-move (i.e., a (1,  1)-sequence) exists. 
Thus, we assume ῑπ̄−1 containing only odd-length cycles. 

(1)	 There is an oriented κ-cycle γ in ῑπ̄−1 . If κ = 3 , 
then Corollary  16 gives a 2-move and the lemma 
holds. If κ = 5 , then Lemma 18 gives a 2-move or 
γ is the bad oriented 5-cycle. In this case, there is a 

γ = (d e . . . b
︸ ︷︷ ︸

odd

| f . . . c
︸ ︷︷ ︸

even

| g . . . a
︸ ︷︷ ︸

even

|).

γ = (a . . .
︸︷︷︸

odd

)(b . . .
︸︷︷︸

odd

)(c . . .
︸︷︷︸

odd

)( a d e b f c g ).

(3,  2)-sequence. On the other hand, if κ ≥ 7 , then 
a 2-move or a (4,  3)-sequence, which contains a 
(3, 2)-sequence, is given by Lemma 19.

(2)	 All the cycles of ῑπ̄
−1 are unoriented. Let 

γ = ( a b c ) be a segment of a cycle of ῑπ̄−1 . We 
have two cases: 

(a)	 γ interleaves with another segment 
δ = ( d e f ) . In this case, we have that 
π̄ = (a . . . f . . . c . . . e . . . b . . . d . . . ) . Then, 
τ1 = ( a c b ) , τ2 = ( d e f ) and τ3 = ( a c b ) 
is a (3, 2)-sequence.

(b)	 γ intersects with two segments δ = ( d e f ) 
and ǫ = ( g h i ) . For each of the 15 distinct 
forms of π̄ (enumerated on [32]), relatively to 
the possible positions of the symbols of γ , δ and 
ǫ , there is a (3, 2)-sequence.� �

Configuration analysis
At this point, we consider ῑπ̄−1 consisting only of odd-
length unoriented cycles of any size or bad oriented 
5-cycles. For the other cases, Corollary  16, Proposi-
tion 17 and Lemma 19 give a 2-move or a (4, 3)-sequence.

Our goal is to prove that, if ||ῑπ̄−1||3 ≥ 8 , then a 118
-sequence of transpositions exists. The analysis is divided 
in two parts. In the first part, we analyse configurations 
obtained from basic ones (defined below) by extension. In 
the second part, we analyse ῑπ̄−1 composed only of small 
components, not allowing application of 118 -sequences.

Extension of basic configurations
The analysis starts with the bad oriented 5-cycle, and the 
only two connected configurations of 3-norm equal to 
2: the unoriented intersecting pair; and the unoriented 
interleaving pair. From these three basic configurations, 
it is possible to build any other connected configura-
tion of ῑπ̄−1 by successive extensions. From a configura-
tion Ŵ , we can obtain a larger configuration Ŵ′ , such that 
||Ŵ′||3 = ||Ŵ||3 + 1 , extending Ŵ by three different suffi-
cient extensions, as follows: 

(1)	 If Ŵ has open gates, we can add a new unoriented 
3-cycle segment to Ŵ , closing at least one open gate.

(2)	 If Ŵ has no open gates, we can add a new unori-
ented 3-cycle segment to Ŵ , so that this segment 
intersects or interleaves another one in Ŵ.
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(3)	 Let γ be a segment in Ŵ . We can increase the length 
of γ by 2, originating a bad oriented 5-cycle; or a 
longer unoriented segment, so that at least one 
open gate is closed, if Ŵ has open gates; or creating 
up to two open gates, otherwise.

Example 21  We can extend the configuration Ŵ of 
Example  13 using extension  1, yielding Ŵ′ = ( 1 8 10 )

( 5 7 12 )( 9 11 13 ) . Then, with extension  2, we obtain 
Ŵ
′′ = ( 1 8 10 )( 2 4 6 )( 5 7 12 )( 9 11 13 ) . Finally, 

with extension  3, we obtain Ŵ′′′ = ( 0 3 5 7 12 )( 1 8 10 ) 
( 2 4 6 )( 9 11 13 ).

A sufficient configuration is a configuration obtained 
by successively extending one of the basic configurations 
referred above. The computerised analysis proves the fol-
lowing result.

Lemma 22  If it is possible to build a sufficient con-
figuration Ŵ of ῑπ̄−1 such that Ŵ is big, then Ŵ allows a 118
-sequence.

Observe that our definition of configuration extension 
is similar to the one devised by Elias and Hartman [6]. 
However, Elias and Hartman [6] only handled with con-
figurations consisting of (unoriented) 3-cycles, while our 
definition includes the generation of configurations con-
taining longer segments.

Lemma 22 could be proven generating all the possible 
big configurations of 3-norm equal to 9 by extending the 
three basic configurations and then, for each, search for 
a 118 -sequence. However, this would be too time consum-
ing. Instead, our computer program [31] employs a depth 
first search approach, in which, starting from the basic 
configurations, if we succeed in finding a 118 -sequence 
for a sufficient configuration, then we do not extend it 
further. The output of the program [31], which proves 
Lemma 22, is composed of 382,064 HTML files, one for 
each analysed case.

Analysis of small full configurations which do not allow 11
8

‑sequences
To conclude the analysis, now we handle the small full 
configurations for which the program [31] did not find 118
-sequences, and that can occur as small components in 
ῑπ̄

−1 . Small components not allowing 118 -sequences are 
called bad small components.

Lemma 23  The bad small components are the following: 

(1)	 The bad oriented 5-cycle;
(2)	 The unoriented interleaving pair;
(3)	 The unoriented necklaces of size 4, 5 and 6;4 and
(4)	 The twisted necklace of size 4.

An unoriented necklace of size s is a component of s 
unoriented 3-cycles such that each cycle intersects with 
exactly two other cycles. The twisted necklace of size 4 
is similar to the necklace of size 4, but two of its cycles 
intersect with the three others.

With the exception of the bad oriented 5-cycle, the 
bad small components listed above are the same ones 
found by Elias and Hartman [6], despite of the genera-
tion of configurations containing longer segments in our 
analysis.

With the help of computer program [31], we prove the 
following result.

Lemma 24  If there is a configuration � of ῑπ̄−1 consist-
ing only of bad small components such that ||�||3 ≥ 8 , 
then � allows a 118 -sequence.

In order to prove Lemma  24, starting from each of 
the bad small components listed above, we succes-
sively extend them by adding another bad small compo-
nent to the configuration, until finding a 118 -sequence. It 
turns out that no combination of bad small components 
with 3-norm greater than 7 was extended. The proof for 
Lemma 24 is composed of 842 HTML files.

New upper bound
The results presented in the previous section allow us 
to prove the corollary below. It follows from Proposi-
tion 17, part 1 from Lemma 20, which implies that, if we 
have an odd-length oriented cycle in ῑπ̄−1 , than we have 
a 2-move, a (4, 3)-sequence, or this cycle is the bad ori-
ented 5-cycle; and Lemmas 22 and 24 .

Corollary 25  If ||ῑπ̄−1||3 ≥ 8 , then a 118 -sequence exists.

On the other hand, if ||ῑπ̄−1||3 < 8 , we only guaran-
tee the existence of 32-sequences. In the next section, we 

4  These components can be visualised on our site [32].
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show that even in this scenario, the approximation ratio 
obtained by our algorithm is at most 1.375.

Finally, the last results prove the following upper bound 
for SBT.

Theorem 26 

Let codd(π) be the number of odd cycles in G(π) 
(see first section of Appendix  1). Since c◦odd(ῑπ̄−1

) 
= codd(π) , the result above can be restated replacing π̄ 
and c◦odd(ῑπ̄−1

) , by π and codd(π) respectively. Thus, we 
derive the following upper bound for SBT, depending 
only on n and codd(π).

Theorem 27 

The new upper bound above improves the upper bound 
on the transposition distance devised by Bafna and 
Pevzner [5], valid for all Sn , based on their 1.5-approxi-
mation algorithm [27]. This upper bound allows us to 
obtain the following upper bound on the transposition 
diameter (TD).

Corollary 28  TD(n) ≤ 11

⌊

n
16

⌋

+

⌊

3(n mod 16)

4

⌋

The upper bound on the transposition diameter above, 
although tighter, for n ≥ 16 , than the one devised by 
Bafna and Pevzner [5] of 

⌊

3
4
n
⌋

 is not tighter than the one 
devised by Erikson et al. [12] of 

⌊

2n−2
3

⌋

 , for n ≥ 9.

d(π̄) ≤ 11
⌊ ||ῑπ̄−1||3

8

⌋

+

⌊3(||ῑπ̄−1||3 mod 8)

2

⌋

≤ 11
⌊n+ 1− c◦odd(ῑπ̄

−1
)

16

⌋

+

⌊3((n+ 1− c◦odd(ῑπ̄
−1

)) mod 16)

4

⌋

.

d(π) ≤ 11

⌊

n+ 1− codd(π)

16

⌋

+

⌊

3((n+ 1− codd(π)) mod 16)

4

⌋

.

A new 1.375‑approximation algorithm
In this section, we present a new 1.375-approximation 
algorithm for SBT (Algorithm  1). For a permutation 
π ∈ Sn , the algorithm returns an approximated dis-
tance between π̄ and ῑ or, equivalently, between π and 
ι . Intuitively, while ||ῑπ̄−1||3 ≥ 8 , it repeatedly applies 118
-sequences of transpositions on π̄ . When ||ῑπ̄−1||3 < 8 , 
the algorithm only guarantees the application of 3

2
-sequences.

To reach the intended approximation ratio of 1.375 
even when ||ῑπ̄−1||3 < 8 , the algorithm has to search for 
a (2, 2)-sequence in its first step. In order to identify such 
a sequence, a look-ahead approach is used, meaning that 
the algorithm verifies if there is a second 2-move, after 
applying a first 2-move, generated either from an ori-
ented cycle or from two even-length cycles of ῑπ̄−1.

Theorem  29  The time complexity of Algorithm  1 is 
O(n6).

Proof  The time complexity of O(n6) is determined 
by the search for a (2, 2)-sequence. In order not to miss 
a 2-move, all triplets of an oriented cycle have to be 
checked to detect an oriented triplet leading to a 2-move, 
which is O(n3) . Finding a 2-move by combining three 
symbols of two even-length cycles of ῑπ̄−1 requires O(n2) . 
Thus, searching for a (2, 2)-sequence with the look-ahead 
technique to check if there is an extra 2-move needs time 
O(n6).

The largest loop of the algorithm (line  12) needs time 
O(n4) , while the last loop is O(n).                                                  �

Theorem  30  Algorithm  1 is a 1.375-approximation 
algorithm for SBT.

Proof  We note that this proof follows a very similar 
approach to the one used by Elias and Hartman [6]. Let 
f (x) = 11

⌊

x
8

⌋

+

⌊

3(x mod 8)

2

⌋

 . Depending on line 3, there 
are two cases. 

Table 1  For all 0 ≤ r ≤ 7 such that m = 8l + r and l ≥ 0 , the approximation ratio given by Algorithm 1 is at most 11
8
= 1.375

r 0 1 2 3 4 5 6 7

f (m)+2

m+2

11l+2

8l+2

11l+4

8l+3

11l+5

8l+4

11l+6

8l+5

11l+8

8l+6

11l+9

8l+7

11l+11

8l+8

11l+12

8l+9

f (m)
m+1

11l

8l+1

11l+2

8l+2

11l+3

8l+3

11l+4

8l+4

11l+6

8l+5

11l+7

8l+6

11l+9

8l+7

11l+10

8l+8
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(1)	 There is a (2, 2)-sequence. As stated by Lemma 10, 
it is not possible to sort π̄ using a sequence with 
less than ||ῑπ̄−1||3 2-moves. Let m = ||ῑπ̄−1||3 − 2 
be the 3-norm of ῑπ̄−1 after the application of a 
(2, 2)-sequence. Algorithm 1 sorts π̄ using a maxi-
mum of f (m)+ 2 transpositions, giving an approx-
imation ratio of at most f (m)+2

m+2  . In Table 1, we can 
see that, f (m)+2

m+2 ≤ 11
8  , for all 0 ≤ r ≤ 7 such that 

m = 8l + r and l ≥ 0.
(2)	 There is no (2,  2)-sequence. If ||ῑπ̄−1||3 = 1 , then 

there is only one oriented 3-cycle in ῑπ̄−1 . In this 
case, there is a 2-move and the theorem holds. Oth-
erwise, we can raise the lower bound of Lemma 10 

by 1, since at least one 0-move is required to sort 
π̄ . Let m = ||ῑπ̄−1||3 . The approximation ratio 
given by Algorithm 1 is at most f (m)

m+1 . Table 1 also 
shows that, f (m)

m+1 ≤ 11
8  , for all 0 ≤ r ≤ 7 such that 

m = 8l + r , l ≥ 0.� �

Results and discussion
We implemented Algorithm  1 and the EH algorithm, 
having tested both using the Rearrangement Distance 
Database provided by GRAAu [33]. We computed all 

Table 2  Comparison of the maximum approximation ratios given by the EH algorithm with ours (Alg1)

The table includes other metrics such as the average approximation ratio and average distance given by each algorithm and the number of times the EH algorithm 
exceeds the 1.375-approximation ratio as well as the time consumed by each algorithm to sort all permutations of each size. Decimal values are truncated to 4 places
a  The permutations of each size were sorted in parallel using a pool of 8 threads

n Transposition 
diameter

Max. approx.ratio Averageapprox. ratio Average distance Number of times 
EH exceeded the 
1.375-approx.

Time to sort all 
permutationsa

EH Alg1 EH Alg1 EH Alg1 EH Alg1

2 1 1.00 1.00 1.0 1.0 1.00 1.00 0 < 1s < 1s

3 2 1.00 1.00 1.0 1.0 1.20 1.20 0 < 1s < 1s

4 3 1.00 1.00 1.0 1.0 1.6086 1.6086 0 < 1s < 1s

5 3 1.00 1.00 1.0 1.0 2.0924 2.0924 0 < 1s < 1s

6 4 1.3333̄ 1.00 1.0004 1.0 2.6063 2.6050 0 < 1s < 1s

7 5 1.3333̄ 1.25 1.0129 1.0113 3.1762 3.1704 0 < 1s < 1s

8 6 1.5 1.25 1.0210 1.0183 3.7178 3.7076 2 < 2s < 2s

9 6 1.5 1.25 1.0301 1.0256 4.2796 4.2603 20 ≈ 10s ≈ 13s

10 7 1.5 1.25 1.0341 1.0282 4.8051 4.7772 110 ≈ 3m ≈ 2m

11 8 1.5 1.3333̄ 1.0392 1.0321 5.3526 5.3157 440 ≈ 35m ≈ 30m

12 9 1.5 1.3333̄ 1.0415 1.0336 5.8694 5.8248 1448 ≈ 8.5h ≈ 8.1h

Table 3  Comparison of the percentage of computed distances that are equal to transposition distance, given by different algorithms 
(WDM [15], M [23], BPwh [34] and DD [9]), in comparison to the EH algorithm and ours

Decimal values are truncated to 2 places

n WDM M BPwh DD EH Alg1

2 – 100.00 100.00 – 100.00 100.00

3 – 100.00 100.00 – 100.00 100.00

4 – 100.00 100.00 100.00 100.00 100.00

5 – 100.00 100.00 100.00 100.00 100.00

6 99.17 100.00 100.00 100.00 99.86 100.00

7 98.58 100.00 100.00 100.00 94.90 95.47

8 97.11 99.69 99.91 100.00 91.64 92.65

9 96.05 99.17 99.72 99.99 86.62 88.54

10 94.12 98.09 – 99.97 83.80 86.53

11 92.81 96.90 – – 79.40 82.98

12 – – – – 76.67 80.91



Page 10 of 17Silva et al. Algorithms for Molecular Biology            (2022) 17:1 

transposition distances using both algorithms for all per-
mutations of size n, 2 ≤ n ≤ 12.

As presented by Table  2, the approximation ratio 
obtained by the EH algorithm exceeds 1.375. On the 
other hand, our proposed algorithm does not exceed 
the ratio of 1.3333̄ . However, we presume that approxi-
mations of 1.375 could appear for permutations in 
Sn , n ≥ 16 , since in order to exist an (11,  8)-sequence, 
Supp(ῑπ̄−1

) has to have at least 17 symbols.
We also compared (Table  3) the percentage of com-

puted distances that are equal to transposition distance 
outputted by our algorithm and EH’s with others avail-
able in the literature. In particular, we added to the com-
parison an algorithm with an approximation ratio higher 
than 1.5, but with good results [34]; one using a similar 
algebraic approach [23], 1.5-approximation; and another 
one that also uses an EH-like strategy with an approxima-
tion ratio of 1.375 [9].

As shown by Table  3, regarding the percentage of 
computed distances that are equal to the transposi-
tion distance metric, the best algorithm seems to be the 
algorithm of Dias and Dias [9], although they do not 
present results for n > 10 . Importantly, this algorithm 
employs several heuristics, some introduced by a previ-
ous work [35], to improve the performance of the EH 
algorithm. One of these heuristics is exactly a search 
for a second 2-move using a look-ahead technique. 
However, it is not clear whether their heuristic never 

misses a (2, 2)-sequence, if it exists. Also, Dias and Dias 
[9] does not state the complexity of their algorithm, but 
we believe that, by analysing the algorithm [35] which 
they were based on, the time complexity is higher than 
O(n3).

The performance of our algorithm and EH’s were also 
investigated for longer permutations. For this, we cre-
ated a dataset of longer permutations with sizes rang-
ing from 20 to 500 (incremented by 10). For each of the 
49 sets, 1000 instances were randomly generated and 
sorted using both algorithms. Figure  1 shows the maxi-
mum and the average approximation ratios obtained 
from both ones. It should be noted that the approxima-
tion ratios were calculated in relation to the lower bound 
given by Theorem 33, since it is impracticable to calculate 
the exact distance for such long permutations. A similar 
experiment was conducted by Dias and Dias [35], but 
in their experiment, they worked with smaller sets, also 
ranging from 20 to 500 (incremented by 10), but contain-
ing only 100 instances. By comparing the results, we may 
conclude that our algorithm and theirs achieve similar 
results. Dias and Dias [9] also conducted experiments 
with longer permutations, but with sizes ranging only 
from 10 to 100 (incremented by 10), where each set con-
tained 100 instances, and collected the running times. By 
comparing the results presented in their paper, we may 
conclude that our algorithm performs better than theirs. 
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Fig. 1  Average and maximum approximation ratios obtained for 
each size in our dataset of longer permutations
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Fig. 2  Time in minutes each algorithm took to sort the all the 1, 000 
instances of each each size of our dataset of longer permutations
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Algorithm 1 A new 1.375-approximation algorithm for SBT
1: function sbt1375(π̄)
2: d ← 0
3: if there is a (2, 2)-sequence then
4: apply a (2, 2)-sequence
5: d ← d+ 2
6: end if
7: while there is an odd cycle in ῑπ̄−1 do
8: apply a 2-move Proposition 17
9: d ← d+ 1
10: end while
11: let Θ be the product of the unmarked cycles of ῑπ̄−1

12: while Θ = ι do
13: if there is a 2-move from an oriented cycle of Θ then
14: apply a 2-move
15: d ← d+ 1
16: else if there is an even oriented κ-cycle in Θ such that κ ≥ 7 then
17: apply a (4, 3)-sequence Lemma 19
18: d ← d+ 4
19: else
20: take a 3-cycle segment γ from a cycle of Θ
21: Γ ← γ
22: try to extend Γ eight times
23: if Γ is big then
24: apply a 11

8 -sequence of x 3-cycles Lemma 22
25: d ← d+ x
26: else if Γ allows a 11

8 -sequence of x 3-cycles then
27: apply a 11

8 -sequence of x 3-cycles
28: d ← d+ x
29: else
30: mark the cycles of Γ Γ is a bad small component of ῑπ̄−1

31: end if
32: end if
33: let Λ be the product of the marked cycles of ῑπ̄−1

34: if ||Λ||3 ≥ 8 then
35: unmark the cycles of Λ
36: apply a 11

8 -sequence of x 3-cycles Lemma 24
37: d ← d+ x
38: end if
39: end while
40: while ῑπ̄−1 = ι do
41: apply a 3

2 -sequence with x 3-cycles Lemma 20 (can be a 2-move, i.e., a (1, 1)-sequence, or a (3, 2)-sequence)
42: d ← d+ x
43: end while
44: return d
45: end function

Figure  2 shows how much time each algorithm (ours 
and EH’s) took to sort all the 1000 instances of each of 
the 49 sets. The results presented by this figure show that, 
despite having a high time complexity, our algorithm has 
good performance in practice, even outperforming EH’s.

The dataset of longer permutations used in our experi-
ments, the statistics computed, as well as the source code 
of the implementation of the EH algorithm and ours are 
available at [31]. All experiments were executed on a 
computer equiped with a Core i7 vPro 8th Gen processor, 
with 4 cores and 8 threads, and 48GB of RAM.

Conclusions
In this paper, we first proposed a new upper bound 
for the transposition distance, using an algebraic 
approach, which holds for all Sn . Next, we proposed 
a new approximation algorithm to solve SBT ensur-
ing the 1.375-approximation ratio for all Sn . To the 
best of our knowledge, this is the first algorithm guar-
anteeing an approximation ratio below 1.5 not using 
simplification. We show in Appendix 1 that the EH algo-
rithm may require one extra transposition above the 
1.375-approximation ratio. This occurs when there is a 
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first (2,  2)-sequence in the original permutation that is 
“missed” during simplification, and bad small compo-
nents remain in the cycle graph after the application of 
any number of 118 -sequences.

Implementations of the EH algorithm and ours were 
tested against permutations of maximum length of 12. 
The results showed that our algorithm does not exceed 
the 1.375-approximation ratio and produces a higher 
percentage of computed distances that are equal to trans-
position distance, when compared to those computed by 
the EH algorithm. These percentages were also compared 
to others available in the literature. Considering this met-
ric, the algorithm with the best results seems to be the 
one of Dias and Dias [9], although they do not present 
results for n > 10 . Two other issues were identified when 
implementing the EH algorithm and they are reported in 
the Appendix 3. The first one has to do with the applica-
tion of 118 -sequences when the cycle graph contains only 
bad small components [6]. The second one is related to 
the application of (3,  2)-sequences when there is no 118
-sequence to apply, and affects both versions of the algo-
rithm outlined in [6] and [28].

We conducted an experiment involving longer per-
mutations of maximum length 500. The results showed 
that our algorithm outperforms the EH algorithm, both 
in relation to the approximation ratios obtained and run-
ning times. Still, on the longer permutations, our algo-
rithm seems to be comparable to the one of Dias and 
Dias [35], when we consider the approximation ratios 
obtained by both. Regarding the running times, Dias and 
Dias [35] also performed some simulations for permuta-
tions with a maximum size of 100. Considering only the 
results for permutations with this maximum size, our 
algorithm seems faster.

The time complexity of our algorithm is high. A possi-
ble future work could be the investigation of a more effi-
cient way to find a (2, 2)-sequence at the beginning of our 
algorithm. Following a different direction, another future 
work could be the investigation of “good” simplifications, 
i.e., simplifications that do not have the effect of missing 
a (2, 2)-sequence when it exists. We have no clue whether 

such a “good” simplification always exists or not. In any 
case, we have the intuition that to find it, if it exists, the 
computational cost would be the same as searching for a 
(2, 2)-sequence.

The experiment with small permutations of maximum 
length 12 showed that the percentages of computed dis-
tances by our algorithm that are equal to transposition 
distance are low compared to others in the literature. A 
possible way to improve the results would be investigat-
ing the adoption of heuristics.

Finally, we intend to use the algebraic approach pre-
sented in this paper to study and solve other rearrange-
ment events affecting one chromosome, e.g., reversals 
and block-interchange.

Appendix 1: Cycle graph and the extra 
transposition
Cycle graph
Let π = [π1 π2 . . . πn] be a permutation. A trans-
position τ (i, j, k) , with 1 ≤ i < j < k ≤ n+ 1 , “cuts” 
the symbols from the interval [πi,πj−1] and then 
“pastes” them right after πk−1 . Thus, the applica-
tion of τ (i, j, k) on π , denoted τ (i, j, k) · π , yields 
[π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn].

Given two permutations π and σ , the transposi-
tion distance problem (TDP) corresponds to find-
ing the minimum t (the transposition distance between 
π and σ ) such that the sequence of transpositions τ1 , . . . , 
τt transforms π into σ i.e., τt . . . τ1 · π = σ . Note that 
the transposition distance between π and σ equals the 
transposition distance between σ−1 ◦ π and the identity 
permutation ι = [1 2 . . . n] . The problem of sorting by 
transpositions (SBT) is the problem of finding the 
transposition distance between a permutation π and ι , 
denoted by d(π).

In the genome rearrangements literature, a widely 
used graphical representation for a permutation is the 
cycle graph5 [5]. In order to construct the cycle graph 
of π = [π1 π2 . . . πn] , we first extend π by adding two 
extra elements π0 = 0 and πn+1 = n+ 1 . So, the cycle 
graph of π , denoted by G(π) , is a directed graph con-
sisting of a set of vertices {+0, −1, +1, −2, +2, . . . , 
−n, +n, −(n+ 1)} and a set of colored (black or gray) 
edges. For all 1 ≤ i ≤ n+ 1 , the black edges connect −πi 
to +πi−1 . For 0 ≤ i ≤ n , the gray edges connect vertex +i 
to vertex −(i + 1) . Intuitively, the black edges indicate 
the current state of the genes, related to their arrange-
ment in the first chromosome represented by π , while the 
gray edges indicate the desired order of the genes in the 
second permutation, represented by ι = [1 2 . . . n] . In 

Fig. 3  Cycle graph of [4 3 2 1 8 7 6 5] . The black edges are the 
horizontal ones

5  In their work, Elias and Hartman [6] use an equivalent circular representa-
tion, which they call breakpoint graph.
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the figures below, the directions of the edges are omitted 
since they can be easily inferred by observing the signs of 
the vertices.

Example 31  Figure  3 shows the cycle graph of 
π = [4 3 2 1 8 7 6 5] with 9 black edges, (−9,+5) , 
(−5,+6) , . . . , (−3,+4) , (−4,+0) , and 9 gray edges, 
(+0,−1) , (+1,−2) , (+2,−3) , . . . , (+7,−8) , (+8,−9).

Both in-degree and out-degree of each vertex in G(π) 
are 1, corresponding to one black edge entering a vertex 
v and another gray edge leaving v. This induces in G(π) a 
unique decomposition into cycles. A κ-cycle is a cycle C 
in G(π) with κ black edges. In addition, C is said to be a 
long cycle, if k > 3 , otherwise, C is said to be a short cycle. 
If κ is even (odd), then we also say that C is an even (odd) 
cycle.

The maximum number of n+ 1 cycles in G(π) 
is obtained if and only if π is the identity permuta-
tion ι . In this case, each cycle is composed of exactly 
one black edge and one gray edge. Let us denote 
by codd(π) the number of odd cycles in G(π) , and 
�codd(π , τ ) = codd(τ · π)− codd(π) the variation on 
the number of odd cycles in G(π) and G(τ · π) , after the 
application of a transposition τ . Bafna and Pevzner [5] 
demonstrated the following result.

Lemma 32  (Bafna and Pevzner [5]) �codd (π , τ) ∈ {−2, 0, 2}.

A µ-move is a transposition τ such that �codd(π , τ ) 
= µ . Note that according to lemma above, the 

possible moves are 2-move, 0-move and (−2)-move. 
From Lemma 32, Bafna and Pevzner [5] derived the fol-
lowing lower bound.

Theorem 33  (Bafna and Pevzner [5]) d(π) ≥ n+1−codd (π)

2

The black edges of G(π) can be numbered from 
1 to n+ 1 by assigning a label i to each black edge 
(−πi,+πi−1) . A κ-cycle C visiting the black edges 
i1, . . . , iκ , in the order imposed by the cycle, can be writ-
ten in κ different ways, depending on the first black edge 
visited. If not otherwise specified, we will assume that 
the initial edge i1 of C is chosen as the greatest value, 
i.e., i1 is such that i1 > is , for all s ∈ {2, . . . , κ} . With 
this condition, if i1 , . . . , iκ is a decreasing sequence, C 
is called an unoriented cycle; otherwise C is oriented. 
Two pairs of black edges are said intersecting if there 
are cycles C = (. . . , a, b, . . . ) and D = (. . . , e, f , . . . ) in 
G(π) such that either a > e > b > f  or e > a > f > b . 
In this case, C and D are also said to be intersect-
ing cycles. Similarly, the triplets of black edges (a,  b,  c) 
and (d,  e,  f) are interleaving if there are cycles 
C = (. . . , a, b, c, . . . ) and D = (. . . , d, e, f , . . . ) such that 
either a > d > b > e > c > f  or d > a > e > b > f > c . 
In such case, C and D are also said to be interleaving 
cycles.

Example 34  The cycles (5,  3,  1), (8,  6,  4), (15,  13,  11) 
and (14,  12,  10) of G([6 5 3 2 1 8 7 4 9 14 13 12 11 10]) 
(Fig. 4) are unoriented, while (9, 2, 7) is oriented. Further-
more, (5, 3, 1) and (8, 6, 4) are intersecting and the cycles 
(15, 13, 11) and (14, 12, 10) are interleaving. 

Fig. 4  Cycle graph of [6 5 3 2 1 8 7 4 9 14 13 12 11 10]

Fig. 5  Cycle graph of [5 4 3 2 1 6 11 10 9 8 7] , mapped from [4.1 4 3 2 1 4.2 8.1 8 7 6 5] using consecutive integers, obtained by the simplification 
of [4 3 2 1 8 7 6 5] (Figure 3)
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Simplification
Simplification is a technique introduced aiming to facili-
tate handling with long cycles of G(π) [24]. It consists of 
inserting new elements, usually fractional numbers, into 
π transforming it into a new simple permutation π̂ , so 
that G(π̂) contains only short cycles. After the transfor-
mation, the elements of π̂ can be mapped to consecutive 
integers. The positions of the new symbols can vary, but 
the insertion must be through safe transformations.

A transformation of π into π̂ is said to be safe 
if, after the insertion of the new elements, the 
lower bound of Theorem  33 is maintained, i.e., 
n(π)− codd(π) = n(π̂)− codd(π̂) , where n(π) and n(π̂) 
denote the number of black edges in π and π̂ , respec-
tively. If π̂ is a permutation obtained from π through safe 
transformations, then we say π and π̂ are equivalent. Lin 
and Xue [25] have shown that every permutation can be 
transformed into an equivalent simple one through safe 
transformations. A sorting of π̂ can be mimicked to sort 
π using the same number of transpositions [24].

It is important to note that a permutation can be sim-
plified in many different ways. Figure 5 shows the cycle 
graph of a possible simple permutation obtained by the 
simplification of [4 3 2 1 8 7 6 5] (Fig. 3). For a complete 
description of simplification and related results, the 
reader is referred to [24–26].

Configurations and components
The concepts presented in this section were originally 
introduced by Elias and Hartman [6] in the context of the 
simple permutations, with a special focus on the 3-per-
mutations, from which they derived their main results. 
As our work does not involve simplification, we modi-
fied some of them so that they could be extended to any 
permutation in Sn and also to facilitate the correlation 
between the algebraic approach used in this paper with 
the method of Elias and Hartman [6].

A configuration of cycles is a subgraph of G(π) induced 
by one or more cycles. A configuration A is connected, 
if for any two cycles C1 and Cm of A, there are cycles 
C2, . . . ,Cm−1 in A such that for each i ∈ [1,m− 1] , Ci 
intersects or interleaves with Ci+1 . A component is a con-
figuration consisting of only one oriented cycle that does 

not intersect or interleave any other cycle of G(π) ; or 
consisting of a maximal connected configuration in G(π).

Let A be a configuration induced only by odd cycles. 
The 3-norm of A, denoted by ||A|| , is the value b−c(A)

2  , 
where b is the number of black edges of A and c(A) is the 
number of cycles in A. If ||A|| ≤ 8 , then A is referred as 
being small; otherwise, big. The 3-norm concept was not 
defined in Elias and Hartman [6]. The intuition behind it 
is that it reflects the number of 3-cycles a configuration 
containing cycles of arbitrary (odd) lengths would have if 
it were “simplified”.

Example 35  The 3-norm of the configuration {(9, 6, 
8, 2, 4, 1, 3, 5, 7)} from G([4 3 2 1 8 7 6 5]) (Fig. 3) is 4 and, 
consequently, it is a small configuration.

Example 36  The 3-norms of the configurations {(7, 
4, 1), (8, 5, 2), (9, 6, 3)} and {(14, 12, 10), (15, 13, 11)} from 
G([4 8 3 7 2 6 1 5 9 14 13 12 11 10]) (Fig. 9) are 3 and 2, 
respectively.

An open gate is a pair of black edges (a, b) of a cycle C 
in A, such that one of its cyclic forms is C = (a, b, . . . ) , 
that does not intersect with any other cycle in A and 
there is no black edge c in C, such that, if a > b , then a, 
b, c is not a decreasing sequence; or, if b > a , then b, c, a 
is not a decreasing sequence either. A configuration not 
containing open gates is called full configuration.

Example 37  The configurations {(7, 4, 1), (8, 5, 2), (9, 
6, 3)} and {(14, 12, 10), (15, 13, 11)} are small full compo-
nents of G([4 8 3 7 2 6 1 5 9 14 13 12 11 10]) (Fig. 9).

τ(4, 6, 9) · [4 3 2 1 8 7 6 5] = [4 3 2 7 6 5 1 8]
τ(3, 5, 8) · [4 3 2 7 6 5 1 8] = [4 3 6 5 1 2 7 8]
τ(2, 4, 7) · [4 3 6 5 1 2 7 8] = [4 5 1 2 3 6 7 8]
τ(1, 3, 6) · [4 5 1 2 3 6 7 8] = [1 2 3 4 5 6 7 8]

Fig. 6  Sorting π = [4 3 2 1 8 7 6 5] with 4 transpositions Fig. 7  Cycle graph of [3 6 2 5 1 4 10 9 8 7]

τ(6, 8, 11) · [3 6 2 5 1 4 10 9 8 7] = [3 6 2 5 1 9 8 7 4 10]
τ(5, 7, 10) · [3 6 2 5 1 9 8 7 4 10] = [3 6 2 5 8 7 4 1 9 10]
τ(3, 6, 9) · [3 6 2 5 8 7 4 1 9 10] = [3 6 7 4 1 2 5 8 9 10]
τ(2, 4, 8) · [3 6 7 4 1 2 5 8 9 10] = [3 4 1 2 5 6 7 8 9 10]
τ(1, 3, 5) · [3 4 1 2 5 6 7 8 9 10] = [1 2 3 4 5 6 7 8 9 10]

Fig. 8  Sorting π ′ = [3 6 2 5 1 4 10 9 8 7] with 5 transpositions
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Sequences of transpositions
A sequence of transpositions τ1 , . . . , τx is said to be a 
(x,  y)-sequence, for x ≥ y , is a sequence of x transposi-
tions such that, at least y of them are 2-moves. A (x, y)-
sequence is an a

b
-sequence if xy ≤ a

b
 and x ≤ a.

Example 38  The sequence τ1 = τ (1, 4, 7) , 
τ2 = τ (2, 5, 8) , τ3 = τ (1, 4, 7) , τ4 = τ (3, 6, 9) is a 
(4,  3)-sequence, which is also a 11

8 -sequence, for 
[4 8 3 7 2 6 1 5 9 14 13 12 11 10] (Fig. 9).

The extra transposition
The first step of the EH algorithm is the simplification 
of the input permutation. In this section, we show that 
there are simplifications that, although producing equiv-
alent simple permutations, causes the EH algorithm to 
require one extra transposition above the approximation 
of 1.375. Two examples are explored next.

Consider the permutation π = [4 3 2 1 8 7 6 5] 
shown in Fig.  3. The lower bound given by Theo-
rem  33 is 4, also its exact distance, corresponding 
to the application of four 2-moves, shown in Fig.  6. 
One simplification of π generates the permutation 
[4.1 4 3 2 1 4.2 8.1 8 7 6 5] , which mapped to consecu-
tive integers is π̂ = [5 4 3 2 1 6 11 10 9 8 7] (Fig. 5). Note 
that the lower bound of π̂ is 4 as well. However, there is 
no 118 -sequence to apply on π̂ . In fact, to optimally sort π̂ , 
two (3, 2)-sequences are required. Therefore the EH algo-
rithm using π = [4 3 2 1 8 7 6 5] as input, even apply-
ing an optimal sorting on π̂ = [5 4 3 2 1 6 11 10 9 8 7] , 
yields 6 transpositions. However, the algorithm should 
require at most 5 transpositions to not exceed the 
1.375-approximation ratio.

The following example shows that, even if there are 
11
8 -sequences of transpositions to apply on π̂ , the EH 
algorithm may require one transposition above the 
approximation ratio of 1.375. Take the permutation 
π
′ = [3 6 2 5 1 4 10 9 8 7] (Fig.  7), with both the lower 

bound and distance equal to 5, corresponding to the 
application of five 2-moves, shown in Fig.  8. A simpli-
fied version of π ′ is [3.1 6.1 3 6 2 5 1 4 6.2 10.1 10 9 8 7] , 

which mapped to consecutive integers is 
π̂
′ = [4 8 3 7 2 6 1 5 9 14 13 12 11 10] (Fig.  9). 

The EH algorithm sorts π̂ ′ optimally by applying a 
(4, 3)-sequence, followed by a (3, 2)-sequence, in a total 
of 7 transpositions. However, the algorithm should not 
require more than 6 transpositions to not exceed the 
1.375-approximation ratio.

In both examples above, an initial (2,  2)-sequence 
is “missed” during the simplification process. This 
sequence is essential to guarantee the 1.375 approxima-
tion ratio when bad small components remain in G(π̂) 
after the application of a number of 118 -sequences (Theo-
rem 22 [6]). These are small full configurations which do 
not allow the application of 118 -sequences. It is impor-
tant to stress that the extra transposition will be neces-
sary regardless of the number of bad small components 
remaining in the cycle graph after applying a sequence 
of 118 -sequences (any number of ), as long as the total 
number of remnant 3-cycles is less than 8 and the ini-
tial (2,  2)-sequence that possibly existed initially, was 
“missed” during the simplification.

It was already known by the literature that simplifi-
cation maintained the lower bound, but not the trans-
position distance. However, it was not known that the 
simplification could have the effect of missing an initial 
(2, 2)-sequence. In principle, the EH algorithm could be 
modified to guarantee the 1.375-approximation ratio, and 
no extra transposition, by looking for the (2, 2)-sequence 
in its first step, applying it case it exists, and only then 
simplifying the resulting permutation. However, using 
the already known techniques, this new “modified” EH 
algorithm would not keep the original time complexity of 
O(n2).

Appendix 2: Correspondence between the cycle 
graph and ῑπ̄−1

The product ῑπ̄−1 , in the algebraic approach, produces 
cycles corresponding exactly to the same cycles of G(π) . 
If we follow the edges of the cycles in G(π) taking note 

Fig. 9  Cycle graph of [4 8 3 7 2 6 1 5 9 14 13 12 11 10] , mapped from π̂ ′ = [3.1 6.1 3 6 2 5 1 4 6.2 10.1 10 9 8 7] using consecutive integers
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of the labels of the vertices where the gray edges enter, 
disregarding the sign, and changing the label −(n+ 1) to 
0, we obtain exactly the same cycles of ῑπ̄−1 . It is easy to 
see, therefore, that ῑπ̄−1 and G(π) have the same number 
of cycles and the corresponding cycles have all the same 
length. Also, the cycles of ῑπ̄−1 have the same relevant 
properties of the cycles of G(π) , such as orientation. The 
relationships between the cycles, i.e., intersection and 
interleaving, are identical as well. Furthermore, configu-
rations and components are also corresponding concepts 
between the two structures (see section “Configurations 
and components” in Appendix 1).

Example 39  Let π = [6 5 3 2 1 8 7 4 9 14 13 12 11 
10] ( G(π) depicted in Fig.  4). As seen in Exam-
ple  34, the cycles of G(π) are (5,  3,  1), (8,  6,  4), 
(9,  2,  7), (14,  12,  10) and (15,  13,  11). Now let 
π̄ = ( 0 6 5 3 2 1 8 7 4 9 14 13 12 11 10 ) , so that 
ῑπ̄

−1 = ( 0 11 13 )( 1 3 6 )( 2 4 8 )( 5 7 9 )( 10 12 14 )  . 
Take the cycle (5,  3,  1) of G(π) . If we follow the proce-
dure above, we obtain the ῑπ̄−1 cycle ( 1 3 6 ) . The same 
procedure takes (8, 6, 4) to ( 2 4 8 ) , (9, 2, 7) to ( 5 7 9 ) 
(note that these cycles are equally oriented), (14, 12, 10) 
to ( 10 12 14 ) ; and finally (15,  13,  11) to ( 0 11 13 ) . 
Also, observe that (5, 3, 1) and (8, 6, 4) are intersecting, 
the same way as ( 1 3 6 ) and ( 2 4 8 ) . Furthermore, the 
pairs (14,  12,  10) and (15,  13,  11); and ( 10 12 14 ) and 
( 0 11 13 ) are interleaving. Finally, the same pairs of 
cycles form small components in both structures.

Appendix 3: Other issues found in the EH algorithm
It should be noted that Elias and Hartman [6] have not 
provided a publicly available implementation of their 
algorithm, which we could use as a reference. To the 
best of our knowledge, the only implementation of the 
EH algorithm reported in the literature, without the use 
of heuristics, is the one of Dias and Dias [35], but their 
implementation is not publicly available either. This led 
us to implement the EH algorithm from scratch.

It is worthy of note that our implementation of the EH 
algorithm in closer to the version6 previously presented 
on WABI in 2005 [28], since we found an issue in the algo-
rithm outlined in [6] (the algorithms are presented differ-
ently in both versions of their work). The issue has to do 
with the application of 118 -sequences when G(π̂) contains 
only bad small components. As presented on [6], once 
all bad small components are identified, the algorithm 
enters a loop and continuously applies 11

8 -sequences 
(given by their Lemma 17 [6]), until the number of cycles 
in G(π̂) is less than 8. However, we found cases where the 

application of 118 -sequences given by Lemma 17 [6] can 
create small components in G(π̂) that are not bad, which 
can eventually prevent the application of the lemma 
in the next iterations. One such case is when we have a 
permutation consisting of multiple unoriented neck-
laces of size 6 [6] side by side. To give an illustration, take 
π̂ = [17 16 3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 35 34 21 20 
19 24 23 22 27 26 25 30 29 28 33 32 31] whose 
G(π̂) consists precisely of two unoriented neck-
laces of size 6 side by side. Since the sum of 3-cycles 
is 12, Lemma 17 [6] guarantees us the existence of 
a 11

8 -sequence. The (11,  8)-sequence given by Elias 
and Hartman [6] for this permutation (by combin-
ing two unoriented necklaces of size 6 side by side) 
is τ1 = τ (1, 3, 5) , τ2 = τ (7, 11, 26) , τ3 = τ (9, 13, 35) , 
τ4 = τ (4, 10, 34) , τ5 = τ (2, 13, 30) , τ6 = τ (1, 18, 20) , 
τ7 = τ (6, 17, 32) , τ8 = τ (5, 14, 22) , τ9 = τ (15, 27, 35) , 
τ10 = τ (18, 28, 36) , τ11 = τ (6, 19, 35) . After applying this 
sequence, we have π̂ = [1 2 3 4 20 21 22 27 26 25 30 31 
32 11 12 13 14 15 16 17 18 19 24 23 5 6 7 8 9 10 29 28 
33 34 35] . Observe that now G(π̂) contains a small com-
ponent of 4 unoriented 3-cycles that despite being small, 
is not bad.

To avoid the issue described above in our implemen-
tation of the EH algorithm, we have made a change in 
which we apply a 118 -sequence as soon as the sum of the 
number of 3-cycles of the the bad small components, as 
they are identified in the main loop, is greater than 7, 
inside the loop itself (line 5 of the algorithm outlined in 
[6]), as opposed to its position within a loop of its own 
(line 6 [6]). Similar solution is employed by our Algo-
rithm 1 (line 34).

We found another issue in the last loop of both ver-
sions of the EH algorithm [6, 28]. It is not always 
possible to apply a (3,  2)-sequence at that point. 
Sometimes, only a 2-move exists, as the Lemma 7 
[6] itself states. Take, for instance, the permutation 
π̂ = [14 13 3 2 1 6 5 4 9 8 7 12 11 10] whose G(π̂) 
consists of an unoriented necklace of size 5. Observe 
that there is no 11

8 -sequence to apply on π̂ . In the 
last loop [6, 28], Elias and Hartman [6] applies two 
(3,  2)-sequences: τ1 = τ (1, 10, 14) , τ2 = τ (4, 6, 15) , 
τ3 = τ (3, 5, 14) , then τ1 = τ (4, 8, 9) , τ2 = τ (2, 5, 8) , 
τ3 = τ (1, 3, 6) . After applying these sequences, we have 
π̂ = [1 6 7 8 2 3 4 5 9 10 11 12 13 14] whose G(π̂) con-
tains only one oriented 3-cycle, making it impossible to 
apply a further (3,  2)-sequence. In this particular case, 
the 2-move τ (2, 5, 9) concludes the sorting of π̂ . Our 
implementation [31] of the EH algorithm includes a “fix” 
for this issue applying a (3,  2)-sequence or a 2-move, 
depending on the case.

6  As this version uses one single loop to apply 11
8

-sequences.
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