
Silva et al. Algorithms for Molecular Biology (2022) 17:1
https://doi.org/10.1186/s13015-022-00205-z

RESEARCH

A new 1.375‑approximation algorithm
for sorting by transpositions
Luiz Augusto G. Silva1*, Luis Antonio B. Kowada3, Noraí Romeu Rocco2 and Maria Emília M. T. Walter1 

Abstract 

Background:  sorting by transpositions (SBT) is a classical problem in genome rearrangements. In 2012, SBT was proven
to be NP-hard and the best approximation algorithm with a 1.375 ratio was proposed in 2006 by Elias and Hartman
(EH algorithm). Their algorithm employs simplification, a technique used to transform an input permutation π into a
simple permutation π̂ , presumably easier to handle with. The permutation π̂ is obtained by inserting new symbols into
π in a way that the lower bound of the transposition distance of π is kept on π̂ . The simplification is guaranteed to
keep the lower bound, not the transposition distance. A sequence of operations sorting π̂ can be mimicked to sort π.

Results and conclusions:  First, using an algebraic approach, we propose a new upper bound for the transposition
distance, which holds for all Sn . Next, motivated by a problem identified in the EH algorithm, which causes it, in sce-
narios involving how the input permutation is simplified, to require one extra transposition above the 1.375-approxi-
mation ratio, we propose a new approximation algorithm to solve SBT ensuring the 1.375-approximation ratio for all
Sn . We implemented our algorithm and EH’s. Regarding the implementation of the EH algorithm, two other issues
were identified and needed to be fixed. We tested both algorithms against all permutations of size n, 2 ≤ n ≤ 12 . The
results show that the EH algorithm exceeds the approximation ratio of 1.375 for permutations with a size greater than
7. The percentage of computed distances that are equal to transposition distance, computed by the implemented
algorithms are also compared with others available in the literature. Finally, we investigate the performance of both
implementations on longer permutations of maximum length 500. From the experiments, we conclude that maxi-
mum and the average distances computed by our algorithm are a little better than the ones computed by the EH
algorithm and the running times of both algorithms are similar, despite the time complexity of our algorithm being
higher.

Keywords:  Transposition Distance Problem, Sorting by Transpositions, Genome rearrangements, Approximation
algorithms

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
It is known from previous research that the genomes
of different species may present essentially the same
set of genes in their DNA strands, although not in the
same order [1, 2], suggesting the occurrence of muta-
tional events that affect large portions of DNA. These

are presumably rare events and, therefore, may provide
important clues for the reconstruction of the evolution-
ary history among species [3, 4]. One such event is the
transposition, which swaps the position of two adja-
cent blocks of genes in one chromosome. Consider-
ing that there are no duplicated genes, each gene can
be represented by an integer and the chromosome by
a permutation, then the transposition distance
problem (TDP) aims to find the minimum number of
transpositions required to transform one chromosome
into another. TDP can be reduced to the sorting by

Open Access

Algorithms for
Molecular Biology

*Correspondence: laugustogarcia@gmail.com
1 Departmento de Ciência da Computação, Universidade de Brasília,
Brasília, Brazil
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-022-00205-z&domain=pdf

Page 2 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

transpositions problem (SBT) using the identity as
the target permutation.

The first approximation algorithm to solve SBT was
devised in 1998 by Bafna and Pevzer [5], with a 1.5
ratio, based on the properties of a structure called the
cycle graph. In 2006, Elias and Hartman [6] presented a
1.375-approximation algorithm (EH algorithm) with time
complexity O(n2) , the best known approximation solu-
tion so far for SBT. In 2012, Bulteau, Fertin and Rusu [7]
demonstrated that SBT is NP-hard.

In a later study, the time complexity of the EH algo-
rithm was improved to O(n log n) by Cunha et al. [8].
Improvements to the EH algorithm, including heuristics,
were proposed by Dias and Dias [9, 10].

Other studies, using different approaches, other than
the cycle graph, were also published. For instance,
Hausen et al. [11] studied SBT using a structure named
toric graph, which was previously devised by Erikson
et al. [12], used by the later ones to derive the upper
bound of

⌊

2n−2
3

⌋

 for the transposition diameter, the best
known so far for SBT. Galvão and Dias [13] studied solu-
tions for SBT using three different structures: permuta-
tion codes, a concept previously introduced by
Benoît-Gagné and Hamel [14]; breakpoint diagram,1
introduced by Walter et al. [15]; and longest increasing
subsequence, introduced by Guyer et al. [16]. Rusu [17],
on the other hand, used a structure called log-list, for-
merly devised with the name link-cut trees by Sleator and
Tarjan [18], to derive another O(n log n) 1.375-approxi-
mation algorithm for SBT. In addition to these, recently,
other studies have been proposed involving variations of
the transposition event. As examples, Lintzmayer et al.
[19] studied the problem of sorting by prefix and
sufix transpositions, as well as other problems com-
bining variations of the transposition event with varia-
tions of the reversal event. Oliveira et al. [20] studied the
transposition distance between two genomes considering
intergenic regions, a problem they called sorting per-
mutations by intergenic transpositions.

Meidanis and Dias [21] and Mira and Meidanis [22]
were the first authors to propose the use of an algebraic
approach to solve SBT, as an alternative to the methods
based on the cycle graph. The goal was to provide a more
formal approach for solving rearrangement problems
using known results from the permutation groups the-
ory. Mira et al. [23] have shown the feasibility of using an
algebraic approach to solve SBT by formalising the Bafna
and Pevzner’s 1.5-approximation algorithm [5] using an
algebraic tooling.

Regarding the studies using the cycle graph, after the
work of Bafna and Pevzner [5], the use of simplifica-
tion [24–26] became predominant. Simplification was
introduced to make it easier to deal with long cycles in
the cycle graph. In Appendix 1, we show a side effect of
simplification, which ultimately makes the EH algorithm,
in certain scenarios, to require one extra transposition
above the 1.375-approximation ratio and, therefore, we
avoided its use in our work. To the best of our knowl-
edge, there is no tooling in the cycle graph literature to
deal with long cycles, probably due to the predominance
of simplification. For this reason, in this paper, we prefer
to use an algebraic approach based on the work of Mira
et al. [23]. In it, we are able to handle with long cycles
without having to insert new symbols into the original
permutation.

This paper is organized as follows. First, we present a
brief background on permutation groups, necessary to
understand the algebraic approach used in our work,
followed by an algebraic formalisation of SBT. Next,
we propose a new upper bound for SBT, valid for all
Sn , improving the upper bound devised by Bafna and
Pevzner [5, 27]. Then, we propose a new approximation
algorithm to solve SBT that ensures the 1.375-approxi-
mation for all Sn . Finally, we present experimental results
on all permutations of length n, 2 ≤ n ≤ 12 , of imple-
mentations of the EH algorithm and ours. The percent-
age of computed distances that are equal to transposition
distance computed by the EH algorithm and ours are
compared with others available in the literature. We also
investigate the performance of the implementations of
both algorithms with longer permutations of sizes rang-
ing from 20 to 500, and compare the results with simi-
lar experiments conducted in other studies. Two other
issues were found in the EH algorithm, one affecting both
published versions [6, 28] and another one affecting only
the journal version [28]. The issues are reported in the
Appendix 3.

Permutation groups
The results presented next are classical in the literature
and their proofs can be found in abstract algebra text-
books [29, 30].

The Symmetric Group Sn on a finite set E of n symbols
is the group formed by all permutations on n distinct ele-
ments of E, defined as bijections from E to itself, under
the operation of composition. The product of two permu-
tations is defined as their composition as functions. Thus,

1  Do not confuse with breakpoint graph.

Page 3 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

	

if α and β are permutations in Sn , then α · β , or simply αβ ,
is the function that maps any element x of E to α(β(x)).

An element x ∈ E is said to be a fixed element of α ∈ Sn ,
if α(x) = x . If there exists a subset {c1, c2, . . . , cκ−1, cκ } of
distinct elements of E, such that

and α fixes all other elements, then we call α a
cycle. In cycle notation, this cycle is written as
α = (c1 c2 . . . cκ−1 cκ) , but any of (c2 . . . cκ−1 cκ c1) , ...,
(cκ c1 c2 . . . cκ−1) denotes the same cycle α . The number
κ is the length of α , denoted by |α| . In this case, α is also
called a κ-cycle.

The support of a permutation α , denoted Supp(α) , is the
subset of moved (not fixed) elements of E. Two permuta-
tions α and β are said disjoint, if Supp(α) ∩ Supp(β) = ∅ ,
i.e, if every symbol moved by one is fixed by the other. It
is known that, if α and β are disjoint, then they commute
as elements of Sn , under the composition operation.

Lemma 1  Every permutation in Sn can be written as
a product of disjoint cycles. This representation, called
disjoint cycle decomposition , is unique, regardless of the
order in which the cycles are written in the representation.

For the sake of simplicity, a cycle β in or of a permuta-
tion α is a cycle in the disjoint cycle decomposition of α.

The identity permutation ι is the permutation fixing
all elements of E. Fixed elements sometimes are omitted
in the cycle notation. However, when necessary they are
written as 1-cycles.

Theorem 2  Every permutation in Sn can be written as a
(not unique) product of 2-cycles.

A permutation α is said to be even(odd) if it can be
written as a product of an even(odd) number of 2-cycles.2
Next, we present some important results related to the
parity of permutations.

Theorem 3  If a permutation α is written as a product of
an even(odd) number of 2-cycles, it cannot be written as a
product of an odd(even) number 2-cycles.

Example 4  The permutation ρ = [4 8 3 7 2 6 1 5] , in
cycle notation, is represented by (1 4 7)(2 8 5)(3)(6) .

α(c1) = c2,α(c2) = c3, . . . ,α(cκ−1) = cκ ,α(cκ) = c1,

In this case, 3 and 6 are fixed elements and could be
omitted in this notation. We can say that ρ can be writ-
ten, in unique form, as a product of two disjoint 3-cycles.
This permutation could be written as product of other
cycles, but these cycles would not be disjoint. Further-
more, ρ could be written as (1 7) (1 4) (2 5) (2 8), using
four 2-cycles, and also as (1 7) (4 7) (1 7) (4 7) (2 5) (2 8),
using six 2-cycles.

Theorem 5  If α , β ∈ Sn are permutations with the same
parity, then the product αβ is even.

Proposition 6  Let γ be a κ-cycle. If κ is odd, then γ is an
even permutation, otherwise γ is odd.

In order to avoid misunderstanding with the parity of
cycles in the cycle graph formalism, which is opposite to
the one classically used in permutation groups, we will
always refer to the lengths of the cycles rather than their
parity.

Algebraic formalisation of SBT
A permutation π = [π1 π2 . . . πn] can be represented in
many different ways. In the genome rearrangement con-
text, where π models a chromosome, one of the most
used representations of π is the cycle graph [5], denoted
G(π) (a formal definition of G(π) can be found in the first
section of Appendix 1). An alternative representation to
the cycle graph is using the algebraic approach proposed
by Mira et al. [23], which is the one employed in this
paper. In this approach, the permutation π is represented
as the (n+ 1)-cycle π̄ = (0 π1 π2 . . . πn) and the identity
as ῑ = (0 1 2 . . . n)3. A correspondence between the
cycles of the product ῑπ̄−1 (presented in the sequel) and
the set of cycles of G(π) is shown in the Appendix 2.

A 3-cycle τ = (πi πj πk) is said to be applicable on π̄
if the symbols πi , πj and πk appear in π̄ in the same cyclic
order they are in τ , i.e., π̄ = (πi . . . πj . . . πk . . .) [23].
The application of τ on π̄ means multiply τ by π̄ . Thus,
and only in this case, the product τ π̄ is a (n+ 1)-cycle,
such that the symbols between πi and πj−1 , including
πi but not πj , in π̄ are “cut” and then “pasted” between
πk−1 and πk , thus simulating a transposition on π̄ , as
τ π̄ = (πi πj πk)(π0π1 . . . πi−1πiπi+1 . . . πj−1πjπj+1 . . .
πk−1πk . . . πn) = (π0π1 . . . πi−1πjπj+1 . . . πk−1πiπi+1
. . . πj−1πk . . . πn).

Example 7  Let π̄ = (0 4 3 2 1 8 7 6 5) . The
3-cycle τ = (0 2 7) is applicable to π̄ and thus

2  A 2-cycle is commonly referred to as transposition in the algebra litera-
ture. In order to avoid misunderstanding with the terminology, in this paper,
“transposition” always refers to swapping two adjacent blocks of symbols in a
permutation. 3  Note that ῑ = (0 1 2 . . . n) is not ι = (0)(1) · · · (n).

Page 4 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

simulates a transposition. The application τ π̄ yields
(0 4 3 7 6 5 2 1 8) . Now consider the 3-cycle
τ
′ = (0 1 2) . Note that τ ′ is not applicable to π̄ , and the

result of the product τ ′π̄ is (0 4 3 7 6 5)(1 8)(2) , which
is not a (n+ 1)-cycle and therefore does not represent a
chromosome in our approach.

Given a (n+ 1)-cycle π̄ , the sorting by transposi-
tions problem (SBT) consists of finding the minimum
number t, denoted d(π̄) , of transpositions represented
as applicable 3-cycles needed to transform π̄ into
ῑ = (0 1 2 . . . n) , i.e.,

 From the equality above, multiplying both sides by π̄−1 ,
we have that

 Observe that by Proposition 6 and Theorem 5, the
product of two cycles with the same length is an even
permutation.

Proposition 8  The permutation ῑπ̄
−1 is an even

permutation.

The 3-norm [22] of an even permutation α ∈ Sn ,
denoted by ||α||3 , corresponds to the smallest ℓ such
that βℓ . . . β1 = α , where each βi , 1 ≤ i ≤ ℓ , is a 3-cycle.
Denote by c◦odd(α) , the number of odd-length cycles,
also including 1-cycles, in α , respectively. Mira and Mei-
danis [22] demonstrated the following result.

Lemma 9  (Mira and Meidanis [22])

As ῑπ̄−1 is an even permutation (Proposition 8), then,
as a corollary, a lower bound for SBT is derived.

Lemma 10  (Mira and Meidanis [22]) If π̄ is a (n+ 1)-
cycle, then

New upper bound for SBT
In this section, we present our main results. We begin
with some basic definitions and results concerning the
ῑπ̄

−1 permutation. Next, we present a new upper bound
for SBT and a new 1.375-approximation algorithm.

(1)τt . . . τ1π̄ = ῑ.

(2)τt . . . τ1 = ῑπ̄
−1

.

||α||3 =
n− c◦odd(α)

2
.

d(π̄) ≥ ||ῑπ̄−1||3

≥
n+ 1− c◦odd(ῑπ̄

−1
)

2
.

Cycles of ῑπ̄−1

Let γ be a cycle in ῑπ̄−1 . If γ = (a . . . b . . . c . . .) and
π̄
−1 = (a . . . c . . . b . . .) , i.e., if the symbols a, b and

c appear in γ in a cyclic order that is distinct from
the one in π̄−1 , then we say (a, b, c) is an oriented tri-
plet and γ is an oriented cycle. Otherwise, if there
is no oriented triplets in γ , then γ is an unoriented
cycle. A cycle η = (η1 η2 . . . η|η|) is a segment of γ if
γ = (η1 η2 . . . η|η| . . .) . Observe that by definition, a cycle
in ῑπ̄−1 is a segment of itself. Analogously, we define a
segment of a cycle γ of ῑπ̄−1 as oriented or unoriented.

Let δ = (a b . . .) and ǫ = (d e . . .) be two cycles
of ῑπ̄

−1 . If π̄
−1 = (a . . . e . . . b . . . d . . .) , i.e., if the

symbols of the pairs (a, b) and (d, e) occur in alter-
nate order in π̄−1 , we say these pairs intersect, and
that δ and ǫ are intersecting cycles. A special case is
when δ = (a b c . . .) and ǫ = (d e f . . .) are such that
π̄
−1 = (a . . . e . . . b . . . f . . . c . . . d . . .) , i.e., the symbols of

the triplets (a, b, c) and (d, e, f) occur in alternate order in
π̄
−1 . In this case, δ and ǫ are said to be interleaving cycles.

Analogously, we define two segments of two ῑπ̄−1 cycles
as intersecting or interleaving.

Example 11  Let π̄ = (0 8 7 6 5 1 4 9 3 2) and ῑπ̄−1 = (0
3) (1 6 8) (2 4) (5 7 9). The cycles (0 3) and (2 4) are exam-
ples of intersecting cycles whereas (1 6 8) and (5 7 9) are
interleaving cycles.

A κ-cycle in ῑπ̄−1 is called short if κ ≤ 3 ; otherwise, it is
called long. Similarly, a segment of a cycle of ῑπ̄−1 can be
short or long.

Observe that, from Eq. 2, ῑπ̄−1
τ1

−1
. . . τt

−1 = ι , i.e., the
application of the transpositions τ1,. . .,τt sorting π̄ (i.e.,
transforming π̄ into ῑ ) can be seen as the incremental
multiplication of ῑπ̄−1 by τ1−1 , . . . , τt−1.

Denote by �c◦odd(ῑπ̄
−1, τ) , the difference c◦odd(ῑπ̄−1

τ
−1

)− c◦odd(ῑπ̄
−1

).

Proposition 12  (Meidanis, Dias and Mira [21, 22]) If τ
is an applicable 3-cycle then �c◦odd(ῑπ̄

−1, τ) ∈ {−2, 0, 2}.

The maximum number of cycles in ῑπ̄−1 is obtained if
and only if ῑπ̄−1 is the identity permutation ι . In this case,
ι has n+ 1 cycles, being all odd-length (in particular, they
are all of length 1).

We denote by µ-move an applicable 3-cycle τ such that
�c◦odd(ῑπ̄

−1, τ) = µ . According to the Proposition 12,
the possible moves are (−2)-move, 0-move and 2-move.

Configurations and components
A configuration Ŵ is a disjoint product of segments of
cycles of ῑπ̄−1 , such that there is no two segments in Ŵ

Page 5 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

	

of the same cycle of ῑπ̄−1 . If ||Ŵ||3 ≤ 8 then Ŵ is said to be
small; otherwise, big.

Example 13  Let π̄ = (0 6 5 3 2 1 8 7 4 9 14 13 12 11 10, so
ῑπ̄

−1 = (0 11 13)(1 3 6)(2 4 8)(5 7 9)(10 12 14).
The product (1 3 6)(2 4 8) is a small configuration of ̄ιπ̄−1.

A configuration Ŵ is connected if for any two segments
γ1 and γm of Ŵ , there are segments γ2, . . . , γm−1 in Ŵ such
that for each i ∈ [1,m− 1] , γi intersects or interleaves
with γi+1 . Ŵ is said to be a component if it consists of only
one oriented cycle that does not intersect or interleave
any other cycle of ῑπ̄−1 ; or it consists of a maximal con-
nected configuration of ῑπ̄−1.

Example 14  Let π̄ = (0 6 5 3 2 1 8 7 4 9 14 13 12 11
10) . As ̄ιπ̄−1 = (0 11 13)(1 3 6)(2 4 8)(5 7 9)(10 12
14), so (0 11 13)(10 12 14) and (1 3 6)(2 4 8)(5 7 9)
are both components of ῑπ̄−1.

Let (a b c)(d e f) be a configuration of
ῑπ̄

−1 consisting of two intersecting segments. If
π̄
−1 = (a . . . e . . . b . . . f . . . c . . . d . . .) , i.e., if (a b c)

and (d e f) interleave, then we call it the unori-
ented interleaving pair. On the other hand, if
π̄
−1 = (a . . . f . . . b . . . c . . . d . . . e . . .) , i.e., (a b c) and

(d e f) only intersect but do not interleave, then we call
it the unoriented intersecting pair.

Let ǫ = (a b . . .) be a segment of a configuration Ŵ . We
call the pair (a, b) an open gate in Ŵ , if there is no cycle
(c d . . .) in Ŵ such that (a, b) and (c, d) intersect; and
there is no e ∈ Supp(ǫ) such that (a, b, e) is an oriented
triplet. If Ŵ is a configuration not containing open gates,
then it is a full configuration. Observe that the unoriented
interleaving pair does not have open gates and therefore
it is a full configuration. The unoriented intersecting pair,
in its turn, has two open gates.

Sequences of applicable 3‑cycles
We also denote by (x, y)-sequence, for x ≥ y , a sequence
of x applicable 3-cycles τ1 , . . . , τx such that, at least y of
them are 2-moves. A (x, y)-sequence is said to be a a

b
-sequence if x ≤ a and xy ≤ a

b
.

Example 15  Let π̄ = (0 4 8 3 7 2 6 1 5 9 14 13 12
1110) , so ῑπ̄−1 = (0 11 13) (1 7 4) 4) (2 8 5) (3 9 6) (10
12 14). The sequence τ1 = (1 4 7), τ2 = (2 8 5), τ3 = (1
4 7), τ4 = (3 9 6) is a (4, 3)-sequence, which is also a 118
-sequence.

We say a configuration Ŵ allows the application of a a
b

-sequence if it is possible to write this sequence using the
symbols of Supp(Ŵ).

Auxiliary results
The proofs of some results in this section and the next
rely on the analysis of a huge number of cases. Since it
is impracticable to enumerate and verify by hand all the
cases, we implemented, as Elias and Hartman [6], some
computer programs [31] to systematically generate the
proofs. In order to facilitate the visualisation and general
understanding, the proofs are available to the reader in
the form of a friendly web interface [32].

Next we show some auxiliary results.

Corollary 16  If there is an oriented 3-cycle γ = (a b c)
in ῑπ̄−1 , then (a b c) is a 2-move.

Proposition 17  If there is an even-length cycle in ῑπ̄−1 ,
then a 2-move exists.

Proof  Since ῑπ̄−1 is an even permutation (Proposi-
tion 8), then there is an even number of even-length
cycles in ῑπ̄−1 . Let γ = (a b . . .) and δ = (c d . . .) be two
even-length cycles of ῑπ̄−1 . We have two cases:

(1)	 γ and δ intersect. In this case, we have that
π̄
−1 = (a . . . d . . . b . . . c . . .) . Then (a b c) is a

2-move.
(2)	 γ and δ do not intersect. W.l.o.g, suppose

π̄
−1 = (a . . . b . . . c . . . d . . .) . In this case, (a c b) is

a 2-move.� �

Lemma 18  If there is a 5-cycle γ = (a d b e c) in ῑπ̄−1
such that (a, b, c) is an oriented triplet, then there is a
2-move or a (3, 2)-sequence.

Proof  The possible distinct forms of π̄ relatively to the
positions of the symbols of Supp(γ) are listed below. For
each one, there is either a 2-move or a (3, 2)-sequence.

(1)	 π̄ = (a . . . b . . . c . . . d . . . e . . .) . τ1 = (a b c) ,
τ2 = (b c d) , τ3 = (c d e).

(2)	 π̄ = (a . . . b . . . c . . . e . . . d . . .) . τ1 = (b e d).
(3)	 π̄ = (a . . . b . . . e . . . c . . . d . . .) . τ1 = (a e c).
(4)	 π̄ = (a . . . e . . . b . . . d . . . c . . .) . τ1 = (a d c).

Page 6 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

(5)	 π̄ = (a . . . b . . . e . . . d . . . c . . .) . τ1 = (a d c).
(6)	 π̄ = (a . . . d . . . b . . . e . . . c . . .) . τ1 = (a d b).� �

Note that, by Lemma 18, if γ = (a d b e c) is an ori-
ented 5-cycle in ῑπ̄−1 such that (a, b, c) an oriented tri-
plet, then π̄ = (a . . . b . . . c . . . d . . . e . . .) is the only form
of π̄ , relatively to the positions of the symbols of Supp(γ) ,
for which there is no 2-move. In this case, we call γ the
bad oriented 5-cycle.

Lemma 19  If there is an odd-length κ-cycle
γ = (a . . . b . . . c . . .) in ῑπ̄−1 such that κ ≥ 7 and (a, b, c)
is an oriented triplet, then there is either a 2-move or
(4, 3)-sequence.

Proof  If (a b c) is a 2-move, then the lemma holds.
There is only one case where (a b c) would not be a
2-move. W.l.o.g, suppose that this case is

Vertical bars are used to indicate the locations where γ
would be broken if (a b c) were applied on π̄ , and sub-
scripts to indicate the parity of the length of the result-
ing cycles. Note that the cycle γ can be rewritten as the
product

There is only one form of π̄ relatively to the symbols of the
support of (a d e b f c g) not allowing the application
of a 2-move, which is π̄ = (a . . . e . . . f . . . g . . . d . . . b . . .
c . . .) . For this π̄ , τ1 = (a e f) , τ2 = (d e f) , τ3 = (b f d) ,
τ4 = (a c g) is (4, 3)-sequence of transpositions. �

Lemma 20  If ῑπ̄−1 �= ι , then a 2-move or (3, 2)-sequence
exists.

Proof  If there is an even-length cycle in ῑπ̄−1 , then by
Proposition 17, a 2-move (i.e., a (1, 1)-sequence) exists.
Thus, we assume ῑπ̄−1 containing only odd-length cycles.

(1)	 There is an oriented κ-cycle γ in ῑπ̄−1 . If κ = 3 ,
then Corollary 16 gives a 2-move and the lemma
holds. If κ = 5 , then Lemma 18 gives a 2-move or
γ is the bad oriented 5-cycle. In this case, there is a

γ = (d e . . . b
︸ ︷︷ ︸

odd

| f . . . c
︸ ︷︷ ︸

even

| g . . . a
︸ ︷︷ ︸

even

|).

γ = (a . . .
︸︷︷︸

odd

)(b . . .
︸︷︷︸

odd

)(c . . .
︸︷︷︸

odd

)(a d e b f c g).

(3, 2)-sequence. On the other hand, if κ ≥ 7 , then
a 2-move or a (4, 3)-sequence, which contains a
(3, 2)-sequence, is given by Lemma 19.

(2)	 All the cycles of ῑπ̄
−1 are unoriented. Let

γ = (a b c) be a segment of a cycle of ῑπ̄−1 . We
have two cases:

(a)	 γ interleaves with another segment
δ = (d e f) . In this case, we have that
π̄ = (a . . . f . . . c . . . e . . . b . . . d . . .) . Then,
τ1 = (a c b) , τ2 = (d e f) and τ3 = (a c b)
is a (3, 2)-sequence.

(b)	 γ intersects with two segments δ = (d e f)
and ǫ = (g h i) . For each of the 15 distinct
forms of π̄ (enumerated on [32]), relatively to
the possible positions of the symbols of γ , δ and
ǫ , there is a (3, 2)-sequence.� �

Configuration analysis
At this point, we consider ῑπ̄−1 consisting only of odd-
length unoriented cycles of any size or bad oriented
5-cycles. For the other cases, Corollary 16, Proposi-
tion 17 and Lemma 19 give a 2-move or a (4, 3)-sequence.

Our goal is to prove that, if ||ῑπ̄−1||3 ≥ 8 , then a 118
-sequence of transpositions exists. The analysis is divided
in two parts. In the first part, we analyse configurations
obtained from basic ones (defined below) by extension. In
the second part, we analyse ῑπ̄−1 composed only of small
components, not allowing application of 118 -sequences.

Extension of basic configurations
The analysis starts with the bad oriented 5-cycle, and the
only two connected configurations of 3-norm equal to
2: the unoriented intersecting pair; and the unoriented
interleaving pair. From these three basic configurations,
it is possible to build any other connected configura-
tion of ῑπ̄−1 by successive extensions. From a configura-
tion Ŵ , we can obtain a larger configuration Ŵ′ , such that
||Ŵ′||3 = ||Ŵ||3 + 1 , extending Ŵ by three different suffi-
cient extensions, as follows:

(1)	 If Ŵ has open gates, we can add a new unoriented
3-cycle segment to Ŵ , closing at least one open gate.

(2)	 If Ŵ has no open gates, we can add a new unori-
ented 3-cycle segment to Ŵ , so that this segment
intersects or interleaves another one in Ŵ.

Page 7 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

	

(3)	 Let γ be a segment in Ŵ . We can increase the length
of γ by 2, originating a bad oriented 5-cycle; or a
longer unoriented segment, so that at least one
open gate is closed, if Ŵ has open gates; or creating
up to two open gates, otherwise.

Example 21  We can extend the configuration Ŵ of
Example 13 using extension 1, yielding Ŵ′ = (1 8 10)

(5 7 12)(9 11 13) . Then, with extension 2, we obtain
Ŵ
′′ = (1 8 10)(2 4 6)(5 7 12)(9 11 13) . Finally,

with extension 3, we obtain Ŵ′′′ = (0 3 5 7 12)(1 8 10)
(2 4 6)(9 11 13).

A sufficient configuration is a configuration obtained
by successively extending one of the basic configurations
referred above. The computerised analysis proves the fol-
lowing result.

Lemma 22  If it is possible to build a sufficient con-
figuration Ŵ of ῑπ̄−1 such that Ŵ is big, then Ŵ allows a 118
-sequence.

Observe that our definition of configuration extension
is similar to the one devised by Elias and Hartman [6].
However, Elias and Hartman [6] only handled with con-
figurations consisting of (unoriented) 3-cycles, while our
definition includes the generation of configurations con-
taining longer segments.

Lemma 22 could be proven generating all the possible
big configurations of 3-norm equal to 9 by extending the
three basic configurations and then, for each, search for
a 118 -sequence. However, this would be too time consum-
ing. Instead, our computer program [31] employs a depth
first search approach, in which, starting from the basic
configurations, if we succeed in finding a 118 -sequence
for a sufficient configuration, then we do not extend it
further. The output of the program [31], which proves
Lemma 22, is composed of 382,064 HTML files, one for
each analysed case.

Analysis of small full configurations which do not allow 11
8

‑sequences
To conclude the analysis, now we handle the small full
configurations for which the program [31] did not find 118
-sequences, and that can occur as small components in
ῑπ̄

−1 . Small components not allowing 118 -sequences are
called bad small components.

Lemma 23  The bad small components are the following:

(1)	 The bad oriented 5-cycle;
(2)	 The unoriented interleaving pair;
(3)	 The unoriented necklaces of size 4, 5 and 6;4 and
(4)	 The twisted necklace of size 4.

An unoriented necklace of size s is a component of s
unoriented 3-cycles such that each cycle intersects with
exactly two other cycles. The twisted necklace of size 4
is similar to the necklace of size 4, but two of its cycles
intersect with the three others.

With the exception of the bad oriented 5-cycle, the
bad small components listed above are the same ones
found by Elias and Hartman [6], despite of the genera-
tion of configurations containing longer segments in our
analysis.

With the help of computer program [31], we prove the
following result.

Lemma 24  If there is a configuration � of ῑπ̄−1 consist-
ing only of bad small components such that ||�||3 ≥ 8 ,
then � allows a 118 -sequence.

In order to prove Lemma 24, starting from each of
the bad small components listed above, we succes-
sively extend them by adding another bad small compo-
nent to the configuration, until finding a 118 -sequence. It
turns out that no combination of bad small components
with 3-norm greater than 7 was extended. The proof for
Lemma 24 is composed of 842 HTML files.

New upper bound
The results presented in the previous section allow us
to prove the corollary below. It follows from Proposi-
tion 17, part 1 from Lemma 20, which implies that, if we
have an odd-length oriented cycle in ῑπ̄−1 , than we have
a 2-move, a (4, 3)-sequence, or this cycle is the bad ori-
ented 5-cycle; and Lemmas 22 and 24 .

Corollary 25  If ||ῑπ̄−1||3 ≥ 8 , then a 118 -sequence exists.

On the other hand, if ||ῑπ̄−1||3 < 8 , we only guaran-
tee the existence of 32-sequences. In the next section, we

4  These components can be visualised on our site [32].

Page 8 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

show that even in this scenario, the approximation ratio
obtained by our algorithm is at most 1.375.

Finally, the last results prove the following upper bound
for SBT.

Theorem 26 

Let codd(π) be the number of odd cycles in G(π)
(see first section of Appendix 1). Since c◦odd(ῑπ̄−1

)
= codd(π) , the result above can be restated replacing π̄
and c◦odd(ῑπ̄−1

) , by π and codd(π) respectively. Thus, we
derive the following upper bound for SBT, depending
only on n and codd(π).

Theorem 27 

The new upper bound above improves the upper bound
on the transposition distance devised by Bafna and
Pevzner [5], valid for all Sn , based on their 1.5-approxi-
mation algorithm [27]. This upper bound allows us to
obtain the following upper bound on the transposition
diameter (TD).

Corollary 28  TD(n) ≤ 11

⌊

n
16

⌋

+

⌊

3(n mod 16)

4

⌋

The upper bound on the transposition diameter above,
although tighter, for n ≥ 16 , than the one devised by
Bafna and Pevzner [5] of

⌊

3
4
n
⌋

 is not tighter than the one
devised by Erikson et al. [12] of

⌊

2n−2
3

⌋

 , for n ≥ 9.

d(π̄) ≤ 11
⌊ ||ῑπ̄−1||3

8

⌋

+

⌊3(||ῑπ̄−1||3 mod 8)

2

⌋

≤ 11
⌊n+ 1− c◦odd(ῑπ̄

−1
)

16

⌋

+

⌊3((n+ 1− c◦odd(ῑπ̄
−1

)) mod 16)

4

⌋

.

d(π) ≤ 11

⌊

n+ 1− codd(π)

16

⌋

+

⌊

3((n+ 1− codd(π)) mod 16)

4

⌋

.

A new 1.375‑approximation algorithm
In this section, we present a new 1.375-approximation
algorithm for SBT (Algorithm 1). For a permutation
π ∈ Sn , the algorithm returns an approximated dis-
tance between π̄ and ῑ or, equivalently, between π and
ι . Intuitively, while ||ῑπ̄−1||3 ≥ 8 , it repeatedly applies 118
-sequences of transpositions on π̄ . When ||ῑπ̄−1||3 < 8 ,
the algorithm only guarantees the application of 3

2
-sequences.

To reach the intended approximation ratio of 1.375
even when ||ῑπ̄−1||3 < 8 , the algorithm has to search for
a (2, 2)-sequence in its first step. In order to identify such
a sequence, a look-ahead approach is used, meaning that
the algorithm verifies if there is a second 2-move, after
applying a first 2-move, generated either from an ori-
ented cycle or from two even-length cycles of ῑπ̄−1.

Theorem 29  The time complexity of Algorithm 1 is
O(n6).

Proof  The time complexity of O(n6) is determined
by the search for a (2, 2)-sequence. In order not to miss
a 2-move, all triplets of an oriented cycle have to be
checked to detect an oriented triplet leading to a 2-move,
which is O(n3) . Finding a 2-move by combining three
symbols of two even-length cycles of ῑπ̄−1 requires O(n2) .
Thus, searching for a (2, 2)-sequence with the look-ahead
technique to check if there is an extra 2-move needs time
O(n6).

The largest loop of the algorithm (line 12) needs time
O(n4) , while the last loop is O(n). �

Theorem 30  Algorithm 1 is a 1.375-approximation
algorithm for SBT.

Proof  We note that this proof follows a very similar
approach to the one used by Elias and Hartman [6]. Let
f (x) = 11

⌊

x
8

⌋

+

⌊

3(x mod 8)

2

⌋

 . Depending on line 3, there
are two cases.

Table 1  For all 0 ≤ r ≤ 7 such that m = 8l + r and l ≥ 0 , the approximation ratio given by Algorithm 1 is at most 11
8
= 1.375

r 0 1 2 3 4 5 6 7

f (m)+2

m+2

11l+2

8l+2

11l+4

8l+3

11l+5

8l+4

11l+6

8l+5

11l+8

8l+6

11l+9

8l+7

11l+11

8l+8

11l+12

8l+9

f (m)
m+1

11l

8l+1

11l+2

8l+2

11l+3

8l+3

11l+4

8l+4

11l+6

8l+5

11l+7

8l+6

11l+9

8l+7

11l+10

8l+8

Page 9 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

	

(1)	 There is a (2, 2)-sequence. As stated by Lemma 10,
it is not possible to sort π̄ using a sequence with
less than ||ῑπ̄−1||3 2-moves. Let m = ||ῑπ̄−1||3 − 2
be the 3-norm of ῑπ̄−1 after the application of a
(2, 2)-sequence. Algorithm 1 sorts π̄ using a maxi-
mum of f (m)+ 2 transpositions, giving an approx-
imation ratio of at most f (m)+2

m+2  . In Table 1, we can
see that, f (m)+2

m+2 ≤ 11
8  , for all 0 ≤ r ≤ 7 such that

m = 8l + r and l ≥ 0.
(2)	 There is no (2, 2)-sequence. If ||ῑπ̄−1||3 = 1 , then

there is only one oriented 3-cycle in ῑπ̄−1 . In this
case, there is a 2-move and the theorem holds. Oth-
erwise, we can raise the lower bound of Lemma 10

by 1, since at least one 0-move is required to sort
π̄ . Let m = ||ῑπ̄−1||3 . The approximation ratio
given by Algorithm 1 is at most f (m)

m+1 . Table 1 also
shows that, f (m)

m+1 ≤ 11
8  , for all 0 ≤ r ≤ 7 such that

m = 8l + r , l ≥ 0.� �

Results and discussion
We implemented Algorithm 1 and the EH algorithm,
having tested both using the Rearrangement Distance
Database provided by GRAAu [33]. We computed all

Table 2  Comparison of the maximum approximation ratios given by the EH algorithm with ours (Alg1)

The table includes other metrics such as the average approximation ratio and average distance given by each algorithm and the number of times the EH algorithm
exceeds the 1.375-approximation ratio as well as the time consumed by each algorithm to sort all permutations of each size. Decimal values are truncated to 4 places
a The permutations of each size were sorted in parallel using a pool of 8 threads

n Transposition
diameter

Max. approx.ratio Averageapprox. ratio Average distance Number of times
EH exceeded the
1.375-approx.

Time to sort all
permutationsa

EH Alg1 EH Alg1 EH Alg1 EH Alg1

2 1 1.00 1.00 1.0 1.0 1.00 1.00 0 < 1s < 1s

3 2 1.00 1.00 1.0 1.0 1.20 1.20 0 < 1s < 1s

4 3 1.00 1.00 1.0 1.0 1.6086 1.6086 0 < 1s < 1s

5 3 1.00 1.00 1.0 1.0 2.0924 2.0924 0 < 1s < 1s

6 4 1.3333̄ 1.00 1.0004 1.0 2.6063 2.6050 0 < 1s < 1s

7 5 1.3333̄ 1.25 1.0129 1.0113 3.1762 3.1704 0 < 1s < 1s

8 6 1.5 1.25 1.0210 1.0183 3.7178 3.7076 2 < 2s < 2s

9 6 1.5 1.25 1.0301 1.0256 4.2796 4.2603 20 ≈ 10s ≈ 13s

10 7 1.5 1.25 1.0341 1.0282 4.8051 4.7772 110 ≈ 3m ≈ 2m

11 8 1.5 1.3333̄ 1.0392 1.0321 5.3526 5.3157 440 ≈ 35m ≈ 30m

12 9 1.5 1.3333̄ 1.0415 1.0336 5.8694 5.8248 1448 ≈ 8.5h ≈ 8.1h

Table 3  Comparison of the percentage of computed distances that are equal to transposition distance, given by different algorithms
(WDM [15], M [23], BPwh [34] and DD [9]), in comparison to the EH algorithm and ours

Decimal values are truncated to 2 places

n WDM M BPwh DD EH Alg1

2 – 100.00 100.00 – 100.00 100.00

3 – 100.00 100.00 – 100.00 100.00

4 – 100.00 100.00 100.00 100.00 100.00

5 – 100.00 100.00 100.00 100.00 100.00

6 99.17 100.00 100.00 100.00 99.86 100.00

7 98.58 100.00 100.00 100.00 94.90 95.47

8 97.11 99.69 99.91 100.00 91.64 92.65

9 96.05 99.17 99.72 99.99 86.62 88.54

10 94.12 98.09 – 99.97 83.80 86.53

11 92.81 96.90 – – 79.40 82.98

12 – – – – 76.67 80.91

Page 10 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

transposition distances using both algorithms for all per-
mutations of size n, 2 ≤ n ≤ 12.

As presented by Table 2, the approximation ratio
obtained by the EH algorithm exceeds 1.375. On the
other hand, our proposed algorithm does not exceed
the ratio of 1.3333̄ . However, we presume that approxi-
mations of 1.375 could appear for permutations in
Sn , n ≥ 16 , since in order to exist an (11, 8)-sequence,
Supp(ῑπ̄−1

) has to have at least 17 symbols.
We also compared (Table 3) the percentage of com-

puted distances that are equal to transposition distance
outputted by our algorithm and EH’s with others avail-
able in the literature. In particular, we added to the com-
parison an algorithm with an approximation ratio higher
than 1.5, but with good results [34]; one using a similar
algebraic approach [23], 1.5-approximation; and another
one that also uses an EH-like strategy with an approxima-
tion ratio of 1.375 [9].

As shown by Table 3, regarding the percentage of
computed distances that are equal to the transposi-
tion distance metric, the best algorithm seems to be the
algorithm of Dias and Dias [9], although they do not
present results for n > 10 . Importantly, this algorithm
employs several heuristics, some introduced by a previ-
ous work [35], to improve the performance of the EH
algorithm. One of these heuristics is exactly a search
for a second 2-move using a look-ahead technique.
However, it is not clear whether their heuristic never

misses a (2, 2)-sequence, if it exists. Also, Dias and Dias
[9] does not state the complexity of their algorithm, but
we believe that, by analysing the algorithm [35] which
they were based on, the time complexity is higher than
O(n3).

The performance of our algorithm and EH’s were also
investigated for longer permutations. For this, we cre-
ated a dataset of longer permutations with sizes rang-
ing from 20 to 500 (incremented by 10). For each of the
49 sets, 1000 instances were randomly generated and
sorted using both algorithms. Figure 1 shows the maxi-
mum and the average approximation ratios obtained
from both ones. It should be noted that the approxima-
tion ratios were calculated in relation to the lower bound
given by Theorem 33, since it is impracticable to calculate
the exact distance for such long permutations. A similar
experiment was conducted by Dias and Dias [35], but
in their experiment, they worked with smaller sets, also
ranging from 20 to 500 (incremented by 10), but contain-
ing only 100 instances. By comparing the results, we may
conclude that our algorithm and theirs achieve similar
results. Dias and Dias [9] also conducted experiments
with longer permutations, but with sizes ranging only
from 10 to 100 (incremented by 10), where each set con-
tained 100 instances, and collected the running times. By
comparing the results presented in their paper, we may
conclude that our algorithm performs better than theirs.

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

1

1.05

1.1

1.15

1.2

1.25

1.3
max. Alg1
average Alg1
max. EH

average EH

Fig. 1  Average and maximum approximation ratios obtained for
each size in our dataset of longer permutations

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

0

2

4

6

8

10

12

14

16

18

20

22

24

26
Alg1
EH

Fig. 2  Time in minutes each algorithm took to sort the all the 1, 000
instances of each each size of our dataset of longer permutations

Page 11 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

	

Algorithm 1 A new 1.375-approximation algorithm for SBT
1: function sbt1375(π̄)
2: d ← 0
3: if there is a (2, 2)-sequence then
4: apply a (2, 2)-sequence
5: d ← d+ 2
6: end if
7: while there is an odd cycle in ῑπ̄−1 do
8: apply a 2-move Proposition 17
9: d ← d+ 1
10: end while
11: let Θ be the product of the unmarked cycles of ῑπ̄−1

12: while Θ = ι do
13: if there is a 2-move from an oriented cycle of Θ then
14: apply a 2-move
15: d ← d+ 1
16: else if there is an even oriented κ-cycle in Θ such that κ ≥ 7 then
17: apply a (4, 3)-sequence Lemma 19
18: d ← d+ 4
19: else
20: take a 3-cycle segment γ from a cycle of Θ
21: Γ ← γ
22: try to extend Γ eight times
23: if Γ is big then
24: apply a 11

8 -sequence of x 3-cycles Lemma 22
25: d ← d+ x
26: else if Γ allows a 11

8 -sequence of x 3-cycles then
27: apply a 11

8 -sequence of x 3-cycles
28: d ← d+ x
29: else
30: mark the cycles of Γ Γ is a bad small component of ῑπ̄−1

31: end if
32: end if
33: let Λ be the product of the marked cycles of ῑπ̄−1

34: if ||Λ||3 ≥ 8 then
35: unmark the cycles of Λ
36: apply a 11

8 -sequence of x 3-cycles Lemma 24
37: d ← d+ x
38: end if
39: end while
40: while ῑπ̄−1 = ι do
41: apply a 3

2 -sequence with x 3-cycles Lemma 20 (can be a 2-move, i.e., a (1, 1)-sequence, or a (3, 2)-sequence)
42: d ← d+ x
43: end while
44: return d
45: end function

Figure 2 shows how much time each algorithm (ours
and EH’s) took to sort all the 1000 instances of each of
the 49 sets. The results presented by this figure show that,
despite having a high time complexity, our algorithm has
good performance in practice, even outperforming EH’s.

The dataset of longer permutations used in our experi-
ments, the statistics computed, as well as the source code
of the implementation of the EH algorithm and ours are
available at [31]. All experiments were executed on a
computer equiped with a Core i7 vPro 8th Gen processor,
with 4 cores and 8 threads, and 48GB of RAM.

Conclusions
In this paper, we first proposed a new upper bound
for the transposition distance, using an algebraic
approach, which holds for all Sn . Next, we proposed
a new approximation algorithm to solve SBT ensur-
ing the 1.375-approximation ratio for all Sn . To the
best of our knowledge, this is the first algorithm guar-
anteeing an approximation ratio below 1.5 not using
simplification. We show in Appendix 1 that the EH algo-
rithm may require one extra transposition above the
1.375-approximation ratio. This occurs when there is a

Page 12 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

first (2, 2)-sequence in the original permutation that is
“missed” during simplification, and bad small compo-
nents remain in the cycle graph after the application of
any number of 118 -sequences.

Implementations of the EH algorithm and ours were
tested against permutations of maximum length of 12.
The results showed that our algorithm does not exceed
the 1.375-approximation ratio and produces a higher
percentage of computed distances that are equal to trans-
position distance, when compared to those computed by
the EH algorithm. These percentages were also compared
to others available in the literature. Considering this met-
ric, the algorithm with the best results seems to be the
one of Dias and Dias [9], although they do not present
results for n > 10 . Two other issues were identified when
implementing the EH algorithm and they are reported in
the Appendix 3. The first one has to do with the applica-
tion of 118 -sequences when the cycle graph contains only
bad small components [6]. The second one is related to
the application of (3, 2)-sequences when there is no 118
-sequence to apply, and affects both versions of the algo-
rithm outlined in [6] and [28].

We conducted an experiment involving longer per-
mutations of maximum length 500. The results showed
that our algorithm outperforms the EH algorithm, both
in relation to the approximation ratios obtained and run-
ning times. Still, on the longer permutations, our algo-
rithm seems to be comparable to the one of Dias and
Dias [35], when we consider the approximation ratios
obtained by both. Regarding the running times, Dias and
Dias [35] also performed some simulations for permuta-
tions with a maximum size of 100. Considering only the
results for permutations with this maximum size, our
algorithm seems faster.

The time complexity of our algorithm is high. A possi-
ble future work could be the investigation of a more effi-
cient way to find a (2, 2)-sequence at the beginning of our
algorithm. Following a different direction, another future
work could be the investigation of “good” simplifications,
i.e., simplifications that do not have the effect of missing
a (2, 2)-sequence when it exists. We have no clue whether

such a “good” simplification always exists or not. In any
case, we have the intuition that to find it, if it exists, the
computational cost would be the same as searching for a
(2, 2)-sequence.

The experiment with small permutations of maximum
length 12 showed that the percentages of computed dis-
tances by our algorithm that are equal to transposition
distance are low compared to others in the literature. A
possible way to improve the results would be investigat-
ing the adoption of heuristics.

Finally, we intend to use the algebraic approach pre-
sented in this paper to study and solve other rearrange-
ment events affecting one chromosome, e.g., reversals
and block-interchange.

Appendix 1: Cycle graph and the extra
transposition
Cycle graph
Let π = [π1 π2 . . . πn] be a permutation. A trans-
position τ (i, j, k) , with 1 ≤ i < j < k ≤ n+ 1 , “cuts”
the symbols from the interval [πi,πj−1] and then
“pastes” them right after πk−1 . Thus, the applica-
tion of τ (i, j, k) on π , denoted τ (i, j, k) · π , yields
[π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn].

Given two permutations π and σ , the transposi-
tion distance problem (TDP) corresponds to find-
ing the minimum t (the transposition distance between
π and σ ) such that the sequence of transpositions τ1 , . . . ,
τt transforms π into σ i.e., τt . . . τ1 · π = σ . Note that
the transposition distance between π and σ equals the
transposition distance between σ−1 ◦ π and the identity
permutation ι = [1 2 . . . n] . The problem of sorting by
transpositions (SBT) is the problem of finding the
transposition distance between a permutation π and ι ,
denoted by d(π).

In the genome rearrangements literature, a widely
used graphical representation for a permutation is the
cycle graph5 [5]. In order to construct the cycle graph
of π = [π1 π2 . . . πn] , we first extend π by adding two
extra elements π0 = 0 and πn+1 = n+ 1 . So, the cycle
graph of π , denoted by G(π) , is a directed graph con-
sisting of a set of vertices {+0, −1, +1, −2, +2, . . . ,
−n, +n, −(n+ 1)} and a set of colored (black or gray)
edges. For all 1 ≤ i ≤ n+ 1 , the black edges connect −πi
to +πi−1 . For 0 ≤ i ≤ n , the gray edges connect vertex +i
to vertex −(i + 1) . Intuitively, the black edges indicate
the current state of the genes, related to their arrange-
ment in the first chromosome represented by π , while the
gray edges indicate the desired order of the genes in the
second permutation, represented by ι = [1 2 . . . n] . In

Fig. 3  Cycle graph of [4 3 2 1 8 7 6 5] . The black edges are the
horizontal ones

5  In their work, Elias and Hartman [6] use an equivalent circular representa-
tion, which they call breakpoint graph.

Page 13 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

	

the figures below, the directions of the edges are omitted
since they can be easily inferred by observing the signs of
the vertices.

Example 31  Figure 3 shows the cycle graph of
π = [4 3 2 1 8 7 6 5] with 9 black edges, (−9,+5) ,
(−5,+6) , . . . , (−3,+4) , (−4,+0) , and 9 gray edges,
(+0,−1) , (+1,−2) , (+2,−3) , . . . , (+7,−8) , (+8,−9).

Both in-degree and out-degree of each vertex in G(π)
are 1, corresponding to one black edge entering a vertex
v and another gray edge leaving v. This induces in G(π) a
unique decomposition into cycles. A κ-cycle is a cycle C
in G(π) with κ black edges. In addition, C is said to be a
long cycle, if k > 3 , otherwise, C is said to be a short cycle.
If κ is even (odd), then we also say that C is an even (odd)
cycle.

The maximum number of n+ 1 cycles in G(π)
is obtained if and only if π is the identity permuta-
tion ι . In this case, each cycle is composed of exactly
one black edge and one gray edge. Let us denote
by codd(π) the number of odd cycles in G(π) , and
�codd(π , τ) = codd(τ · π)− codd(π) the variation on
the number of odd cycles in G(π) and G(τ · π) , after the
application of a transposition τ . Bafna and Pevzner [5]
demonstrated the following result.

Lemma 32  (Bafna and Pevzner [5]) �codd (π , τ) ∈ {−2, 0, 2}.

A µ-move is a transposition τ such that �codd(π , τ)
= µ . Note that according to lemma above, the

possible moves are 2-move, 0-move and (−2)-move.
From Lemma 32, Bafna and Pevzner [5] derived the fol-
lowing lower bound.

Theorem 33  (Bafna and Pevzner [5]) d(π) ≥ n+1−codd (π)

2

The black edges of G(π) can be numbered from
1 to n+ 1 by assigning a label i to each black edge
(−πi,+πi−1) . A κ-cycle C visiting the black edges
i1, . . . , iκ , in the order imposed by the cycle, can be writ-
ten in κ different ways, depending on the first black edge
visited. If not otherwise specified, we will assume that
the initial edge i1 of C is chosen as the greatest value,
i.e., i1 is such that i1 > is , for all s ∈ {2, . . . , κ} . With
this condition, if i1 , . . . , iκ is a decreasing sequence, C
is called an unoriented cycle; otherwise C is oriented.
Two pairs of black edges are said intersecting if there
are cycles C = (. . . , a, b, . . .) and D = (. . . , e, f , . . .) in
G(π) such that either a > e > b > f or e > a > f > b .
In this case, C and D are also said to be intersect-
ing cycles. Similarly, the triplets of black edges (a, b, c)
and (d, e, f) are interleaving if there are cycles
C = (. . . , a, b, c, . . .) and D = (. . . , d, e, f , . . .) such that
either a > d > b > e > c > f or d > a > e > b > f > c .
In such case, C and D are also said to be interleaving
cycles.

Example 34  The cycles (5, 3, 1), (8, 6, 4), (15, 13, 11)
and (14, 12, 10) of G([6 5 3 2 1 8 7 4 9 14 13 12 11 10])
(Fig. 4) are unoriented, while (9, 2, 7) is oriented. Further-
more, (5, 3, 1) and (8, 6, 4) are intersecting and the cycles
(15, 13, 11) and (14, 12, 10) are interleaving.

Fig. 4  Cycle graph of [6 5 3 2 1 8 7 4 9 14 13 12 11 10]

Fig. 5  Cycle graph of [5 4 3 2 1 6 11 10 9 8 7] , mapped from [4.1 4 3 2 1 4.2 8.1 8 7 6 5] using consecutive integers, obtained by the simplification
of [4 3 2 1 8 7 6 5] (Figure 3)

Page 14 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

Simplification
Simplification is a technique introduced aiming to facili-
tate handling with long cycles of G(π) [24]. It consists of
inserting new elements, usually fractional numbers, into
π transforming it into a new simple permutation π̂ , so
that G(π̂) contains only short cycles. After the transfor-
mation, the elements of π̂ can be mapped to consecutive
integers. The positions of the new symbols can vary, but
the insertion must be through safe transformations.

A transformation of π into π̂ is said to be safe
if, after the insertion of the new elements, the
lower bound of Theorem 33 is maintained, i.e.,
n(π)− codd(π) = n(π̂)− codd(π̂) , where n(π) and n(π̂)
denote the number of black edges in π and π̂ , respec-
tively. If π̂ is a permutation obtained from π through safe
transformations, then we say π and π̂ are equivalent. Lin
and Xue [25] have shown that every permutation can be
transformed into an equivalent simple one through safe
transformations. A sorting of π̂ can be mimicked to sort
π using the same number of transpositions [24].

It is important to note that a permutation can be sim-
plified in many different ways. Figure 5 shows the cycle
graph of a possible simple permutation obtained by the
simplification of [4 3 2 1 8 7 6 5] (Fig. 3). For a complete
description of simplification and related results, the
reader is referred to [24–26].

Configurations and components
The concepts presented in this section were originally
introduced by Elias and Hartman [6] in the context of the
simple permutations, with a special focus on the 3-per-
mutations, from which they derived their main results.
As our work does not involve simplification, we modi-
fied some of them so that they could be extended to any
permutation in Sn and also to facilitate the correlation
between the algebraic approach used in this paper with
the method of Elias and Hartman [6].

A configuration of cycles is a subgraph of G(π) induced
by one or more cycles. A configuration A is connected,
if for any two cycles C1 and Cm of A, there are cycles
C2, . . . ,Cm−1 in A such that for each i ∈ [1,m− 1] , Ci
intersects or interleaves with Ci+1 . A component is a con-
figuration consisting of only one oriented cycle that does

not intersect or interleave any other cycle of G(π) ; or
consisting of a maximal connected configuration in G(π).

Let A be a configuration induced only by odd cycles.
The 3-norm of A, denoted by ||A|| , is the value b−c(A)

2  ,
where b is the number of black edges of A and c(A) is the
number of cycles in A. If ||A|| ≤ 8 , then A is referred as
being small; otherwise, big. The 3-norm concept was not
defined in Elias and Hartman [6]. The intuition behind it
is that it reflects the number of 3-cycles a configuration
containing cycles of arbitrary (odd) lengths would have if
it were “simplified”.

Example 35  The 3-norm of the configuration {(9, 6,
8, 2, 4, 1, 3, 5, 7)} from G([4 3 2 1 8 7 6 5]) (Fig. 3) is 4 and,
consequently, it is a small configuration.

Example 36  The 3-norms of the configurations {(7,
4, 1), (8, 5, 2), (9, 6, 3)} and {(14, 12, 10), (15, 13, 11)} from
G([4 8 3 7 2 6 1 5 9 14 13 12 11 10]) (Fig. 9) are 3 and 2,
respectively.

An open gate is a pair of black edges (a, b) of a cycle C
in A, such that one of its cyclic forms is C = (a, b, . . .) ,
that does not intersect with any other cycle in A and
there is no black edge c in C, such that, if a > b , then a,
b, c is not a decreasing sequence; or, if b > a , then b, c, a
is not a decreasing sequence either. A configuration not
containing open gates is called full configuration.

Example 37  The configurations {(7, 4, 1), (8, 5, 2), (9,
6, 3)} and {(14, 12, 10), (15, 13, 11)} are small full compo-
nents of G([4 8 3 7 2 6 1 5 9 14 13 12 11 10]) (Fig. 9).

τ(4, 6, 9) · [4 3 2 1 8 7 6 5] = [4 3 2 7 6 5 1 8]
τ(3, 5, 8) · [4 3 2 7 6 5 1 8] = [4 3 6 5 1 2 7 8]
τ(2, 4, 7) · [4 3 6 5 1 2 7 8] = [4 5 1 2 3 6 7 8]
τ(1, 3, 6) · [4 5 1 2 3 6 7 8] = [1 2 3 4 5 6 7 8]

Fig. 6  Sorting π = [4 3 2 1 8 7 6 5] with 4 transpositions Fig. 7  Cycle graph of [3 6 2 5 1 4 10 9 8 7]

τ(6, 8, 11) · [3 6 2 5 1 4 10 9 8 7] = [3 6 2 5 1 9 8 7 4 10]
τ(5, 7, 10) · [3 6 2 5 1 9 8 7 4 10] = [3 6 2 5 8 7 4 1 9 10]
τ(3, 6, 9) · [3 6 2 5 8 7 4 1 9 10] = [3 6 7 4 1 2 5 8 9 10]
τ(2, 4, 8) · [3 6 7 4 1 2 5 8 9 10] = [3 4 1 2 5 6 7 8 9 10]
τ(1, 3, 5) · [3 4 1 2 5 6 7 8 9 10] = [1 2 3 4 5 6 7 8 9 10]

Fig. 8  Sorting π ′ = [3 6 2 5 1 4 10 9 8 7] with 5 transpositions

Page 15 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

	

Sequences of transpositions
A sequence of transpositions τ1 , . . . , τx is said to be a
(x, y)-sequence, for x ≥ y , is a sequence of x transposi-
tions such that, at least y of them are 2-moves. A (x, y)-
sequence is an a

b
-sequence if xy ≤ a

b
 and x ≤ a.

Example 38  The sequence τ1 = τ (1, 4, 7) ,
τ2 = τ (2, 5, 8) , τ3 = τ (1, 4, 7) , τ4 = τ (3, 6, 9) is a
(4, 3)-sequence, which is also a 11

8 -sequence, for
[4 8 3 7 2 6 1 5 9 14 13 12 11 10] (Fig. 9).

The extra transposition
The first step of the EH algorithm is the simplification
of the input permutation. In this section, we show that
there are simplifications that, although producing equiv-
alent simple permutations, causes the EH algorithm to
require one extra transposition above the approximation
of 1.375. Two examples are explored next.

Consider the permutation π = [4 3 2 1 8 7 6 5]
shown in Fig. 3. The lower bound given by Theo-
rem 33 is 4, also its exact distance, corresponding
to the application of four 2-moves, shown in Fig. 6.
One simplification of π generates the permutation
[4.1 4 3 2 1 4.2 8.1 8 7 6 5] , which mapped to consecu-
tive integers is π̂ = [5 4 3 2 1 6 11 10 9 8 7] (Fig. 5). Note
that the lower bound of π̂ is 4 as well. However, there is
no 118 -sequence to apply on π̂ . In fact, to optimally sort π̂ ,
two (3, 2)-sequences are required. Therefore the EH algo-
rithm using π = [4 3 2 1 8 7 6 5] as input, even apply-
ing an optimal sorting on π̂ = [5 4 3 2 1 6 11 10 9 8 7] ,
yields 6 transpositions. However, the algorithm should
require at most 5 transpositions to not exceed the
1.375-approximation ratio.

The following example shows that, even if there are
11
8 -sequences of transpositions to apply on π̂ , the EH
algorithm may require one transposition above the
approximation ratio of 1.375. Take the permutation
π
′ = [3 6 2 5 1 4 10 9 8 7] (Fig. 7), with both the lower

bound and distance equal to 5, corresponding to the
application of five 2-moves, shown in Fig. 8. A simpli-
fied version of π ′ is [3.1 6.1 3 6 2 5 1 4 6.2 10.1 10 9 8 7] ,

which mapped to consecutive integers is
π̂
′ = [4 8 3 7 2 6 1 5 9 14 13 12 11 10] (Fig. 9).

The EH algorithm sorts π̂ ′ optimally by applying a
(4, 3)-sequence, followed by a (3, 2)-sequence, in a total
of 7 transpositions. However, the algorithm should not
require more than 6 transpositions to not exceed the
1.375-approximation ratio.

In both examples above, an initial (2, 2)-sequence
is “missed” during the simplification process. This
sequence is essential to guarantee the 1.375 approxima-
tion ratio when bad small components remain in G(π̂)
after the application of a number of 118 -sequences (Theo-
rem 22 [6]). These are small full configurations which do
not allow the application of 118 -sequences. It is impor-
tant to stress that the extra transposition will be neces-
sary regardless of the number of bad small components
remaining in the cycle graph after applying a sequence
of 118 -sequences (any number of), as long as the total
number of remnant 3-cycles is less than 8 and the ini-
tial (2, 2)-sequence that possibly existed initially, was
“missed” during the simplification.

It was already known by the literature that simplifi-
cation maintained the lower bound, but not the trans-
position distance. However, it was not known that the
simplification could have the effect of missing an initial
(2, 2)-sequence. In principle, the EH algorithm could be
modified to guarantee the 1.375-approximation ratio, and
no extra transposition, by looking for the (2, 2)-sequence
in its first step, applying it case it exists, and only then
simplifying the resulting permutation. However, using
the already known techniques, this new “modified” EH
algorithm would not keep the original time complexity of
O(n2).

Appendix 2: Correspondence between the cycle
graph and ῑπ̄−1

The product ῑπ̄−1 , in the algebraic approach, produces
cycles corresponding exactly to the same cycles of G(π) .
If we follow the edges of the cycles in G(π) taking note

Fig. 9  Cycle graph of [4 8 3 7 2 6 1 5 9 14 13 12 11 10] , mapped from π̂ ′ = [3.1 6.1 3 6 2 5 1 4 6.2 10.1 10 9 8 7] using consecutive integers

Page 16 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

of the labels of the vertices where the gray edges enter,
disregarding the sign, and changing the label −(n+ 1) to
0, we obtain exactly the same cycles of ῑπ̄−1 . It is easy to
see, therefore, that ῑπ̄−1 and G(π) have the same number
of cycles and the corresponding cycles have all the same
length. Also, the cycles of ῑπ̄−1 have the same relevant
properties of the cycles of G(π) , such as orientation. The
relationships between the cycles, i.e., intersection and
interleaving, are identical as well. Furthermore, configu-
rations and components are also corresponding concepts
between the two structures (see section “Configurations
and components” in Appendix 1).

Example 39  Let π = [6 5 3 2 1 8 7 4 9 14 13 12 11
10] ( G(π) depicted in Fig. 4). As seen in Exam-
ple 34, the cycles of G(π) are (5, 3, 1), (8, 6, 4),
(9, 2, 7), (14, 12, 10) and (15, 13, 11). Now let
π̄ = (0 6 5 3 2 1 8 7 4 9 14 13 12 11 10) , so that
ῑπ̄

−1 = (0 11 13)(1 3 6)(2 4 8)(5 7 9)(10 12 14)  .
Take the cycle (5, 3, 1) of G(π) . If we follow the proce-
dure above, we obtain the ῑπ̄−1 cycle (1 3 6) . The same
procedure takes (8, 6, 4) to (2 4 8) , (9, 2, 7) to (5 7 9)
(note that these cycles are equally oriented), (14, 12, 10)
to (10 12 14) ; and finally (15, 13, 11) to (0 11 13) .
Also, observe that (5, 3, 1) and (8, 6, 4) are intersecting,
the same way as (1 3 6) and (2 4 8) . Furthermore, the
pairs (14, 12, 10) and (15, 13, 11); and (10 12 14) and
(0 11 13) are interleaving. Finally, the same pairs of
cycles form small components in both structures.

Appendix 3: Other issues found in the EH algorithm
It should be noted that Elias and Hartman [6] have not
provided a publicly available implementation of their
algorithm, which we could use as a reference. To the
best of our knowledge, the only implementation of the
EH algorithm reported in the literature, without the use
of heuristics, is the one of Dias and Dias [35], but their
implementation is not publicly available either. This led
us to implement the EH algorithm from scratch.

It is worthy of note that our implementation of the EH
algorithm in closer to the version6 previously presented
on WABI in 2005 [28], since we found an issue in the algo-
rithm outlined in [6] (the algorithms are presented differ-
ently in both versions of their work). The issue has to do
with the application of 118 -sequences when G(π̂) contains
only bad small components. As presented on [6], once
all bad small components are identified, the algorithm
enters a loop and continuously applies 11

8 -sequences
(given by their Lemma 17 [6]), until the number of cycles
in G(π̂) is less than 8. However, we found cases where the

application of 118 -sequences given by Lemma 17 [6] can
create small components in G(π̂) that are not bad, which
can eventually prevent the application of the lemma
in the next iterations. One such case is when we have a
permutation consisting of multiple unoriented neck-
laces of size 6 [6] side by side. To give an illustration, take
π̂ = [17 16 3 2 1 6 5 4 9 8 7 12 11 10 15 14 13 18 35 34 21 20
19 24 23 22 27 26 25 30 29 28 33 32 31] whose
G(π̂) consists precisely of two unoriented neck-
laces of size 6 side by side. Since the sum of 3-cycles
is 12, Lemma 17 [6] guarantees us the existence of
a 11

8 -sequence. The (11, 8)-sequence given by Elias
and Hartman [6] for this permutation (by combin-
ing two unoriented necklaces of size 6 side by side)
is τ1 = τ (1, 3, 5) , τ2 = τ (7, 11, 26) , τ3 = τ (9, 13, 35) ,
τ4 = τ (4, 10, 34) , τ5 = τ (2, 13, 30) , τ6 = τ (1, 18, 20) ,
τ7 = τ (6, 17, 32) , τ8 = τ (5, 14, 22) , τ9 = τ (15, 27, 35) ,
τ10 = τ (18, 28, 36) , τ11 = τ (6, 19, 35) . After applying this
sequence, we have π̂ = [1 2 3 4 20 21 22 27 26 25 30 31
32 11 12 13 14 15 16 17 18 19 24 23 5 6 7 8 9 10 29 28
33 34 35] . Observe that now G(π̂) contains a small com-
ponent of 4 unoriented 3-cycles that despite being small,
is not bad.

To avoid the issue described above in our implemen-
tation of the EH algorithm, we have made a change in
which we apply a 118 -sequence as soon as the sum of the
number of 3-cycles of the the bad small components, as
they are identified in the main loop, is greater than 7,
inside the loop itself (line 5 of the algorithm outlined in
[6]), as opposed to its position within a loop of its own
(line 6 [6]). Similar solution is employed by our Algo-
rithm 1 (line 34).

We found another issue in the last loop of both ver-
sions of the EH algorithm [6, 28]. It is not always
possible to apply a (3, 2)-sequence at that point.
Sometimes, only a 2-move exists, as the Lemma 7
[6] itself states. Take, for instance, the permutation
π̂ = [14 13 3 2 1 6 5 4 9 8 7 12 11 10] whose G(π̂)
consists of an unoriented necklace of size 5. Observe
that there is no 11

8 -sequence to apply on π̂ . In the
last loop [6, 28], Elias and Hartman [6] applies two
(3, 2)-sequences: τ1 = τ (1, 10, 14) , τ2 = τ (4, 6, 15) ,
τ3 = τ (3, 5, 14) , then τ1 = τ (4, 8, 9) , τ2 = τ (2, 5, 8) ,
τ3 = τ (1, 3, 6) . After applying these sequences, we have
π̂ = [1 6 7 8 2 3 4 5 9 10 11 12 13 14] whose G(π̂) con-
tains only one oriented 3-cycle, making it impossible to
apply a further (3, 2)-sequence. In this particular case,
the 2-move τ (2, 5, 9) concludes the sorting of π̂ . Our
implementation [31] of the EH algorithm includes a “fix”
for this issue applying a (3, 2)-sequence or a 2-move,
depending on the case.

6  As this version uses one single loop to apply 11
8

-sequences.

Page 17 of 17Silva et al. Algorithms for Molecular Biology (2022) 17:1

	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

Acknowledgements
The authors kindly thank Isaac Elias for the invaluable discussion. They
also thank Annachiara Korchmaros, and the anonymous reviewers, whose
comments helped to improve this manuscript. MEMTW thanks CNPq for
the fellowship (Project 310785/2018-9). LAGS thanks CAPES for the doctoral
scholarship (Grant 88887.639024/2014-01).

Authors’ contributions
First draft: LAGS, MEMTW, NRR. Proofs and algorithm implementation: LAGS.
Final manuscript: LAGS, LABK, MEMTW. All authors read and approved the final
manuscript.

Declarations

 Competing interests
The authors declare that they have no competing interests.

Author details
1 Departmento de Ciência da Computação, Universidade de Brasília, Brasília,
Brazil. 2 Departmento de Matemática, Universidade de Brasília, Brasília, Brazil.
3 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil.

Received: 3 February 2021 Accepted: 2 January 2022

References
	1.	 Nadeau JH, Taylor BA. Lengths of chromosomal segments con-

served since divergence of man and mouse. Proc Natl Acad Sci USA.
1984;81(3):814–8.

	2.	 Palmer JD, Herbon LA. Plant mitochondrial dna evolves rapidly in struc-
ture, but slowly in sequence. J Mol Evol. 1988;28:87–97.

	3.	 Koonin EV. Orthologs, paralogs, and evolutionary genomics. Ann Rev
Genetics. 2005;39:309–38.

	4.	 Yue F, Zhang M, Tang J. Phylogenetic reconstruction from transpositions.
BMC Genomics. 2008;9(S15):10–1186147121649215.

	5.	 Bafna V, Pevzner PA. Sorting by transpositions. SIAM J Discret Math.
1998;11(2):224–40.

	6.	 Elias I, Hartman T. A 1.375-approximation algorithm for sorting by trans-
positions. IEEE/ACM Trans Comput Biol Bioinf. 2006;3(4):369–79.

	7.	 Bulteau L, Fertin G, Rusu I. Sorting by transpositions is difficult. SIAM J
Discret Math. 2012;26(3):1148–80.

	8.	 Cunha LF, Kowada LA, Hausen RD, de Figueiredo CM. A faster
1.375-approximation algorithm for sorting by transposition. J Comput
Biol. 2015;22(11):1044–56.

	9.	 Dias U, Dias Z. An improved 1375-approximation algorithm for the trans-
position distance problem. In: Proceedings of the First ACM International
Conference on Bioinformatics and Computational Biology, 2010; pp.
334–337.

	10.	 Dias U, Dias Z. Heuristics for the transposition distance problem. J Bioin-
form Comput Biol. 2013;11(5):1–17.

	11.	 Hausen RA, Faria L, Figueiredo CMH, Kowada LAB. Unitary toric classes,
the reality and desire diagram, and sorting by transpositions. SIAM J
Discrete Math. 2010;24(3):792–807.

	12.	 Eriksson H, Eriksson K, Karlander J, Svensson L, Wästlund J. Sorting a
bridge hand. Discret Math. 2001;241(1–3):289–300.

	13.	 Galvão G, Dias Z. On the approximation ratio of algorithms for sorting by
transpositions without using cycle graphs. In: BSB, Germany: Springer.
2012; pp. 25–36.

	14.	 Benoît-Gagné M, Hamel S. A new and faster method of sorting by trans-
positions. In: Annual Symposium on Combinatorial Pattern Matching.
Germany: Springer. 2007; pp. 131–141.

	15.	 Walter MEMT, Dias Z, Meidanis J. A new approach for approximating
the transposition distance. In: Proceedings of the Seventh International
Symposium on String Processing Information Retrieval (SPIRE’00). SPIRE
’00, p. 199. IEEE Computer Society, Washington, DC, USA. 2000. http://​dl.​
acm.​org/​citat​ion.​cfm?​id=​829519.​830850

	16.	 Guyer SA, Heath LS, Vergara JPC. Subsequence and run heuristics for
sorting by transpositions. Technical report: Virginia Polytechnic Institute &
State University; 1997.

	17.	 Rusu I. log-lists and their applications to sorting by transpositions, reversals
and block-interchanges. Theoret Comput Sci. 2017;660:1–15.

	18.	 Sleator DD, Tarjan RE. A data structure for dynamic trees. J Comput Syst Sci.
1983;26(3):362–91.

	19.	 Lintzmayer CN, Fertin G, Dias Z. Sorting permutations by prefix and suffix rear-
rangements. J Bioinform Comput Biol. 2017;15(01):1750002.

	20.	 Oliveira AR, Jean G, Fertin G, Brito KL, Dias U, Dias Z. A 3.5-approximation
algorithm for sorting by intergenic transpositions. In: International Conference
on Algorithms for Computational Biology. Berlin: Springer. 2020;16–28.

	21.	 Meidanis J, Dias Z. An Alternative Algebraic Formalism for Genome Rearrange-
ments. In: Sankoff D, Nadeau JH, eds. Springer, Dordrecht. 2000; pp. 213–223.

	22.	 Mira CVG, Meidanis J. Algebraic formalism for genome rearrangements.
Technical Report, Institute of Computing, University of Campinas. 2005.

	23.	 Mira CVG, Dias Z, Santos HP, Pinto GA, Walter MEMT. Transposition distance
based on the algebraic formalism. In: Advances in Bioinformatics and
Computational Biology. Proceedings of the Third Brazilian Symposium on
Bioinformatics. Berlin Heidelberg, Germany: Springer; 2008. p. 115–26.

	24.	 Hannenhalli S, Pevzner PA. Transforming cabbage into turnip: polyno-
mial algorithm for sorting signed permutations by reversals. J ACM.
1999;46(1):1–27.

	25.	 Lin GH, Xue G. Signed genome rearrangement by reversals and transpositions:
models and approximations. Theoret Comput Sci. 2001;259(1):513–31.

	26.	 Hartman T, Shamir R. A simpler and faster 1.5-approximation algorithm for
sorting by transpositions. Inf Comput. 2006;204(2):275–90.

	27.	 Fertin G, Labarre A, Rusu I, Vialette S, Tannier E. Combinatorics of Genome
Rearrangements. London, En: MIT press; 2009.

	28.	 Elias I, Hartman T. A 1.375-approximation algorithm for sorting by trans-
positions. In: International Workshop on Algorithms in Bioinformatics.
Germany: Springer. 2005; pp. 204–215.

	29.	 Dummit DS, Foote RM. Abstract Algebra. Hoboken, NJ: Wiley; 2004.
	30.	 Gallian J. Contemporary abstract algebra. 7th ed. Boston, MA: Brooks

Cole; 2009.
	31.	 https://​github.​com/​luiza​ugust​ogarc​ia/​tdp13​75/; 2020.
	32.	 http://​tdp13​75pro​of.​s3-​websi​te.​us-​east-2.​amazo​naws.​com/; 2020.
	33.	 Galvão GR, Dias Z. An audit tool for genome rearrangement algorithms. J

Exp Algorithmics (JEA). 2015;19:1–7.
	34.	 Walter MEMT, Sobrinho MC, Oliveira ETG, Soares LS, Oliveira AG, Martins

TES, Fonseca TM. Improving the algorithm of bafna and pevzner for the
problem of sorting by transpositions: a practical approach. J Discrete
Algorithms. 2005;3(2):342–61.

	35.	 Dias U, Dias Z. Extending Bafna-Pevzner algorithm. In: Proceedings of the
International Symposium on Biocomputing. ISB ’10. ACM, New York, NY.
2010. pp. 23–1238.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://dl.acm.org/citation.cfm?id=829519.830850
http://dl.acm.org/citation.cfm?id=829519.830850
https://github.com/luizaugustogarcia/tdp1375/
http://tdp1375proof.s3-website.us-east-2.amazonaws.com/

	A new 1.375-approximation algorithm for sorting by transpositions
	Abstract
	Background:
	Results and conclusions:

	Background
	Permutation groups
	Algebraic formalisation of SBT
	New upper bound for SBT
	Cycles of
	Configurations and components
	Sequences of applicable 3-cycles
	Auxiliary results
	Configuration analysis
	Extension of basic configurations
	Analysis of small full configurations which do not allow -sequences

	New upper bound
	A new 1.375-approximation algorithm

	Results and discussion
	Conclusions
	Acknowledgements
	References

