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Abstract 

Motivation: The increasing availability of high-quality genome assemblies raised interest in the characterization 
of genomic architecture. Major architectural elements, such as common repeats and segmental duplications (SDs), 
increase genome plasticity that stimulates further evolution by changing the genomic structure and inventing new 
genes. Optimal computation of SDs within a genome requires quadratic-time local alignment algorithms that are 
impractical due to the size of most genomes. Additionally, to perform evolutionary analysis, one needs to character-
ize SDs in multiple genomes and find relations between those SDs and unique (non-duplicated) segments in other 
genomes. A naïve approach consisting of multiple sequence alignment would make the optimal solution to this 
problem even more impractical. Thus there is a need for fast and accurate algorithms to characterize SD structure in 
multiple genome assemblies to better understand the evolutionary forces that shaped the genomes of today.

Results: Here we introduce a new approach, BISER, to quickly detect SDs in multiple genomes and identify elemen-
tary SDs and core duplicons that drive the formation of such SDs. BISER improves earlier tools by (i) scaling the detec-
tion of SDs with low homology to multiple genomes while introducing further 7–33× speed-ups over the existing 
tools, and by (ii) characterizing elementary SDs and detecting core duplicons to help trace the evolutionary history of 
duplications to as far as 300 million years.

Availability and implementation: BISER is implemented in Seq programming language and is publicly available at 
https:// github. com/ 0xTCG/ biser.
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Introduction
Segmental duplications (SDs), also known as low-copy 
repeats, are genomic segments larger than 1 Kbp that 
are duplicated one or more times in a given genome with 
a high level of homology  [1]. While nearly all eukary-
otic genomes harbor SDs, it is the human genome that 
exhibits the largest diversity of SDs among the known 
genomes. At least 6% of the human genome is covered 

by SDs ranging from 1 Kbp to a few megabases [1]. The 
architecture of human SDs also differs from other mam-
malian species both in its complexity and frequency [2]. 
For example, while most species harbor tandem SDs, the 
human genome is repleted with interspersed (both intra- 
and inter-chromosomal) SD blocks  [3]. Human SDs are 
also often duplicated multiple times within the genome, 
often immediately next to or even within an already 
existing SD cluster. This complex duplication architec-
ture points to a major role that SDs play in human evo-
lution  [4–6]. Human SDs also introduce a significant 
level of genomic instability that results in increased 
susceptibility to various diseases  [7, 8]. This has led to 
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evolutionary adaptation in the shape of genes and tran-
scripts unique to the human genome that aim to offset 
the effects of such instability [9]. Finally, SDs display sig-
nificant diversity across different human populations and 
can be used as one of the markers for population genetics 
studies [10].

In order to understand the architecture and evolu-
tion of eukaryotic SDs, the first step typically consists of 
detecting all SDs within a given genome. However, SD 
detection is a computationally costly problem. The theo-
retically optimal solution to this problem—a local align-
ment of an entire genome to itself—is unfeasible due to 
large sizes of eukaryotic genomes that render the clas-
sical quadratic time algorithms such as Smith–Water-
man impractical. Furthermore, the homology levels 
between SD copies—as low as 75%—prevent the use of 
the available edit distance approximations with theoreti-
cal guarantees [11, 12]. This is likely to remain so due to 
the sub-quadratic inapproximability of edit distance 
metrics  [13]. The vast majority of sequence search and 
whole-genome alignment tools that rely on heuristics 
to compute the local alignments, such as MUMmer [14] 
and BLAST  [15], also assume high levels of identity 
between two sequences and therefore are not able to effi-
ciently find evolutionarily older SD regions. Even special-
ized aligners for noisy long reads, such as Minimap2 [16] 
or MashMap  [17], cannot handle 75% homology that is 
lower than the expected noise of long reads (up to 15%, 
although sequencing error rates have been improved 
recently to 5%) [18]. Finally, even if we use higher homol-
ogy thresholds (such as 90%) to define an SD, the pres-
ence of low-complexity repeats and the complex SD 
rearrangement architecture often prevents the off-the-
shelf use of the existing search and alignment tools for 
detecting SDs.

For these reasons, only a few SD detection tools have 
been developed in the last two decades, and most of 
them employ various heuristics and workarounds—
often without any theoretical guarantees—to quickly 
find a set of acceptable SDs. The gold standard for SD 
detection, Whole-Genome Assembly Comparison 
(WGAC), uses various techniques such as hard-mask-
ing and alignment chunking to find SDs  [1]. While its 
output is used as the canonical set of SDs in the cur-
rently available genomes, and as such, forms the basis 
of the vast majority of SD analysis studies, WGAC can 
only find recent or highly conserved SDs (i.e., those 
with > 90% homology) within primate lineages. Fur-
thermore, WGAC requires specialized hardware to 
run and takes several days to complete. Few other tools 
developed as a replacement for WGAC—namely SDde-
tector [19] and ASGART [20]—are also limited in their 
ability to find older SDs with lower homology rates. 

Currently, the only tools that are able to detect SDs 
with lower homology are SDquest [21] and SEDEF [22]. 
SEDEF combines the unique biological properties of 
SD evolutionary process with Poisson error model and 
MinHash approximation scheme, previously used for 
long read alignment [17], to quickly find SDs even with 
75% homology, while also providing basic theoretical 
guarantees about the sensitivity of the search process. 
SDquest, on the other hand, relies on k-mer counting 
to find putative SD regions that are later extended and 
aligned with LASTZ [23].

It should be noted that an SD is often formed by 
copying parts of older, more ancient SDs to a differ-
ent location. This, in turn, implies that each SD can be 
decomposed into a set of short building blocks, where 
each block either stems from an ancient SD or a newly 
copied genomic region. Such building blocks are called 
“elementary SDs”  [2]. Elementary SDs are often shared 
across related species within the same evolutionary 
branch. It has been proposed that a small subset of ele-
mentary SDs—often dubbed seeds or core duplicons—
evolutionarily drives the whole SD formation process and 
that every SD harbors at least one such core duplicon [2]. 
Core duplicons are further used to hierarchically cluster 
SDs into distinct clades. For example, the human genome 
SDs can be divided into 435 duplicon blocks that are 
further classified into 24 clades, seeded by a set of core 
duplicons with a total span of 2 Mbps that is often gene-
rich and transcriptionally active [2]. The prime example 
of a mosaic-like recombination region that is seeded by 
an SD core is the LCR16 locus of the human genome that 
is shared with many other primates [3].

The proper SD evolutionary history analysis and the 
detection of core duplicons require a joint analysis of SDs 
in many related species. However, while existing SD tools 
can find SDs in single genomes in a reasonable amount of 
time, none of them can scale—at least not efficiently—to 
multiple genome assemblies. Furthermore, no publicly 
available tool can provide a deeper understanding of SD 
evolutionary architecture or find core duplicons across 
different species, mostly due to the computational com-
plexity of such analysis because of the large number of 
existing SDs within different species. (The source code 
that was used for older analyses [2] is not publicly avail-
able. SDquest, on the other hand, can detect elementary 
SDs but only at the single genome level. Furthermore, 
it does not provide exact genomic coordinates of the 
detected elementary SDs.) For these reasons, only a 
small subset of previously reported core duplicons was 
analyzed in-depth (e.g., LCR16 cores), and often so by 
manually focusing on narrow genomic regions to make 
the analysis tractable  [3], preventing the emergence 
of a clearer picture of the SD evolution across different 
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species, especially of those SDs that preclude the primate 
branch of the evolutionary tree.

Here we introduce BISER (Brisk Inference of Segmen-
tal duplication Evolutionary stRucture), a new framework 
implemented in Seq programming language [24, 25] that 
is specifically developed to quickly detect SDs even at low 
homology levels across multiple related genomes. BISER 
is also able to infer elementary and core duplicons and 
thus enable an evolutionary analysis of all SDs in a given 
set of related genomes. The key conceptual advances of 
BISER consist of a novel linear-time algorithm that can 
quickly detect regions that harbor SDs in a given set of 
genomes and a new approach for decomposing SDs into 
elementary SDs. BISER can discover SDs in the human 
genome in 54 CPU minutes, or in 7 min on a standard 
8-core desktop CPU—an 10× speed-up over SEDEF and 
33× speed-up over SDquest. Further analysis of elemen-
tary SDs takes 19 min. BISER can analyze all shared SDs 
in seven primate genomes in roughly 16 CPU hours, 
translating to 2 h on a standard 8-core laptop computer. 
The flexibility of BISER will make it a useful tool for SD 
characterizations that will open doors towards a better 
understanding of the complex evolutionary architecture 
of these functionally important genomic events.

Methods
Preliminaries
Consider a genomic sequence G = g1g2g3 . . . g|G| of 
length |G| and alphabet � = {A,C ,G,T ,N } . Let 
Gi = gi . . . gi+n−1 be a substring of G of length n that 
starts at position i in G. To simplify the notation, the 
length is assumed to be n. We will use an explicit nota-
tion Gi:i+n for a substring of length n starting at position 
i when a need arises. Let s1 ◦ s2 represent a string con-
catenation of strings s1 and s2 . The subsequence of size k 
in a sequence s is called k-mer, and the k-mer set K(s) of 
sequence s is the set of all subsequences of size k in s.

Segmental duplications are long, low-copy repeats gen-
erated during genome evolution over millions of years. 
Following such an event, different copies of a repeat get 
subjected to different sets of mutations, causing them to 
diverge from each other over time. Thus, it is necessary 
to introduce a similarity metric between two strings in 
order to detect SDs in a given genome. To that end, we 
use Levenshtein’s [26] edit distance metric E between two 
strings s and s′ that measures the minimum number of 
edit operations (i.e., substitutions, insertions, and dele-
tions at the single nucleotide level) in the alignment of s 
and s′ . Let ℓ be the length of such alignment; it is clear 
that max(|s|, |s′|) ≤ ℓ ≤ |s| + |s′| . We can also define 
an edit error err(·, ·) between s and s′ (or, in the context 
of this paper, an error) as the normalized edit distance: 
err(s, s′) = E(s, s′)/ℓ . Intuitively, this corresponds to the 

sequence divergence of s and s′ . Now we can formally 
define an SD as follows:

Definition 1 A segmental duplication (SD) within the 
error threshold ε is a tuple of paralog sequences (Gi,Gj) 
that satisfies the following criteria: 

1. err(Gi,Gj) ≤ ε;
2. ℓ ≥ 1000 , where ℓ is the length of the optimal align-

ment between Gi and Gj [1]; and
3. paralog sequences Gi and Gj can overlap at most ε · n 

bases with each other. 1

Given a set of genomes G1, . . . ,Gγ and their mutual 
evolutionary relationships, our goal is to:

• find a set of valid SDs, SDi , within each Gi (SD 
detection);

• find all copies of both s and s′ for (s, s′) ∈ SDi in 
other genomes Gj , j  = i , if such copies exist (SD 
cross-species conservation detection); and

• decompose each SD from SD = SD1
∪ · · · ∪ SDγ 

into a set of elementary SDs E, and determine the set 
of core elementary SDs (defined later) that drive the 
formation of SDs in SD (SD decomposition).

To that end, we developed BISER, a computational 
framework that is able to efficiently perform these steps, 
and we describe the algorithms behind it in the following 
sections.

For the sake of clarity, unless otherwise noted, we 
assume that we operate on a single genome G. Since 
SDs are by definition different from low-complex-
ity repeats and transposons, we also assume that all 
genomes G1, . . . ,Gγ are hard-masked and do not contain 
low-complexity regions. Nearly all tools, with the sole 
exception of SEDEF, impose this constraint as well. The 
hard-masked genome can be obtained on the fly from a 
standard genome assembly by filtering bases represented 
with the lowercase bases (that correspond to low-com-
plexity regions).

SD error model
Different paralogs of an SD are mutated independently of 
each other. Therefore, the sequence similarity of paralogs 
is correlated with the age of the duplication event—more 
recent copies are nearly identical, while distant ances-
tral copies are dissimilar. It has been proposed that the 
sequence similarity of older SDs (e.g., those shared by the 

1 Ideally, the SD mates should not overlap; however, due to the presence of 
errors, we need to account for at most ε · n overlap.
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mouse and the human genomes) falls as low as 75% [22]. 
In other words, the dissimilarity between different cop-
ies of an old SDs exceeds 25% (i.e., err(s, s′) ≥ 0.25 for SD 
paralogs s and s′ , according to the definition above).

Detection of duplicated regions within such a large 
error threshold is a challenging problem, as nearly any 
edit distance approximation technique with or without 
theoretical guarantees breaks down at such high levels of 
dissimilarity [11, 17], provided that this error is truly ran-
dom. However, that is not the case: it has been previously 
shown  [22] that the SD mutation process is an amalga-
mation of two independent mutation processes, namely 
the background point mutations (also known as paralo-
gous sequence variants, or PSVs) and the large-scale block 
edits. As such, the overall error rate ε can be expressed as 
a sum of two independent error rates, εP (PSV mutation 
rate) and εB (block edit rate), where only εP is driven by a 
truly random mutation process.

In the case when paralogs share the 75% sequence iden-
tity, it has been shown that the random point mutations 
(PSVs) contribute at most 15% ( εP ≤ 0.15 ) towards the 
total error ε  [22] (this also holds for many other mam-
malian genomes, as their substitution rate is often lower 
than the human substitution rate  [27]). The remaining 
10%—knowing that εP and εB are additive—is assumed 
to correspond to the block edit rate εB . Note that these 
mutations are clustered block errors and, as such, are not 
randomly distributed across SD regions. The probability 
of a large block event is roughly 0.5% based on the analy-
sis of existing SD calls [22].

On the other hand, we assume that PSVs between two 
SD paralogs s and s′ follow a Poisson error model [17, 28] 
and that those mutations occur independently from each 
other. It follows that any k-mer in s′ has accumulated on 
average k · εP mutations compared to the originating k-
mer in s, provided that such k-mer was part of the origi-
nal copy event. By setting a Poisson parameter � = k · εP , 
we obtain the probability of a duplication event in which 
a k-mer is preserved in both SD paralogs (i.e., that a k-
mer is error-free) to be e−kεP.

Putative SD detection
Let us return to the main problem of determining 
whether two strings s and s′ are “similar enough” to be 
classified as SDs. As mentioned before, classical edit dis-
tance calculation algorithms would be too slow for this 
purpose. Instead, we use an indirect approach that meas-
ures the similarity of strings s and s′ by counting the num-
ber of shared k-mers in their respective k-mer sets K(s) 
and K(s′) . It has been shown that Jaccard index of these 
sequences, s and s′ , defined as J (K(s),K(s′)) = |K(s)∩K(s′)|

|K(s)∪K(s′)| 
is a good proxy for E(s, s′) under the Poisson error 
model  [17]. Thus we can combine the Poisson error 

model with the SD error model and obtain the expected 
value of Jaccard index τ between any two strings s and s′ , 
whose edit error err(s, s′) follows the SD error model and 
is lower than ε = εP + εB , to be [22]:

As we cannot use local alignment to efficiently enumer-
ate all SDs in a given genome due to quadratic time and 
space complexity, we utilize a heuristic approach to enu-
merate all pairs of regions in G that are likely to harbor 
one or more segmental duplications. We call these pairs 
putative SDs. These pairs are not guaranteed to contain 
a “true” SD, and must be later aligned to each other to 
ascertain the presence of true SDs. Nevertheless, such 
an approach will filter out the regions that do not harbor 
SDs, and thus significantly reduce the amount of work 
needed for detecting “true” SDs. The overall performance 
of our method, both in terms of runtime and sensitivity, 
will depend on how well the putative SDs are chosen.

The problem of putative SD detection can be, thanks 
to the SD error model, easily expressed as an instance of 
a filtering problem: find all pairs of indices i, j in G such 
that J (K(Gi),K(Gj)) ≥ τ , where τ is the lower bound 
from the Eq. 1. Here we assume that the size of Gi and Gj 
exceeds the SD length threshold (1000 bp), and no k-mer 
occurs twice in either Gi or Gj.2

The filtering approach has already been successfully 
used in other software packages and forms the backbone 
of both SEDEF (SD detection tool; [22]) and MashMap 
(Nanopore read aligner; [29]). However, both methods 
need to constantly maintain the k-mer sets K(s) and K(s′) 
to calculate the Jaccard index between the sequences s 
and s′ . As these methods dynamically grow s and s′ (as 
the length n is not known in advance), the corresponding 
sets K(s) and K(s′) are constantly being updated, neces-
sitating a costly recalculation of K(s) ∩ K(s′) on each 
update. A common trick is to use the MinHash technique 
to reduce the sizes of K(s) and K(s′) , and thus the fre-
quency of such updates. However, the frequent recalcula-
tion of the Jaccard index still remains a major bottleneck 
even in the MinHash-based approaches because calculat-
ing union and intersection of k-mers for each pair of sub-
sequences in G is a costly operation.

Here we note that the Jaccard index calculation can 
be significantly simplified by not having to maintain the 
complete k-mer sets K(s) and K(s′) . The need for keep-
ing such sets arises from the fact that the calculation of 
K(s) ∩ K(s′) allows any k-mer in K(s′) to match any k-mer 
in K(s) . However, such a loose intersection requirement 

(1)τ = E[J (K(s),K(s′))] ≥
1− εB

1+ εB
·

1

2ekεP − 1
.

2 Even if it does, the above-derived Jaccard score-based filter performs well in 
practice.



Page 5 of 15Išerić et al. Algorithms for Molecular Biology            (2022) 17:4  

is not only redundant for approximation of edit distance 
under the SD error model but is even undesirable as such 
intersections can introduce cross-over k-mer matches 
that are not possible in the edit distance metric space (see 
Fig. 1c for an example of valid and invalid matchings). By 
disallowing such cross-over cases, we can significantly 
optimize the calculation of the Jaccard index. Let us show 
how to do that without sacrificing sensitivity.

Let us first introduce s ⊛ s′ as an alternative way of 
measuring the k-mer similarity between strings s and s′.

For that purpose, let us introduce a notion of a col-
inear k-mer matching between s and s′ as a set of index 

pairs (i, j) ( 1 ≤ i ≤ |s|, 1 ≤ j ≤ |s′| ) such that the k-mers 
that start at i and j in s and s′ respectively are equal, 
and such that all pairs (i,  j) in matching are colinear 
(i.e., for each (i, j) and (i′, j′) , either i < i′ and j < j′ , or 
i > i′ and j > j′ ). A ⊛ operation describes the size of a 
maximum colinear matching of k-mers between s and 
s′ . In other words, we want to select a maximal set of 
matching k-mers in K(s) and K(s′) such that no two k-
mer matchings cross over each other (see Fig.  1c for 
an example of cross-over, or non-colinear, matchings). 
We can replace K(s) ∩ K(s′) with s ⊛ s′ and introduce 
an ordered Jaccard index ˆJ (s, s′) , formally defined as:

Fig. 1 a A plane-sweep algorithm for finding putative SDs. b Visual guide for the algorithm. The algorithm sweeps a vertical dashed line through 
the set of winnowed k-mers in a genome G (x axis). At each k-mer starting at the location x, it queries the index IG to obtain a sorted list K of k’s 
occurrences in G (right side of the sweep line). The algorithm then scans K, and the list L of putative SDs found thus far at the same time. At each 
step, it examines iL-th element of L and iK-th element of K, and decides whether to start a new putative SD [(1) and (1′), green k-mers on the right], 
extend the current putative SD with the current k-mer [(2), black k-mer on the right], or subsume the current k-mer within the current putative SD 
[(3), red k-mer]. c A visual representation of a valid k-mer matching in a valid alignment (shown by green lines). Red matching would render the 
alignment invalid as red matchings are not co-linear with the green matchings
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The following lemma allows us to use an ordered Jaccard 
index ˆJ  in lieu of classical Jaccard index J :

Lemma 1 Let s and s′ be two paralog sequences 
that have been mutated under the assumptions of SD 
error model following the originating copy event. Also, 
assume that their shared k-mers were also shared before 
any mutation occurred. Then the ordered Jaccard 
index ˆJ (s, s′) of s and s′ is equal to the Jaccard index 
J (K(s),K(s′)).

Proof It is sufficient to prove that the size of 
|K(s) ∩ K(s′)| always corresponds to the size of maximal 
colinear matching between s and s′.

To show that s ⊛ s′ ≤ |K(s) ∩ K(s′)| , it is enough to note 
that matched k-mers in any colinear matching are by def-
inition identical, and thus belong to K(s) ∩ K(s′) . We will 
prove that s ⊛ s′ ≥ |K(s) ∩ K(s′)| by contradiction. First, 
note that the string s is equal to s′ immediately after the 
duplication event (i.e., before the occurrence of PSVs) 
and that all k-mers are colinear in their maximal match-
ing because s contains no repeated k-mers (an assump-
tion made by the SD error model). Now, suppose that 
there is a cross-over in K(s) ∩ K(s′) . That implies either 
a cross-over between s and s′ before PSVs occurred—
contradicting the previous observation—or a cross-over 
after it, contradicting the assumption that any matched 
k-mer pair was matched before the occurrence of PSVs. 
Hence K(s) ∩ K(s′) cannot contain any cross-overs, and 
s ⊛ s′ = |K(s) ∩ K(s′)| . �

If the conditions of Lemma 1 are satisfied, we can cal-
culate s ⊛ s′ in linear time by a simple scan through s and 
s′ at the same time. A linear calculation of s ⊛ s′ , together 
with the fact that the lower bound τ in Eq. 1 equally holds 
for ˆJ  as well (a direct consequence of Lemma 1), allows 
us to use a plane sweep technique to select all pairs of 
substrings (s, s′) in G whose ordered Jaccard distance 
ˆJ (s, s′) exceeds τ , and as a result, select all putative SDs 

in G (see Fig. 1 for details).
We begin by creating a k-mer index IG that connects 

each k-mer in G to an ordered list of its respective loca-
tions in G. Then we sweep a vertical line in G from left 
to right while maintaining a sorted list L of putative SDs 
found thus far. For each location x in G encountered by 
a sweep line, we query IG to obtain a sorted list K con-
taining loci of Gx:x+k ’s copies in G. Then, for any y in K, 
we check if it either (1) begins a new potential putative 
SD that maps x to y, (2) extends an existing putative SD, 

ˆJ (s, s′) =
s ⊛ s′

|K(s) ∪ K(s′)|
.

or (3) is covered by existing putative SD in L (Fig. 1). If 
a putative SD in L is too distant from y, it is promoted 
to the final list of putative SD regions if it satisfies the 
ordered Jaccard index threshold τ and the other SD crite-
ria from Definition 1. Note that we do not allow a k-mer 
to extend a putative SD if the distance between it and the 
SD exceeds the maximum gap size of the smallest possi-
ble SD (250). It takes |L| + |K | steps to process each k-mer 
in G because both L and K are sorted. However, because 
the size of |L| is kept low by the distance criteria, and 
because |K| is low enough in practice3, the practical time 
complexity of Algorithm 1 (Fig. 1) is O(|G|) (theoretically, 
the worst-case complexity is O((|L| + |K |) · |G|) ) for con-
structing the index IG , and linear in terms of the genome 
size for plane sweeping.

The key assumption in Lemma  1—that two paralogs 
only share the k-mers that have not been mutated since 
the copy event—does not always hold in practice on 
real data. As such, Algorithm 1 (Fig. 1) might occasion-
ally underestimate the value of ˆJ  , potentially leading to 
some false negatives. We control that by using �—the 
same parameter that controls the growth of putative SDs 
by limiting the maximum distance of neighboring k-mers 
in s ⊛ s′ (Fig. 1)—to limit the growth of under-estimated 
SDs and thus start the growth of potentially more suc-
cessful SDs earlier. This heuristic might cause a large SD 
to be reported as a set of smaller disjoint SD regions. For 
that reason, we post-process the set of putative SDs upon 
the completion of Algorithm 1 (Fig. 1) and merge any two 
SDs that are close to each other if their union satisfies 
the ordered Jaccard index criteria. We also extend each 
putative SD by 5 Kbp both upstream and downstream to 
account for the small SD regions that might have been 
filtered out during the search process. This parameter is 
user-defined and might be adjusted for different genome 
assemblies.

The performance of the plane sweep technique can be 
further improved by winnowing the set of k-mers used 
for the construction of IG  [17]. Instead of indexing all 
k-mers in G, we only consider k-mers in a winnowing fin-
gerprint W(G) of G. W(G) is calculated by sliding a win-
dow of size w through G and by taking in each window a 
lexicographically smallest k-mer (the rightmost k-mer is 
selected in case of a tie).

The expected size of W(G) for a random sequence G 
is 2|G|/(w + 1) [30]. The main benefit of winnowing is 
that it can significantly speed up the search step (up to an 
order of magnitude) without sacrificing sensitivity. The 
winnow W(G) can be computed in a streaming fashion 

3 The average size of L in our experiments was 370, and the average size of K 
is 30.
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in linear time using O(w) space with the appropriate data 
structures (deque) [31].

Following the discovery of putative SDs, we locally 
align paralogs from each putative SD and only keep those 
regions whose size satisfies the SD criteria mentioned 
above. BISER uses a two-tiered local chaining algorithm 
from SEDEF based on a seed-and-extend approach 
and efficient O(n log n) chaining method following by a 
SIMD-parallelized sparse dynamic programming algo-
rithm to calculate the boundaries of the final SD regions 
and their alignments [16, 32, 33].

SD decomposition
Once the set of final SDs SD = {(s1, s

′

1), . . .} is discov-
ered and the precise global alignment of each paralog 
pair (s, s′) ∈ SD is calculated, we proceed by decompos-
ing the set SD into a set of evolutionary building blocks 
called elementary SDs. More formally, we aim to find a 
minimal set of elementary SDs E = {e1, . . . , e|E|} , such 
that each SD paralog s is a concatenation of ês1 ◦ · · · ◦ ê

s
ns

 . 
Each êi either belongs to E or there is some ej ∈ E such 
that err(êi, ej) ≤ ε . An example of such a decomposition 
is given in Fig. 2.

Note that each locus covered by an SD paralog is 
either copied to another locus during the formation of 
that SD (in other words, it is “mirrored” by its paralog), 
or belongs to an alignment gap. As SD events can copy 
over the regions that already form an existing SD, a single 
locus might “mirror” a large number of existing locations. 
In order to find all locations that a locus i mirrors, we ini-
tially used a modification of Tarjan’s union-find disjoint 

set algorithm [34] to link together all mirrored locations. 
Each separate “mirror” (represented by a distinct shape 
in Fig. 2) indicates the start of a distinct elementary SD. 
However, despite being efficient and conceptually simple, 
the simple version of this algorithm cannot handle the 
complex SD alignments that often induce mirror loops, 
whirls, bulges stemming from the alignment imperfec-
tions  [21, 35]. These artifacts prevent the formation of 
larger elementary SDs that can be meaningfully analyzed. 
The current solutions to this problem—most notably 
the A-Bruijn graph family of repeat analysis tools [2, 35, 
36]—is limited to small genomes and unfortunately not 
scale well to large datasets (Fig. 3).

For that reason, we developed an alternative approach 
to decompose SDs into elementary SDs motivated by 
the fact that the SD decomposition is closely related to 
the multiple sequence alignment problem. We start by 
denoting the set of all regions in genome G that con-
tains SDs as R. By definition, separate instances of the 
same elementary SDs are supposed to be similar and 
therefore should consist of identical k-mers that can be 
chained. We define chaining as the merging of proxi-
mal locations of identical k-mers. The chaining process 
resembles the local multiple sequence alignment on 
R, and produces a set of duplicated regions in R. Two 
k-mers can be chained if their locations are within 
defined parameter dg . Parameter dg has two purposes: 
(1) it defines the maximum distance up to which one 
k-mer location can be merged with another, and (2) it 
ensures that there will be at least one matching k-mer 
every dg locations in each LMSA, thus reducing the 

Fig. 2 A decomposition of three partially overlapping SDs into a set of elementary SDs. Each SD is bounded by a solid line box. SD paralogs are 
linked by a by a dashed line. Each elementary SD is represented as a colored box. The boxes of core duplicons—elementary SDs shared by all 
SDs—are depicted with a dashed border. Note that a boundary of each elementary SD either a boundary of an existing SD or its “image”. Different 
boundaries are represented by different shapes, and their “images” (paralog copies) also share the same shape
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number of false positives and random hits. We found 
out that the optimal value of dg is 50 if the goal is to 
cover elementary SDs of size 100 and larger  [2]. Such 
dg is large enough to capture regions that contain 
PSVs and small gaps, but small enough to prevent false 
positives.

The decomposition step itself is modeled upon Algo-
rithm  1 (Fig.  1; decomposition is described in Fig.  3) 
and proceeds as follows. We build a k-mer index Ik of R 
as explained above (except that this time we do not use 
winnowed k-mers). Then we scan all sequences using 
the same sweeping line algorithm as before. The list 
L keeps putative elementary SDs found so far. When-
ever we process a new k-mer, we will take all locations 

from Ik and see if we can: (1) append them to an exist-
ing putative elementary SD from L (if L is empty, we 
initialize it with the current k-mer’s positions); (2) 
create a new potential elementary SD; or (3) remove 
an existing one if it satisfies the deletion criteria. A 
new location from Ik can be appended to an existing 
elementary SD if its distance from the last appended 
k-mer to that elementary SD is within dg . A putative 
elementary SD is removed if no new k-mer location is 
appended to that putative elementary SD in dg steps. 
The main difference from the putative SD search step 
is that we need to track multiple copies of a putative 
region instead of only one (because an elementary SD 
can belong to multiple SDs). For this purpose, when 

Fig. 3 k-mer chaining-based SD decomposition applied on the example from Fig. 2. Top: after data pre-processing, we end up with three 
sequences (chrA, chrB_1, and chrB_2) that are scanned from left to right to find identical regions that share common k-mers. The first matching 
region is the green region in chrA that matches the same-colored region in chrB_1. Middle: after encountering the yellow region (b), the algorithm 
marks a new elementary SD because the number of yellow regions does not match the number of green regions; therefore, the green regions will 
be reported as instances of a separate elementary SD. Bottom: if no k-mer can be appended to any of the elementary SDs in L, the algorithm will 
report all regions that are larger than µ as one elementary SD and discard the others. Here, the regions numbered as 2, 3, and 5 do not continue 
into the blue regions and thus prevent the further extension of the pink region
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removing a node from L, we also need to remove all 
other nodes from L to form an elementary SD set (if 
such node is larger than the threshold µ).

The computational performance of this approach 
heavily depends on the size of an Ik . To reduce its size, 
we cluster all overlapping SDs, merge sequences that 
overlap, and apply the same algorithm on every clus-
ter separately in parallel, reducing each cluster’s index 
size. Clustering SDs is done using Tarjan’s union-find 
algorithm [34]. The largest cluster for human SDs cov-
ers roughly 90 megabases, meaning that those SDs 
exhibit a rich evolutionary history that can be tracked 
by breaking those SDs into elementary SDs.

After decomposing SDs into the set of elemen-
tary SDs E, we select some of them as core duplicons. 
Inspired by [2], we formally define these duplicons as 
the minimal set of elementary SDs that cover all exist-
ing SDs (an SD is covered by an elementary if either 
paralog is composed of that elementary SD). We use 
a classical set-cover approximation algorithm  [37] to 
determine a set of core duplicons from E.

Multiple genomes
The above method can be efficiently scaled to γ  dis-
tinct genomes G1, . . . ,Gγ by constructing a set of k-
mer indices IG1 , . . . , IGγ , and by running the search and 
the alignment procedure on each Gi in parallel. After 
obtaining SDs for each genome G1, . . . ,Gγ in parallel, 
BISER maps the set of SDs of a genome to all other 
genomes. By only mapping the SDs of one genome to 
another genome, BISER avoids misclassifying con-
served regions between two genomes as SDs. The 
whole procedure can be trivially parallelized across 
many CPUs.

Results
We have evaluated all stages of BISER for speed and 
accuracy on both simulated and real-data datasets. All 
results were obtained on a multi-core Intel Xeon 8260 
CPU (2.40  GHz) machine with 1 TB of RAM. The run 
times are rounded to the nearest minute and are reported 
for both single-core as well as multi-core (8 CPU cores) 
modes when ran in parallel via GNU Parallel [38]. All 
real-data genomes were hard-masked, and all basepair 
coverage statistics are provided with respect to the hard-
masked genomes.

In our experiments, we used k = 14 when searching for 
putative SDs and k = 10 during the alignment step (note 
that both parameters are user-adjustable). The size of the 
winnowing window was set to 16. The lower values of k 
significantly impact the running time without provid-
ing any visible improvement to the detection sensitivity, 
while higher values of k significantly lower the detec-
tion sensitivity. The genome decomposition step used 
k = 10 . Both k and w (for search, align, and k-mer chain-
ing decomposition) were empirically chosen to maximize 
sensitivity without impacting the runtime performance. 
Parameter selection details and sensitivity analysis are 
available in [39].

Simulations
The accuracy of using the strong Jaccard index together 
with the SD error model as a function of error parameter 
ε , as well as the overall sensitivity of BISER’s SD detec-
tion pipeline, was evaluated on a set of 1,000 simulated 
segmental duplications ranging from 1 to 100Kbp. All 
sequences and mutations were randomly generated with 
uniform distribution according to the SD error model 
with ε ∈ {0.01, 0.02, . . . , 0.25} (i.e., we allowed the overall 
error rate to reach 25%). Uniform distribution was picked 

Fig. 4 Performance of BISER’s algorithm on simulated SDs (red: randomly simulated sequences; cyan: hg19 chr1 sequences). x-Axis represents the 
simulated SD error rate ε , while y axis represents the percentage of correctly detected SDs. Note that the y-axis only shows the top 25% as BISER 
detects more than 98% of simulated SDs for any ε ≤ 0.25
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because it was an overall good biological proxy for muta-
tion in known genomes and because it can represent 
worst-case mutation distribution (having one mutation 
on each non-overlapped k-mer). We consider a simulated 
SD as being “covered” if BISER found an SD that covers 
more than 90% of the original SD’s basepairs. As shown 
in Fig.  4, the overall sensitivity is around 99% even for 
ε = 0.25.

We performed the same experiment on human (hg19) 
chromosome 1 (Fig.  4), where we selected uniformly at 
random 10,000 sequences of various lengths and dupli-
cated them within the chromosome. Each duplication 
was followed by introducing random PSVs according 
to the SD error model while varying the values of ε as 
described above. Even in this case, BISER’s performance 
stays the same, and only a handful of very small SDs (of 
size ≈ 1000) were missed.

Single-genome results
We have run BISER on the H. sapiens hg19 genome 
and M. musculus mm8 genome and compared it to the 
published WGAC  [1],4 SEDEF  [22], and SDquest  [21] 
SD calls.5 We also compared the runtime performance 
of BISER to that of SEDEF and SDquest. Note that we 
were not able to run WGAC due to the lack of hard-
ware necessary for its execution. We did not compare 
BISER to other SD detection tools—namely SDdetec-
tor  [19], MashMap2  [29], and ASGART  [20]—as it has 
been previously shown that these tools underperform 
when compared to SEDEF or SDquest, and require an 
order of magnitude more resources than either SEDEF 
or SDquest do. For the same reason, we did not compare 
BISER to whole-genome aligners such as Minimap2 [16] 

and MUMmer/nucmer [14], as well as DupMasker  [40], 
as none of these tools were designed to detect de novo 
SDs in a genome. See [22] for the detailed evaluation of 
these tools.

BISER was able to find and align all SD regions in 
hg19 in 7 min on 8 cores (roughly 54 min on a single 
core)  (Table  1). To put this into perspective, BISER is 
around 10× faster than SEDEF, 34× faster than SDquest, 
and an order of magnitude faster than WGAC that takes 
days to find human SDs (personal communication; we 
were not able to run the WGAC pipeline ourselves due to 
legacy hardware requirements). As a side note, BISER has 
the same memory requirements as SEDEF or SDquest 
and needs around 7 GB of RAM per core (it needs 
around 2 GB for the search step and up to 7 GB for the 
sequence alignment).

Since SEDEF by default operates on a genome that is 
not hard-masked, we also ran SEDEF on a hard-masked 
genome to measure its theoretical speed (note that 
SEDEF was not designed for hard-masked genomes; thus, 
the basepair analysis is omitted). SEDEF took 21 min on 
8 CPU cores to process a hard-masked hg19, leaving it 
still around 3 × slower than BISER. Noticeable speedup 
is obtained in the first step of the algorithm—finding 
putative SDs—where SEDEF completes in 14 min while 
BISER needs only 3 min.

Similar performance gains were observed on the mouse 
(mm8) genome as well. BISER took 11 min to find SDs 
in the mm8 genome (3 min for finding putative SDs 
and 9 min for alignment) while SEDEF needed 1 h and 
24 min (33 min for finding putative SDs and 51 min for 
align). SDquest took more than 6 h for the same opera-
tion. SEDEF was run on soft masked data; when we ran it 

Table 1 Running time performance of BISER (single-core and 8-core mode) on Intel Xeon 8260 CPU at 2.40 GHz for single genomes 
(hg19 and mm8)

Single genome (hg19) Total (min) Putative SDs (min) Alignment 
(min)

1 core 54 21 33

8 cores 7 3 4

Single genome (mm8) Total Putative SDs (min) Alignment 
(min)

1 core 1 h 24 min 20 64

8 cores 11 min 3 9

4 http:// human paral ogy. gs. washi ngton. edu
5 The exact coverage depends on search parameters, such as the minimum 
putative SD length (set to 500 and 100 bp for the query and the reference 
sequence, respectively). Other parameter choices do not significantly affect 
the final result: extra false positives are quickly filtered by the align step due 
to a lack of shared regions that need to be chained.

http://humanparalogy.gs.washington.edu
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on hard masked data, it took 27 min. Here, the speedup 
is shown in the first step—finding putative SDs—where 
BISER needs 3 min compared to the SEDEF’s 18 min.

In terms of sensitivity, BISER discovers about 1 GB 
of putative SD regions in the human genome. After 
the alignment step, BISER reports 158 Mb of final SD 
regions in hg19. That is 54 Mbp more than WGAC 
and 26 Mbp more than SDquest. The total coverage 
of SEDEF and BISER are similar to each other, differ-
ing by 4 Mbp uniquely detected by SEDEF and 12 Mbp 
uniquely covered by BISER. BISER also misses a few Mbp 
of SD regions unique to SDquest and a negligible amount 
unique to WGAC (Fig. 5 and Table 3).

On the mm8 genome, we observe similar trends. How-
ever, we also observed that SEDEF covers roughly 20 
Mbp that are not covered by BISER (Fig. 5 and Table 3). 

When SEDEF is run on a hard-masked genome, it does 
not cover these bases; further analysis showed that nearly 
all bases originally reported as unique to SEDEF actually 
map either to alignment gaps, soft-masked repeat ele-
ments, or small islands (< 200 bp) between the low-copy 
repeats and as such do not constitute “true” SDs.

Decomposition
The BISER’s decomposition module found 297,175 ele-
mentary SDs grouped in 65,222 elementary SD sets. The 
method covers 85% of the SD basepairs. The minimum 
length of an elementary SD was set to 100  bp. BISER 
needs roughly 20 min on 8 cores to perform the single-
genome decomposition (19 min for hg19 and 18 min for 
mm8).

Fig. 5 Venn diagram depicts the SD coverage of the BISER, WGAC, SEDEF and SDquest (in Mbp) on the hard-masked human genome (top) and 
mouse genome (bottom). Note that nearly all bases out of ≈ 22 Mbp bases that are shown to be unique to SEDEF (and not covered by BISER) map 
to gaps and low-copy repeats and should not be therefore treated as true SDs
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To validate the results of decomposition, we performed 
the phylogenetic analysis of the prominent NPIP gene 
cluster from the LCR16 region in the human genome, 
and compared our results with the previously published 
analysis of this region [3]. Distances between genes were 
calculated as d(s1, s2) = 1− J (s1, s2) , where J  is Jaccard 
similarity between two sets of elementary SDs covering 
two respective genes (as each genic region is covered by 
one or more elementary SDs). As can be seen in Fig.  6, 
BISER’s correctly inferred the evolutionary tree for this 
gene family, as the generated tree agrees with the one 
previously reported in [3].

While SDquest produces (for one genome) SDs and 
mosaic SDs composed of indexes of elementary SDs, 
those indexes do not give us the information on the 
exact coordinates of each elementary SD needed for tree 
reconstruction. For that reason, we were not able to com-
pare our results with to SDquest.

Multi-genome results
In addition to running BISER on a single genome, we also 
ran BISER on the following seven related genomes:

• M. musculus (mouse, version mm8),
• C. jacchus (marmoset, version calJac3),
• M. mulatta (macaque, version rheMac10),

• G. gorilla (gorilla, version gorGor6),
• P. abelii (orangutan, version ponAbe3),
• P. troglodytes (chimpanzee, version panTro6), and
• H. sapiens (human, version hg19).

These genomes were analyzed in the previous work  [3], 
with the sole exception of M. musculus that is novel to 
this analysis.

BISER took around 2 h to complete the run on 8 cores. 
Of that, it took around 35 min to find putative SDs within 
and between species. The remaining time (1  h 32  min) 
was spent calculating the final alignments for all reported 
SDs  (Table  2). The vast majority of alignment time was 
spent only on aligning putative SDs from calJac3 genome. 
We presume that this is due to the high presence of 

Fig. 6 A phylogenetic tree of NPIP gene family built by using elementary SD similarity as the proximity metrics (neighbor-joining method)

Table 2 Running time performance of BISER (single-core and 
8-core mode) on Intel Xeon 8260 CPU at 2.40 GHz for seven 
genomes

Seven genomes Total Putative SDs Alignment

1 core 16 h 41 min 4 h 37 min 12 h 4 min

8 cores 2 h 7 min 35 min 1 h 32 min
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unmasked low-complexity regions in this particular 
assembly.

The SD decomposition took 37 min on 8 CPU cores 
(67 min on a single CPU) to complete on a set of nearly 
1,985,586 SDs. BISER found ≈ 282,130 elementary SDs 
(Table 3).

Conclusion
More than a decade ago, the Genome 10K Project Con-
sortium proposed to build genome assemblies for 10,000 
species  [41]. Due to the lack of high-quality long-read 
sequencing data, this aim was not immediately realized. 
However, the Genome 10K Project spearheaded the 
development of other large-scale many-genome sequenc-
ing projects such as the Earth BioGenome Project  [42] 
and Vertebrate Genomes Project.6 Recent developments 
in generating more accurate long-read sequencing data, 
coupled with better algorithms to assemble genomes now 
promise to make the aforementioned and similar projects 
feasible.

Analyzing the recently and soon-to-be generated 
genome assemblies to understand evolution requires 
the development of various algorithms for different 
purposes, from gene annotation  [43] to orthology anal-
ysis  [44] and the selection and recombination analy-
sis [45]. Although a handful of tools such as SEDEF and 
SDquest are now available to characterize segmental 
duplications in genome assemblies, they cannot perform 
multi-species SD analysis, and they suffer from compu-
tational requirements. We developed BISER as a new 
segmental duplication characterization algorithm to be 
added to the arsenal of evolution analysis tools. We dem-
onstrate that (1) BISER is substantially faster than earlier 

tools; (2) it can characterize SDs in multiple genomes to 
delineate the evolutionary history of duplications; and (3) 
it can identify elementary SDs and core duplicons to help 
understand the mechanisms that give rise to SDs. We 
believe that BISER will be a powerful and common tool 
and will contribute to our understanding of SD evolution 
when thousands of genome assemblies become available 
in the next few years. The following steps would consist 
of applying BISER to a larger set of available mammalian 
genomes, and the detailed biological analysis of the SDs 
and associated core duplicons.
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Table 3 SD coverage of the human and mouse genomes (hg19 and mm8) and the runtime performance of BISER, SEDEF and 
SDquest

“Missed” and “Extra” columns are calculated with respect to the WGAC SD calls. All running times are reported on 8 CPU cores. We could not run WGAC as we do not 
have access to the legacy hardware needed for its execution; the reported runtime is from  [22]

Tool Covered (MBp) Missed (MBp) Extra (MBp) Time

hg19
 WGAC (standard) 104.5 days

  BISER 158.0 0.5 54.0 7 min

  SEDEF 149.2 0.1 44.8 1 h 15 min

  SDquest 132.2 3.3 30.9 3 h 56 min

mm8
 WGAC (standard) 80.3 days

  BISER 135.1 1.3 56.0 11 min

  SEDEF 145.6 0.2 65.4 1 h 24 min

  SDquest 115.7 3.8 39.2 6 h 06 min

6 https:// verte brate genom espro ject. org/.

https://vertebrategenomesproject.org/
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