
Išerić et al. Algorithms for Molecular Biology (2022) 17:4
https://doi.org/10.1186/s13015-022-00210-2

RESEARCH

Fast characterization of segmental
duplication structure in multiple genome
assemblies
Hamza Išerić1, Can Alkan2, Faraz Hach3,4 and Ibrahim Numanagić1*

Abstract

Motivation: The increasing availability of high-quality genome assemblies raised interest in the characterization
of genomic architecture. Major architectural elements, such as common repeats and segmental duplications (SDs),
increase genome plasticity that stimulates further evolution by changing the genomic structure and inventing new
genes. Optimal computation of SDs within a genome requires quadratic-time local alignment algorithms that are
impractical due to the size of most genomes. Additionally, to perform evolutionary analysis, one needs to character-
ize SDs in multiple genomes and find relations between those SDs and unique (non-duplicated) segments in other
genomes. A naïve approach consisting of multiple sequence alignment would make the optimal solution to this
problem even more impractical. Thus there is a need for fast and accurate algorithms to characterize SD structure in
multiple genome assemblies to better understand the evolutionary forces that shaped the genomes of today.

Results: Here we introduce a new approach, BISER, to quickly detect SDs in multiple genomes and identify elemen-
tary SDs and core duplicons that drive the formation of such SDs. BISER improves earlier tools by (i) scaling the detec-
tion of SDs with low homology to multiple genomes while introducing further 7–33× speed-ups over the existing
tools, and by (ii) characterizing elementary SDs and detecting core duplicons to help trace the evolutionary history of
duplications to as far as 300 million years.

Availability and implementation: BISER is implemented in Seq programming language and is publicly available at
https:// github. com/ 0xTCG/ biser.

Keywords: Genome analysis, Fast alignment, Segmental duplications, Sequence decomposition

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Segmental duplications (SDs), also known as low-copy
repeats, are genomic segments larger than 1 Kbp that
are duplicated one or more times in a given genome with
a high level of homology [1]. While nearly all eukary-
otic genomes harbor SDs, it is the human genome that
exhibits the largest diversity of SDs among the known
genomes. At least 6% of the human genome is covered

by SDs ranging from 1 Kbp to a few megabases [1]. The
architecture of human SDs also differs from other mam-
malian species both in its complexity and frequency [2].
For example, while most species harbor tandem SDs, the
human genome is repleted with interspersed (both intra-
and inter-chromosomal) SD blocks [3]. Human SDs are
also often duplicated multiple times within the genome,
often immediately next to or even within an already
existing SD cluster. This complex duplication architec-
ture points to a major role that SDs play in human evo-
lution [4–6]. Human SDs also introduce a significant
level of genomic instability that results in increased
susceptibility to various diseases [7, 8]. This has led to

Open Access

Algorithms for
Molecular Biology

*Correspondence: inumanag@uvic.ca
1 Department of Computer Science, University of Victoria, Victoria, BC V8P
5C2, Canada
Full list of author information is available at the end of the article

https://github.com/0xTCG/biser
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-022-00210-2&domain=pdf

Page 2 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

evolutionary adaptation in the shape of genes and tran-
scripts unique to the human genome that aim to offset
the effects of such instability [9]. Finally, SDs display sig-
nificant diversity across different human populations and
can be used as one of the markers for population genetics
studies [10].

In order to understand the architecture and evolu-
tion of eukaryotic SDs, the first step typically consists of
detecting all SDs within a given genome. However, SD
detection is a computationally costly problem. The theo-
retically optimal solution to this problem—a local align-
ment of an entire genome to itself—is unfeasible due to
large sizes of eukaryotic genomes that render the clas-
sical quadratic time algorithms such as Smith–Water-
man impractical. Furthermore, the homology levels
between SD copies—as low as 75%—prevent the use of
the available edit distance approximations with theoreti-
cal guarantees [11, 12]. This is likely to remain so due to
the sub-quadratic inapproximability of edit distance
metrics [13]. The vast majority of sequence search and
whole-genome alignment tools that rely on heuristics
to compute the local alignments, such as MUMmer [14]
and BLAST [15], also assume high levels of identity
between two sequences and therefore are not able to effi-
ciently find evolutionarily older SD regions. Even special-
ized aligners for noisy long reads, such as Minimap2 [16]
or MashMap [17], cannot handle 75% homology that is
lower than the expected noise of long reads (up to 15%,
although sequencing error rates have been improved
recently to 5%) [18]. Finally, even if we use higher homol-
ogy thresholds (such as 90%) to define an SD, the pres-
ence of low-complexity repeats and the complex SD
rearrangement architecture often prevents the off-the-
shelf use of the existing search and alignment tools for
detecting SDs.

For these reasons, only a few SD detection tools have
been developed in the last two decades, and most of
them employ various heuristics and workarounds—
often without any theoretical guarantees—to quickly
find a set of acceptable SDs. The gold standard for SD
detection, Whole-Genome Assembly Comparison
(WGAC), uses various techniques such as hard-mask-
ing and alignment chunking to find SDs [1]. While its
output is used as the canonical set of SDs in the cur-
rently available genomes, and as such, forms the basis
of the vast majority of SD analysis studies, WGAC can
only find recent or highly conserved SDs (i.e., those
with > 90% homology) within primate lineages. Fur-
thermore, WGAC requires specialized hardware to
run and takes several days to complete. Few other tools
developed as a replacement for WGAC—namely SDde-
tector [19] and ASGART [20]—are also limited in their
ability to find older SDs with lower homology rates.

Currently, the only tools that are able to detect SDs
with lower homology are SDquest [21] and SEDEF [22].
SEDEF combines the unique biological properties of
SD evolutionary process with Poisson error model and
MinHash approximation scheme, previously used for
long read alignment [17], to quickly find SDs even with
75% homology, while also providing basic theoretical
guarantees about the sensitivity of the search process.
SDquest, on the other hand, relies on k-mer counting
to find putative SD regions that are later extended and
aligned with LASTZ [23].

It should be noted that an SD is often formed by
copying parts of older, more ancient SDs to a differ-
ent location. This, in turn, implies that each SD can be
decomposed into a set of short building blocks, where
each block either stems from an ancient SD or a newly
copied genomic region. Such building blocks are called
“elementary SDs” [2]. Elementary SDs are often shared
across related species within the same evolutionary
branch. It has been proposed that a small subset of ele-
mentary SDs—often dubbed seeds or core duplicons—
evolutionarily drives the whole SD formation process and
that every SD harbors at least one such core duplicon [2].
Core duplicons are further used to hierarchically cluster
SDs into distinct clades. For example, the human genome
SDs can be divided into 435 duplicon blocks that are
further classified into 24 clades, seeded by a set of core
duplicons with a total span of 2 Mbps that is often gene-
rich and transcriptionally active [2]. The prime example
of a mosaic-like recombination region that is seeded by
an SD core is the LCR16 locus of the human genome that
is shared with many other primates [3].

The proper SD evolutionary history analysis and the
detection of core duplicons require a joint analysis of SDs
in many related species. However, while existing SD tools
can find SDs in single genomes in a reasonable amount of
time, none of them can scale—at least not efficiently—to
multiple genome assemblies. Furthermore, no publicly
available tool can provide a deeper understanding of SD
evolutionary architecture or find core duplicons across
different species, mostly due to the computational com-
plexity of such analysis because of the large number of
existing SDs within different species. (The source code
that was used for older analyses [2] is not publicly avail-
able. SDquest, on the other hand, can detect elementary
SDs but only at the single genome level. Furthermore,
it does not provide exact genomic coordinates of the
detected elementary SDs.) For these reasons, only a
small subset of previously reported core duplicons was
analyzed in-depth (e.g., LCR16 cores), and often so by
manually focusing on narrow genomic regions to make
the analysis tractable [3], preventing the emergence
of a clearer picture of the SD evolution across different

Page 3 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

species, especially of those SDs that preclude the primate
branch of the evolutionary tree.

Here we introduce BISER (Brisk Inference of Segmen-
tal duplication Evolutionary stRucture), a new framework
implemented in Seq programming language [24, 25] that
is specifically developed to quickly detect SDs even at low
homology levels across multiple related genomes. BISER
is also able to infer elementary and core duplicons and
thus enable an evolutionary analysis of all SDs in a given
set of related genomes. The key conceptual advances of
BISER consist of a novel linear-time algorithm that can
quickly detect regions that harbor SDs in a given set of
genomes and a new approach for decomposing SDs into
elementary SDs. BISER can discover SDs in the human
genome in 54 CPU minutes, or in 7 min on a standard
8-core desktop CPU—an 10× speed-up over SEDEF and
33× speed-up over SDquest. Further analysis of elemen-
tary SDs takes 19 min. BISER can analyze all shared SDs
in seven primate genomes in roughly 16 CPU hours,
translating to 2 h on a standard 8-core laptop computer.
The flexibility of BISER will make it a useful tool for SD
characterizations that will open doors towards a better
understanding of the complex evolutionary architecture
of these functionally important genomic events.

Methods
Preliminaries
Consider a genomic sequence G = g1g2g3 . . . g|G| of
length |G| and alphabet � = {A,C ,G,T ,N } . Let
Gi = gi . . . gi+n−1 be a substring of G of length n that
starts at position i in G. To simplify the notation, the
length is assumed to be n. We will use an explicit nota-
tion Gi:i+n for a substring of length n starting at position
i when a need arises. Let s1 ◦ s2 represent a string con-
catenation of strings s1 and s2 . The subsequence of size k
in a sequence s is called k-mer, and the k-mer set K(s) of
sequence s is the set of all subsequences of size k in s.

Segmental duplications are long, low-copy repeats gen-
erated during genome evolution over millions of years.
Following such an event, different copies of a repeat get
subjected to different sets of mutations, causing them to
diverge from each other over time. Thus, it is necessary
to introduce a similarity metric between two strings in
order to detect SDs in a given genome. To that end, we
use Levenshtein’s [26] edit distance metric E between two
strings s and s′ that measures the minimum number of
edit operations (i.e., substitutions, insertions, and dele-
tions at the single nucleotide level) in the alignment of s
and s′ . Let ℓ be the length of such alignment; it is clear
that max(|s|, |s′|) ≤ ℓ ≤ |s| + |s′| . We can also define
an edit error err(·, ·) between s and s′ (or, in the context
of this paper, an error) as the normalized edit distance:
err(s, s′) = E(s, s′)/ℓ . Intuitively, this corresponds to the

sequence divergence of s and s′ . Now we can formally
define an SD as follows:

Definition 1 A segmental duplication (SD) within the
error threshold ε is a tuple of paralog sequences (Gi,Gj)
that satisfies the following criteria:

1. err(Gi,Gj) ≤ ε;
2. ℓ ≥ 1000 , where ℓ is the length of the optimal align-

ment between Gi and Gj [1]; and
3. paralog sequences Gi and Gj can overlap at most ε · n

bases with each other. 1

Given a set of genomes G1, . . . ,Gγ and their mutual
evolutionary relationships, our goal is to:

• find a set of valid SDs, SDi , within each Gi (SD
detection);

• find all copies of both s and s′ for (s, s′) ∈ SDi in
other genomes Gj , j = i , if such copies exist (SD
cross-species conservation detection); and

• decompose each SD from SD = SD1
∪ · · · ∪ SDγ

into a set of elementary SDs E, and determine the set
of core elementary SDs (defined later) that drive the
formation of SDs in SD (SD decomposition).

To that end, we developed BISER, a computational
framework that is able to efficiently perform these steps,
and we describe the algorithms behind it in the following
sections.

For the sake of clarity, unless otherwise noted, we
assume that we operate on a single genome G. Since
SDs are by definition different from low-complex-
ity repeats and transposons, we also assume that all
genomes G1, . . . ,Gγ are hard-masked and do not contain
low-complexity regions. Nearly all tools, with the sole
exception of SEDEF, impose this constraint as well. The
hard-masked genome can be obtained on the fly from a
standard genome assembly by filtering bases represented
with the lowercase bases (that correspond to low-com-
plexity regions).

SD error model
Different paralogs of an SD are mutated independently of
each other. Therefore, the sequence similarity of paralogs
is correlated with the age of the duplication event—more
recent copies are nearly identical, while distant ances-
tral copies are dissimilar. It has been proposed that the
sequence similarity of older SDs (e.g., those shared by the

1 Ideally, the SD mates should not overlap; however, due to the presence of
errors, we need to account for at most ε · n overlap.

Page 4 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

mouse and the human genomes) falls as low as 75% [22].
In other words, the dissimilarity between different cop-
ies of an old SDs exceeds 25% (i.e., err(s, s′) ≥ 0.25 for SD
paralogs s and s′ , according to the definition above).

Detection of duplicated regions within such a large
error threshold is a challenging problem, as nearly any
edit distance approximation technique with or without
theoretical guarantees breaks down at such high levels of
dissimilarity [11, 17], provided that this error is truly ran-
dom. However, that is not the case: it has been previously
shown [22] that the SD mutation process is an amalga-
mation of two independent mutation processes, namely
the background point mutations (also known as paralo-
gous sequence variants, or PSVs) and the large-scale block
edits. As such, the overall error rate ε can be expressed as
a sum of two independent error rates, εP (PSV mutation
rate) and εB (block edit rate), where only εP is driven by a
truly random mutation process.

In the case when paralogs share the 75% sequence iden-
tity, it has been shown that the random point mutations
(PSVs) contribute at most 15% (εP ≤ 0.15) towards the
total error ε [22] (this also holds for many other mam-
malian genomes, as their substitution rate is often lower
than the human substitution rate [27]). The remaining
10%—knowing that εP and εB are additive—is assumed
to correspond to the block edit rate εB . Note that these
mutations are clustered block errors and, as such, are not
randomly distributed across SD regions. The probability
of a large block event is roughly 0.5% based on the analy-
sis of existing SD calls [22].

On the other hand, we assume that PSVs between two
SD paralogs s and s′ follow a Poisson error model [17, 28]
and that those mutations occur independently from each
other. It follows that any k-mer in s′ has accumulated on
average k · εP mutations compared to the originating k-
mer in s, provided that such k-mer was part of the origi-
nal copy event. By setting a Poisson parameter � = k · εP ,
we obtain the probability of a duplication event in which
a k-mer is preserved in both SD paralogs (i.e., that a k-
mer is error-free) to be e−kεP.

Putative SD detection
Let us return to the main problem of determining
whether two strings s and s′ are “similar enough” to be
classified as SDs. As mentioned before, classical edit dis-
tance calculation algorithms would be too slow for this
purpose. Instead, we use an indirect approach that meas-
ures the similarity of strings s and s′ by counting the num-
ber of shared k-mers in their respective k-mer sets K(s)
and K(s′) . It has been shown that Jaccard index of these
sequences, s and s′ , defined as J (K(s),K(s′)) = |K(s)∩K(s′)|

|K(s)∪K(s′)|
is a good proxy for E(s, s′) under the Poisson error
model [17]. Thus we can combine the Poisson error

model with the SD error model and obtain the expected
value of Jaccard index τ between any two strings s and s′ ,
whose edit error err(s, s′) follows the SD error model and
is lower than ε = εP + εB , to be [22]:

As we cannot use local alignment to efficiently enumer-
ate all SDs in a given genome due to quadratic time and
space complexity, we utilize a heuristic approach to enu-
merate all pairs of regions in G that are likely to harbor
one or more segmental duplications. We call these pairs
putative SDs. These pairs are not guaranteed to contain
a “true” SD, and must be later aligned to each other to
ascertain the presence of true SDs. Nevertheless, such
an approach will filter out the regions that do not harbor
SDs, and thus significantly reduce the amount of work
needed for detecting “true” SDs. The overall performance
of our method, both in terms of runtime and sensitivity,
will depend on how well the putative SDs are chosen.

The problem of putative SD detection can be, thanks
to the SD error model, easily expressed as an instance of
a filtering problem: find all pairs of indices i, j in G such
that J (K(Gi),K(Gj)) ≥ τ , where τ is the lower bound
from the Eq. 1. Here we assume that the size of Gi and Gj
exceeds the SD length threshold (1000 bp), and no k-mer
occurs twice in either Gi or Gj.2

The filtering approach has already been successfully
used in other software packages and forms the backbone
of both SEDEF (SD detection tool; [22]) and MashMap
(Nanopore read aligner; [29]). However, both methods
need to constantly maintain the k-mer sets K(s) and K(s′)
to calculate the Jaccard index between the sequences s
and s′ . As these methods dynamically grow s and s′ (as
the length n is not known in advance), the corresponding
sets K(s) and K(s′) are constantly being updated, neces-
sitating a costly recalculation of K(s) ∩ K(s′) on each
update. A common trick is to use the MinHash technique
to reduce the sizes of K(s) and K(s′) , and thus the fre-
quency of such updates. However, the frequent recalcula-
tion of the Jaccard index still remains a major bottleneck
even in the MinHash-based approaches because calculat-
ing union and intersection of k-mers for each pair of sub-
sequences in G is a costly operation.

Here we note that the Jaccard index calculation can
be significantly simplified by not having to maintain the
complete k-mer sets K(s) and K(s′) . The need for keep-
ing such sets arises from the fact that the calculation of
K(s) ∩ K(s′) allows any k-mer in K(s′) to match any k-mer
in K(s) . However, such a loose intersection requirement

(1)τ = E[J (K(s),K(s′))] ≥
1− εB

1+ εB
·

1

2ekεP − 1
.

2 Even if it does, the above-derived Jaccard score-based filter performs well in
practice.

Page 5 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

is not only redundant for approximation of edit distance
under the SD error model but is even undesirable as such
intersections can introduce cross-over k-mer matches
that are not possible in the edit distance metric space (see
Fig. 1c for an example of valid and invalid matchings). By
disallowing such cross-over cases, we can significantly
optimize the calculation of the Jaccard index. Let us show
how to do that without sacrificing sensitivity.

Let us first introduce s ⊛ s′ as an alternative way of
measuring the k-mer similarity between strings s and s′.

For that purpose, let us introduce a notion of a col-
inear k-mer matching between s and s′ as a set of index

pairs (i, j) (1 ≤ i ≤ |s|, 1 ≤ j ≤ |s′|) such that the k-mers
that start at i and j in s and s′ respectively are equal,
and such that all pairs (i, j) in matching are colinear
(i.e., for each (i, j) and (i′, j′) , either i < i′ and j < j′ , or
i > i′ and j > j′). A ⊛ operation describes the size of a
maximum colinear matching of k-mers between s and
s′ . In other words, we want to select a maximal set of
matching k-mers in K(s) and K(s′) such that no two k-
mer matchings cross over each other (see Fig. 1c for
an example of cross-over, or non-colinear, matchings).
We can replace K(s) ∩ K(s′) with s ⊛ s′ and introduce
an ordered Jaccard index ˆJ (s, s′) , formally defined as:

Fig. 1 a A plane-sweep algorithm for finding putative SDs. b Visual guide for the algorithm. The algorithm sweeps a vertical dashed line through
the set of winnowed k-mers in a genome G (x axis). At each k-mer starting at the location x, it queries the index IG to obtain a sorted list K of k’s
occurrences in G (right side of the sweep line). The algorithm then scans K, and the list L of putative SDs found thus far at the same time. At each
step, it examines iL-th element of L and iK-th element of K, and decides whether to start a new putative SD [(1) and (1′), green k-mers on the right],
extend the current putative SD with the current k-mer [(2), black k-mer on the right], or subsume the current k-mer within the current putative SD
[(3), red k-mer]. c A visual representation of a valid k-mer matching in a valid alignment (shown by green lines). Red matching would render the
alignment invalid as red matchings are not co-linear with the green matchings

Page 6 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

The following lemma allows us to use an ordered Jaccard
index ˆJ in lieu of classical Jaccard index J :

Lemma 1 Let s and s′ be two paralog sequences
that have been mutated under the assumptions of SD
error model following the originating copy event. Also,
assume that their shared k-mers were also shared before
any mutation occurred. Then the ordered Jaccard
index ˆJ (s, s′) of s and s′ is equal to the Jaccard index
J (K(s),K(s′)).

Proof It is sufficient to prove that the size of
|K(s) ∩ K(s′)| always corresponds to the size of maximal
colinear matching between s and s′.

To show that s ⊛ s′ ≤ |K(s) ∩ K(s′)| , it is enough to note
that matched k-mers in any colinear matching are by def-
inition identical, and thus belong to K(s) ∩ K(s′) . We will
prove that s ⊛ s′ ≥ |K(s) ∩ K(s′)| by contradiction. First,
note that the string s is equal to s′ immediately after the
duplication event (i.e., before the occurrence of PSVs)
and that all k-mers are colinear in their maximal match-
ing because s contains no repeated k-mers (an assump-
tion made by the SD error model). Now, suppose that
there is a cross-over in K(s) ∩ K(s′) . That implies either
a cross-over between s and s′ before PSVs occurred—
contradicting the previous observation—or a cross-over
after it, contradicting the assumption that any matched
k-mer pair was matched before the occurrence of PSVs.
Hence K(s) ∩ K(s′) cannot contain any cross-overs, and
s ⊛ s′ = |K(s) ∩ K(s′)| . �

If the conditions of Lemma 1 are satisfied, we can cal-
culate s ⊛ s′ in linear time by a simple scan through s and
s′ at the same time. A linear calculation of s ⊛ s′ , together
with the fact that the lower bound τ in Eq. 1 equally holds
for ˆJ as well (a direct consequence of Lemma 1), allows
us to use a plane sweep technique to select all pairs of
substrings (s, s′) in G whose ordered Jaccard distance
ˆJ (s, s′) exceeds τ , and as a result, select all putative SDs

in G (see Fig. 1 for details).
We begin by creating a k-mer index IG that connects

each k-mer in G to an ordered list of its respective loca-
tions in G. Then we sweep a vertical line in G from left
to right while maintaining a sorted list L of putative SDs
found thus far. For each location x in G encountered by
a sweep line, we query IG to obtain a sorted list K con-
taining loci of Gx:x+k ’s copies in G. Then, for any y in K,
we check if it either (1) begins a new potential putative
SD that maps x to y, (2) extends an existing putative SD,

ˆJ (s, s′) =
s ⊛ s′

|K(s) ∪ K(s′)|
.

or (3) is covered by existing putative SD in L (Fig. 1). If
a putative SD in L is too distant from y, it is promoted
to the final list of putative SD regions if it satisfies the
ordered Jaccard index threshold τ and the other SD crite-
ria from Definition 1. Note that we do not allow a k-mer
to extend a putative SD if the distance between it and the
SD exceeds the maximum gap size of the smallest possi-
ble SD (250). It takes |L| + |K | steps to process each k-mer
in G because both L and K are sorted. However, because
the size of |L| is kept low by the distance criteria, and
because |K| is low enough in practice3, the practical time
complexity of Algorithm 1 (Fig. 1) is O(|G|) (theoretically,
the worst-case complexity is O((|L| + |K |) · |G|)) for con-
structing the index IG , and linear in terms of the genome
size for plane sweeping.

The key assumption in Lemma 1—that two paralogs
only share the k-mers that have not been mutated since
the copy event—does not always hold in practice on
real data. As such, Algorithm 1 (Fig. 1) might occasion-
ally underestimate the value of ˆJ , potentially leading to
some false negatives. We control that by using �—the
same parameter that controls the growth of putative SDs
by limiting the maximum distance of neighboring k-mers
in s ⊛ s′ (Fig. 1)—to limit the growth of under-estimated
SDs and thus start the growth of potentially more suc-
cessful SDs earlier. This heuristic might cause a large SD
to be reported as a set of smaller disjoint SD regions. For
that reason, we post-process the set of putative SDs upon
the completion of Algorithm 1 (Fig. 1) and merge any two
SDs that are close to each other if their union satisfies
the ordered Jaccard index criteria. We also extend each
putative SD by 5 Kbp both upstream and downstream to
account for the small SD regions that might have been
filtered out during the search process. This parameter is
user-defined and might be adjusted for different genome
assemblies.

The performance of the plane sweep technique can be
further improved by winnowing the set of k-mers used
for the construction of IG [17]. Instead of indexing all
k-mers in G, we only consider k-mers in a winnowing fin-
gerprint W(G) of G. W(G) is calculated by sliding a win-
dow of size w through G and by taking in each window a
lexicographically smallest k-mer (the rightmost k-mer is
selected in case of a tie).

The expected size of W(G) for a random sequence G
is 2|G|/(w + 1) [30]. The main benefit of winnowing is
that it can significantly speed up the search step (up to an
order of magnitude) without sacrificing sensitivity. The
winnow W(G) can be computed in a streaming fashion

3 The average size of L in our experiments was 370, and the average size of K
is 30.

Page 7 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

in linear time using O(w) space with the appropriate data
structures (deque) [31].

Following the discovery of putative SDs, we locally
align paralogs from each putative SD and only keep those
regions whose size satisfies the SD criteria mentioned
above. BISER uses a two-tiered local chaining algorithm
from SEDEF based on a seed-and-extend approach
and efficient O(n log n) chaining method following by a
SIMD-parallelized sparse dynamic programming algo-
rithm to calculate the boundaries of the final SD regions
and their alignments [16, 32, 33].

SD decomposition
Once the set of final SDs SD = {(s1, s

′

1), . . .} is discov-
ered and the precise global alignment of each paralog
pair (s, s′) ∈ SD is calculated, we proceed by decompos-
ing the set SD into a set of evolutionary building blocks
called elementary SDs. More formally, we aim to find a
minimal set of elementary SDs E = {e1, . . . , e|E|} , such
that each SD paralog s is a concatenation of ês1 ◦ · · · ◦ ê

s
ns

 .
Each êi either belongs to E or there is some ej ∈ E such
that err(êi, ej) ≤ ε . An example of such a decomposition
is given in Fig. 2.

Note that each locus covered by an SD paralog is
either copied to another locus during the formation of
that SD (in other words, it is “mirrored” by its paralog),
or belongs to an alignment gap. As SD events can copy
over the regions that already form an existing SD, a single
locus might “mirror” a large number of existing locations.
In order to find all locations that a locus i mirrors, we ini-
tially used a modification of Tarjan’s union-find disjoint

set algorithm [34] to link together all mirrored locations.
Each separate “mirror” (represented by a distinct shape
in Fig. 2) indicates the start of a distinct elementary SD.
However, despite being efficient and conceptually simple,
the simple version of this algorithm cannot handle the
complex SD alignments that often induce mirror loops,
whirls, bulges stemming from the alignment imperfec-
tions [21, 35]. These artifacts prevent the formation of
larger elementary SDs that can be meaningfully analyzed.
The current solutions to this problem—most notably
the A-Bruijn graph family of repeat analysis tools [2, 35,
36]—is limited to small genomes and unfortunately not
scale well to large datasets (Fig. 3).

For that reason, we developed an alternative approach
to decompose SDs into elementary SDs motivated by
the fact that the SD decomposition is closely related to
the multiple sequence alignment problem. We start by
denoting the set of all regions in genome G that con-
tains SDs as R. By definition, separate instances of the
same elementary SDs are supposed to be similar and
therefore should consist of identical k-mers that can be
chained. We define chaining as the merging of proxi-
mal locations of identical k-mers. The chaining process
resembles the local multiple sequence alignment on
R, and produces a set of duplicated regions in R. Two
k-mers can be chained if their locations are within
defined parameter dg . Parameter dg has two purposes:
(1) it defines the maximum distance up to which one
k-mer location can be merged with another, and (2) it
ensures that there will be at least one matching k-mer
every dg locations in each LMSA, thus reducing the

Fig. 2 A decomposition of three partially overlapping SDs into a set of elementary SDs. Each SD is bounded by a solid line box. SD paralogs are
linked by a by a dashed line. Each elementary SD is represented as a colored box. The boxes of core duplicons—elementary SDs shared by all
SDs—are depicted with a dashed border. Note that a boundary of each elementary SD either a boundary of an existing SD or its “image”. Different
boundaries are represented by different shapes, and their “images” (paralog copies) also share the same shape

Page 8 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

number of false positives and random hits. We found
out that the optimal value of dg is 50 if the goal is to
cover elementary SDs of size 100 and larger [2]. Such
dg is large enough to capture regions that contain
PSVs and small gaps, but small enough to prevent false
positives.

The decomposition step itself is modeled upon Algo-
rithm 1 (Fig. 1; decomposition is described in Fig. 3)
and proceeds as follows. We build a k-mer index Ik of R
as explained above (except that this time we do not use
winnowed k-mers). Then we scan all sequences using
the same sweeping line algorithm as before. The list
L keeps putative elementary SDs found so far. When-
ever we process a new k-mer, we will take all locations

from Ik and see if we can: (1) append them to an exist-
ing putative elementary SD from L (if L is empty, we
initialize it with the current k-mer’s positions); (2)
create a new potential elementary SD; or (3) remove
an existing one if it satisfies the deletion criteria. A
new location from Ik can be appended to an existing
elementary SD if its distance from the last appended
k-mer to that elementary SD is within dg . A putative
elementary SD is removed if no new k-mer location is
appended to that putative elementary SD in dg steps.
The main difference from the putative SD search step
is that we need to track multiple copies of a putative
region instead of only one (because an elementary SD
can belong to multiple SDs). For this purpose, when

Fig. 3 k-mer chaining-based SD decomposition applied on the example from Fig. 2. Top: after data pre-processing, we end up with three
sequences (chrA, chrB_1, and chrB_2) that are scanned from left to right to find identical regions that share common k-mers. The first matching
region is the green region in chrA that matches the same-colored region in chrB_1. Middle: after encountering the yellow region (b), the algorithm
marks a new elementary SD because the number of yellow regions does not match the number of green regions; therefore, the green regions will
be reported as instances of a separate elementary SD. Bottom: if no k-mer can be appended to any of the elementary SDs in L, the algorithm will
report all regions that are larger than µ as one elementary SD and discard the others. Here, the regions numbered as 2, 3, and 5 do not continue
into the blue regions and thus prevent the further extension of the pink region

Page 9 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

removing a node from L, we also need to remove all
other nodes from L to form an elementary SD set (if
such node is larger than the threshold µ).

The computational performance of this approach
heavily depends on the size of an Ik . To reduce its size,
we cluster all overlapping SDs, merge sequences that
overlap, and apply the same algorithm on every clus-
ter separately in parallel, reducing each cluster’s index
size. Clustering SDs is done using Tarjan’s union-find
algorithm [34]. The largest cluster for human SDs cov-
ers roughly 90 megabases, meaning that those SDs
exhibit a rich evolutionary history that can be tracked
by breaking those SDs into elementary SDs.

After decomposing SDs into the set of elemen-
tary SDs E, we select some of them as core duplicons.
Inspired by [2], we formally define these duplicons as
the minimal set of elementary SDs that cover all exist-
ing SDs (an SD is covered by an elementary if either
paralog is composed of that elementary SD). We use
a classical set-cover approximation algorithm [37] to
determine a set of core duplicons from E.

Multiple genomes
The above method can be efficiently scaled to γ dis-
tinct genomes G1, . . . ,Gγ by constructing a set of k-
mer indices IG1 , . . . , IGγ , and by running the search and
the alignment procedure on each Gi in parallel. After
obtaining SDs for each genome G1, . . . ,Gγ in parallel,
BISER maps the set of SDs of a genome to all other
genomes. By only mapping the SDs of one genome to
another genome, BISER avoids misclassifying con-
served regions between two genomes as SDs. The
whole procedure can be trivially parallelized across
many CPUs.

Results
We have evaluated all stages of BISER for speed and
accuracy on both simulated and real-data datasets. All
results were obtained on a multi-core Intel Xeon 8260
CPU (2.40 GHz) machine with 1 TB of RAM. The run
times are rounded to the nearest minute and are reported
for both single-core as well as multi-core (8 CPU cores)
modes when ran in parallel via GNU Parallel [38]. All
real-data genomes were hard-masked, and all basepair
coverage statistics are provided with respect to the hard-
masked genomes.

In our experiments, we used k = 14 when searching for
putative SDs and k = 10 during the alignment step (note
that both parameters are user-adjustable). The size of the
winnowing window was set to 16. The lower values of k
significantly impact the running time without provid-
ing any visible improvement to the detection sensitivity,
while higher values of k significantly lower the detec-
tion sensitivity. The genome decomposition step used
k = 10 . Both k and w (for search, align, and k-mer chain-
ing decomposition) were empirically chosen to maximize
sensitivity without impacting the runtime performance.
Parameter selection details and sensitivity analysis are
available in [39].

Simulations
The accuracy of using the strong Jaccard index together
with the SD error model as a function of error parameter
ε , as well as the overall sensitivity of BISER’s SD detec-
tion pipeline, was evaluated on a set of 1,000 simulated
segmental duplications ranging from 1 to 100Kbp. All
sequences and mutations were randomly generated with
uniform distribution according to the SD error model
with ε ∈ {0.01, 0.02, . . . , 0.25} (i.e., we allowed the overall
error rate to reach 25%). Uniform distribution was picked

Fig. 4 Performance of BISER’s algorithm on simulated SDs (red: randomly simulated sequences; cyan: hg19 chr1 sequences). x-Axis represents the
simulated SD error rate ε , while y axis represents the percentage of correctly detected SDs. Note that the y-axis only shows the top 25% as BISER
detects more than 98% of simulated SDs for any ε ≤ 0.25

Page 10 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

because it was an overall good biological proxy for muta-
tion in known genomes and because it can represent
worst-case mutation distribution (having one mutation
on each non-overlapped k-mer). We consider a simulated
SD as being “covered” if BISER found an SD that covers
more than 90% of the original SD’s basepairs. As shown
in Fig. 4, the overall sensitivity is around 99% even for
ε = 0.25.

We performed the same experiment on human (hg19)
chromosome 1 (Fig. 4), where we selected uniformly at
random 10,000 sequences of various lengths and dupli-
cated them within the chromosome. Each duplication
was followed by introducing random PSVs according
to the SD error model while varying the values of ε as
described above. Even in this case, BISER’s performance
stays the same, and only a handful of very small SDs (of
size ≈ 1000) were missed.

Single-genome results
We have run BISER on the H. sapiens hg19 genome
and M. musculus mm8 genome and compared it to the
published WGAC [1],4 SEDEF [22], and SDquest [21]
SD calls.5 We also compared the runtime performance
of BISER to that of SEDEF and SDquest. Note that we
were not able to run WGAC due to the lack of hard-
ware necessary for its execution. We did not compare
BISER to other SD detection tools—namely SDdetec-
tor [19], MashMap2 [29], and ASGART [20]—as it has
been previously shown that these tools underperform
when compared to SEDEF or SDquest, and require an
order of magnitude more resources than either SEDEF
or SDquest do. For the same reason, we did not compare
BISER to whole-genome aligners such as Minimap2 [16]

and MUMmer/nucmer [14], as well as DupMasker [40],
as none of these tools were designed to detect de novo
SDs in a genome. See [22] for the detailed evaluation of
these tools.

BISER was able to find and align all SD regions in
hg19 in 7 min on 8 cores (roughly 54 min on a single
core) (Table 1). To put this into perspective, BISER is
around 10× faster than SEDEF, 34× faster than SDquest,
and an order of magnitude faster than WGAC that takes
days to find human SDs (personal communication; we
were not able to run the WGAC pipeline ourselves due to
legacy hardware requirements). As a side note, BISER has
the same memory requirements as SEDEF or SDquest
and needs around 7 GB of RAM per core (it needs
around 2 GB for the search step and up to 7 GB for the
sequence alignment).

Since SEDEF by default operates on a genome that is
not hard-masked, we also ran SEDEF on a hard-masked
genome to measure its theoretical speed (note that
SEDEF was not designed for hard-masked genomes; thus,
the basepair analysis is omitted). SEDEF took 21 min on
8 CPU cores to process a hard-masked hg19, leaving it
still around 3 × slower than BISER. Noticeable speedup
is obtained in the first step of the algorithm—finding
putative SDs—where SEDEF completes in 14 min while
BISER needs only 3 min.

Similar performance gains were observed on the mouse
(mm8) genome as well. BISER took 11 min to find SDs
in the mm8 genome (3 min for finding putative SDs
and 9 min for alignment) while SEDEF needed 1 h and
24 min (33 min for finding putative SDs and 51 min for
align). SDquest took more than 6 h for the same opera-
tion. SEDEF was run on soft masked data; when we ran it

Table 1 Running time performance of BISER (single-core and 8-core mode) on Intel Xeon 8260 CPU at 2.40 GHz for single genomes
(hg19 and mm8)

Single genome (hg19) Total (min) Putative SDs (min) Alignment
(min)

1 core 54 21 33

8 cores 7 3 4

Single genome (mm8) Total Putative SDs (min) Alignment
(min)

1 core 1 h 24 min 20 64

8 cores 11 min 3 9

4 http:// human paral ogy. gs. washi ngton. edu
5 The exact coverage depends on search parameters, such as the minimum
putative SD length (set to 500 and 100 bp for the query and the reference
sequence, respectively). Other parameter choices do not significantly affect
the final result: extra false positives are quickly filtered by the align step due
to a lack of shared regions that need to be chained.

http://humanparalogy.gs.washington.edu

Page 11 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

on hard masked data, it took 27 min. Here, the speedup
is shown in the first step—finding putative SDs—where
BISER needs 3 min compared to the SEDEF’s 18 min.

In terms of sensitivity, BISER discovers about 1 GB
of putative SD regions in the human genome. After
the alignment step, BISER reports 158 Mb of final SD
regions in hg19. That is 54 Mbp more than WGAC
and 26 Mbp more than SDquest. The total coverage
of SEDEF and BISER are similar to each other, differ-
ing by 4 Mbp uniquely detected by SEDEF and 12 Mbp
uniquely covered by BISER. BISER also misses a few Mbp
of SD regions unique to SDquest and a negligible amount
unique to WGAC (Fig. 5 and Table 3).

On the mm8 genome, we observe similar trends. How-
ever, we also observed that SEDEF covers roughly 20
Mbp that are not covered by BISER (Fig. 5 and Table 3).

When SEDEF is run on a hard-masked genome, it does
not cover these bases; further analysis showed that nearly
all bases originally reported as unique to SEDEF actually
map either to alignment gaps, soft-masked repeat ele-
ments, or small islands (< 200 bp) between the low-copy
repeats and as such do not constitute “true” SDs.

Decomposition
The BISER’s decomposition module found 297,175 ele-
mentary SDs grouped in 65,222 elementary SD sets. The
method covers 85% of the SD basepairs. The minimum
length of an elementary SD was set to 100 bp. BISER
needs roughly 20 min on 8 cores to perform the single-
genome decomposition (19 min for hg19 and 18 min for
mm8).

Fig. 5 Venn diagram depicts the SD coverage of the BISER, WGAC, SEDEF and SDquest (in Mbp) on the hard-masked human genome (top) and
mouse genome (bottom). Note that nearly all bases out of ≈ 22 Mbp bases that are shown to be unique to SEDEF (and not covered by BISER) map
to gaps and low-copy repeats and should not be therefore treated as true SDs

Page 12 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

To validate the results of decomposition, we performed
the phylogenetic analysis of the prominent NPIP gene
cluster from the LCR16 region in the human genome,
and compared our results with the previously published
analysis of this region [3]. Distances between genes were
calculated as d(s1, s2) = 1− J (s1, s2) , where J is Jaccard
similarity between two sets of elementary SDs covering
two respective genes (as each genic region is covered by
one or more elementary SDs). As can be seen in Fig. 6,
BISER’s correctly inferred the evolutionary tree for this
gene family, as the generated tree agrees with the one
previously reported in [3].

While SDquest produces (for one genome) SDs and
mosaic SDs composed of indexes of elementary SDs,
those indexes do not give us the information on the
exact coordinates of each elementary SD needed for tree
reconstruction. For that reason, we were not able to com-
pare our results with to SDquest.

Multi-genome results
In addition to running BISER on a single genome, we also
ran BISER on the following seven related genomes:

• M. musculus (mouse, version mm8),
• C. jacchus (marmoset, version calJac3),
• M. mulatta (macaque, version rheMac10),

• G. gorilla (gorilla, version gorGor6),
• P. abelii (orangutan, version ponAbe3),
• P. troglodytes (chimpanzee, version panTro6), and
• H. sapiens (human, version hg19).

These genomes were analyzed in the previous work [3],
with the sole exception of M. musculus that is novel to
this analysis.

BISER took around 2 h to complete the run on 8 cores.
Of that, it took around 35 min to find putative SDs within
and between species. The remaining time (1 h 32 min)
was spent calculating the final alignments for all reported
SDs (Table 2). The vast majority of alignment time was
spent only on aligning putative SDs from calJac3 genome.
We presume that this is due to the high presence of

Fig. 6 A phylogenetic tree of NPIP gene family built by using elementary SD similarity as the proximity metrics (neighbor-joining method)

Table 2 Running time performance of BISER (single-core and
8-core mode) on Intel Xeon 8260 CPU at 2.40 GHz for seven
genomes

Seven genomes Total Putative SDs Alignment

1 core 16 h 41 min 4 h 37 min 12 h 4 min

8 cores 2 h 7 min 35 min 1 h 32 min

Page 13 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

unmasked low-complexity regions in this particular
assembly.

The SD decomposition took 37 min on 8 CPU cores
(67 min on a single CPU) to complete on a set of nearly
1,985,586 SDs. BISER found ≈ 282,130 elementary SDs
(Table 3).

Conclusion
More than a decade ago, the Genome 10K Project Con-
sortium proposed to build genome assemblies for 10,000
species [41]. Due to the lack of high-quality long-read
sequencing data, this aim was not immediately realized.
However, the Genome 10K Project spearheaded the
development of other large-scale many-genome sequenc-
ing projects such as the Earth BioGenome Project [42]
and Vertebrate Genomes Project.6 Recent developments
in generating more accurate long-read sequencing data,
coupled with better algorithms to assemble genomes now
promise to make the aforementioned and similar projects
feasible.

Analyzing the recently and soon-to-be generated
genome assemblies to understand evolution requires
the development of various algorithms for different
purposes, from gene annotation [43] to orthology anal-
ysis [44] and the selection and recombination analy-
sis [45]. Although a handful of tools such as SEDEF and
SDquest are now available to characterize segmental
duplications in genome assemblies, they cannot perform
multi-species SD analysis, and they suffer from compu-
tational requirements. We developed BISER as a new
segmental duplication characterization algorithm to be
added to the arsenal of evolution analysis tools. We dem-
onstrate that (1) BISER is substantially faster than earlier

tools; (2) it can characterize SDs in multiple genomes to
delineate the evolutionary history of duplications; and (3)
it can identify elementary SDs and core duplicons to help
understand the mechanisms that give rise to SDs. We
believe that BISER will be a powerful and common tool
and will contribute to our understanding of SD evolution
when thousands of genome assemblies become available
in the next few years. The following steps would consist
of applying BISER to a larger set of available mammalian
genomes, and the detailed biological analysis of the SDs
and associated core duplicons.

Acknowledgements
We thank Haris Smajlović for invaluable comments and suggestions during
the manuscript preparation. H.I. and I.N. were supported by National Science
and Engineering Council of Canada (NSERC) Discovery Grant (RGPIN-04973)
and Canada Research Chairs Program. F.H. was supported by NSERC Discovery
Grant (RGPIN-05952), and Michael Smith Foundation for Health Research
(MSFHR) Scholar Award (SCH-2020-0370).

Authors’ contributions
HI designed the core algorithm. HI and IN implemented the software and
performed the experiments. CA, FH and IN wrote the manuscript. All authors
reviewed the manuscript. All authors read and approved the final manuscript.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, University of Victoria, Victoria, BC V8P
5C2, Canada. 2 Department of Computer Engineering, Bilkent University,
06800 Ankara, Turkey. 3 Vancouver Prostate Centre, Vancouver, BC V6H 3Z6,
Canada. 4 Department of Urologic Sciences, University of British Columbia,
Vancouver, BC V5Z 1M9, Canada.

Received: 16 November 2021 Accepted: 8 February 2022

Table 3 SD coverage of the human and mouse genomes (hg19 and mm8) and the runtime performance of BISER, SEDEF and
SDquest

“Missed” and “Extra” columns are calculated with respect to the WGAC SD calls. All running times are reported on 8 CPU cores. We could not run WGAC as we do not
have access to the legacy hardware needed for its execution; the reported runtime is from [22]

Tool Covered (MBp) Missed (MBp) Extra (MBp) Time

hg19
 WGAC (standard) 104.5 days

 BISER 158.0 0.5 54.0 7 min

 SEDEF 149.2 0.1 44.8 1 h 15 min

 SDquest 132.2 3.3 30.9 3 h 56 min

mm8
 WGAC (standard) 80.3 days

 BISER 135.1 1.3 56.0 11 min

 SEDEF 145.6 0.2 65.4 1 h 24 min

 SDquest 115.7 3.8 39.2 6 h 06 min

6 https:// verte brate genom espro ject. org/.

https://vertebrategenomesproject.org/

Page 14 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

References
 1. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. Segmental duplications:

organization and impact within the current human genome project
assembly. Genome Res. 2001;11(6):1005–17. https:// doi. org/ 10. 1101/ gr.
187101.

 2. Jiang Z, Tang H, Ventura M, Cardone MF, Marques-Bonet T, She X,
Pevzner PA, Eichler EE. Ancestral reconstruction of segmental duplica-
tions reveals punctuated cores of human genome evolution. Nat Genet.
2007;39:1361–8. https:// doi. org/ 10. 1038/ ng. 2007.9.

 3. ...Cantsilieris S, Sunkin SM, Johnson ME, Anaclerio F, Huddleston J, Baker C,
Dougherty ML, Underwood JG, Sulovari A, Hsieh P, Mao Y, Catacchio CR,
Malig M, Welch AE, Sorensen M, Munson KM, Jiang W, Girirajan S, Ventura
M, Lamb BT, Conlon RA, Eichler EE. An evolutionary driver of interspersed
segmental duplications in primates. Genome Biol. 2020;21:202. https://
doi. org/ 10. 1186/ s13059- 020- 02074-4.

 4. Bailey JA, Eichler EE. Primate segmental duplications: crucibles of evolu-
tion, diversity and disease. Nat Rev Genet. 2006;7(7):552–64. https:// doi.
org/ 10. 1038/ nrg18 95.

 5. Bailey JA, Kidd JM, Eichler EE. Human copy number polymorphic genes.
Cytogenet Genome Res. 2008;123(1–4):234–43. https:// doi. org/ 10. 1159/
00018 4713.

 6. Marques-Bonet T, Kidd JM, Ventura M, Graves TA, Cheng Z, Hillier LW,
Jiang Z, Baker C, Malfavon-Borja R, Fulton LA, Alkan C, Aksay G, Girirajan S,
Siswara P, Chen L, Cardone MF, Navarro A, Mardis ER, Wilson RK, Eichler EE.
A burst of segmental duplications in the genome of the African great ape
ancestor. Nature. 2009;457(7231):877–81. https:// doi. org/ 10. 1038/ natur
e07744.

 7. Antonacci F, Kidd JM, Marques-Bonet T, Teague B, Ventura M, Girirajan S,
Alkan C, Campbell CD, Vives L, Malig M, Rosenfeld JA, Ballif BC, Shaffer
LG, Graves TA, Wilson RK, Schwartz DC, Eichler EE. A large and complex
structural polymorphism at 16p12.1 underlies microdeletion disease risk.
Nat Genet. 2010;42(9):745–50. https:// doi. org/ 10. 1038/ ng. 643.

 8. Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, Mark K,
Vu TH, Alkan C, Cheng Z, Biesecker LG, Bernier R, Eichler EE. Refinement
and discovery of new hotspots of copy-number variation associated with
autism spectrum disorder. Am J Hum Genet. 2013;92(2):221–37. https://
doi. org/ 10. 1016/j. ajhg. 2012. 12. 016.

 9. Dougherty ML, Underwood JG, Nelson BJ, Tseng E, Munson KM, Penn O,
Nowakowski TJ, Pollen AA, Eichler EE. Transcriptional fates of human-
specific segmental duplications in brain. Genome Res. 2018;28:1566–76.
https:// doi. org/ 10. 1101/ gr. 237610. 118.

 10. Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A,
Sampas N, Bruhn L, Shendure J., Eichler EE, 1000 Genomes Project.
Diversity of human copy number variation and multicopy genes. Science.
2010;330(6004):641–6. https:// doi. org/ 10. 1126/ scien ce. 11970 05.

 11. Andoni A, Krauthgamer R, Onak K. Polylogarithmic approximation for edit
distance and the asymmetric query complexity. In: Proceedings of IEEE
51st annual symposium on foundations of computer science. 2010. p.
377–86. https:// doi. org/ 10. 1109/ FOCS. 2010. 43.

 12. Hanada H, Kudo M, Nakamura A. On practical accuracy of edit distance
approximation algorithms. (2017) arXiv preprint arXiv: 1701. 06134.

 13. Backurs A, Indyk P. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In: Proceedings of the forty-seventh
annual ACM symposium on theory of computing. STOC ’15. New York:
ACM; 2015. p. 51–8. https:// doi. org/ 10. 1145/ 27465 39. 27466 12.

 14. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A.
MUMmer4: a fast and versatile genome alignment system. PLoS Comput
Biol. 2018;14:1005944. https:// doi. org/ 10. 1371/ journ al. pcbi. 10059 44.

 15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215(3):403–10. https:// doi. org/ 10. 1016/
S0022- 2836(05) 80360-2.

 16. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics. 2018;34:3094–100. https:// doi. org/ 10. 1093/ bioin forma tics/ bty191.

 17. Jain C, Dilthey A, Koren S, Aluru S, Phillippy AM. A fast approximate
algorithm for mapping long reads to large reference databases. In:
Sahinalp SC, editor. Proceedings of 21st annual international confer-
ence on research in computational molecular biology (RECOMB 2017),
vol. 10229. Cham: Springer; 2017. p. 66–81. https:// doi. org/ 10. 1007/
978-3- 319- 56970-3_5.

 18. Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportu-
nities and challenges in long-read sequencing data analysis. Genome
Biol. 2020;21:30. https:// doi. org/ 10. 1186/ s13059- 020- 1935-5.

 19. Dallery J-F, Lapalu N, Zampounis A, Pigné S, Luyten I, Amselem J,
Wittenberg AHJ, Zhou S, de Queiroz MV, Robin GP, Auger A, Hainaut
M, Henrissat B, Kim K-T, Lee Y-H, Lespinet O, Schwartz DC, Thon MR,
O’Connell RJ. Gapless genome assembly of Colletotrichum higginsi-
anum reveals chromosome structure and association of transposable
elements with secondary metabolite gene clusters. BMC Genom.
2017;18:667. https:// doi. org/ 10. 1186/ s12864- 017- 4083-x.

 20. Delehelle F, Cussat-Blanc S, Alliot J-M, Luga H, Balaresque P. ASGART:
fast and parallel genome scale segmental duplications mapping. Bio-
informatics. 2018;34:2708–14. https:// doi. org/ 10. 1093/ bioin forma tics/
bty172.

 21. Pu L, Lin Y, Pevzner PA. Detection and analysis of ancient segmental
duplications in mammalian genomes. Genome Res. 2018;28:901–9.
https:// doi. org/ 10. 1101/ gr. 228718. 117.

 22. Numanagić I, Gökkaya AS, Zhang L, Berger B, Alkan C, Hach F. Fast
characterization of segmental duplications in genome assemblies.
Bioinformatics. 2018;34:706–14. https:// doi. org/ 10. 1093/ bioin forma
tics/ bty586.

 23. Harris RS. Improved pairwise alignment of genomic DNA. Ph.D. thesis,
State College: Pennsylvania State University; 2007. AAI3299002.

 24. Shajii A, Numanagić I, Baghdadi R, Berger B, Amarasinghe S. Seq: a high-
performance language for bioinformatics. In: Proceedings of the ACM on
programming languages. 2019;3. https:// doi. org/ 10. 1145/ 33605 51.

 25. Shajii A, Numanagić I, Leighton AT, Greenyer H, Amarasinghe S, Berger B.
A python-based programming language for high-performance compu-
tational genomics. Nat Biotechnol. 2021;39(9):1062–4. https:// doi. org/ 10.
1038/ s41587- 021- 00985-6.

 26. Levenshtein V. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Phys Doklady. 1966;10(8):707–10.

 27. Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous
mutation. Genetics. 1998;148(4):1667–86.

 28. Fan H, Ives AR, Surget-Groba Y, Cannon CH. An assembly and alignment-
free method of phylogeny reconstruction from next-generation
sequencing data. BMC Genom. 2015;16:522. https:// doi. org/ 10. 1186/
s12864- 015- 1647-5.

 29. Jain C, Koren S, Dilthey A, Phillippy AM, Aluru S. A fast adaptive algo-
rithm for computing whole-genome homology maps. Bioinformatics.
2018;34(17):748–56.

 30. Schleimer S, Wilkerson DS, Aiken A. Winnowing: local algorithms for
document fingerprinting. In: Proceedings of the 2003 ACM SIGMOD
international conference on management of data. ACM; 2003. p. 76–85.

 31. Carruthers-Smith K. Sliding window minimum implementations. (2013)
SlidingWindowMinimumImplementations. https:// people. cs. uct. ac. za/
~ksmith/ 2011/ slidi ng- window- minim um. html. Accessed 28 Jan 2021.

 32. Abouelhoda MI, Ohlebusch E. Multiple genome alignment: chaining
algorithms revisited. In: Baeza-Yates R, Chávez E, Crochemore M, editors.
Combinatorial pattern matching. Berlin: Springer; 2003. p. 1–16.

 33. Suzuki H, Kasahara M. Introducing difference recurrence relations
for faster semi-global alignment of long sequences. BMC Bioinform.
2018;19(1):33–47.

 34. Tarjan RE. A class of algorithms which require nonlinear time to maintain
disjoint sets. J Comput Syst Sci. 1979;18(2):110–27. https:// doi. org/ 10.
1016/ 0022- 0000(79) 90042-4.

 35. Pevzner PA, Haixu Tang GT. De novo repeat classification and fragment
assembly. Genome Res. 2004;14(9):1786–96. https:// doi. org/ 10. 1101/ gr.
23952 04.

 36. Pham SK, Pevzner PA. DRIMM-synteny: decomposing genomes into
evolutionary conserved segments. Bioinformatics. 2010;26(20):2509–16.

 37. Chvatal V. A greedy heuristic for the set-covering problem. Math Oper
Res. 1979;4(3):233–5.

 38. Tange O. GNU parallel—the command-line power tool.; login. The USE-
NIX Magazine. 2011;36(1):42–7. https:// doi. org/ 10. 5281/ zenodo. 16303.

 39. Išerić H. Biser: fast characterization of segmental duplication structure
in multiple genome assemblies. Master’s thesis, Victoria: University of
Victoria; 2021. http:// hdl. handle. net/ 1828/ 13343.

 40. Jiang Z, Hubley R, Smit A, Eichler EE. Dupmasker: a tool for annotating
primate segmental duplications. Genome Res. 2008;18:1362–8. https://
doi. org/ 10. 1101/ gr. 078477. 108.

https://doi.org/10.1101/gr.187101
https://doi.org/10.1101/gr.187101
https://doi.org/10.1038/ng.2007.9
https://doi.org/10.1186/s13059-020-02074-4
https://doi.org/10.1186/s13059-020-02074-4
https://doi.org/10.1038/nrg1895
https://doi.org/10.1038/nrg1895
https://doi.org/10.1159/000184713
https://doi.org/10.1159/000184713
https://doi.org/10.1038/nature07744
https://doi.org/10.1038/nature07744
https://doi.org/10.1038/ng.643
https://doi.org/10.1016/j.ajhg.2012.12.016
https://doi.org/10.1016/j.ajhg.2012.12.016
https://doi.org/10.1101/gr.237610.118
https://doi.org/10.1126/science.1197005
https://doi.org/10.1109/FOCS.2010.43
http://arxiv.org/abs/1701.06134
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1371/journal.pcbi.1005944
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1007/978-3-319-56970-3_5
https://doi.org/10.1007/978-3-319-56970-3_5
https://doi.org/10.1186/s13059-020-1935-5
https://doi.org/10.1186/s12864-017-4083-x
https://doi.org/10.1093/bioinformatics/bty172
https://doi.org/10.1093/bioinformatics/bty172
https://doi.org/10.1101/gr.228718.117
https://doi.org/10.1093/bioinformatics/bty586
https://doi.org/10.1093/bioinformatics/bty586
https://doi.org/10.1145/3360551
https://doi.org/10.1038/s41587-021-00985-6
https://doi.org/10.1038/s41587-021-00985-6
https://doi.org/10.1186/s12864-015-1647-5
https://doi.org/10.1186/s12864-015-1647-5
https://people.cs.uct.ac.za/~ksmith/2011/sliding-window-minimum.html
https://people.cs.uct.ac.za/~ksmith/2011/sliding-window-minimum.html
https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1101/gr.2395204
https://doi.org/10.1101/gr.2395204
https://doi.org/10.5281/zenodo.16303
http://hdl.handle.net/1828/13343
https://doi.org/10.1101/gr.078477.108
https://doi.org/10.1101/gr.078477.108

Page 15 of 15Išerić et al. Algorithms for Molecular Biology (2022) 17:4

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 41. Genome 10K Community of Scientists. Genome 10K: a proposal to
obtain whole-genome sequence for 10,000 vertebrate species. J Hered.
2009;100(6):659–74. https:// doi. org/ 10. 1093/ jhered/ esp086.

 42. ...Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J, Crandall
KA, Durbin R, Edwards SV, Forest F, Gilbert MTP, Goldstein MM, Grigo-
riev IV, Hackett KJ, Haussler D, Jarvis ED, Johnson WE, Patrinos A, Rich-
ards S, Castilla-Rubio JC, van Sluys M-A, Soltis PS, Xu X, Yang H, Zhang
G. Earth BioGenome project: sequencing life for the future of life. Proc
Natl Acad Sci USA. 2018;115:4325–33. https:// doi. org/ 10. 1073/ pnas.
17201 15115.

 43. Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations.
Bioinformatics. 2020. https:// doi. org/ 10. 1093/ bioin forma tics/ btaa1 016.

 44. Hu X, Friedberg I. SwiftOrtho: a fast, memory-efficient, multiple genome
orthology classifier. GigaScience. 2019. https:// doi. org/ 10. 1093/ gigas
cience/ giz118.

 45. Hölzer M, Marz M. PoSeiDon: a Nextflow pipeline for the detection of
evolutionary recombination events and positive selection. Bioinformatics.
2020. https:// doi. org/ 10. 1093/ bioin forma tics/ btaa6 95.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/jhered/esp086
https://doi.org/10.1073/pnas.1720115115
https://doi.org/10.1073/pnas.1720115115
https://doi.org/10.1093/bioinformatics/btaa1016
https://doi.org/10.1093/gigascience/giz118
https://doi.org/10.1093/gigascience/giz118
https://doi.org/10.1093/bioinformatics/btaa695

	Fast characterization of segmental duplication structure in multiple genome assemblies
	Abstract
	Motivation:
	Results:
	Availability and implementation:

	Introduction
	Methods
	Preliminaries
	SD error model

	Putative SD detection
	SD decomposition
	Multiple genomes

	Results
	Simulations
	Single-genome results
	Decomposition
	Multi-genome results

	Conclusion
	Acknowledgements
	References

