
Krieger and Kececioglu
Algorithms for Molecular Biology (2022) 17:12
https://doi.org/10.1186/s13015-022-00217-9

RESEARCH

Heuristic shortest hyperpaths
in cell signaling hypergraphs
Spencer Krieger* and John Kececioglu

Abstract

Background: Cell signaling pathways, which are a series of reactions that start at receptors and end at transcription
factors, are basic to systems biology. Properly modeling the reactions in such pathways requires directed hypergraphs,
where an edge is now directed between two sets of vertices. Inferring a pathway by the most parsimonious series
of reactions corresponds to finding a shortest hyperpath in a directed hypergraph, which is NP-complete. The current
state-of-the-art for shortest hyperpaths in cell signaling hypergraphs solves a mixed-integer linear program to find an
optimal hyperpath that is restricted to be acyclic, and offers no efficiency guarantees.

Results: We present, for the first time, a heuristic for general shortest hyperpaths that properly handles cycles, and
is guaranteed to be efficient. We show the heuristic finds provably optimal hyperpaths for the class of singleton-tail
hypergraphs, and also give a practical algorithm for tractably generating all source-sink hyperpaths. The accuracy of
the heuristic is demonstrated through comprehensive experiments on all source-sink instances from the standard
NCI-PID and Reactome pathway databases, which show it finds a hyperpath that matches the state-of-the-art mixed-
integer linear program on over 99% of all instances that are acyclic. On instances where only cyclic hyperpaths exist,
the heuristic surpasses the state-of-the-art, which finds no solution; on every such cyclic instance, enumerating all
source-sink hyperpaths shows the solution found by the heuristic was in fact optimal.

Conclusions: The new shortest hyperpath heuristic is both fast and accurate. This makes finding source-sink hyper-
paths, which in general may contain cycles, now practical for real cell signaling networks.

Availability: Source code for the hyperpath heuristic in a new tool we call Hhugin (as well as for hyperpath enu-
meration, and all dataset instances) is available free for non-commercial use at http://hhugin.cs.arizona.
edu.

Keywords: Systems biology, cell signaling networks, reaction pathways, directed hypergraphs, shortest hyperpaths,
efficient heuristics, hyperpath enumeration

© The Author(s) 2022, corrected publication 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver
(http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a
credit line to the data.

Background
Cell signaling pathways are cornerstones of molecular
and cellular biology. They underly cellular communica-
tion, govern environmental response, and their pertur-
bation has been implicated in the cause of many diseases
[1]. While signaling pathways have classically been

modeled as ordinary graphs, using directed or undirected
edges to link pairs of interacting molecules [2, 3], both
Klamt, Haus and Theis [4] and Ritz, Tegge, Kim, Poirel
and Murali [5] have shown that ordinary graphs cannot
adequately represent cellular activity that involves the
assembly and disassembly of protein complexes, or mul-
tiway reactions among such complexes.

Directed hypergraphs are generalizations of ordinary
graphs where an edge, now called a hyperedge, is directed
from one set of vertices, called its tail, to another set of
vertices, called its head. Hypergraphs have been used

Open Access

Algorithms for
Molecular Biology

*Correspondence: spencer.krieger@gmail.com

Department of Computer Science, The University of Arizona, Tucson, Arizona
85721, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-022-00217-9&domain=pdf

Page 2 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

to model many cellular processes [4–12]. In particular,
a biochemical reaction that involves multiple reactants,
all of which must be present for the reaction to proceed,
and that results in multiple products, all of which are
produced upon its completion, is correctly captured by
a single hyperedge directed from its set of reactants to
its set of products. Despite hypergraphs affording more
faithful models of reaction networks, the lack of practi-
cal hypergraph algorithms has hindered their potential
for properly representing and reasoning about molecular
reactions.

Biologically, a typical cell-signaling pathway consists
of membrane-bound receptors that bind to extracellular
ligands, triggering intracellular cascades of reactions, cul-
minating in the activation of transcriptional regulators
and factors [13]. Computationally, treating receptors as
sources, and transcription factors as targets, finding the
most efficient way to synthesize a particular transcription
factor from a set of receptors maps to the shortest hyper-
path problem we consider here: Given a cell-signaling
network whose reactants and reactions are modeled by
the vertices and weighted hyperedges of a directed hyper-
graph, together with a set of sources and a target, find a
hyperpath consisting of hyperedges from the sources to
the target of minimum total weight. We briefly summa-
rize prior work on related problems next.

Related work
Hypergraphs have been studied in the algorithms com-
munity [14–16], and applied within systems biology to
metabolic networks [17–20] and cell-signaling networks
[12, 21–23].

In the field of algorithms, Italiano and Nanni [14] first
proved that finding a shortest source-sink hyperpath is
NP-complete, even when hyperedges have a single head
vertex. In a seminal paper that is the source for much
of the subsequent work on hypergraphs, Gallo, Longo,
Pallottino and Nguyen [15] explore special cases of
hypergraphs, and define several versions of hyperpaths,
including what they call a B-path (though see the cor-
rection of Nielsen and Pretolani [24]), which is essen-
tially equivalent to our definition of hyperpath (given in
the following section on shortest hyperpaths in directed
hypergraphs). They show the vertices reachable from a
source vertex in a hypergraph can be found in time lin-
ear in the total size of the tail and head sets of all hyper-
edges, give an efficient algorithm for a variant of shortest
hyperpaths with a so-called additive cost function, and
prove that finding a minimum cut in a hypergraph is
NP-complete. Ausiello and Laura [16] survey results on
hypergraphs whose hyperedges have singleton head sets,
and note that a consequence of the NP-completeness

reduction [14] for shortest hyperpaths from the set cover
problem is that, unless P=NP , no approximation algo-
rithm can exist for shortest hyperpaths on hypergraphs
of n vertices with approximation ratio

(
1−o(1)

)
ln n.

In metabolic networks, Cottret, Milreu and Acuña et al.
[17] examine the minimum precursor problem: given a
hypergraph G, a set of sources S, and a set of targets T,
find a source subset P ⊆ S of minimum cardinality that
has a factory from P to T, where a factory is a set of hyper-
edges that produce targets T from precursor set P while
satisfying weaker ordering constraints on hyperedges
than required by hyperpaths. They show this problem is
NP-complete, and give an algorithm that enumerates all
minimal precursor sets whose factory is acyclic. Acuña,
Milreu and Cottret et al. [18] subsequently enumerate all
minimal precursor sets allowing cycles. Andrade, Wan-
nagat and Klein et al. [19] extend these algorithms to
accommodate stoichiometry and conserve intermediate
metabolites within the factory. Carbonell, Fichera, Pan-
dit and Faulon [20] give an efficient algorithm to find a
source-sink hyperpath if one exists—irrespective of its
length—and prove that finding any hyperpath that must
contain a specified set of hyperedges is NP-complete.
They also offer an approach to hyperpath enumeration
that relies on solutions to this NP-complete problem, for
which they employ a heuristic.

In cell-signaling networks, Ritz, Avent and Murali [12,
21] were the first to solve the shortest acyclic hyperpath
problem by formulating it as a mixed-integer linear pro-
gram (MILP)—the current state-of-the-art for shortest
hyperpaths—and showed that in practice, optimal acy-
clic hyperpaths can be found even for large cell-signal-
ing hypergraphs. Their formulation does not extend to
hyperpaths with cycles, and requires exponential time
in the worst-case (which may be unavoidable, as the acy-
clic problem remains NP-complete). Recently, Franzese,
Groce, Murali and Ritz [22] defined a parameterized
notion of connectivity that interpolates between hyper-
path- and ordinary-path-connectivity, while Schwob,
Zhan and Dempsey [23] modified the acyclic MILP
of Ritz et al. [21] to include time-dependence among
reactions.

Our contributions
In contrast to prior work, we present a heuristic for short-
est hyperpaths that handles cycles, is worst-case efficient,
and finds hyperpaths that are demonstrably optimal or
close to optimal in real cell-signaling hypergraphs. In
more detail, we make the following contributions.

• We present an efficient heuristic for shortest hyper-
paths, that on a hypergraph of size ℓ , which measures

Page 3 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

the total cardinality of all hyperedge tail and head
sets, with m hyperedges that are doubly-reachable
from the source and sink vertices, and k defined anal-
ogously to ℓ over these doubly-reachable hyperedges,
runs in O(ℓ + m2 k) time.

• We prove that the heuristic finds an optimal shortest
hyperpath for the class of singleton-tail hypergraphs,
where the tails of all hyperedges in the hypergraph
are single vertices.

• We also give a practical algorithm for hyperpath
enumeration that generates all possible source-sink
hyperpaths, allowing us to tractably measure how
close our heuristic is to the optimum.

• Our heuristic matches the state-of-the-art MILP
for shortest acyclic hyperpaths on over 99% of all
instances from two standard databases of cell-signal-
ing pathways.

• Our heuristic surpasses the state-of-the-art on
instances where every source-sink hyperpath is
cyclic, and hence the MILP finds no solution. On all
such cyclic biological instances, our hyperpath enu-
meration algorithm verified that the heuristic was in
fact optimal.

To our knowledge, this heuristic is the first in the lit-
erature for shortest source-sink hyperpaths in general
directed hypergraphs, where hyperedges have arbitrary
tail and head sets, and the length of a hyperpath is the
sum of the weights of its hyperedges.

We note that the worst-case efficiency and subclass opti-
mality of the heuristic highlighted in the first two points
above show that the shortest hyperpaths problem is poly-
nomial-time solvable for singleton-tail hypergraphs—
in contrast to its NP-completeness for singleton-head
hypergraphs [14]—which does not appear to have been
observed before in the literature [16]. Furthermore, while
prior work has developed specialized algorithms that
are tailored to shortest hyperpaths under so-called addi-
tive cost functions [15]—which also handle singleton-tail
hypergraphs—in distinction, we give a general heuris-
tic for arbitrary hypergraphs under the non-additive cost
function of total weight of the hyperpath, that as a con-
sequence is optimal for the special case of singleton-tail
hypergraphs.

Source code for an implementation of the short-
est hyperpath heuristic in a new tool we call Hhugin
[25] (short for “hypergraph heuristic for general short-
est source-sink hyperpaths”), as well as the hyper-
path enumeration algorithm and all dataset instances,

is available free for non-commercial use at http://
hhugin.cs.arizona.edu.

Plan of the paper
The next section defines the general shortest hyperpath
problem, allowing cycles. The following section then
presents our heuristic for shortest hyperpaths, analyzes
its time complexity, shows it returns a feasible solu-
tion whenever one exists, and proves it finds optimal
solutions for singleton-tail hypergraphs. The next sec-
tion gives our algorithm for generating all source-sink
hyperpaths, proves its correctness, and analyzes its time
complexity. The subsequent section compares the heu-
ristic, through experiments on all source-sink instances
from standard databases, to the state-of-the-art MILP
for acyclic instances, or to the optimum of all enumer-
ated hyperpaths for cyclic instances, and discusses three
examples of cyclic shortest hyperpaths in cell signaling
networks. Finally, the last section concludes, and pro-
vides directions for further research.

Shortest hyperpaths in directed hypergraphs
A directed hypergraph is a generalization of an ordinary
directed graph, where an edge, instead of touching two
vertices, now connects two subsets of vertices. Formally,
a directed hypergraph is a pair (V, E), where V is a set of
vertices, and E is a set of directed hyperedges. (The lit-
erature sometimes uses the term hyperarc for an edge
in a directed hypergraph, but we prefer the simpler term
hyperedge—just as the term edge is conventionally used
for both directed and undirected ordinary graphs. We
will occasionally abbreviate the term hyperedge to simply
edge, when it is clear that the context is with respect to a
directed hypergraph.) Each hyperedge e ∈ E is an ordered
pair (X, Y), where both X ,Y ⊆ V are vertex subsets.
Edge e is directed from set X to set Y. We call set X the tail

Fig. 1 Hyperedge. A hyperedge e with tail(e) = {v1, . . . , vk}
and head(e) = {w1, . . . ,wℓ} . To use e in a hyperpath P, every
vertex vi ∈ tail(e) must have a preceding hyperedge f in P with
vi ∈ head(f)

Page 4 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

of e, and set Y the head of e, and refer to these sets by the
functions tail(e) = X and head(e) = Y . We also refer to
the in-edges of vertex v by in(v) := {e∈E : v ∈ head(e)} ,
and the out-edges of v by out(v) := {e∈E : v ∈ tail(e)} .
Figure 1 shows a directed hyperedge.

In ordinary directed graphs, a path from a vertex s to a
vertex t is a sequence of edges starting from s and ending
at t, where for consecutive edges e and f in the sequence,
the preceding edge e must enter the vertex that the fol-
lowing edge f leaves. We say t is reachable from s when
there is such a path from s to t.

In generalizing these notions to directed hypergraphs,
the conditions both for when a hyperedge can follow
another in a hyperpath, and when a vertex is reachable
from another, become more involved. A hyperpath is
again a sequence of hyperedges, but now for hyperedge f
in a hyperpath, for every vertex v ∈ tail(f) , there must be
some hyperedge e that precedes f in the hyperpath for
which v ∈ head(e) . Reachability is captured by the follow-
ing notion of superpath.

Definition 1 (Superpath) In a directed hyper-
graph (V, E), an s,t-superpath, for vertices s, t ∈ V , is an
edge subset F ⊆ E such that the hyperedges of F can be
ordered e1, e2, . . . , ek , where

 (i) tail(e1) = {s},
 (ii) for each 1 < i ≤ k ,

 (iii) and t ∈ head(ek).

For an s,t-superpath, we call s its source, t its sink, and we
say t is reachable from s.

We can now define hyperpaths in terms of superpaths.
Recall that a set S is minimal with respect to some prop-
erty X if S satisfies X, but no proper subset of S satisfies X.

Definition 2 (Hyperpath) An s,t-hyperpath is a
minimal s,t-superpath.

In other words, a hyperpath P is a superpath for which
removing any edge e ∈ P leaves a subset P − {e} that is
no longer a superpath. Essentially, hyperpaths eliminate
unnecessary edges from superpaths. Figures 7, 8, and 9
later show examples of hyperpaths.

We say a hyperpath P contains a cycle if, for every
ordering e1, . . . , ek of its hyperedges satisfying proper-
ties (i)–(iii) in the definition of superpath, P contains
some hyperedge f with a vertex in head(f) that also

tail(ei) ⊆ {s} ∪
⋃

1≤j<i

head(ej) ,

�

�

occurs in tail(e) for an earlier hyperedge e in the ordering.
While in ordinary graphs a minimal s,t-path can never
contain a cycle, in hypergraphs an s,t-hyperpath can in
fact contain cycles, as shown in our later section on bio-
logical examples.

We can now define the shortest hyperpath problem.
For an edge weight function ω(e) , we extend ω to edge
subsets F ⊆ E by ω(F) :=

∑
e∈F ω(e).

Definition 3 (Shortest Hyperpaths) The Short-
est Hyperpaths problem is the following. Given a
directed hypergraph (V, E), a positive edge weight func-
tion ω : E→R+ , source s ∈ V and sink t ∈ V , find an s,t-
hyperpath P ⊆ E of minimum total weight ω(P).

Note that for positive edge weights, Shortest Hyper-
paths is equivalent to finding an s,t-superpath of mini-
mum total weight.

Shortest Hyperpaths with a single source and sink
vertex also captures more general versions of the prob-
lem with multiple sources and multiple sinks, as fol-
lows. To find a hyperpath that starts from a set of
sources S ⊆ V , simply add a new source vertex s to the
hypergraph together with a single hyperedge ({s}, S) of
zero weight, and equivalently find a hyperpath from the
single source s. To find a hyperpath that reaches all ver-
tices in a set of sinks T ⊆ V , add a new sink vertex t, a
zero-weight hyperedge (T , {t}) , and equivalently find a
hyperpath to the single sink t. To find a hyperpath that
reaches some vertex in a set of sinks T ⊆ V , add new sink
vertex t, zero-weight hyperedges ({v}, {t}) from all v ∈ T ,
and again equivalently find a hyperpath to the single
sink t. Thus versions of shortest hyperpaths with multiple
sources and sinks can be reduced to the problem with a
single source and sink.

Shortest Hyperpaths is NP-complete [14] (even for acy-
clic hypergraphs with singleton head sets), so we likely
cannot efficiently compute shortest hyperpaths in the
worst-case. The next section presents an efficient heuris-
tic for shortest hyperpaths that is highly accurate at find-
ing demonstrably optimal or near-optimal hyperpaths in
real cell-signaling hypergraphs.

An efficient shortest hyperpath heuristic
We now give a fast heuristic for Shortest Hyperpaths
that always finds an s,t-hyperpath if one exists. While
the heuristic is not guaranteed to find a shortest s,t-
hyperpath in general, our later experiments on real cell-
signaling hypergraphs show it quickly finds a hyperpath
that is optimal or remarkably close to optimal on the
vast majority of instances in comprehensive experiments
over the two standard cell-signaling databases in the

�

Page 5 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

literature. Furthermore, we will prove that the heuristic
is guaranteed to find a shortest s,t-hyperpath for the class
of singleton-tail hypergraphs, where the tail-sets of all
hyperedges are single vertices.

We present the heuristic by providing detailed pseu-
docode at a level that can be directly implemented, as the
heuristic is carefully designed and many of its component
algorithms are surprisingly tricky to implement correctly.
After describing the heuristic, we give a time analysis
that shows it is always efficient, prove its feasibility, and
then show that it finds optimal hyperpaths for singleton-
tail hypergraphs.

While at a high level the heuristic has some aspects
in common with Dijkstra’s algorithm for single-source
shortest paths in an ordinary directed graph (see [26,
pp. 658–659])—in that the heuristic maintains a heap of
elements prioritized by estimated path lengths—it has
significant differences. In contrast to Dijkstra’s algorithm,
the heuristic is edge-based, rather than vertex-based,
and the heap maintains hyperedges e prioritized by the
length of the shortest known hyperpath from the source s
to edge e, which will be formally defined later. Also in
contrast to Dijkstra’s algorithm, maintaining a single in-
edge to a vertex no longer suffices for recovering a path
back to source s; instead, recovering an s,t-hyperpath
now requires the heuristic to maintain a set of in-edges
to each hyperedge e that are candidates for the final edges
on the path from s to e. Furthermore, the total length of
a hyperpath P to e is no longer a simple function (like a
minimum or a sum) of the lengths of hyperpaths to the
in-edges of e in P that cover the tail of e, since the constit-
uent hyperpaths within P to these in-edges of e can have
arbitrarily-complicated sharing of hyperedges. Simply
determining the length of the best recovered hyperpath
for a hyperedge e on the heap, using these stored in-edges
to each hyperedge, is itself now a hard combinatorial
problem, which the heuristic tackles by a carefully-con-
structed greedy procedure.

The overall structure of the heuristic is a breadth-first
search over the hyperedges e reachable from source s,
ordered by the estimated length of the shortest hyper-
path from s to e. (Admittedly a shortest s,t-hyperpath P is
not necessarily composed of shortest hyperpaths from s
to individual hyperedges e in P, which is partly why this
approach is a heuristic.) The search repeatedly invokes
a greedy procedure to recover the currently best-known
hyperpath to e in order to evaluate its length. As hyper-
paths are by definition minimal superpaths, to determine
minimality this greedy recovery procedure repeatedly
tests reachability of hyperedges. Moreover, for efficiency,
the overall breadth-first search proceeds over a smaller

subgraph of the input hypergraph that only contains
hyperedges that are reachable both from source s and in
reverse from sink t. Hence at base, the heuristic builds
upon fast algorithms for computing reachability in a
hypergraph.

Accordingly, to present the heuristic, we first give pseu-
docode for these fundamental algorithms for directed
reachability. These algorithms use the following termi-
nology of forward-reachable, backward-traceable, and
doubly-reachable, which we define next.

Definition 4 (Reachability and Traceability) Ver-
tex v is forward reachable from source s in hypergraph G
if there is an s,v-superpath in G. Hyperedge e is forward
reachable from s if all vertices v ∈ tail(e) are forward
reachable from s.

Vertex v is backward traceable from sink t if v = t ,
or recursively if v ∈ tail(e) for an edge e where
some w ∈ head(e) is backward traceable from t. Hyper-
edge e is backward traceable from t if some v ∈ head(e) is
backward traceable from t.

A vertex v or hyperedge e is doubly reachable if v or e,
respectively, is both forward reachable from s and back-
ward traceable from t.

To describe the heuristic, it will also be convenient to
extend the definitions of superpath and hyperpath to a
path from a source s to a hyperedge e.

Definition 5 (Superpath and Hyperpath from Source
to Hyperedge) An s,e-superpath is an edge subset S with
e ∈ S where all vertices in tail(e) are forward reachable
from source s using hyperedges in S. An s,e-hyperpath is
a minimal s,e-superpath.

The pseudocode that we present accesses a hypergraph G
through the fields G.vertices and G.edges. We access the
tail-set and head-set of a hyperedge e through the fields
e.head and e.tail. We access the set of in-edges and out-
edges of a vertex v through the fields v.in and v.out. For a
list Q that is handled as a queue, the operation Q.Put(x)
appends item x to the rear of Q, while the operation
Q.Get() removes and returns the item at the front of Q.
For a min-heap H, the operation H.Insert(x, k) inserts
item x with key k into H, and returns a reference p to the
heap node containing this pair (x, k) in H; the operation
H.Extract() removes and returns the item in H with mini-
mum key; and the operation H.Decrease(p, k) takes a ref-
erence p to a heap node in H and decreases its key to k
if k is smaller than its current key. All functions assume
hypergraph G is passed by reference.

�

�

Page 6 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

function ForwardReachable (s, G) begin • Find all edges forward-reachable ...
• ... from source s in G

Create queue Q • Initialize a queue of reached vertices
Q.Put(s)
s.reached := true
(F, R) := (∅, ∅)

while not Q.Empty() do begin • Process the reached vertices v
v := Q.Get()
R ∪ := {v}

for e ∈ v.out do begin • Detect which out-edges e of v are now reached
e.count −:= 1
if e.count = 0 then begin • All vertices in tail(e) have been reached ...

F ∪ := {e •} ... so e is reached
for w ∈ e.head do

if not w.reached then begin
Q.Put(w)
w.reached := true

end
end

end
end

for v ∈ R do begin • Restore fields and return the reachable hyperedges
v.reached := false
for e ∈ v.out do e.count +:= 1

end
return F

end

function BackwardTraceable (t, G) begin • Find all edges backward-traceable ...
• ... from sink t in G

Create queue Q • Initialize a queue of reached vertices
Q.Put(t)
t.reached := true
(F, B) := (∅, ∅)

while not Q.Empty() do begin • Process the reached vertices v
v := Q.Get()
B ∪ := {v}

for e ∈ v.in do • Collect the traceable hyperedges e
if not e.marked then begin

F ∪ := {e}
e.marked := true
for w ∈ e.tail do

if not w.reached then begin
Q.Put(w)
w.reached := true

end
end

end

for v ∈ B do v.reached := false • Restore fields and return the traceable hyperedges
for e ∈ F do e.marked := false
return F

end

Fig. 2 Reachability computations. Function ForwardReachable, given source vertex s in hypergraph G, returns all hyperedges e for which
tail(e) is reachable by a hyperpath from s. Function BackwardTraceable, given sink vertex t in G, returns all hyperedges e for which some
vertex v ∈ head(e) is backward-traceable from t. These functions assume fields v.reached, e.marked, and e.count have been initialized to false, false,
and |tail(e)| , respectively, for all v and e in G

Page 7 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

Figure 2 gives pseudocode for the two functions
ForwardReachable and BackwardTraceable.
Function ForwardReachable returns the set of all
hyperedges that are forward reachable from source s,
while function BackwardTraceable returns the set
of hyperedges that are backward traceable from sink t.
Function ForwardReachable uses the Boolean ver-
tex field v.reached, and the integer edge field e.count,
which it assumes have already been initialized to the val-
ues v.reached = false for all v ∈ V and e.count =

∣∣tail(e)
∣∣

for all e ∈ E . Function BackwardTraceable also
uses the Boolean edge field e.marked, which it similarly
assumes is initialized to false for all e. (This initializa-
tion will be done once for hypergraph G in the shortest
hyperpath heuristic, which allows these functions when
called repeatedly to run in time bounded by just the size
of the forward-reachable or backward-traceable sub-
graphs.) Function ForwardReachable uses the field
e.count to detect when all vertices in tail(e) have been
reached from s, and hence e is now reached from s. Func-
tion BackwardTraceable performs a similar but sim-
pler computation in reverse from sink t. The worst-case
time for both these functions is linear in the size of the
subgraph they explore, as analyzed in the following sec-
tion on the time-complexity of the heuristic.

Figure 3 gives pseudocode for the function Short-
estHyperpathHeuristic, our heuristic. Like Dijk-
stra’s shortest path algorithm for ordinary graphs, this
function maintains a heap H, but in contrast to Dijkstra’s
algorithm this is now a heap of hyperedges e (rather than
a heap of vertices), which are prioritized by keys that
are the best known estimate of the length of a shortest
s,e-hyperpath. We refer to this estimate as the current
path length for e. The heuristic starts from the out-edges
of source s, and in a reaching computation repeatedly
extracts from heap H the hyperedge e with minimum key.
When hyperedge e is removed from H, the estimated path
length for e is evaluated, and stored in field e.length. To
compute this length estimate, it must construct the best
s,e-hyperpath it can find, and evaluate its total weight. Of
course, computing an optimal s,e-hyperpath is NP-com-
plete, so it uses a greedy heuristic to construct this path
by the function RecoverShortPath. This greedy path-
construction heuristic consists of two steps: (1) recover-
ing an s,e-superpath by recursively backward-traversing
hyperedges that enter tail(e) , followed by (2) finding a
minimal subset of this superpath that is an s,e-hyperpath
while attempting to minimize its total weight.

Figure 4 gives pseudocode for the function Recov-
erShortHyperpath that implements this greedy
path-construction heuristic. For the first step, recov-
ering the s,e-superpath S is done by recursively

backward-traversing what we call in-edges: those hyper-
edges whose head-sets intersect the tail-set of a given
hyperedge. Function ShortestHyperpathHeuris-
tic maintains for a hyperedge e the field e.inedges,
which stores the subset of in-edges f to e whose field
f.length has been determined.

For the second step, function RecoverShortHyper-
path attempts to find the minimum weight subset of S
that is still a superpath by greedily considering hyper-
edges f ∈ S for removal in decreasing order of f.length,
which is the estimated total length of a shortest s,f-hyper-
path. (Note this is more sophisticated than a naive greedy
approach that simply removes hyperedges f in decreasing
order of their edge-weight ω(f) , which would degener-
ate to removing edges in random order in real cell-sign-
aling networks where hyperedges typically all have unit
weight, and hence would all be tied for removal.) This
greedy process for trimming superpath S repeatedly tests
whether tail(e) is still reachable from s on removing f by
calling Boolean function IsReachable. Pseudocode
for IsReachable is not given, but it simply implements
a version of function ForwardReachable that halts
and returns true as soon as it adds e to the set of hyper-
edges reachable from s, or returns false after collecting
the entire reachable set without encountering e.

We note that most of the computation of the short-
est hyperpath heuristic proceeds over a much smaller
subgraph of the input hypergraph G: namely the sub-
graph induced by the hyperedges D ⊆ E that are doubly
reachable (both forward reachable from s and backward
traceable from t). This preserves correctness, since
hyperedges that are not doubly reachable cannot be on
an s,t-hyperpath and can safely be ignored (as argued in
the later section on feasibility of the heuristic in the proof
of Theorem 2).

To summarize, the shortest hyperpath heuristic pro-
ceeds greedily like Dijkstra’s algorithm, but with some
important differences: it maintains a heap of hyperedges
prioritized by estimated shortest path lengths to tail-
sets, records a set of potential in-edges to a given hyper-
edge used for recovering a hyperpath to the hyperedge,
and recovering such a hyperpath now involves another
greedy heuristic to find a minimal superpath of small
total weight.

Our later section on experimental results shows this
heuristic is remarkably close to optimal on real cell-
signaling hypergraphs. Given that no practical exact
algorithm exists for general shortest hyperpaths, we
determine the optimum by enumerating all s,t-hyper-
paths and taking the minimum of their lengths, using
an algorithm we develop in the later section on tractably
generating all source-sink hyperpaths.

Page 8 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

function ShortestHyperpathHeuristic (s, t, G, ω) begin • Find a short s, t-hyperpath

for v ∈ G.vertices do • Initialize fields
(v.reached, v.removed) := (false, false)

for e ∈ G.edges do
(e.count, e.marked, e.node, e.inedges) := (|e.tail|, false, nil, ∅)

D := ForwardReachable(s, G) • Restrict G to doubly-reachable edges D
∩ BackwardTraceable (t, G)

Remove from G all edges not in D

Create min-heap H • Initialize edge heap H
for e ∈ s.out with e.tail = {s} do

e.node := H.Insert(e, ω(e))
s.reached := true

while not H.Empty() do begin • Process reached hyperedges by their path lengths
e := H.Extract()
e.removed := true

P := RecoverShortHyperpath(s, e,G) • Recover a short hyperpath to e ...
e.length := ω(P) • ... and its path length

F := •∅ Collect the out-edges F of e ...
for v ∈ e.head do begin • ... and detect which are reached

for f ∈ v.out do begin
if not v.reached then

f .count −:= 1
if not f .marked then begin

F ∪ := {f}
f .marked := true

end
end
v.reached := true

end
for f ∈ F do

f .marked := false

for f ∈ F do begin • Update path lengths, in-edges, and add reached edges to H
f .inedges ∪ := {e}
if f.node �= nil and not f .removed then • Update path length to edge on H

H.Decrease(f.node, ω(RecoverShortHyperpath(s, f, G)))
else if f .node = nil and f .count = 0 then • Add reached edge to H

f .node := H.Insert(f, ω(RecoverShortHyperpath(s, f, G)))
end

end

(P ∗, L∗) := (∅,∞) • Recover the best s, t-hyperpath P ∗

for e ∈ t.in do
if e.node �= nil then begin

P := RecoverShortHyperpath(s, e, G)
if ω(P) < L∗ then

(P ∗, L∗) := (P, ω(P))
end

Restore to G all edges not in D • Unrestrict G and return the best hyperpath
return P ∗

end

Fig. 3 Efficient heuristic for shortest source-sink hyperpaths. Given source s, sink t, and edge weights ω , function ShortestHyperpathHeuristic
finds an s,t-hyperpath in hypergraph G, attempting to minimize its length. If no s,t-hyperpath exists, the empty path is returned. For doubly-
reachable hyperedges e, the heuristic maintains fields e.length (the total weight of the shortest hyperpath found to e), and e.inedges (the subset of
edges f with head(f) touching tail(e) where f.length is known), which are used in RecoverShortHyperpath to recover a short hyperpath to e

Page 9 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

We note for this heuristic that the inapproximability of
the shortest hyperpath problem [16], together with the
polynomial time analysis of the next subsection, imply
that unless P = NP , the heuristic cannot be a constant-
factor approximation algorithm for shortest hyperpaths.

In the following subsections, we first analyze the run-
ning time of the heuristic; then show it always finds a
feasible solution whenever one exists; and finally prove it
actually finds an optimal solution for the class of single-
ton-tail hypergraphs.

Time complexity of the heuristic
We now bound the time complexity of the shortest
hyperpath heuristic. Our analysis is in terms of the fol-
lowing parameters measured on a hypergraph, or an
induced subgraph. For a hypergraph G with vertices V
and hyperedges E, we denote its number of vertices and
hyperedges by

We also use the size parameter

and degree parameter

Note that in general, the space required to represent all
hyperedges is �(ℓ) . We assume all tail and head sets are
nonempty, and every vertex is touched by a hyperedge,
which implies m+ n = O(ℓ) . When we need to refer to
these measures for a particular hypergraph G, such as on

n := |V | ,

m := |E| .

ℓ :=
∑

e∈E

(∣∣tail(e)
∣∣ +

∣∣head(e)
∣∣
)
,

d := max
v ∈V

{ ∣∣in(v)
∣∣,
∣∣out(v)

∣∣
}
.

function RecoverShortHyperpath (s, e, G) begin • Recover a short s, e-hyperpath in G

Create queue Q • Initialize a queue with the in-edges entering e
for f ∈ e.inedges do begin

Q.Put(f)
f .marked := true

end

S := {e •} (I) Recover s, e-superpath S tracing backward from e
while not Q.Empty() do begin

f := Q.Get()
S ∪ := {f}
for g ∈ f.inedges do

if not g.marked then begin
Q.Put(g)
g.marked := true

end
end
for f ∈ S do

f .marked := false

Remove from G all edges not in S • (II) Trim S greedily to an s, e-hyperpath P
S −:= {e}
P := {e}
for f ∈ S in decreasing order of f .length do begin

Remove f from G
if not IsReachable(s, e, G) then begin

Restore f back to G
P ∪:= {f}

end
end

Restore back to G all edges removed • Restore G and return hyperpath P
return P

end

Fig. 4 Recovering a short hyperpath from the source to a hyperedge. Given source vertex s and hyperedge e, function RecoverShortHyper-
path returns an s,e-hyperpath P in hypergraph G, attempting to minimize its length. The edges of hyperpath P are greedily selected from an
s,e-superpath S that is guaranteed to exist in G, where S is recovered by tracing backward from e

Page 10 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

an induced subgraph, we explicitly subscript the parame-
ters by the specific hypergraph, such as nG , . . . , dG , where
these parameters are then measured in terms of the verti-
ces and edges of the subscripted hypergraph G.

The running time of the shortest hyperpath heuristic
may be expressed as a function of parameters measured on
both the input hypergraph and its doubly-reachable sub-
graph (induced by the hyperedges that are simultaneously
forward reachable from the source and backward traceable
from the sink).

Theorem 1 (Time complexity of the heuristic) The
time complexity of the shortest hyperpath heuristic, in
terms of the number of hyperedges m and size parameter ℓ
for both the input hypergraph G and its doubly-reachable
subgraph H, is

Proof To bound the running time of the func-
tion ShortestHyperpathHeuristic, we analyze in
turn its component functions ForwardReachable,
BackwardTraceable, and RecoverShortHyper-
path. The running time of the reachability computations
ForwardReachable and BackwardTraceable (in
Fig. 2) can be expressed in an output-sensitive way in
terms of the size of the edge sets they return.

For ForwardReachable, let R ⊆ V be the set of
vertices reachable from source s, and F ⊆ E be the set
of hyperedges reachable from s that are returned. The
total time for ForwardReachable is dominated
by the time for its main while-loop, which takes time
�
(∑

v∈R

∣∣out(v)
∣∣ +

∑
e∈F

∣∣head(e)
∣∣) , or equivalently,

For BackwardTraceable, let B ⊆ V be the set of
vertices it reaches from sink t, and F ⊆ E be the set of
hyperedges traceable from t that are returned. A similar
analysis shows the time for BackwardTraceable is

So the time for both ForwardReachable and
BackwardTraceable on the input hypergraph G
is O

(
ℓG

)
 — but can be bounded more tightly in terms of

the subgraph of G they actually explore.

O
(
ℓG + ℓH m2

H

)
.

�

(∑

e∈E

∣∣tail(e) ∩ R
∣∣ +

∑

f ∈ F

∣∣head(f)
∣∣
)

= O
(
ℓG

)
.

�

(∑

e∈E

∣∣head(e) ∩ B
∣∣ +

∑

f ∈ F

∣∣tail(f)
∣∣
)

= O
(
ℓG

)
.

For the function RecoverShortHyperpath (in Fig. 4),
when it is called by ShortestHyperpathHeuristic, all
its computations are performed on G restricted to the edge
subset D ⊆ E of doubly-reachable hyperedges. We denote by
hypergraph H the doubly-reachable subgraph induced by D.

In RecoverShortHyperpath, the time to recover s,e-
superpath S by tracing back from e is at most

The time to greedily trim superpath S to s,e-hyper-
path P ⊆ S , in terms of cardinality k = |S| , is at most

Thus the total time for RecoverShortHyperpath is

For the function ShortestHyperpathHeuris-
tic (in Fig. 3), we break its time down into the fol-
lowing components. The time for the initialization,
collecting the doubly-reachable edges D by calling For-
wardReachable and BackwardTraceable, and
restricting G to its subgraph H induced by D, is O

(
ℓG

)
 .

The main while-loop executes for mH iterations, and
spends O

(
mH log mH

)
 time for all Extracts. The total

time across all iterations to compute s,e-hyperpath P
for all extracted edges e by calling RecoverShort-
Hyperpath is O

(
ℓH m2

H

)
 . The total time to collect the

out-edges F for the extracted e across all iterations is
O
(∑

e∈D

∑
v∈head(e)

∣∣out(v)
∣∣) = O

(
dH ℓH

)
 . The total

time across all iterations for Decrease and Insert, which
take O(1) amortized time per edge in F using a Fibonacci
heap (see [26, pp. 510–522]), is also O

(
dH ℓH

)
 . The time

to recover the best s,t-hyperpath P∗ is O
(
dH ℓH mH

)
.

Finally, adding up the bounds for the above compo-
nents, the total time for the shortest hyperpath heuristic
is

which is in turn O
(
ℓG + ℓH m2

H

)
. �

Notice that the overall running time of the heuristic is
dominated by the total time to recover short hyperpaths,
which requires invoking RecoverShortHyperpath
whenever the path length to a hyperedge is updated. This

O

(∑

f ∈ S

∑

v ∈ tail(f)

∣∣in(v)
∣∣
)

= O
(
dH ℓH

)
.

O
(
mH + k log k + k ℓH

)
= O

(
k ℓH

)
.

O
(
dH ℓH

)
+ O

(
k ℓH

)
= O

(
ℓH mH

)
.

O
(
ℓG

)
+ O

(
mH log mH

)
+ O

(
ℓH m

2
H

)

+ O
(
dH ℓH

)
+ O

(
dH ℓH mH

)
,

Page 11 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

is necessary in hypergraphs, since in contrast to ordinary
graphs the length of the hyperpath to a hyperedge can no
longer be expressed as a simple function (such as a min-
imum or a sum) of the lengths of the hyperpaths to its
in-edges.

As demonstrated in our later section on experimental
results, for real biological instances the size of the dou-
bly-reachable subgraph H is significantly smaller than
the full input hypergraph G, so designing the heuristic
to compute mainly over the much smaller hypergraph H
yields a significant performance speedup in practice.

Next we show the heuristic always finds a feasible
solution.

Feasibility of the heuristic
The most basic property that a heuristic for a combinato-
rial optimization problem should satisfy is feasibility: that
it always returns a feasible solution whenever one exists.
In the context of Shortest Hyperpaths, a feasible solution
is any s,t-hyperpath, while an optimal solution is a feasi-
ble solution of minimum total edge-weight.

For the hyperpath heuristic, we now show feasibility.

Theorem 2 (Feasibility of the heuristic) The shortest
hyperpath heuristic finds a source-sink hyperpath when-
ever one exists.

Proof Function ShortestHyperpathHeuristic
(in Fig. 3) first restricts the input hypergraph G to its
doubly-reachable subgraph, consisting of the hyper-
edges D that are both forward reachable from source s
and backward traceable from sink t. Note that functions
ForwardReachable and BackwardTraceable (in
Fig. 2) together correctly collect these doubly-reachable
hyperedges D: function ForwardReachable explores
breadth-first the hyperedges that are forward reachable
from s, maintaining a counter for each hyperedge e that
records the number of vertices in its tail that have not
yet been reached from s, and detecting when e is reached
by this counter hitting zero; while function Back-
wardTraceable directly implements Definition 4 of
backward traceability from t.

Furthermore, we claim that when restricting to the
doubly-reachable subgraph G̃ , the heuristic does not
lose any hyperedges on source-sink hyperpaths. Note
that any hyperedge e on an s,t-hyperpath P in the input
hypergraph G is forward reachable from s: consider
the ordering of hyperedges in P from Definition 1, and
take the prefix of this ordering up through e; this prefix
is an s,e-superpath, so e is by definition forward reach-
able from s. Note also that any e on P in G is back-
ward traceable from t as well: if t ∈ head(e) , backward

traceability immediately holds; otherwise, in the ordering
of P there must be a hyperedge f following e with non-
empty head(e) ∩ tail(f) (else e can be removed from P,
contradicting minimality); applying this same process
again at f yields a subsequence of the ordering of P that
ends in a hyperedge whose head contains t; considering
this subsequence in reverse order satisfies Definition 4
for backward traceability of e from t. Hence restricting to
the doubly-reachable subgraph G̃ is safe.

To show the implication of the theorem, notice
ShortestHyperpathHeuristic explores all hyper-
edges that are forward reachable from s in G̃ , inserting
hyperedge e into heap H when e is initially reached, again
detecting when traversing e causes another hyperedge f
to be first reached using counter f.count, and recording
in field f.inedges all such e that have reached f. So if an
s,t-hyperpath exists in G, which implies sink t has an in-
edge e that is forward reachable from s in G̃ , this e will
eventually be inserted into H, making e.node non-nil,
and at the end of the heuristic causing RecoverShort-
Hyperpath to be called on e.

We claim that when function RecoverShortHy-
perpath (in Fig. 4) is ultimately called on an in-edge
to sink t, phase (I) first recovers an edge set S that is an
s,t-superpath in G. Considering the hyperedges of S in
reverse order of their removal from queue Q, they satisfy
the three conditions for an s,t-superpath in Definition 1:
the last hyperedge removed from Q solely has s in its tail,
each hyperedge in S (other than this last one) has its tail
set covered by hyperedges removed later from Q, and the
first edge removed has t in its head.

Function RecoverShortHyperpath in phase (II)
then trims S to a minimal s,t-superpath, yielding an s,t-
hyperpath. Finally, ShortestHyperpathHeuristic
returns the shortest such hyperpath found.

Thus whenever a source-sink hyperpath exists, the heu-
ristic finds one.

Next we prove the heuristic actually solves Short-
est Hyperpaths when the input is a singleton-tail
hypergraph.

Optimality of the heuristic for singleton‑tail hypergraphs
While our heuristic does not necessarily find shortest
hyperpaths in general hypergraphs, we can prove that
it does find optimal solutions for the following class of
hypergraphs.

A singleton-tail hypergraph is a directed hypergraph G
where every hyperedge e in G has

∣∣tail(e)
∣∣ = 1 . (The head

sets of hyperedges can be arbitrary.) In other words, in
singleton-tail hypergraphs, the tails of hyperedges are
single vertices.

�

Page 12 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

At a high level, the optimality argument for singleton-
tail hypergraphs first shows that shortest source-sink
hyperpaths are composed of shortest s,e-hyperpaths;
then argues that the heuristic’s greedy superpath trim-
ming recovers shortest s,e-hyperpaths when the hyper-
edge fields hold shortest hyperpath lengths; and finally
proves that the heuristic computes exact shortest s,e-
hyperpath lengths.

The following characterization states that in singleton-
tail hypergraphs, a shortest s,t-hyperpath is composed
of shortest s,e-hyperpaths to its constituent hyperedges.
This does not hold for general hypergraphs, and is partly
why the special case of shortest singleton-tail hyperpaths
is polynomial-time solvable.

Lemma 1 (Characterizing shortest singleton-tail
hyperpaths) In singleton-tail hypergraphs with non-
negative edge weights, every shortest s,t-hyperpath can be
ordered as a sequence e1 · · · ek of hyperedges where

 (i) each head(ei) ⊇ tail(ei+1), and
 (ii) every prefix e1 · · · ei is a shortest s, ei-hyperpath.

Proof Consider a shortest s,t-hyperpath P in a sin-
gleton-tail hypergraph. By definition, P is a minimal
s,t-superpath, so its edges can be ordered as a sequence
e1 · · · ek where tail(e1) = {s} , head(ek) ⊇ {t} , and since
tail sets contain a single vertex, for every hyperedge ej
in this sequence other than the first one, there is a prior
hyperedge ei with head(ei) ⊇ tail(ej).

Starting from the last hyperedge ek , and repeatedly
picking a prior hyperedge whose head covers the tail of
the current hyperedge until reaching tail {s} , yields a sub-
sequence f1 · · · fℓ specifying subset Q = {f1, . . . , fℓ} ⊆ P ,
where again tail(f1) = {s} , head(fℓ) ⊇ {t} , and now
head(fi) ⊇ tail(fi+1) for 1≤ i<ℓ . Furthermore Q = P ,
otherwise P is not minimal. So subsequence f1 · · · fℓ is
exactly sequence e1 · · · ek.

Clearly every prefix e1 · · · ei is an s, ei-superpath. More-
over this prefix must be a minimal s, ei-superpath, other-
wise P is not minimal. Thus every prefix ending in ei is an
s, ei-hyperpath.

Finally, every prefix e1 · · · ei must be a shortest s, ei
-hyperpath. Otherwise, replacing this prefix by a shortest
s, ei-hyperpath yields an s,t-superpath S of total weight
less than P. Furthermore, trimming S to a minimal s,t-
superpath under nonnegative edge weights yields an s,t-
hyperpath of total weight less than P, contradicting the
optimality of P. �

In the following, the distance of hyperedge e from
source s is the total weight of a shortest s,e-hyperpath,
which we denote by d(e). Recall that function Short-
estHyperpathHeuristic (in Fig. 3) maintains the
field e.length, that holds the total weight of the best-
known s,e-hyperpath, which upper bounds d(e).

The next lemma states that in singleton-tail hyper-
graphs, given two key conditions, the greedy super-
path trimming that is used by the heuristic to recover
a hyperpath to hyperedge e in fact finds a shortest
s,e-hyperpath.

Lemma 2 (Recovering hyperpaths in singleton-tail
hypergraphs) In a singleton-tail hypergraph with non-
negative edge weights, when the hyperpath heuristic recov-
ers a hyperpath from source s to hyperedge e, suppose

 (i) field e.inedges contains among its hyperedges an in-
edge to e from a shortest s,e-hyperpath, and

 (ii) in the s,e-superpath S found when recovering a
hyperpath to e, for all hyperedges f ∈ S−{e} ,
field f.length holds distance d(f).

Then the hyperpath to e that the heuristic recovers is a
shortest s,e-hyperpath.

Proof We first claim that under the assumptions of the
lemma, when the hyperpath heuristic calls Recover-
ShortHyperpath (in Fig. 4) on a hyperedge e, its first
phase recovers an s,e-superpath S that contains a short-
est s,e-hyperpath. By assumption (i), field e.inedges con-
tains a hyperedge f on a shortest s,e-hyperpath, and f will
be in superpath S, hence by assumption (ii), the value
of f.length is d(f). This value came from a shortest s,f-
hyperpath Q that was found in a prior call to Recov-
erShortHyperpath on f, by trimming an s,f-super-
path T. Notice that Q followed by e is an s,e-superpath P̃ ,
as head(f) ⊇ tail(e) . Now trim P̃ to an s,e-hyperpath P,
and let P∗ be a shortest s,e-hyperpath containing f that
exists by assumption (i). By Lemma 1 and minimality of
hyperpaths, P∗ must consist of a shortest s,f-hyperpath Q∗
followed by e. Under nonnegative edge weights,

ω(P) ≤ ω(P̃)

= ω(Q)+ ω(e)

= ω(Q∗)+ ω(e)

= ω(P∗) .

Page 13 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

Thus P is also a shortest s,e-hyperpath. Since f is in
e.inedges, tracing back from e recovers the superpath

so the claim holds.
We next claim that when RecoverShortHyper-

path in its second phase greedily trims superpath S, the
resulting superpath T ⊆ S still contains a shortest hyper-
path. To show this, we prove that each superpath Si that
remains after i iterations of greedy trimming contains a
shortest s,e-hyperpath, by induction on i. For the basis
at i=0 , the initial superpath S0 before any trimming con-
tains a shortest hyperpath by our first claim on S. For the
induction at i>0 , let P be a shortest s,e-hyperpath that
superpath Si−1 contains by our hypothesis, and let f be the
hyperedge removed from Si−1 at iteration i. If f ∈ P , then
Si = Si−1 − {f } trivially contains P. So we assume f ∈ P .
In the following, the core of hyperpath P consists of the
tail vertices of its hyperedges.

In an ordering of shortest hyperpath P that satis-
fies Lemma 1, consider the hyperedges in the suffix
of P that begins with f. As edge weights are nonnega-
tive, by Lemma 1 the distances of these hyperedges
must be at least d(f), so by assumption (ii) the values of
the length field for these hyperedges must be at least
f.length. Greedy trimming proceeds in decreasing order
of length-field values, so the hyperedges in this suffix of P
must either have been already considered for trimming
before f, or not yet considered due to being tied with f
(from having zero edge-weight). If they were considered
before f, then since they were not trimmed, there must be
no alternate s,e-hyperpath in Si−1 that enters their head
vertices on the core of P. If they were not considered
yet, then since f can be removed from Si−1 , there must
be an alternate s,e-hyperpath Q ⊆ Si distinct from P that
enters one of the core head-vertices of the hyperedges in
this suffix of P whose length field is tied with f. Moreover,
this alternate hyperpath Q must enter P with the same
length-field value as the edge of P sharing this core head-
vertex. (If Q enters P at a smaller length-value, then P
is not a shortest s,e-hyperpath; if Q enters at a greater
length-value, hyperedge f would not be the next hyper-
edge removed, as instead a hyperedge from Q of greater
length would be.) Since Q enters P at the same length-
value, hyperpath Q is also a shortest s,e-hyperpath.
Hence Si ⊇ Q still contains a shortest hyperpath, which
proves the second claim.

So the final trimmed s,e-superpath T returned by
RecoverShortHyperpath contains a shortest s,e-
hyperpath P ⊆ T . Since T is minimal (as no further edges
could be trimmed), and P by definition is minimal, we
must have T = P , which proves the lemma. �

S ⊇ T ∪ {e} ⊇ Q ∪ {e} = P̃ ⊇ P ,

We now show that the hyperpath heuristic solves
Shortest Hyperpaths for singleton-tail hypergraphs.

Theorem 3 (Optimality of the heuristic on single-
ton-tail hypergraphs) For singleton-tail hypergraphs
with nonnegative edge weights, the hyperpath heuristic
finds a shortest source-sink hyperpath.

Proof The key to proving optimality is showing that
in singleton-tail hypergraphs, the estimates that the
heuristic computes for shortest hyperpath lengths are
exact. Recall that when function ShortestHyper-
pathHeuristic (in Fig. 3) removes hyperedge e from
heap H, it calls RecoverShortHyperpath on e to
recover an s,e-hyperpath P, and sets the field e.length
to ω(P) , the total weight of P.

We claim that when this assignment occurs, field
e.length holds distance d(e), the total weight of a short-
est s,e-hyperpath. We now prove this claim by induction
on the number of heap extractions. At a high level, the
argument is similar to that for Dijkstra’s shortest-path
algorithm (see [26, pp. 659–661]) on ordinary directed
graphs.

For the basis, the first hyperedge extracted has
tail(e) = {s} and e.key = ω(e) , which equals d(e), as e
itself is a shortest s,e-hyperpath (since all edge weights
are nonnegative). The recovered s,e-hyperpath will con-
sist of e (as e.inedges is empty), so after the assignment
field e.length holds d(e).

For the induction, let e be the next hyperedge to be
removed from the heap, and assume for all hyperedges h
extracted prior to e that h.length holds d(h). Now con-
sider a shortest s,e-hyperpath P, and in the ordering of P
given by Lemma 1, let f be the first hyperedge in P that
has not yet been removed from the heap. Note that f
exists, as e has not been removed yet.

We first show f .key = d(f) . In the special case where f
is the first edge of P, notice d(f) = ω(f) by the same
reasoning as in the basis. Furthermore f .key = ω(f) , as
f.key starts at ω(f) , never increases, and cannot decrease
below this minimum value. So f .key = d(f) in this spe-
cial case.

In the general case where f is not the first edge of P,
let g be the in-edge to f on P, and Q ⊆ P be the prefix of P
ending in f, as illustrated in Fig. 5. Notice g has already
been extracted from the heap (by the definition of f), so g
is in f.inedges (as when a hyperedge is extracted, for all its
out-edges h it is added to h.inedges). Furthermore Q is a
shortest s,f-hyperpath by Lemma 1, so g is on a shortest
hyperpath to f. For all hyperedges h extracted before e,
by the induction hypothesis h.length = d(h) , and only
extracted h add themselves to the field inedges of their

Page 14 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

out-edges. Hence when g was extracted, added itself to
f.inedges, and updated f.key by recovering an s,f-hyper-
path, in the s,f-superpath S first found during recovery, all
hyperedges h ∈ S had h.length = d(h) . Thus by Lemma 2,
the recovered s,f-hyperpath was a shortest hyperpath, so
this updated f.key to d(f), and as argued before in the spe-
cial case, this key will not change. So again f .key = d(f).

We next show,

In the above, inequality (1) holds since e and f are both
on the heap (as f was inserted in the heap either during
initialization or when g was extracted), but e is removed
before f. Equation (2) is from our prior analysis of
f. Inequality (3) holds as Q and P are shortest s,f- and s,e-
hyperpaths respectively, while Q ⊆ P and edge weights
are nonnegative. Lastly, inequality (4) holds since the key
of e while it is on the heap is the total weight of some s,e-
hyperpath. Thus relations (1)–(4) must all be equalities,
so e.key = d(e).

We now argue e.length = d(e) after e is extracted.
Since e.key = d(e) is the weight of a hyperpath recovered
earlier for e, notice (i) there was an in-edge to e on a short-
est s,e-hyperpath in e.inedges; moreover (ii) all hyper-
edges h in the s,e-superpath collected while recovering a
hyperpath for e were extracted earlier, and hence by the

(1)e.key ≤ f . key

(2)= d(f)

(3)≤ d(e)

(4)≤ e.key .

induction hypothesis had h.length = d(h) . Furthermore,
hyperedges are never removed from the field inedges,
and h.length never changes after h is extracted. Thus
the assumptions in Lemma 2 are still met upon extrac-
tion of e, so when ShortestHyperpathHeuristic
assigns to e.length the total weight of the hyperpath P
recovered for e, by Lemma 2 this recovered P will again
be a shortest s,e-hyperpath, hence e.length = d(e) . This
completes the inductive proof of our claim.

So for every hyperedge h in the doubly-reachable sub-
graph explored by ShortestHyperpathHeuris-
tic, after extracting h from the heap, the relation
h.length = d(h) holds. Finally, when recovering the best
s,t-hyperpath at the end of the heuristic by examin-
ing the in-edges e to sink t, for each such hyperedge e
the assumptions of Lemma 2 are still met (by the same
reasoning as above), so the hyperpaths P obtained from
calling RecoverShortHyperpath on these sink in-
edges e are again shortest s,e-hyperpaths. Since a shortest
s,t-hyperpath consists of doubly-reachable hyperedges
(by the proof of Theorem 2), and is a shortest s,e-hyper-
path for some in-edge e to sink t, the best of these recov-
ered hyperpaths P, which is the hyperpath returned by
the heuristic, is a shortest s,t-hyperpath.

Theorem 3 (in combination with Theorem 1) shows
that, while Shortest Hyperpaths is NP-complete for sin-
gleton-head hypergraphs [14], it is polynomial-time solv-
able for singleton-tail hypergraphs.

Generating all source‑sink hyperpaths
In this section, we give a practical algorithm for gener-
ating all s,t-hyperpaths in a given hypergraph for a fixed
source s and sink t. In our later experimental results, we
use this algorithm on specific source-sink instances from
real cell-signaling networks to tractably measure how
close our heuristic is to optimal.

In general, the technique of inclusion and exclusion
of Hamacher and Queyranne [27] provides a widely-
applicable method for generating all the solutions to
any combinatorial optimization problem whose fea-
sible solutions are subsets of a ground set—where in
our context, hyperpaths are subsets of hyperedges
from a hypergraph—but it relies on the ability to effi-
ciently compute a feasible solution that is constrained
to include a given in-set and exclude a given out-set.
Interestingly, for hyperpaths, Carbonell et al. [20] have
shown that just determining whether an s,t-hyperpath
exists that contains a specified in-set of hyperedges
(regardless of the length of the hyperpath) is already
NP-complete. Consequently, we cannot generate all
s,t-hyperpaths using the standard inclusion-exclusion

�

Fig. 5 Hyperpath from the proof of optimality for singleton-tail
hypergraphs. Hyperedges inside the dashed circle have been
extracted from the heap; those outside have not. The next hyperedge
to be extracted is e, and P is a shortest s,e-hyperpath. The first
hyperedge of P not yet extracted is f, and Q is the prefix of P up
through f

Page 15 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

technique, as we cannot tractably solve the resulting
subproblem that has both in- and out-set constraints.

Instead, we generate all hyperpaths through a sim-
ple and practical algorithm that only involves out-sets,
given in Fig. 6. Function AllHyperpaths returns a
list of all s,t-hyperpaths in hypergraph G, leveraging
a function OneHyperpath that just has to return
one s,t-hyperpath P in G that does not contain any
hyperedges from set Out (so P ∩Out = ∅), or deter-
mine that no such hyperpath exists. This constrained
hyperpath problem with only out-sets is easy to solve:
remove all hyperedges in set Out from G, collect all
vertices R and hyperedges F reachable from s in this
reduced hypergraph, and if t ∈ R , then find any mini-
mal subset P ⊆ F in which t is still reachable from s;
otherwise if t ∈ R , no such hyperpath exists. Func-
tion OneHyperpath can efficiently find such an s,t-
hyperpath P excluding set Out using repeated calls
to ForwardReachable (given earlier in Fig. 2).

Function AllHyperpaths uses a queue of subprob-
lems. A subproblem is described by a pair (Out, Keep) ,
which corresponds to finding an s,t-hyperpath exclud-
ing Out, where any subsequent subproblems that arise
from this given subproblem must not exclude any

hyperedges from the set Keep (though their solutions
are not required to actually use edges from Keep). The
purpose of this set Keep is to ensure that all subprob-
lems ever placed on the queue have distinct Out sets.
(So any given subproblem described by an out-set is
only ever solved once, as argued in the later section
on the time complexity of the hyperpath enumeration
algorithm in the proof of Theorem 5.) A subproblem
that directly arises from a given one we call a child
subproblem (as the entire collection of subproblems
conceptually forms a tree that is explored breadth-first
using the queue). Each child subproblem excludes one
edge from the hyperpath found for its parent subprob-
lem; in this way, the children will generate hyperpaths
that are distinct from their parent hyperpath, if they
have a solution. (Once a subproblem becomes infea-
sible due to its out-set eliminating any s,t-hyperpath
as a solution, it also does not generate further sub-
problems.) Though the whole approach never repeat-
edly solves the same subproblem, in contrast to the
inclusion-exclusion technique it can generate the same
hyperpath from different subproblems, so we check
whether hyperpath P is distinct from those already
found before adding it to the list A of all hyperpaths.

function AllHyperpaths (s, t, G) begin • Generate all s, t-hyperpaths in G

Create queue Q • Initialize a queue of subproblems, and a set A of hyperpaths
Q.Put (∅, ∅)

)

A := ∅

while not Q.Empty() do begin • Process all subproblems on the queue
(Out, Keep) := Q.Get()

P := OneHyperpath(s, t, Out, G) • Find an s, t-hyperpath excluding edges in Out
if P �= ∅ and P A∈� then begin

A ∪ := {P •} Save the new hyperpath

K := Keep • Add all child subproblems to the queue
for e ∈ P with e �∈ Keep do begin

Q.Put (Out ∪ {e}, K)
)

• Children cannot exclude edges in Keep ...
K ∪ := {e •} ... or edges excluded by prior siblings

end
end

end

return •A Return the set A of all hyperpaths
end

Fig. 6 Generating all source-sink hyperpaths. Function AllHyperpaths, given source vertex s, sink vertex t, and hypergraph G, returns the set of
all s,t-hyperpaths in G. It calls a function OneHyperpath that returns an s,t-hyperpath not containing any hyperedge from a specified set Out, and
which returns the empty path if no such hyperpath exists

Page 16 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

We first prove this enumeration approach is correct,
and then analyze its time complexity.

Correctness of the hyperpath enumeration algorithm
We next show that function AllHyperpaths solves the
problem of source-sink hyperpath enumeration.

Theorem 4 (Correctness of hyperpath enumeration)
The hyperpath enumeration algorithm generates every s,t-
hyperpath exactly once.

Proof For the function AllHyperpaths (in Fig. 6),
we view the subproblems it processes as forming a
tree: when a problem p is pulled off queue Q and
causes a new subproblem q to be put onto Q, these
subproblems q comprise the children of p in the tree.
Each subproblem is specified by a pair (Out, Keep) ,
representing the problem of finding an s,t-hyperpath
that contains no hyperedge in the set Out. Let P be an
s,t-hyperpath satisfying this out-constraint for prob-
lem p. Any other s,t-hyperpath P̃ distinct from P that
also satisfies the out-constraint for p must not contain
some hyperedge in P. (If P̃ contains every hyperedge
of P yet is distinct, it is a strict superset of P, con-
tradicting minimality.) Function AllHyperpaths
forms the children of p by adding each hyperedge in P
to the out-set of p for a different child. (So the hyper-
paths satisfying the out-constraints of the children
are all hyperpaths that both satisfy the constraints of
parent p and are distinct from hyperpath P.) Conse-
quently hyperpath P, together with every solution to
the children of p, comprise all possible solutions to
problem p.

This tree-like process begins at the root with a problem
having an empty out-set (whose solutions are all possi-
ble s,t-hyperpaths), and continues refining each problem
into its children subproblems until reaching the leaves
(which have no solution). Thus the set consisting of each
hyperpath P found at the nodes of this tree contains all
s,t-hyperpaths.

In brief, function AllHyperpaths generates every
s,t-hyperpath. Since it checks for uniqueness, the enu-
meration algorithm generates every source-sink hyper-
path exactly once.

Time complexity of the hyperpath enumeration algorithm
We now bound the running time of function AllHy-
perpaths in terms of the number of subproblems it
solves, and parameters of the input hypergraph.

Theorem 5 (Time complexity of hyperpath enumer-
ation) The running time of the hyperpath enumeration

�

algorithm, when solving k subproblems on a hypergraph of
size ℓ with m hyperedges, is

Proof We bound the running time of function
AllHyperpaths (in Fig. 6) as follows. Solving a given
subproblem from the queue by function OneHyperpath
(which finds an s,t-hyperpath by iteratively removing
hyperedges from the hypergraph and testing reachability
to identify a minimal set in which t is still reachable from s),
involves at most m calls to function ForwardReachable.
A call to ForwardReachable takes O(ℓ) time (by
the analysis in the proof of Theorem 1), so solving a
subproblem takes O(ℓm) time. If AllHyperpaths
terminates after processing k subproblems, its total time
is then O(k ℓm).

We argue next that the out-sets of subproblems are all
distinct. Consider the tree of subproblems processed
by AllHyperpaths (as in the proof of Theorem 4), and
two arbitrary subproblems x and y in this tree. If one of x
and y is a descendant of the other, their out-sets are dis-
tinct, as a child always adds a hyperedge to the out-set of
its parent. If neither x nor y is a descendant of the other, let
subproblem u be their nearest common ancestor, subprob-
lems v and w be the children of u on the paths to x and y
respectively, and assume without loss of generality that
child v precedes child w. When child v adds hyperedge e to
the set Out of its parent u, edge e is not added to set Out
for any other children of u, and e is also added to set Keep
for all children of u following v, including w. Furthermore,
the set Out for a descendant is a superset of set Out for its
ancestors, and set Out for a descendant is always disjoint
from set Keep for its ancestors. Consequently, the above
hyperedge e is in the out-set of subproblem x but not sub-
problem y, so their out-sets are again distinct.

Since subproblem out-sets are distinct, k = O(2m) . Com-
bining this with the prior total time for hyperpath enumera-
tion yields a worst-case time bound of O(2m ℓm).

In practice, typically k ≪ 2m , so the running time is
much faster than the worst-case bound suggests. Func-
tion AllHyperpaths can tractably generate all source-
sink hyperpaths for large hypergraphs, as shown in the
next section on experimental results, since many of its
subproblems quickly become infeasible for real cell-sign-
aling networks.

Experimental results
We now present results from computational experiments
on real pathway databases that compare the hyperpath
found by our heuristic to the optimal solution. We also

O
(
k ℓm

)
= O

(
2m ℓm

)
.

�

Page 17 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

remark on the prevalence of biological instances with
cyclic shortest hyperpaths, study the cause of subopti-
mality in our heuristic, report actual running times, and
discuss biological examples of cyclic hyperpaths.

Datasets
We evaluate the quality of our heuristic on four data-
sets built by combining different annotated signaling
pathways from two pathway databases, NCI-PID and
Reactome. NCI-PID [28] is a curated human-pathway
database containing biochemical reactions for complex
assembly, cellular transport, and transcriptional regula-
tion. Reactome [29] also contains curated human sign-
aling pathways, and is actively maintained with new
reactions being continuously added. We constructed
hypergraphs from three subsets of NCI-PID pathways
used in Ritz et al. [5], named the Small, Medium, and
Large datasets. The Small dataset is a small Wnt sign-
aling pathway consisting of the union of two pathways:
“degradation of β-catenin” and “canonical Wnt signal-
ing”. The Medium dataset is a larger Wnt signaling path-
way including four additional pathways: “noncanonical
Wnt signaling”, “Wnt signaling network”, “regulation
of nuclear β-catenin”, and “presenilin action in Notch
and Wnt signaling”, which correspond to non-canonical
branches of Wnt signaling. The Large dataset contains
all NCI-PID pathways. Similarly, the Reactome dataset
is the union of all Reactome pathways. The NCI-PID and
Reactome pathways were downloaded in the BioPAX for-
mat [30] from Pathway Commons, and processed using
a parser from Franzese et al. [22] built on PaxTools [31].

To construct the hypergraphs for each dataset, we
mapped each entity (such as a protein, small molecule, and
so on) to a vertex in the hypergraph. Each complex was
represented as a unique vertex distinct from the entities
in the complex. Multiple forms of the same protein map
to different vertices denoting compartmentalization and
post-translational modifications, such as phosphorylation
and ubiquitination. We treated each variant as a distinct
entity because many pathways describe the transportation
of a protein from one cellular compartment to another, or
the marking of a protein for degradation by ubiquitina-
tion, necessitating that the corresponding vertices be dis-
tinct to reflect these variants. Each reaction was mapped
to a hyperedge, where the reactants and positive regula-
tors comprise the tail of the hyperedge, and the products
comprise the head. All hyperedges were given unit weight,
even though the heuristic handles weighted edges, as NCI-
PID is missing reaction rates for some reactions.

Table 1 gives statistics on the hypergraphs constructed
from each of the four datasets. The hypergraphs are very
sparse: there are fewer hyperedges than vertices in all
four datasets, with Reactome being even sparser than

the NCI-PID datasets. The hypergraphs from the Large
and Reactome datasets contain respectively 40 and 433
self-loops, showing that many cyclic hyperpaths are likely
to exist. However, a small number of these self-loops are
unreachable, due to an otherwise unreachable vertex appear-
ing in both the head and tail of the hyperedge. The sources
and targets used in all our experiments are respectively ver-
tices with no in-edges (or vertices whose only in-edge is an
unreachable self-loop), and vertices with no out-edges. The
number of forward-reachable, backward-traceable, and
doubly-reachable hyperedges shows how many hyperedges
remain after the heuristic prunes the input hypergraph to
the doubly-reachable subgraph before computing a solution.
On average, hyperedges from all four hypergraphs have small
head and tail sets, and vertices have low in- and out-degree,
reflecting the sparseness of the hypergraphs.

Experimental setup
To prepare the hypergraphs from each dataset for our
experiments, we parsed the union of the pathways in the
dataset. We connected a supersource s to all source ver-
tices—namely, the input vertices with no in-edges—by a
single zero-weight hyperedge whose tail consisted of the
supersource s and whose head contained all the source
vertices. We also included in the head of this hyperedge
from supersource s all input vertices whose sole in-edge
was a self-loop, since otherwise such a self-loop was not
traversable. For each specific target vertex v—namely,
each input vertex with no out-edges—we had a sepa-
rate version of the hypergraph that differed only by con-
necting this target v to a sink t by a single zero-weight
ordinary-graph edge directed from v to t, giving us a
specific target instance. Note that these choices for the
source and target vertices are reasonable, as they are the
molecules where biologists stopped annotating a given
pathway. Note also that the supersource s and the sink t
remain the same across all target instances in a dataset.

For each target instance, we trimmed the hypergraph
to the doubly-reachable set: the set of hyperedges that
were both forward-reachable from supersource s, and
backward-traceable from sink t. Table 1 gives the aver-
age and maximum size of the forward-reachable, back-
ward-traceable, and doubly-reachable sets over all target
instances for a given dataset, which dramatically reduces
the size of the hypergraph over which the heuristic per-
forms most of its computation.

For each target instance, we found a hyperpath from
supersource s to sink t using our shortest hyperpath
heuristic implemented in the new tool Hhugin [25],
and compared its length to the solution of the MILP
of Ritz et al. [21] if the heuristic hyperpath was acyclic.
For each cyclic target instance where the heuristic out-
put a cyclic hyperpath, we exhaustively enumerated all

Page 18 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

s,t-hyperpaths, and compared the heuristic hyperpath to
the shortest hyperpath found by this enumeration. (Enu-
merating all s,t-hyperpaths for one source-sink instance
takes on average around 20 hours in practice—so it is not
feasible to perform this enumeration on all acyclic target
instances.)

Abundance of cyclic hyperpaths
Cyclic shortest hyperpaths appear in all four datasets. To
take just one example, in the Small and Medium data-
sets, the only hyperpath from ubiquitinated β-catenin
to APC is cyclic, so for this target instance the acyclic
shortest-hyperpath MILP fails to find a solution. Admit-
tedly this particular source-target pair is specially chosen,
as ubiquitinated β-catenin has an in-edge and APC has
an out-edge so they would not normally be considered
under our definition of sources and targets. Nevertheless,
this pair demonstrates there do exist cyclic hyperpaths
in the NCI-PID database—even in the union of just two
pathways—that are missed by the current state-of-the-art
when computing only acyclic shortest hyperpaths.

In the Large dataset, 38 target instances have cyclic
heuristic hyperpaths. Of these, 22 were cyclic because
of a self-loop, and 16 were cyclic due to a non-trivial
cycle. For all these instances, no acyclic hyperpath exists
between supersource s and sink t. It is likely that even
more cycles exist within the hypergraph from the Large
dataset, as there were 8 self-loops that were not on any
hyperpath found by the heuristic.

In the Reactome dataset, the heuristic found a cyclic
shortest hyperpath on 22 target instances, and only one

of these instances was cyclic due to a self-loop. In gen-
eral, Reactome is much sparser than NCI-PID, and 432 of
the 433 self-loops in Reactome are never used in a heu-
ristic hyperpath.

The abundance of cyclic hyperpaths in the NCI-PID
and Reactome datasets demonstrates the importance
of a shortest hyperpath algorithm that properly han-
dles cycles. We discuss concrete examples of biological
cyclic shortest hyperpaths in a later section on biological
examples.

Quality of the hyperpath heuristic
To determine the quality of our hyperpath heuristic,
we compared the length of the heuristic hyperpath to
an optimal shortest hyperpath. In general, no practical
exact algorithm is currently known for finding a short-
est source-sink hyperpath. Consequently, on the target
instances where the heuristic found a cyclic hyperpath,
we determined the optimum by generating all source-
sink hyperpaths and retaining the shortest one, using
our algorithm for hyperpath enumeration. On the target
instances where the heuristic found an acyclic hyperpath,
we compared its length just to the optimal hyperpath
returned by the MILP for shortest acyclic hyperpaths. An
even shorter cyclic hyperpath could exist for these latter
instances, but finding it by enumerating all hyperpaths is
simply too time-consuming to carry out for every such
instance.

Table 2 summarizes the quality of the heuristic on
acyclic instances. On the Small, Medium, and Reac-
tome datasets, the heuristic hyperpath is optimal on all

Table 1 Dataset Summaries

NCI-PID

Measure Small Medium Large Reactome

Vertices 56 350 9,009 20,458

Hyperedges 36 228 8,456 11,802

Pathways 2 6 213 2,516

Sources 19 138 3,200 8,296

Targets 10 102 2,636 5,066

Self-loops 1 8 40 433

Unreachable self-loops 1 7 14 32

mean max mean max mean max mean max

Tail size 1.8 3 1.9 5 1.9 10 2.4 26

Head size 1.3 3 1.3 4 1.1 5 1.6 28

Forward-reachable set 35 35 192 192 6,169 6,169 4,645 4,645

Backward-traceable set 28 28 49 70 1,198 2,863 4,027 7,021

Doubly-reachable set 27 27 42 60 756 1,836 929 1,725

In-degree 0.8 5 0.8 15 1.0 323 0.9 1,056

Out-degree 1.1 4 1.2 24 1.7 326 1.4 1,167

Page 19 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

target instances, meaning the heuristic hyperpath and the
shortest acyclic hyperpath from the MILP have the same
length. On the Large dataset, the heuristic is optimal on
over 99% of the instances, demonstrating the quality of
the heuristic on these biological datasets. The small frac-
tion of instances where our heuristic was suboptimal are
discussed in more detail in the next subsection.

Table 3 summarizes the quality of the heuristic on
instances where it output a cyclic hyperpath. On all these
cyclic instances, the acyclic MILP failed to find a solu-
tion, so we could not compare the heuristic to an optimal
hyperpath other than by exhaustively enumerating all
hyperpaths and picking the shortest one—which verified
that the heuristic on these instances in fact found an opti-
mal solution. Cyclic instances from the Reactome (and
Large) datasets contain many distinct hyperpaths, with
a median of 22 (respectively 3) hyperpaths, and a maxi-
mum of 136 (respectively 364) hyperpaths. The hyper-
paths tend to vary in length, with a maximum difference
between the length of the longest and shortest hyperpath
of 15 (respectively 43) hyperedges, and a median dif-
ference of [2, 3] (respectively 1) hyperedges. This dem-
onstrates that the heuristic is discriminating between
hyperpaths of different lengths and choosing the best
hyperpath over worse hyperpaths, further indicating the
quality of the heuristic. In every cyclic target instance, all
s,t-hyperpaths were cyclic, and many shared a common
cycle; most of the hyperedges occurring in one hyperpath
but not another appeared outside this shared cycle.

Studying the suboptimality of the heuristic
We call the small number of target instances in these
experiments where the heuristic found a known subopti-
mal hyperpath its suboptimal instances. Table 4 summa-
rizes these 23 suboptimal instances, which are all from
the Large NCI-PID dataset, and are all acyclic instances.
(The heuristic was optimal on all cyclic instances, and all
Reactome, Small, and Medium instances. We men-
tion as well that the maximum values across the table
occur in distinct target instances.) To gain insight into
why the heuristic found a suboptimal solution on these
instances, we enumerated all source-sink hyperpaths for
every suboptimal instance. (This enumeration also veri-
fied that on all suboptimal instances, the acyclic MILP in
fact found a shortest hyperpath, as there was no shorter
cyclic hyperpath.)

Hyperpath enumeration confirmed that these subopti-
mal instances are much harder than the cyclic instances.
The median number of hyperpaths is nearly 140 times
higher for suboptimal NCI-PID instances compared
to cyclic NCI-PID instances, and the length difference
between the longest and shortest hyperpaths is 30 times
larger. This stark contrast indicates the inherent difficulty

of these suboptimal instances, where the heuristic must
now discriminate among a much higher number of
hyperpaths that have much greater path-length variance.
The fraction of all hyperpaths that are optimal is fairly
small, with only around 3% being optimal for the median
instance. Even faced with many alternate solutions, the
heuristic still found a hyperpath that was nearly optimal:
the median difference between the length of the heuris-
tic hyperpath and the shortest hyperpath was 1 hyper-
edge, the maximum difference was 6 hyperedges, and
the median ratio of the length of the heuristic hyperpath
to the shortest hyperpath was 1.1 (so it was only 10%
longer). Next we investigate what could be causing this
suboptimality.

The suboptimality of the heuristic is likely coming from
the repeated calls to the function RecoverShortHy-
perpath, which proceeds in two phases. In phase (I),
this function recovers an s,e-superpath S, relying on in-
edge lists to hyperedges f, where the in-edge list for f con-
tains only hyperedges removed from the heap prior to f,
which may exclude hyperedges in a shortest s,e-hyper-
path. In phase (II), this function trims superpath S to a
hyperpath by greedily considering hyperedges in S for
removal, which may also remove a hyperedge in an opti-
mal s,e-hyperpath.

To determine whether the recover or trim phases were
responsible for suboptimality, we ran the following exper-
iment. After the heuristic determined its estimated path
length for every hyperedge in the hypergraph, we called
RecoverShortHyperpath on each in-edge to the tar-
get where we ran its recovery phase but stopped before
its trimming phase, and unioned together the resulting
s,t-superpaths from each in-edge to create one large s,t-
superpath F. We then took an optimal s,t-hyperpath P
and examined whether P ⊆ F : in other words, whether
the recovery phase permitted the heuristic to potentially
find an optimal hyperpath. We discovered that for all
23 suboptimal instances P ⊆ F , indicating phase (I) of
RecoverShortHyperpath that recovers an s,e-super-
path was forcing the heuristic to be suboptimal on every
instance.

On the other hand the trimming phase of Recov-
erShortHyperpath could also be leading to

Table 2 Acyclic Instance Summaries

NCI-PID

Measure Small Medium Large Reactome

Target instances 10 102 2,636 5,066

Reachable instances 10 90 2,220 2,432

Acyclic instances 9 89 2,182 2,410

Heuristic was optimal 100% (9) 100% (89) 99% (2,159) 100% (2,410)

Page 20 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

suboptimality, which we investigated as follows. For each
suboptimal instance, we modified the recovery phase
of RecoverShortHyperpath to use all in-edges in
the hypergraph to each hyperedge, rather than the in-
edge lists collected by the heuristic. (In this situation,
the recovered superpath F definitely contains a shortest
hyperpath P.) Phase (II) then trimmed this superpath as
normal. We discovered that the trimming phase often
fails to find a shortest hyperpath within this larger super-
path (which was the entire doubly-reachable subgraph).
This indicates that while phase (I) is definitely caus-
ing suboptimality, simply changing phase (I) to recover
a larger superpath may in turn lead to suboptimality in
phase (II).

Implementation and running time
The heuristic is implemented in Python 2.7.3, compris-
ing around 500 lines of code. The parser used to convert
the BioPAX format into hypergraphs is from [22]. For
directed hypergraph representation and reachability we
used Halp (github.com/Murali-group/halp/).
All heuristic and hyperpath enumeration source code is
available at http://hhugin.cs.arizona.edu.

Experiments were run on a laptop with a 2.9 GHz Intel
Core i5 CPU, and 16 GB of RAM. The running time of
the hyperpath heuristic was 55 seconds on average for
the instances from the Large and Reactome datasets,
which have just under 1000 doubly-reachable hyperedges
on average. Memory usage was low, with the heuristic
using less than 2 GB of memory.

Enumerating all hyperpaths for the instances is time-
consuming, taking 20.4 hours on average for the subopti-
mal instances with a maximum time of 53.8 hours, which
is not practical to carry out for all 4600 target instances.

Biological examples
We now discuss three instances with cyclic shortest
hyperpaths from the Large and Reactome datasets.
The hyperpath found by our heuristic for these three
instances is optimal (as was the case for all instances
where the heuristic found a cyclic path), and is drawn in
Figs. 7, 8, and 9. We describe the hypergraph structure
and constituent reactions for each instance.

Assembly of the JUP/DSP complex The first example
captures the assembly of the JUP/DSP complex from the
Large dataset. Figure 7 shows the shortest hyperpath
returned by our heuristic with the JUP/DSP complex as
the target. All vertices at the top of the figure are con-
nected to the supersource.

This hyperpath includes seven hyperedges from four
different NCI-PID pathways: “E-cadherin signaling in
the nascent adherens junction” (hyperedges e1 and e5),
“Posttranslational regulation of adherens junction sta-
bility and dissassembly” (hyperedges e2 , e6 and e7),
“Signaling events mediated by PRL” (hyperedge e3),

Table 3 Cyclic Instance Summaries

∗Total number of hyperpaths for a cyclic target instance
†Difference between the length of the longest and shortest hyperpaths

Measure NCI-PID

Small Medium Large Reactome

Target instances 10 102 2,636 5,066

Reachable instances 10 90 2,220 2,432

Cyclic instances 1 1 38 22

Heuristic was optimal 100% 100% 100% 100%

Non-trivial cycles 1 1 22 21

median max median max median max median max

Number of hyperpaths∗ 1 1 1 1 3 364 22 136

Path length range† 0 0 0 0 1 43 [2,3] 15

Table 4 Suboptimal Instance Summaries

∗Total number of hyperpaths for a target instance
†Difference between the length of the longest and shortest hyperpaths

Suboptimal instances Reactome 0 / 2,432
NCI-PID 23 / 2,220

median max

Number of hyperpaths* 418 1,470

Path length range† 30 50

Heuristic path-length difference 1 6

Heuristic path-length ratio 1.1 1.3

Number of shortest hyperpaths 7 110

Fraction of shortest hyperpaths 3.1% 26.7%

Page 21 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

and “Signaling events mediated by hepatocyte growth
factor receptor (c-Met)” (hyperedge e4). We briefly
describe the key events in this hyperpath. Protein
γ-catenin (also known as junction plakoglobin or JUP)
is initially complexed with Cadherin 1 (CDH1) in the
tail of hyperedge e1 . In hyperedge e2 , the metallopro-
tease meprinβ cleaves E-cadherin (CDH1), releas-
ing it from its complex with α-catenin (CTNNA1) and
δ-catenin (CTNND1) [32]. The CDH1/JUP complex adds
α-catenin (CTNNA1 in hyperedge e1) and CTNND1
and Ca2+ (in hyperedge e5) to form a five-member com-
plex. Hepatocyte growth factor (HGF) activates the
proto-oncogene tyrosine-protein kinase Src (hyper-
edge e4) [33]. Src regulates the breakup of this complex
into its individual components [34] (hyperedge e6), free-
ing JUP to bind with DSP and creating the two cycles in
this hyperpath via CTNNA1 and CTNNB1. The hyper-
path culminates in the formation of a complex between
desmoplasmin (DSP) and JUP.

The hypergraph for this instance is large, with
6168 forward-reachable hyperedges, 2642 backward-
traceable hyperedges, and 1665 doubly-reachable
hyperedges. There is no acyclic hyperpath from the
supersource to JUP/DSP. When enumerating all s,t-
hyperpaths for this instance, there were 16 alternate
hyperpaths, and the longest hyperpath had 3 more
hyperedges than the heuristic path, which was verified
to be optimal.

Phosphorylation of p53 The second example captures
the phosphorylation of p53 by NUAK1 (ARK5) from
the Reactome dataset. The heuristic hyperpath, which
is optimal, is shown in Fig. 8. All of the vertices at the
top are connected to the supersource.

Hyperedge e1 shows the complex formation of
FOXO3 and FOXO4 with the STK11 gene, allowing for
the transcription of the gene in hyperedge e2 . Hyper-
edges e3 and e4 deal with the transcription of protein
p53 (TP53), and its formation into a homotetramer.
The p53 tetramer then forms a complex with NUAK1
(ARK5) and STK11 in hyperedge e5 , allowing for the
phosphorylation of NUAK1 via ATP in hyperedge e6 .
Once NUAK1 is phosphorylated, it directly phospho-
rylates p53 [35], activating it and allowing it to assist
in DNA damage repair. The final hyperedge e7 , shown
in red, breaks apart the p53 tetramer/NUAK1/STK11
complex, resulting in a cycle of free STK11. This hyper-
path features two transcriptional hyperedges e2 and e3 ,
shown dotted.

This example from Reactome is slightly smaller than
the example from the Large dataset, with only 4645
forward-reachable edges, 7021 backward-traceable
edges, and 1632 hyperedges in the doubly-reachable
set. There was no acyclic hyperpath for this instance. In
contrast to the first example, no alternate hyperpaths to
the target exist in the hypergraph.

Fig. 7 Cyclic shortest hyperpath to the JUP/DSP complex in the Large dataset. All vertices in the hyperpath connected to the supersource
are shown at the top of the figure. The hyperedges in this hyperpath come from four different pathways, and show the different complexes JUP
participates in until finally being free to bind with desmoplakin (DSP). Positive regulators of reactions are shown by dashed lines ending in a disc.
Hyperedges e1 , e5 , and e6 , shown in red, create two separate cycles back to α-catenin and δ-catenin

Page 22 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

HEY2/ARNT complex assembly The final example we
discuss is the formation of the HEY2/ARNT complex
from the Large dataset. The shortest hyperpath from
the supersource to HEY2/ARNT, which was found by
the heuristic, is shown in Fig. 9. Once again, the sources
are at the top of the figure, with the hyperedge from the
supersource not shown.

This hyperpath with eleven edges spans three path-
ways: “Notch signaling pathway” (hyperdges e1–e7),
“Hypoxic and oxygen homeostasis regulation of HIF-
1-α ” (hyperedges e9, e10), and “Notch-mediated HES/
HEY network” (hyperedges e8, e11). Hypoxia-inducible
factor 1 (HIF-1) is a heterodimeric transcription fac-
tor that regulates genes that are induced by hypoxia
[36]. It is a complex of HIF-1α (HIF1A) and HIF-1β

(aryl hydrocarbon receptor nuclear translocator or
ARNT). “Hairy/enhancer-of-split related with YRPW
motif protein 2” (HEY2) is a transcriptional repressor
[37] that physically interacts with ARNT (hyperedge
e11). The hyperdges e9 and e11 show a pair of reactions
where HIF1 is formed and then repressed by HEY2.
Hyperedges e1–e7 capture events in the Notch signaling
pathway that occur upstream of the formation of the
transcriptional activator formed by the complex of the
nuclear protein “Recombining binding protein suppres-
sor of hairless” (RBPJ) and Notch intracellular domain
(NICD). The expression of protein HEY2 is up-regu-
lated by the NICD/RBPJ complex [38].

This signaling hypergraph was markedly smaller than
the other two examples. The hypergraph had 6169

Fig. 8 Cyclic shortest hyperpath to phosphorylated p53 in the Reactome dataset. All vertices in the hyperpath connected to the supersource are
shown at the top of the figure. The hyperedges in this hyperpath show the transcription of STK11 and p53 (TP53) before NUAK1 (ARK5) participates
in the phosphorylation of the p53 tetramer. Hyperedges e5 , e6 , and e7 , shown in red, create a cycle when the phosphorylation of p53 breaks up a
complex, returning STK11 to its solitary state. Hyperedges e2 and e3 show transcription, and are drawn dotted

Fig. 9 Cyclic shortest hyperpath to the HEY2/ARNT complex in the Large dataset. All vertices from the hyperpath connected to the supersource
are shown at the top of the figure. Positive regulators of reactions are shown by dashed lines ending in a disc. The eleven hyperedges span three
different NCI-PID pathways, and show the events upstream of HEY2 transcription, ultimately culminating in its repression of ARNT. The cycle
between hyperedges e9 and e11 , shown in red in the figure, recreates nuclear HIF1A. Edge e8 , shown dotted, is a template reaction, where the
NOTCH1/RBPJ complex upregulates the transcription of the protein HEY2

Page 23 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

forward-reachable hyperedges, but only 23 hyperedges
were backward-traceable, hence only 23 hyperedges
were doubly-reachable, due to the poor connectivity
of the HEY2/ARNT complex to other vertices in the
graph. Even though the hypergraph is small, the hyper-
path shown is not the only shortest hyperpath to the
target, as e2 and e3 can be replaced by hyperedges con-
taining Jagged2 instead of Jagged1.

Conclusions
We have presented the first heuristic for Shortest Hyper-
paths in general directed hypergraphs with positive edge
weights, where the length of a hyperpath is the sum of the
weights of its hyperedges. The heuristic handles cycles, is
guaranteed to be efficient, finds optimal hyperpaths for sin-
gleton-tail hypergraphs, and is highly accurate in practice. It
matches the state-of-the-art mixed-integer linear program
for shortest acyclic hyperpaths on over 99% of all instances
from the NCI-PID and Reactome databases, and surpasses
the state-of-the-art on all instances where no acyclic hyper-
path exists. Moreover, exhaustively enumerating all source-
sink hyperpaths using our hyperpath enumeration algorithm
demonstrates that on every cyclic instance from these data-
bases, the heuristic was provably optimal.

Further research
Given that we can quickly find hyperpaths that are close to
optimal in real cell-signaling hypergraphs, several research
directions beckon. While the inapproximability of Short-
est Hyperpaths [16] rules out a constant-factor approxima-
tion unless P=NP , is there an approximation algorithm
whose approximation ratio on hypergraphs with n vertices
matches the theoretical lower bound of ln n ? More practi-
cally, given that in our experiments our heuristic was sub-
optimal only on acyclic instances, is there a fast method for
acyclic hyperpaths that outperforms our heuristic? Since a
user would like to know how close to optimal a computed
hyperpath is for their particular input graph, is there an effi-
cient heuristic that, as well as giving an upper bound on the
optimum through its hyperpath, also outputs a lower bound
on the length of the shortest hyperpath? Many intriguing
research avenues are open.

Acknowledgements
We especially wish to thank T.M. Murali for introducing us to the problem of
shortest hyperpaths in cell-signaling hypergraphs, for orienting us to the biol-
ogy literature, and for discussing the JUP/DSP biological example. In addition,
we thank Anna Ritz for discussing the NCI-PID and Reactome datasets, and for
providing the BioPax parser. We also thank the anonymous reviewers for their
helpful comments.

This paper is an extended journal version of a prior conference paper by the
coauthors [39].

Author contributions
SK and JK designed and analyzed the hyperpath heuristic and hyperpath enu-
meration algorithm. SK implemented the hyperpath heuristic and hyperpath

enumeration algorithm, and performed all experiments. All authors read and
approved the final manuscript.

Funding
This research was supported by the US National Science Foundation through
grants CCF-1617192 and IIS-2041613 to JK.

Availability of data and materials
Source code for the hyperpath heuristic and the hyperpath enumeration
algorithm, as well as the hypergraphs from the parsed Reactome, Small,
Medium, and Large datasets, is available free for non-commercial use at
http://hhugin.cs.arizona.edu.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 10 January 2022 Accepted: 1 February 2022
Published: 26 May 2022

References
 1. Li Y, McGrail DJ, Latysheva N, Yi S, Babu MM, Sahni N. Pathway perturba-

tions in signaling networks: linking genotype to phenotype. Semin Cell
Dev Biol. 2020;99:3–11.

 2. Sharan R, Ideker T. Modeling cellular machinery through biological net-
work comparison. Nat Biotechnol. 2006;24(4):427–33.

 3. Vidal M, Cusick ME, Barabási A-L. Interactome networks and human
disease. Cell. 2011;144(6):986–98.

 4. Klamt S, Haus U-U, Theis F. Hypergraphs and cellular networks. PLoS
Comput Biol. 2009;5(5):1000385.

 5. Ritz A, Tegge AN, Kim H, Poirel CL, Murali TM. Signaling hypergraphs.
Trends Biotechnol. 2014;32(7):356–62.

 6. Ramadan E, Tarafdar A, Pothen A. A hypergraph model for the yeast
protein complex network. In: Proceedings of the 18th Parallel and Distrib-
uted Processing Symposium. 2004. p. 189–196.

 7. Hu Z, Mellor J, Wu J, Kanehisa M, Stuart JM, DeLisi C. Towards zoomable
multidimensional maps of the cell. Nat Biotechnol. 2007;25(5):547–54.

 8. Christensen TS, Oliveira AP, Nielsen J. Reconstruction and logical
modeling of glucose repression signaling pathways in Saccharomyces
cerevisiae. BMC Syst Biol. 2009;3(1):7.

 9. Heath LS, Sioson AA. Semantics of multimodal network models. IEEE/
ACM Trans Computat Biol Bioinform. 2009;6(2):271–80.

 10. Ramadan E, Perincheri S, Tuck D. A hyper-graph approach for analyzing
transcriptional networks in breast cancer. In: Proceedings of the 1st ACM
Conference on Bioinformatics and Computational Biology (ACM-BCB).
2010:556–562.

 11. Zhou W, Nakhleh L. Properties of metabolic graphs: biological organiza-
tion or representation artifacts? BMC Bioinform. 2011;12(1):132.

 12. Ritz A, Murali TM. Pathway analysis with signaling hypergraphs. In: Pro-
ceedings of the 5th ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics (ACM-BCB). 2014. p. 249–258.

 13. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biol-
ogy of the Cell. New York: Garland Science; 2007.

 14. Italiano GF, Nanni U. Online maintenance of minimal directed hyper-
graphs. Technical Report, Department of Computer Science, Columbia
University. 1989.

 15. Gallo G, Longo G, Pallottino S, Nguyen S. Directed hypergraphs and
applications. Discret Appl Math. 1993;42(2–3):177–201.

 16. Ausiello G, Laura L. Directed hypergraphs: introduction and fundamental
algorithms—a survey. Theor Comput Sci. 2017;658:293–306.

Page 24 of 24Krieger and Kececioglu Algorithms for Molecular Biology (2022) 17:12

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 17. Cottret L, Vieira Milreu P, Acuña V, Marchetti-Spaccamela A, Viduani
Martinez F, Sagot M-F, Stougie L. Enumerating precursor sets of target
metabolites in a metabolic network. In: Proceedings of the 8th Workshop
on Algorithms in Bioinformatics (WABI). 2008. p. 233–244.

 18. Acuña V, Milreu PV, Cottret L, Marchetti-Spaccamela A, Stougie L,
Sagot M-F. Algorithms and complexity of enumerating minimal
precursor sets in genome-wide metabolic networks. Bioinformatics.
2012;28(19):2474–83.

 19. Andrade R, Wannagat M, Klein CC, Acuña V, Marchetti-Spaccamela A,
Milreu PV, Stougie L, Sagot M-F. Enumeration of minimal stoichiometric
precursor sets in metabolic networks. Algorithm Mol Biol. 2016;11(1):25.

 20. Carbonell P, Fichera D, Pandit SB, Faulon J-L. Enumerating metabolic
pathways for the production of heterologous target chemicals in chassis
organisms. BMC Syst Biol. 2012;6(1):10.

 21. Ritz A, Avent B, Murali TM. Pathway analysis with signaling hypergraphs.
IEEE/ACM Trans Comput Biol Bioinform. 2017;14(5):1042–55.

 22. Franzese N, Groce A, Murali TM, Ritz A. Hypergraph-based connectiv-
ity measures for signaling pathway topologies. PLoS Comput Biol.
2019;15(10):1–26.

 23. Schwob MR, Zhan J, Dempsey A. Modeling cell communication with
time-dependent signaling hypergraphs. IEEE/ACM Trans Comput Biol
Bioinform. 2021;18(3):1151–63.

 24. Nielsen LR, Pretolani D. A remark on the definition of a B-hyperpath. Tech-
nical Report, Department of Operations Research, University of Aarhus.
2001.

 25. Krieger S, Kececioglu J. Hhugin: hypergraph heuristic for general short-
est source-sink hyperpaths, version 1.0. 2021 http:// hhugin. cs. arizo na. edu

 26. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms.
3rd ed. Cambridge, Massachusetts: MIT Press; 2009.

 27. Hamacher HW, Queyranne M. K best solutions to combinatorial optimiza-
tion problems. Annal Oper Res. 1985;4:123–43.

 28. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH.
PID: the pathway interaction database. Nucl Acids Res. 2009;37:674–9.

 29. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono
B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L.
Reactome: a knowledgebase of biological pathways. Nucl Acids Res.
2005;33:428–32.

 30. Demir E, Cary MP, Paley S, et al. The BioPAX community standard for
pathway data sharing. Nat Biotechnol. 2010;28(9):935–42.

 31. Demir E, Babur Ö, Rodchenkov I, Aksoy BA, Fukuda KI, Gross B, Sümer OS,
Bader GD, Sander C. Using biological pathway data with Paxtools. PLoS
Comput Biol. 2013;9(9):1003194.

 32. Huguenin M, Müller EJ, Trachsel-Rösmann S, Oneda B, Ambort D, Sterchi
EE, Lottaz D. The metalloprotease meprinbeta processes E-cadherin and
weakens intercellular adhesion. PLoS One. 2008;3(5):2153.

 33. Palacios F, Tushir JS, Fujita Y, D’Souza-Schorey C. Lysosomal targeting of
E-cadherin: a unique mechanism for the down-regulation of cell-cell
adhesion during epithelial to mesenchymal transitions. Mol Cell Biol.
2005;25(1):389–402.

 34. Miravet S, Piedra J, Castaño J, Raurell I, Francì C, Duñach M, García de
Herreros A. Tyrosine phosphorylation of plakoglobin causes contrary
effects on its association with desmosomes and adherens junction com-
ponents and modulates β-catenin-mediated transcription. Mol Cell Biol.
2003;23(20):7391–402.

 35. Hou X, Liu J-E, Liu W, Liu C-Y, Liu Z-Y, Sun Z-Y. A new role of NUAK1:
directly phosphorylating p53 and regulating cell proliferation. Oncogene.
2011;30(26):2933–42.

 36. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL. Dimerization, DNA bind-
ing, and transactivation properties of hypoxia-inducible factor 1. J Biol
Chem. 1996;271(30):17771–8.

 37. Chin MT, Maemura K, Fukumoto S, Jain MK, Layne MD, Watanabe M,
Hsieh CM, Lee ME. Cardiovascular basic helix loop helix factor 1, a novel
transcriptional repressor expressed preferentially in the developing and
adult cardiovascular system. J Biol Chem. 2000;275(9):6381–7.

 38. Iso T, Chung G, Hamamori Y, Kedes L. HERP1 is a cell type-specific primary
target of Notch. J Biol Chem. 2002;277(8):6598–607.

 39. Krieger S, Kececioglu J. Fast approximate shortest hyperpaths for inferring
pathways in cell signaling hypergraphs. In: Proceedings of the 21st ISCB
Workshop on Algorithms in Bioinformatics (WABI). Leibniz International
Proceedings in Informatics, vol 201. 2021. p. 1–20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://hhugin.cs.arizona.edu

	Heuristic shortest hyperpaths in cell signaling hypergraphs
	Abstract
	Background:
	Results:
	Conclusions:
	Availability:

	Background
	Related work
	Our contributions
	Plan of the paper

	Shortest hyperpaths in directed hypergraphs
	An efficient shortest hyperpath heuristic
	Time complexity of the heuristic
	Feasibility of the heuristic
	Optimality of the heuristic for singleton-tail hypergraphs

	Generating all source-sink hyperpaths
	Correctness of the hyperpath enumeration algorithm
	Time complexity of the hyperpath enumeration algorithm

	Experimental results
	Datasets
	Experimental setup
	Abundance of cyclic hyperpaths
	Quality of the hyperpath heuristic
	Studying the suboptimality of the heuristic
	Implementation and running time
	Biological examples

	Conclusions
	Further research

	Acknowledgements
	References

