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Abstract 

Background: Cell signaling pathways, which are a series of reactions that start at receptors and end at transcription 
factors, are basic to systems biology. Properly modeling the reactions in such pathways requires directed hypergraphs, 
where an edge is now directed between two sets of vertices. Inferring a pathway by the most parsimonious series 
of reactions corresponds to finding a shortest hyperpath in a directed hypergraph, which is NP-complete. The current 
state-of-the-art for shortest hyperpaths in cell signaling hypergraphs solves a mixed-integer linear program to find an 
optimal hyperpath that is restricted to be acyclic, and offers no efficiency guarantees.

Results: We present, for the first time, a heuristic for general shortest hyperpaths that properly handles cycles, and 
is guaranteed to be efficient. We show the heuristic finds provably optimal hyperpaths for the class of singleton-tail 
hypergraphs, and also give a practical algorithm for tractably generating all source-sink hyperpaths. The accuracy of 
the heuristic is demonstrated through comprehensive experiments on all source-sink instances from the standard 
NCI-PID and Reactome pathway databases, which show it finds a hyperpath that matches the state-of-the-art mixed-
integer linear program on over 99% of all instances that are acyclic. On instances where only cyclic hyperpaths exist, 
the heuristic surpasses the state-of-the-art, which finds no solution; on every such cyclic instance, enumerating all 
source-sink hyperpaths shows the solution found by the heuristic was in fact optimal.

Conclusions: The new shortest hyperpath heuristic is both fast and accurate. This makes finding source-sink hyper-
paths, which in general may contain cycles, now practical for real cell signaling networks.

Availability: Source code for the hyperpath heuristic in a new tool we call Hhugin (as well as for hyperpath enu-
meration, and all dataset instances) is available free for non-commercial use at http://hhugin.cs.arizona.
edu.

Keywords: Systems biology, cell signaling networks, reaction pathways, directed hypergraphs, shortest hyperpaths, 
efficient heuristics, hyperpath enumeration
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Background
Cell signaling pathways are cornerstones of molecular 
and cellular biology. They underly cellular communica-
tion, govern environmental response, and their pertur-
bation has been implicated in the cause of many diseases 
[1]. While signaling pathways have classically been 

modeled as ordinary graphs, using directed or undirected 
edges to link pairs of interacting molecules   [2, 3], both 
Klamt, Haus and Theis [4] and Ritz, Tegge, Kim, Poirel 
and Murali  [5] have shown that ordinary graphs cannot 
adequately represent cellular activity that involves the 
assembly and disassembly of protein complexes, or mul-
tiway reactions among such complexes.

Directed hypergraphs are generalizations of ordinary 
graphs where an edge, now called a hyperedge, is directed 
from one set of vertices, called its tail, to another set of 
vertices, called its head. Hypergraphs have been used 
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to model many cellular processes   [4–12]. In particular, 
a biochemical reaction that involves multiple reactants, 
all of which must be present for the reaction to proceed, 
and that results in multiple products, all of which are 
produced upon its completion, is correctly captured by 
a single hyperedge directed from its set of reactants to 
its set of products. Despite hypergraphs affording more 
faithful models of reaction networks, the lack of practi-
cal hypergraph algorithms has hindered their potential 
for properly representing and reasoning about molecular 
reactions.

Biologically, a typical cell-signaling pathway consists 
of membrane-bound receptors that bind to extracellular 
ligands, triggering intracellular cascades of reactions, cul-
minating in the activation of transcriptional regulators 
and factors   [13]. Computationally, treating receptors as 
sources, and transcription factors as targets, finding the 
most efficient way to synthesize a particular transcription 
factor from a set of receptors maps to the shortest hyper-
path problem we consider here: Given a cell-signaling 
network whose reactants and reactions are modeled by 
the vertices and weighted hyperedges of a directed hyper-
graph, together with a set of sources and a target, find a 
hyperpath consisting of hyperedges from the sources to 
the target of minimum total weight. We briefly summa-
rize prior work on related problems next.

Related work
Hypergraphs have been studied in the algorithms com-
munity [14–16], and applied within systems biology to 
metabolic networks  [17–20] and cell-signaling networks  
[12, 21–23].

In the field of algorithms, Italiano and Nanni [14] first 
proved that finding a shortest source-sink hyperpath is 
NP-complete, even when hyperedges have a single head 
vertex. In a seminal paper that is the source for much 
of the subsequent work on hypergraphs, Gallo, Longo, 
Pallottino and Nguyen [15] explore special cases of 
hypergraphs, and define several versions of hyperpaths, 
including what they call a B-path (though see the cor-
rection of Nielsen and Pretolani [24]), which is essen-
tially equivalent to our definition of hyperpath (given in 
the following section on shortest hyperpaths in directed 
hypergraphs).  They show the vertices reachable from a 
source vertex in a hypergraph can be found in time lin-
ear in the total size of the tail and head sets of all hyper-
edges, give an efficient algorithm for a variant of shortest 
hyperpaths with a so-called additive cost function, and 
prove that finding a minimum cut in a hypergraph is 
NP-complete. Ausiello and Laura [16] survey results on 
hypergraphs whose hyperedges have singleton head sets, 
and note that a consequence of the NP-completeness 

reduction [14] for shortest hyperpaths from the set cover 
problem is that, unless P=NP , no approximation algo-
rithm can exist for shortest hyperpaths on hypergraphs 
of n vertices with approximation ratio 

(
1−o(1)

)
ln n.

In metabolic networks, Cottret, Milreu and Acuña et al. 
[17] examine the minimum precursor problem: given a 
hypergraph G, a set of sources S, and a set of targets T, 
find a source subset P ⊆ S of minimum cardinality that 
has a factory from P to T, where a factory is a set of hyper-
edges that produce targets T from precursor set P while 
satisfying weaker ordering constraints on hyperedges 
than required by hyperpaths. They show this problem is 
NP-complete, and give an algorithm that enumerates all 
minimal precursor sets whose factory is acyclic. Acuña, 
Milreu and Cottret et al. [18] subsequently enumerate all 
minimal precursor sets allowing cycles. Andrade, Wan-
nagat and Klein et  al. [19] extend these algorithms to 
accommodate stoichiometry and conserve intermediate 
metabolites within the factory. Carbonell, Fichera, Pan-
dit and Faulon [20] give an efficient algorithm to find a 
source-sink hyperpath if one exists—irrespective of its 
length—and prove that finding any hyperpath that must 
contain a specified set of hyperedges is NP-complete. 
They also offer an approach to hyperpath enumeration 
that relies on solutions to this NP-complete problem, for 
which they employ a heuristic.

In cell-signaling networks, Ritz, Avent and Murali  [12, 
21] were the first to solve the shortest acyclic hyperpath 
problem by formulating it as a mixed-integer linear pro-
gram  (MILP)—the current state-of-the-art for shortest 
hyperpaths—and showed that in practice, optimal acy-
clic hyperpaths can be found even for large cell-signal-
ing hypergraphs. Their formulation does not extend to 
hyperpaths with cycles, and requires exponential time 
in the worst-case (which may be unavoidable, as the acy-
clic problem remains NP-complete). Recently, Franzese, 
Groce, Murali and Ritz [22] defined a parameterized 
notion of connectivity that interpolates between hyper-
path- and ordinary-path-connectivity, while Schwob, 
Zhan and Dempsey [23] modified the acyclic  MILP 
of Ritz et  al. [21] to include time-dependence among 
reactions.

Our contributions
In contrast to prior work, we present a heuristic for short-
est hyperpaths that handles cycles, is worst-case efficient, 
and finds hyperpaths that are demonstrably optimal or 
close to optimal in real cell-signaling hypergraphs. In 
more detail, we make the following contributions.

• We present an efficient heuristic for shortest hyper-
paths, that on a hypergraph of size ℓ , which measures 
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the total cardinality of all hyperedge tail and head 
sets, with m  hyperedges that are doubly-reachable 
from the source and sink vertices, and k defined anal-
ogously to ℓ over these doubly-reachable hyperedges, 
runs in O(ℓ + m2 k)  time.

• We prove that the heuristic finds an optimal shortest 
hyperpath for the class of singleton-tail hypergraphs, 
where the tails of all hyperedges in the hypergraph 
are single vertices.

• We also give a practical algorithm for hyperpath 
enumeration that generates all possible source-sink 
hyperpaths, allowing us to tractably measure how 
close our heuristic is to the optimum.

• Our heuristic matches the state-of-the-art  MILP 
for shortest acyclic hyperpaths on over  99% of all 
instances from two standard databases of cell-signal-
ing pathways.

• Our heuristic surpasses the state-of-the-art on 
instances where every source-sink hyperpath is 
cyclic, and hence the MILP finds no solution. On all 
such cyclic biological instances, our hyperpath enu-
meration algorithm verified that the heuristic was in 
fact optimal.

To our knowledge, this heuristic is the first in the lit-
erature for shortest source-sink hyperpaths in general 
directed hypergraphs, where hyperedges have arbitrary 
tail and head sets, and the length of a hyperpath is the 
sum of the weights of its hyperedges.

We note that the worst-case efficiency and subclass opti-
mality of the heuristic highlighted in the first two points 
above show that the shortest hyperpaths problem is poly- 
nomial-time solvable for singleton-tail hypergraphs—
in contrast to its NP-completeness for singleton-head 
hypergraphs   [14]—which does not appear to have been 
observed before in the literature  [16]. Furthermore, while 
prior work has developed specialized algorithms that 
are tailored to shortest hyperpaths under so-called addi-
tive cost functions [15]—which also handle singleton-tail 
hypergraphs—in distinction, we give a general heuris-
tic for arbitrary hypergraphs under the non-additive cost 
function of total weight of the hyperpath, that as a con-
sequence is optimal for the special case of singleton-tail 
hypergraphs.

Source code for an implementation of the short-
est hyperpath heuristic in a new tool we call  Hhugin 
[25] (short for “hypergraph heuristic for general short-
est source-sink hyperpaths”), as well as the hyper-
path enumeration algorithm and all dataset instances, 

is available free for non-commercial use at http://
hhugin.cs.arizona.edu.

Plan of the paper
The next section defines the general shortest hyperpath 
problem, allowing cycles. The following section then 
presents our heuristic for shortest hyperpaths, analyzes 
its time complexity, shows it returns a feasible solu-
tion whenever one exists, and proves it finds optimal 
solutions for singleton-tail hypergraphs. The next sec-
tion gives our algorithm for generating all source-sink 
hyperpaths, proves its correctness, and analyzes its time 
complexity. The subsequent section compares the heu-
ristic, through experiments on all source-sink instances 
from standard databases, to the state-of-the-art  MILP 
for acyclic instances, or to the optimum of all enumer-
ated hyperpaths for cyclic instances, and discusses three 
examples of cyclic shortest hyperpaths in cell signaling 
networks. Finally, the last section concludes, and pro-
vides directions for further research.

Shortest hyperpaths in directed hypergraphs
A directed hypergraph is a generalization of an ordinary 
directed graph, where an edge, instead of touching two 
vertices, now connects two subsets of vertices. Formally, 
a directed hypergraph is a pair (V, E), where V is a set of 
vertices, and  E is a set of directed hyperedges. (The lit-
erature sometimes uses the term hyperarc for an edge 
in a directed hypergraph, but we prefer the simpler term 
hyperedge—just as the term edge is conventionally used 
for both directed and undirected ordinary graphs. We 
will occasionally abbreviate the term hyperedge to simply 
edge, when it is clear that the context is with respect to a 
directed hypergraph.) Each hyperedge e ∈ E is an ordered 
pair  (X,  Y), where both X ,Y ⊆ V  are vertex subsets. 
Edge e is directed from set X to set Y. We call set X the tail 

Fig. 1 Hyperedge. A hyperedge e with tail(e) = {v1, . . . , vk} 
and head(e) = {w1, . . . ,wℓ} . To use e in a hyperpath P, every 
vertex vi ∈ tail(e) must have a preceding hyperedge f in P with 
vi ∈ head(f )
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of e, and set Y the head of e, and refer to these sets by the 
functions tail(e) = X and head(e) = Y  . We also refer to 
the in-edges of vertex v by in(v) := {e∈E : v ∈ head(e)} , 
and the out-edges of  v by out(v) := {e∈E : v ∈ tail(e)} . 
Figure 1 shows a directed hyperedge.

In ordinary directed graphs, a path from a vertex s to a 
vertex t is a sequence of edges starting from s and ending 
at t, where for consecutive edges e and f in the sequence, 
the preceding edge e must enter the vertex that the fol-
lowing edge  f leaves. We say  t is reachable from  s when 
there is such a path from s to t.

In generalizing these notions to directed hypergraphs, 
the conditions both for when a hyperedge can follow 
another in a hyperpath, and when a vertex is reachable 
from another, become more involved. A hyperpath is 
again a sequence of hyperedges, but now for hyperedge f 
in a hyperpath, for every vertex v ∈ tail(f ) , there must be 
some hyperedge  e that precedes  f in the hyperpath for 
which v ∈ head(e) . Reachability is captured by the follow-
ing notion of superpath.

Definition 1 (Superpath) In a directed hyper-
graph (V, E), an s,t-superpath, for vertices s, t ∈ V  , is an 
edge subset F ⊆ E such that the hyperedges of F can be 
ordered e1, e2, . . . , ek , where

 (i) tail(e1) = {s},
 (ii) for each  1 < i ≤ k , 

 (iii) and  t ∈ head(ek).

For an s,t-superpath, we call s its source, t its sink, and we 
say t is reachable from s.

We can now define hyperpaths in terms of superpaths. 
Recall that a set S is minimal with respect to some prop-
erty X if S satisfies X, but no proper subset of S satisfies X.

Definition 2 (Hyperpath)  An   s,t-hyperpath is a 
minimal s,t-superpath.

In other words, a hyperpath P is a superpath for which 
removing any edge e ∈ P leaves a subset P − {e} that is 
no longer a superpath. Essentially, hyperpaths eliminate 
unnecessary edges from superpaths. Figures  7,  8, and  9 
later show examples of hyperpaths.

We say a hyperpath  P contains a cycle if, for every 
ordering e1, . . . , ek of its hyperedges satisfying proper-
ties  (i)–(iii) in the definition of superpath, P  contains 
some hyperedge  f with a vertex in  head(f ) that also 

tail(ei) ⊆ {s} ∪
⋃

1≤j<i

head(ej) ,

�

�

occurs in tail(e) for an earlier hyperedge e in the ordering. 
While in ordinary graphs a minimal s,t-path can never 
contain a cycle, in hypergraphs an s,t-hyperpath can in 
fact contain cycles, as shown in our later section on bio-
logical examples.

We can now define the shortest hyperpath problem. 
For an edge weight function ω(e) , we extend ω to edge 
subsets F ⊆ E by ω(F) :=

∑
e∈F ω(e).

Definition 3 (Shortest Hyperpaths)  The Short-
est Hyperpaths problem is the following. Given a 
directed hypergraph (V, E), a positive edge weight func-
tion ω : E→R+ , source s ∈ V  and sink t ∈ V  , find an s,t-
hyperpath P ⊆ E of minimum total weight  ω(P).

Note that for positive edge weights, Shortest Hyper-
paths is equivalent to finding an s,t-superpath of mini-
mum total weight.

Shortest Hyperpaths with a single source and sink 
vertex also captures more general versions of the prob-
lem with multiple sources and multiple sinks, as fol-
lows. To find a hyperpath that starts from a set of 
sources S ⊆ V  , simply add a new source vertex  s to the 
hypergraph together with a single hyperedge  ({s}, S) of 
zero weight, and equivalently find a hyperpath from the 
single source s. To find a hyperpath that reaches all ver-
tices in a set of sinks T ⊆ V  , add a new sink vertex  t, a 
zero-weight hyperedge  (T , {t}) , and equivalently find a 
hyperpath to the single sink  t. To find a hyperpath that 
reaches some vertex in a set of sinks T ⊆ V  , add new sink 
vertex t, zero-weight hyperedges ({v}, {t}) from all v ∈ T  , 
and again equivalently find a hyperpath to the single 
sink t. Thus versions of shortest hyperpaths with multiple 
sources and sinks can be reduced to the problem with a 
single source and sink.

Shortest Hyperpaths is NP-complete [14] (even for acy-
clic hypergraphs with singleton head sets), so we likely 
cannot efficiently compute shortest hyperpaths in the 
worst-case. The next section presents an efficient heuris-
tic for shortest hyperpaths that is highly accurate at find-
ing demonstrably optimal or near-optimal hyperpaths in 
real cell-signaling hypergraphs.

An efficient shortest hyperpath heuristic
We now give a fast heuristic for Shortest Hyperpaths 
that always finds an s,t-hyperpath if one exists. While 
the heuristic is not guaranteed to find a shortest s,t-
hyperpath in general, our later experiments on real cell-
signaling hypergraphs show it quickly finds a hyperpath 
that is optimal or remarkably close to optimal on the 
vast majority of instances in comprehensive experiments 
over the two standard cell-signaling databases in the 

�
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literature. Furthermore, we will prove that the heuristic 
is guaranteed to find a shortest s,t-hyperpath for the class 
of singleton-tail hypergraphs, where the tail-sets of all 
hyperedges are single vertices.

We present the heuristic by providing detailed pseu-
docode at a level that can be directly implemented, as the 
heuristic is carefully designed and many of its component 
algorithms are surprisingly tricky to implement correctly. 
After describing the heuristic, we give a time analysis 
that shows it is always efficient, prove its feasibility, and 
then show that it finds optimal hyperpaths for singleton-
tail hypergraphs.

While at a high level the heuristic has some aspects 
in common with Dijkstra’s algorithm for single-source 
shortest paths in an ordinary directed graph (see [26, 
pp. 658–659])—in that the heuristic maintains a heap of 
elements prioritized by estimated path lengths—it has 
significant differences. In contrast to Dijkstra’s algorithm, 
the heuristic is edge-based, rather than vertex-based, 
and the heap maintains hyperedges  e prioritized by the 
length of the shortest known hyperpath from the source s 
to edge  e, which will be formally defined later. Also in 
contrast to Dijkstra’s algorithm, maintaining a single in-
edge to a vertex no longer suffices for recovering a path 
back to source  s; instead, recovering an s,t-hyperpath 
now requires the heuristic to maintain a set of in-edges 
to each hyperedge e that are candidates for the final edges 
on the path from s to e. Furthermore, the total length of 
a hyperpath P to e is no longer a simple function (like a 
minimum or a sum) of the lengths of hyperpaths to the 
in-edges of e in P that cover the tail of e, since the constit-
uent hyperpaths within P to these in-edges of e can have 
arbitrarily-complicated sharing of hyperedges. Simply 
determining the length of the best recovered hyperpath 
for a hyperedge e on the heap, using these stored in-edges 
to each hyperedge, is itself now a hard combinatorial 
problem, which the heuristic tackles by a carefully-con-
structed greedy procedure.

The overall structure of the heuristic is a breadth-first 
search over the hyperedges  e reachable from source  s, 
ordered by the estimated length of the shortest hyper-
path from s to e. (Admittedly a shortest s,t-hyperpath P is 
not necessarily composed of shortest hyperpaths from s 
to individual hyperedges e in P, which is partly why this 
approach is a heuristic.) The search repeatedly invokes 
a greedy procedure to recover the currently best-known 
hyperpath to e in order to evaluate its length. As hyper-
paths are by definition minimal superpaths, to determine 
minimality this greedy recovery procedure repeatedly 
tests reachability of hyperedges. Moreover, for efficiency, 
the overall breadth-first search proceeds over a smaller 

subgraph of the input hypergraph that only contains 
hyperedges that are reachable both from source s and in 
reverse from sink  t. Hence at base, the heuristic builds 
upon fast algorithms for computing reachability in a 
hypergraph.

Accordingly, to present the heuristic, we first give pseu-
docode for these fundamental algorithms for directed 
reachability. These algorithms use the following termi-
nology of forward-reachable, backward-traceable, and 
doubly-reachable, which we define next.

Definition 4 (Reachability and Traceability) Ver-
tex v is forward reachable from source s in hypergraph G 
if there is an s,v-superpath in G. Hyperedge e is forward 
reachable from  s if all vertices  v ∈ tail(e) are forward 
reachable from s.

Vertex  v is backward traceable from sink  t if  v = t , 
or recursively if  v ∈ tail(e) for an edge  e where 
some w ∈ head(e) is backward traceable from  t. Hyper-
edge e is backward traceable from t if some v ∈ head(e) is 
backward traceable from t.

A vertex v or hyperedge e is doubly reachable if v or e, 
respectively, is both forward reachable from s and back-
ward traceable from t.

To describe the heuristic, it will also be convenient to 
extend the definitions of superpath and hyperpath to a 
path from a source s to a hyperedge e.

Definition 5 (Superpath and Hyperpath from Source 
to Hyperedge) An s,e-superpath is an edge subset S  with 
e ∈ S where all vertices in  tail(e) are forward reachable 
from source s using hyperedges in S. An s,e-hyperpath is 
a minimal s,e-superpath.

The pseudocode that we present accesses a hypergraph G 
through the fields G.vertices and G.edges. We access the 
tail-set and head-set of a hyperedge e through the fields 
e.head and e.tail. We access the set of in-edges and out-
edges of a vertex v through the fields v.in and v.out. For a 
list Q that is handled as a queue, the operation Q.Put(x) 
appends item  x to the rear of  Q, while the operation  
Q.Get() removes and returns the item at the front of Q. 
For a min-heap  H, the operation H.Insert(x,  k) inserts 
item x with key k into H, and returns a reference p to the 
heap node containing this pair (x, k) in H; the operation 
H.Extract() removes and returns the item in H with mini-
mum key; and the operation H.Decrease(p, k) takes a ref-
erence p to a heap node in H and decreases its key to k 
if k is smaller than its current key. All functions assume 
hypergraph G is passed by reference.

�

�
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function ForwardReachable (s, G) begin • Find all edges forward-reachable ...
• ... from source s in G

Create queue Q • Initialize a queue of reached vertices
Q.Put(s)
s.reached := true
(F, R) := (∅, ∅)

while not Q.Empty() do begin • Process the reached vertices v
v := Q.Get()
R ∪ := {v}

for e ∈ v.out do begin • Detect which out-edges e of v are now reached
e.count −:= 1
if e.count = 0 then begin • All vertices in tail(e) have been reached ...

F ∪ := {e •} ... so e is reached
for w ∈ e.head do

if not w.reached then begin
Q.Put(w)
w.reached := true

end
end

end
end

for v ∈ R do begin • Restore fields and return the reachable hyperedges
v.reached := false
for e ∈ v.out do e.count +:= 1

end
return F

end

function BackwardTraceable (t, G) begin • Find all edges backward-traceable ...
• ... from sink t in G

Create queue Q • Initialize a queue of reached vertices
Q.Put(t)
t.reached := true
(F, B) := (∅, ∅)

while not Q.Empty() do begin • Process the reached vertices v
v := Q.Get()
B ∪ := {v}

for e ∈ v.in do • Collect the traceable hyperedges e
if not e.marked then begin

F ∪ := {e}
e.marked := true
for w ∈ e.tail do

if not w.reached then begin
Q.Put(w)
w.reached := true

end
end

end

for v ∈ B do v.reached := false • Restore fields and return the traceable hyperedges
for e ∈ F do e.marked := false
return F

end

Fig. 2 Reachability computations. Function ForwardReachable, given source vertex s in hypergraph G, returns all hyperedges e for which 
tail(e) is reachable by a hyperpath from s. Function BackwardTraceable, given sink vertex t in G, returns all hyperedges e for which some 
vertex v ∈ head(e) is backward-traceable from t. These functions assume fields v.reached, e.marked, and e.count have been initialized to false, false, 
and |tail(e)| , respectively, for all v and e in G 
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Figure  2 gives pseudocode for the two functions 
ForwardReachable and BackwardTraceable. 
Function  ForwardReachable returns the set of all 
hyperedges that are forward reachable from source  s, 
while function  BackwardTraceable returns the set 
of hyperedges that are backward traceable from sink  t. 
Function  ForwardReachable uses the Boolean ver-
tex field  v.reached, and the integer edge field  e.count, 
which it assumes have already been initialized to the val-
ues v.reached = false for all v ∈ V  and e.count =

∣∣tail(e)
∣∣ 

for all  e ∈ E . Function  BackwardTraceable also 
uses the Boolean edge field  e.marked, which it similarly 
assumes is initialized to false for all e. (This initializa-
tion will be done once for hypergraph G in the shortest 
hyperpath heuristic, which allows these functions when 
called repeatedly to run in time bounded by just the size 
of the forward-reachable or backward-traceable sub-
graphs.) Function  ForwardReachable uses the field   
e.count to detect when all vertices in  tail(e) have been 
reached from s, and hence e is now reached from s. Func-
tion BackwardTraceable performs a similar but sim-
pler computation in reverse from sink  t. The worst-case 
time for both these functions is linear in the size of the 
subgraph they explore, as analyzed in the following sec-
tion on the time-complexity of the heuristic.

Figure  3 gives pseudocode for the function  Short-
estHyperpathHeuristic, our heuristic. Like Dijk-
stra’s shortest path algorithm for ordinary graphs, this 
function maintains a heap H, but in contrast to Dijkstra’s 
algorithm this is now a heap of hyperedges e (rather than 
a heap of vertices), which are prioritized by keys that 
are the best known estimate of the length of a shortest 
s,e-hyperpath. We refer to this estimate as the current 
path length for e. The heuristic starts from the out-edges 
of source  s, and in a reaching computation repeatedly 
extracts from heap H the hyperedge e with minimum key. 
When hyperedge e is removed from H, the estimated path 
length for e is evaluated, and stored in field e.length. To 
compute this length estimate, it must construct the best 
s,e-hyperpath it can find, and evaluate its total weight. Of 
course, computing an optimal s,e-hyperpath is NP-com-
plete, so it uses a greedy heuristic to construct this path 
by the function RecoverShortPath. This greedy path-
construction heuristic consists of two steps: (1) recover-
ing an s,e-superpath by recursively backward-traversing 
hyperedges that enter  tail(e) , followed by (2)  finding a 
minimal subset of this superpath that is an s,e-hyperpath 
while attempting to minimize its total weight.

Figure  4 gives pseudocode for the function  Recov-
erShortHyperpath that implements this greedy 
path-construction heuristic. For the first step, recov-
ering the s,e-superpath  S is done by recursively 

backward-traversing what we call in-edges: those hyper-
edges whose head-sets intersect the tail-set of a given 
hyperedge. Function  ShortestHyperpathHeuris-
tic maintains for a hyperedge  e the field  e.inedges, 
which stores the subset of in-edges  f to  e whose field  
f.length has been determined.

For the second step, function RecoverShortHyper-
path attempts to find the minimum weight subset of S 
that is still a superpath by greedily considering hyper-
edges  f ∈ S for removal in decreasing order of  f.length, 
which is the estimated total length of a shortest s,f-hyper-
path. (Note this is more sophisticated than a naive greedy 
approach that simply removes hyperedges f in decreasing 
order of their edge-weight ω(f ) , which would degener-
ate to removing edges in random order in real cell-sign-
aling networks where hyperedges typically all have unit 
weight, and hence would all be tied for removal.) This 
greedy process for trimming superpath S repeatedly tests 
whether tail(e) is still reachable from s on removing f by 
calling Boolean function  IsReachable. Pseudocode 
for IsReachable is not given, but it simply implements 
a version of function  ForwardReachable that halts 
and returns true as soon as it adds e to the set of hyper-
edges reachable from s, or returns false after collecting 
the entire reachable set without encountering e.

We note that most of the computation of the short-
est hyperpath heuristic proceeds over a much smaller 
subgraph of the input hypergraph  G: namely the sub-
graph induced by the hyperedges D ⊆ E that are doubly 
reachable (both forward reachable from s and backward 
traceable from  t). This preserves correctness, since 
hyperedges that are not doubly reachable cannot be on 
an s,t-hyperpath and can safely be ignored (as argued in 
the later section on feasibility of the heuristic in the proof 
of Theorem 2).

To summarize, the shortest hyperpath heuristic pro-
ceeds greedily like Dijkstra’s algorithm, but with some 
important differences: it maintains a heap of hyperedges 
prioritized by estimated shortest path lengths to tail-
sets, records a set of potential in-edges to a given hyper-
edge used for recovering a hyperpath to the hyperedge, 
and recovering such a hyperpath now involves another 
greedy heuristic to find a minimal superpath of small 
total weight.

Our later section on experimental results shows this 
heuristic is remarkably close to optimal on real cell-
signaling hypergraphs. Given that no practical exact 
algorithm exists for general shortest hyperpaths, we 
determine the optimum by enumerating all s,t-hyper-
paths and taking the minimum of their lengths, using 
an algorithm we develop in the later section on tractably 
generating all source-sink hyperpaths.
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function ShortestHyperpathHeuristic (s, t, G, ω) begin • Find a short s, t-hyperpath

for v ∈ G.vertices do • Initialize fields
(v.reached, v.removed) := (false, false)

for e ∈ G.edges do
(e.count, e.marked, e.node, e.inedges) := (|e.tail|, false, nil, ∅)

D := ForwardReachable(s, G) • Restrict G to doubly-reachable edges D
∩ BackwardTraceable (t, G)

Remove from G all edges not in D

Create min-heap H • Initialize edge heap H
for e ∈ s.out with e.tail = {s} do

e.node := H.Insert(e, ω(e))
s.reached := true

while not H.Empty() do begin • Process reached hyperedges by their path lengths
e := H.Extract()
e.removed := true

P := RecoverShortHyperpath(s, e,G) • Recover a short hyperpath to e ...
e.length := ω(P ) • ... and its path length

F := •∅ Collect the out-edges F of e ...
for v ∈ e.head do begin • ... and detect which are reached

for f ∈ v.out do begin
if not v.reached then

f .count −:= 1
if not f .marked then begin

F ∪ := {f}
f .marked := true

end
end
v.reached := true

end
for f ∈ F do

f .marked := false

for f ∈ F do begin • Update path lengths, in-edges, and add reached edges to H
f .inedges ∪ := {e}
if f.node �= nil and not f .removed then • Update path length to edge on H

H.Decrease(f.node, ω(RecoverShortHyperpath(s, f, G)))
else if f .node = nil and f .count = 0 then • Add reached edge to H

f .node := H.Insert(f, ω(RecoverShortHyperpath(s, f, G)))
end

end

(P ∗, L∗) := (∅,∞) • Recover the best s, t-hyperpath P ∗

for e ∈ t.in do
if e.node �= nil then begin

P := RecoverShortHyperpath(s, e, G)
if ω(P ) < L∗ then

(P ∗, L∗) := (P, ω(P ))
end

Restore to G all edges not in D • Unrestrict G and return the best hyperpath
return P ∗

end

Fig. 3 Efficient heuristic for shortest source-sink hyperpaths. Given source s, sink t, and edge weights ω , function ShortestHyperpathHeuristic  
finds an s,t-hyperpath in hypergraph G, attempting to minimize its length. If no s,t-hyperpath exists, the empty path is returned. For doubly- 
reachable hyperedges e, the heuristic maintains fields e.length (the total weight of the shortest hyperpath found to e), and e.inedges (the subset of 
edges f with head(f ) touching tail(e) where f.length is known), which are used in RecoverShortHyperpath to recover a short hyperpath to e 
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We note for this heuristic that the inapproximability of 
the shortest hyperpath problem [16], together with the 
polynomial time analysis of the next subsection, imply 
that unless P = NP , the heuristic cannot be a constant-
factor approximation algorithm for shortest hyperpaths.

In the following subsections, we first analyze the run-
ning time of the heuristic; then show it always finds a 
feasible solution whenever one exists; and finally prove it 
actually finds an optimal solution for the class of single-
ton-tail hypergraphs.

Time complexity of the heuristic
We now bound the time complexity of the shortest 
hyperpath heuristic. Our analysis is in terms of the fol-
lowing parameters measured on a hypergraph, or an 
induced subgraph. For a hypergraph  G with vertices  V 
and hyperedges E, we denote its number of vertices and 
hyperedges by

We also use the size parameter

and degree parameter

Note that in general, the space required to represent all 
hyperedges is �(ℓ) . We assume all tail and head sets are 
nonempty, and every vertex is touched by a hyperedge, 
which implies m+ n = O(ℓ) . When we need to refer to 
these measures for a particular hypergraph G, such as on 

n := |V | ,

m := |E| .

ℓ :=
∑

e∈E

(∣∣tail(e)
∣∣ +

∣∣head(e)
∣∣
)
,

d := max
v ∈V

{ ∣∣in(v)
∣∣,
∣∣out(v)

∣∣
}
.

function RecoverShortHyperpath (s, e, G) begin • Recover a short s, e-hyperpath in G

Create queue Q • Initialize a queue with the in-edges entering e
for f ∈ e.inedges do begin

Q.Put(f)
f .marked := true

end

S := {e •} (I) Recover s, e-superpath S tracing backward from e
while not Q.Empty() do begin

f := Q.Get()
S ∪ := {f}
for g ∈ f.inedges do

if not g.marked then begin
Q.Put(g)
g.marked := true

end
end
for f ∈ S do

f .marked := false

Remove from G all edges not in S • (II) Trim S greedily to an s, e-hyperpath P
S −:= {e}
P := {e}
for f ∈ S in decreasing order of f .length do begin

Remove f from G
if not IsReachable(s, e, G) then begin

Restore f back to G
P ∪:= {f}

end
end

Restore back to G all edges removed • Restore G and return hyperpath P
return P

end

Fig. 4 Recovering a short hyperpath from the source to a hyperedge. Given source vertex s and hyperedge e, function RecoverShortHyper- 
path returns an s,e-hyperpath P in hypergraph G, attempting to minimize its length. The edges of hyperpath P are greedily selected from an 
s,e-superpath S that is guaranteed to exist in G, where S is recovered by tracing backward from e 
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an induced subgraph, we explicitly subscript the parame-
ters by the specific hypergraph, such as nG , . . . , dG , where 
these parameters are then measured in terms of the verti-
ces and edges of the subscripted hypergraph G.

The running time of the shortest hyperpath heuristic 
may be expressed as a function of parameters measured on 
both the input hypergraph and its doubly-reachable sub-
graph (induced by the hyperedges that are simultaneously 
forward reachable from the source and backward traceable 
from the sink).

Theorem  1 (Time complexity of the heuristic) The 
time complexity of the shortest hyperpath heuristic, in 
terms of the number of hyperedges m and size parameter ℓ 
for both the input hypergraph G and its doubly-reachable 
subgraph H, is

Proof To bound the running time of the func-
tion ShortestHyperpathHeuristic, we analyze in 
turn its component functions   ForwardReachable, 
BackwardTraceable, and RecoverShortHyper-
path. The running time of the reachability computations 
ForwardReachable and BackwardTraceable (in 
Fig.  2) can be expressed in an output-sensitive way in 
terms of the size of the edge sets they return.

For ForwardReachable, let  R ⊆ V  be the set of 
vertices reachable from source  s, and  F ⊆ E be the set 
of hyperedges reachable from  s that are returned. The 
total time for ForwardReachable is dominated 
by the time for its main while-loop, which takes time 
�
(∑

v∈R

∣∣out(v)
∣∣ +

∑
e∈F

∣∣head(e)
∣∣ ) , or equivalently,

For BackwardTraceable, let  B ⊆ V  be the set of 
vertices it reaches from sink  t, and F ⊆ E be the set of 
hyperedges traceable from t that are returned. A similar 
analysis shows the time for BackwardTraceable is

So the time for both ForwardReachable and 
BackwardTraceable on the input hypergraph  G 
is O

(
ℓG

)
 — but can be bounded more tightly in terms of 

the subgraph of G they actually explore.

O
(
ℓG + ℓH m2

H

)
.

�

(∑

e∈E

∣∣tail(e) ∩ R
∣∣ +

∑

f ∈ F

∣∣head(f )
∣∣
)

= O
(
ℓG

)
.

�

(∑

e∈E

∣∣head(e) ∩ B
∣∣ +

∑

f ∈ F

∣∣tail(f )
∣∣
)

= O
(
ℓG

)
.

For the function RecoverShortHyperpath (in Fig. 4), 
when it is called by ShortestHyperpathHeuristic, all 
its computations are performed on G restricted to the edge 
subset D ⊆ E of doubly-reachable hyperedges. We denote by 
hypergraph H the doubly-reachable subgraph induced by D.

In RecoverShortHyperpath, the time to recover s,e-
superpath S by tracing back from e is at most

The time to greedily trim superpath  S to s,e-hyper-
path P ⊆ S , in terms of cardinality k = |S| , is at most

Thus the total time for RecoverShortHyperpath is

For the function  ShortestHyperpathHeuris-
tic (in Fig.  3), we break its time down into the fol-
lowing components. The time for the initialization, 
collecting the doubly-reachable edges D by calling For-
wardReachable and BackwardTraceable, and 
restricting  G to its subgraph  H induced by  D, is O

(
ℓG

)
 . 

The main while-loop executes for mH  iterations, and 
spends O

(
mH log mH

)
 time for all Extracts. The total 

time across all iterations to compute s,e-hyperpath  P 
for all extracted edges  e by calling RecoverShort-
Hyperpath is O

(
ℓH m2

H

)
 . The total time to collect the 

out-edges  F for the extracted  e across all iterations is 
O
(∑

e∈D

∑
v∈head(e)

∣∣out(v)
∣∣) = O

(
dH ℓH

)
 . The total 

time across all iterations for Decrease and Insert, which 
take O(1) amortized time per edge in F using a Fibonacci 
heap  (see [26, pp. 510–522]), is also O

(
dH ℓH

)
 . The time 

to recover the best s,t-hyperpath P∗ is O
(
dH ℓH mH

)
.

Finally, adding up the bounds for the above compo-
nents, the total time for the shortest hyperpath heuristic 
is

which is in turn O
(
ℓG + ℓH m2

H

)
. �

Notice that the overall running time of the heuristic is 
dominated by the total time to recover short hyperpaths, 
which requires invoking RecoverShortHyperpath 
whenever the path length to a hyperedge is updated. This 

O

(∑

f ∈ S

∑

v ∈ tail(f )

∣∣in(v)
∣∣
)

= O
(
dH ℓH

)
.

O
(
mH + k log k + k ℓH

)
= O

(
k ℓH

)
.

O
(
dH ℓH

)
+ O

(
k ℓH

)
= O

(
ℓH mH

)
.

O
(
ℓG

)
+ O

(
mH log mH

)
+ O

(
ℓH m

2
H

)

+ O
(
dH ℓH

)
+ O

(
dH ℓH mH

)
,
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is necessary in hypergraphs, since in contrast to ordinary 
graphs the length of the hyperpath to a hyperedge can no 
longer be expressed as a simple function (such as a min-
imum or a sum) of the lengths of the hyperpaths to its 
in-edges.

As demonstrated in our later section on experimental 
results, for real biological instances the size of the dou-
bly-reachable subgraph  H is significantly smaller than 
the full input hypergraph  G, so designing the heuristic 
to compute mainly over the much smaller hypergraph H 
yields a significant performance speedup in practice.

Next we show the heuristic always finds a feasible 
solution.

Feasibility of the heuristic
The most basic property that a heuristic for a combinato-
rial optimization problem should satisfy is feasibility: that 
it always returns a feasible solution whenever one exists. 
In the context of Shortest Hyperpaths, a feasible solution 
is any s,t-hyperpath, while an optimal solution is a feasi-
ble solution of minimum total edge-weight.

For the hyperpath heuristic, we now show feasibility.

Theorem 2 (Feasibility of the heuristic)   The shortest 
hyperpath heuristic finds a source-sink hyperpath when-
ever one exists. 

Proof Function ShortestHyperpathHeuristic  
(in Fig.  3) first restricts the input hypergraph  G to its 
doubly-reachable subgraph, consisting of the hyper-
edges  D that are both forward reachable from source  s 
and backward traceable from sink t. Note that functions 
ForwardReachable and BackwardTraceable (in 
Fig.  2) together correctly collect these doubly-reachable 
hyperedges  D: function ForwardReachable explores 
breadth-first the hyperedges that are forward reachable 
from s, maintaining a counter for each hyperedge e that 
records the number of vertices in its tail that have not 
yet been reached from s, and detecting when e is reached 
by this counter hitting zero; while function  Back-
wardTraceable directly implements Definition  4 of 
backward traceability from t.

Furthermore, we claim that when restricting to the 
doubly-reachable subgraph  G̃ , the heuristic does not 
lose any hyperedges on source-sink hyperpaths. Note 
that any hyperedge e on an s,t-hyperpath P in the input 
hypergraph  G is forward reachable from  s: consider 
the ordering of hyperedges in  P from Definition  1, and 
take the prefix of this ordering up through e; this prefix 
is an s,e-superpath, so  e is by definition forward reach-
able from  s. Note also that any  e on  P in  G is back-
ward traceable from  t as well: if  t ∈ head(e) , backward 

traceability immediately holds; otherwise, in the ordering 
of  P there must be a hyperedge  f following  e with non-
empty head(e) ∩ tail(f ) (else  e can be removed from  P, 
contradicting minimality); applying this same process 
again at  f yields a subsequence of the ordering of P that 
ends in a hyperedge whose head contains  t; considering 
this subsequence in reverse order satisfies Definition  4 
for backward traceability of e from t. Hence restricting to 
the doubly-reachable subgraph G̃ is safe.

To show the implication of the theorem, notice 
ShortestHyperpathHeuristic explores all hyper-
edges that are forward reachable from s in   G̃ , inserting 
hyperedge e into heap H when e is initially reached, again 
detecting when traversing  e causes another hyperedge  f 
to be first reached using counter  f.count, and recording 
in field  f.inedges all such  e that have reached  f. So if an 
s,t-hyperpath exists in G, which implies sink t has an in-
edge e that is forward reachable from s in   G̃ , this e will 
eventually be inserted into  H, making  e.node non-nil, 
and at the end of the heuristic causing RecoverShort-
Hyperpath to be called on e.

We claim that when function RecoverShortHy-
perpath (in Fig.  4) is ultimately called on an in-edge 
to sink t, phase (I) first recovers an edge set S that is an 
s,t-superpath in  G. Considering the hyperedges of  S in 
reverse order of their removal from queue Q, they satisfy 
the three conditions for an s,t-superpath in Definition 1: 
the last hyperedge removed from Q solely has s in its tail, 
each hyperedge in S (other than this last one) has its tail 
set covered by hyperedges removed later from Q, and the 
first edge removed has t in its head.

Function  RecoverShortHyperpath in phase  (II) 
then trims S to a minimal s,t-superpath, yielding an s,t-
hyperpath. Finally, ShortestHyperpathHeuristic 
returns the shortest such hyperpath found.

Thus whenever a source-sink hyperpath exists, the heu-
ristic finds one.

Next we prove the heuristic actually solves Short-
est Hyperpaths when the input is a singleton-tail 
hypergraph.

Optimality of the heuristic for singleton‑tail hypergraphs
While our heuristic does not necessarily find shortest 
hyperpaths in general hypergraphs, we can prove that 
it does find optimal solutions for the following class of 
hypergraphs.

A singleton-tail hypergraph is a directed hypergraph G 
where every hyperedge e in G has 

∣∣tail(e)
∣∣ = 1 . (The head 

sets of hyperedges can be arbitrary.) In other words, in 
singleton-tail hypergraphs, the tails of hyperedges are 
single vertices.

�
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At a high level, the optimality argument for singleton-
tail hypergraphs first shows that shortest source-sink 
hyperpaths are composed of shortest s,e-hyperpaths; 
then argues that the heuristic’s greedy superpath trim-
ming recovers shortest s,e-hyperpaths when the hyper-
edge fields hold shortest hyperpath lengths; and finally 
proves that the heuristic computes exact shortest s,e-
hyperpath lengths.

The following characterization states that in singleton-
tail hypergraphs, a shortest s,t-hyperpath is composed 
of shortest s,e-hyperpaths to its constituent hyperedges. 
This does not hold for general hypergraphs, and is partly 
why the special case of shortest singleton-tail hyperpaths 
is polynomial-time solvable.

Lemma 1 (Characterizing shortest singleton-tail 
hyperpaths)   In singleton-tail hypergraphs with non-
negative edge weights, every shortest s,t-hyperpath can be 
ordered as a sequence e1 · · · ek of hyperedges where

 (i) each head(ei) ⊇ tail(ei+1), and
 (ii) every prefix e1 · · · ei is a shortest s, ei-hyperpath.

Proof Consider a shortest s,t-hyperpath  P in a sin-
gleton-tail hypergraph. By definition, P is a minimal 
s,t-superpath, so its edges can be ordered as a sequence 
e1 · · · ek where tail(e1) = {s} , head(ek) ⊇ {t} , and since 
tail sets contain a single vertex, for every hyperedge  ej 
in this sequence other than the first one, there is a prior 
hyperedge ei with head(ei) ⊇ tail(ej).

Starting from the last hyperedge  ek , and repeatedly 
picking a prior hyperedge whose head covers the tail of 
the current hyperedge until reaching tail {s} , yields a sub-
sequence f1 · · · fℓ specifying subset Q = {f1, . . . , fℓ} ⊆ P , 
where again tail(f1) = {s} , head(fℓ) ⊇ {t} , and now 
head(fi) ⊇ tail(fi+1) for 1≤ i<ℓ . Furthermore Q = P , 
otherwise P is not minimal. So subsequence  f1 · · · fℓ is 
exactly sequence e1 · · · ek.

Clearly every prefix e1 · · · ei is an s, ei-superpath. More-
over this prefix must be a minimal s, ei-superpath, other-
wise  P is not minimal. Thus every prefix ending in ei is an 
s, ei-hyperpath.

Finally, every prefix e1 · · · ei must be a shortest s, ei
-hyperpath. Otherwise, replacing this prefix by a shortest 
s, ei-hyperpath yields an s,t-superpath  S of total weight 
less than  P. Furthermore, trimming  S to a minimal s,t-
superpath under nonnegative edge weights yields an s,t-
hyperpath of total weight less than  P, contradicting the 
optimality of P. �

In the following, the distance of hyperedge  e from 
source s is the total weight of a shortest s,e-hyperpath, 
which we denote by d(e). Recall that function Short-
estHyperpathHeuristic (in Fig. 3) maintains the 
field e.length, that holds the total weight of the best-
known s,e-hyperpath, which upper bounds d(e).

The next lemma states that in singleton-tail hyper-
graphs, given two key conditions, the greedy super-
path trimming that is used by the heuristic to recover 
a hyperpath to hyperedge  e in fact finds a shortest 
s,e-hyperpath.

Lemma 2 (Recovering hyperpaths in singleton-tail 
hypergraphs)   In a singleton-tail hypergraph with non-
negative edge weights, when the hyperpath heuristic recov-
ers a hyperpath from source s to hyperedge e, suppose

 (i) field e.inedges contains among its hyperedges an in-
edge to e from a shortest s,e-hyperpath, and

 (ii) in the s,e-superpath  S found when recovering a 
hyperpath to  e, for all hyperedges  f ∈ S−{e} , 
field f.length holds distance d(f).

Then the hyperpath to  e that the heuristic recovers is a 
shortest s,e-hyperpath.

Proof We first claim that under the assumptions of the 
lemma, when the hyperpath heuristic calls  Recover-
ShortHyperpath (in Fig. 4) on a hyperedge e, its first 
phase recovers an s,e-superpath S that contains a short-
est s,e-hyperpath. By assumption (i), field e.inedges con-
tains a hyperedge f on a shortest s,e-hyperpath, and f will 
be in superpath  S, hence by assumption  (ii), the value 
of  f.length is  d(f). This value came from a shortest s,f-
hyperpath  Q that was found in a prior call to Recov-
erShortHyperpath on  f, by trimming an s,f-super-
path T. Notice that Q followed by e is an s,e-superpath P̃ , 
as head(f ) ⊇ tail(e) . Now trim  P̃ to an s,e-hyperpath  P, 
and let P∗ be a shortest s,e-hyperpath containing  f that 
exists by assumption (i). By Lemma 1 and minimality of 
hyperpaths, P∗ must consist of a shortest s,f-hyperpath Q∗ 
followed by e. Under nonnegative edge weights,

ω(P) ≤ ω(P̃)

= ω(Q)+ ω(e)

= ω(Q∗)+ ω(e)

= ω(P∗) .
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Thus  P is also a shortest s,e-hyperpath. Since  f is in   
e.inedges, tracing back from e recovers the superpath

so the claim holds.
We next claim that when RecoverShortHyper-

path in its second phase greedily trims superpath S, the 
resulting superpath T ⊆ S still contains a shortest hyper-
path. To show this, we prove that each superpath Si that 
remains after i  iterations of greedy trimming contains a 
shortest s,e-hyperpath, by induction on  i. For the basis 
at i=0 , the initial superpath S0 before any trimming con-
tains a shortest hyperpath by our first claim on S. For the 
induction at  i>0 , let  P be a shortest s,e-hyperpath that 
superpath Si−1 contains by our hypothesis, and let f be the 
hyperedge removed from Si−1 at iteration i. If  f  ∈ P , then 
Si = Si−1 − {f } trivially contains P. So we assume  f ∈ P . 
In the following, the core of hyperpath P consists of the 
tail vertices of its hyperedges.

In an ordering of shortest hyperpath  P that satis-
fies Lemma  1, consider the hyperedges in the suffix 
of  P that begins with  f. As edge weights are nonnega-
tive, by Lemma  1 the distances of these hyperedges 
must be at least d(f), so by assumption (ii) the values of 
the length field for these hyperedges must be at least   
f.length. Greedy trimming proceeds in decreasing order 
of length-field values, so the hyperedges in this suffix of P 
must either have been already considered for trimming 
before  f, or not yet considered due to being tied with  f 
(from having zero edge-weight). If they were considered 
before f, then since they were not trimmed, there must be 
no alternate s,e-hyperpath in Si−1 that enters their head 
vertices on the core of  P. If they were not considered 
yet, then since  f can be removed from Si−1 , there must 
be an alternate s,e-hyperpath Q ⊆ Si distinct from P that 
enters one of the core head-vertices of the hyperedges in 
this suffix of P whose length field is tied with f. Moreover, 
this alternate hyperpath  Q must enter  P with the same 
length-field value as the edge of P sharing this core head-
vertex. (If  Q enters  P at a smaller length-value, then  P 
is not a shortest s,e-hyperpath; if  Q enters at a greater 
length-value, hyperedge  f would not be the next hyper-
edge removed, as instead a hyperedge from Q of greater 
length would be.) Since  Q enters  P at the same length-
value, hyperpath  Q is also a shortest s,e-hyperpath. 
Hence Si ⊇ Q still contains a shortest hyperpath, which 
proves the second claim.

So the final trimmed s,e-superpath  T returned by 
RecoverShortHyperpath contains a shortest s,e-
hyperpath P ⊆ T  . Since T is minimal (as no further edges 
could be trimmed), and  P by definition is minimal, we 
must have T = P , which proves the lemma.  �

S ⊇ T ∪ {e} ⊇ Q ∪ {e} = P̃ ⊇ P ,

We now show that the hyperpath heuristic solves 
Shortest Hyperpaths for singleton-tail hypergraphs.

Theorem  3 (Optimality of the heuristic on single-
ton-tail hypergraphs)   For singleton-tail hypergraphs 
with nonnegative edge weights, the hyperpath heuristic 
finds a shortest source-sink hyperpath. 

Proof The key to proving optimality is showing that 
in singleton-tail hypergraphs, the estimates that the 
heuristic computes for shortest hyperpath lengths are 
exact. Recall that when function  ShortestHyper-
pathHeuristic (in Fig. 3) removes hyperedge e from 
heap  H, it calls RecoverShortHyperpath on  e to 
recover an s,e-hyperpath  P, and sets the field  e.length 
to ω(P) , the total weight of P.

We claim that when this assignment occurs, field   
e.length holds distance  d(e), the total weight of a short-
est s,e-hyperpath. We now prove this claim by induction 
on the number of heap extractions. At a high level, the 
argument is similar to that for Dijkstra’s shortest-path 
algorithm (see [26, pp.  659–661]) on ordinary directed 
graphs.

For the basis, the first hyperedge extracted has 
tail(e) = {s} and e.key = ω(e) , which equals  d(e), as  e 
itself is a shortest s,e-hyperpath (since all edge weights 
are nonnegative). The recovered s,e-hyperpath will con-
sist of e (as e.inedges is empty), so after the assignment 
field e.length holds d(e).

For the induction, let  e be the next hyperedge to be 
removed from the heap, and assume for all hyperedges h 
extracted prior to  e that  h.length holds  d(h). Now con-
sider a shortest s,e-hyperpath P, and in the ordering of P 
given by Lemma 1, let  f be the first hyperedge in P that 
has not yet been removed from the heap. Note that  f 
exists, as e has not been removed yet.

We first show  f .key = d(f ) . In the special case where f 
is the first edge of  P, notice  d(f ) = ω(f ) by the same 
reasoning as in the basis. Furthermore  f .key = ω(f ) , as   
f.key starts at ω(f ) , never increases, and cannot decrease 
below this minimum value. So f .key = d(f ) in this spe-
cial case.

In the general case where  f is not the first edge of  P, 
let g be the in-edge to f on P, and Q ⊆ P be the prefix of P 
ending in  f, as illustrated in Fig.  5. Notice  g has already 
been extracted from the heap (by the definition of f), so g 
is in f.inedges (as when a hyperedge is extracted, for all its 
out-edges h it is added to h.inedges). Furthermore Q is a 
shortest s,f-hyperpath by Lemma 1, so g is on a shortest 
hyperpath to  f. For all hyperedges  h extracted before  e, 
by the induction hypothesis  h.length = d(h) , and only 
extracted  h add themselves to the field  inedges of their 
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out-edges. Hence when  g was extracted, added itself to   
f.inedges, and updated  f.key by recovering an s,f-hyper-
path, in the s,f-superpath S first found during recovery, all 
hyperedges h ∈ S had h.length = d(h) . Thus by Lemma 2, 
the recovered s,f-hyperpath was a shortest hyperpath, so 
this updated f.key to d(f), and as argued before in the spe-
cial case, this key will not change. So again  f .key = d(f ).

We next show,

In the above, inequality  (1) holds since e and  f are both 
on the heap (as  f was inserted in the heap either during 
initialization or when g was extracted), but e is removed 
before  f. Equation  (2) is from our prior analysis of   
f. Inequality (3) holds as Q and P are shortest s,f- and s,e-
hyperpaths respectively, while Q ⊆ P and edge weights 
are nonnegative. Lastly, inequality (4) holds since the key 
of e while it is on the heap is the total weight of some s,e-
hyperpath. Thus relations  (1)–(4) must all be equalities, 
so e.key = d(e).

We now argue  e.length = d(e) after  e is extracted. 
Since e.key = d(e) is the weight of a hyperpath recovered 
earlier for e, notice (i) there was an in-edge to e on a short-
est s,e-hyperpath in  e.inedges; moreover (ii)  all hyper-
edges h in the s,e-superpath collected while recovering a 
hyperpath for e were extracted earlier, and hence by the 

(1)e.key ≤ f . key

(2)= d(f )

(3)≤ d(e)

(4)≤ e.key .

induction hypothesis had h.length = d(h) . Furthermore, 
hyperedges are never removed from the field  inedges, 
and  h.length never changes after  h is extracted. Thus 
the assumptions in Lemma  2 are still met upon extrac-
tion of  e, so when ShortestHyperpathHeuristic 
assigns to  e.length the total weight of the hyperpath  P 
recovered for e, by Lemma 2  this recovered P will again 
be a shortest  s,e-hyperpath, hence  e.length = d(e) . This 
completes the inductive proof of our claim.

So for every hyperedge h in the doubly-reachable sub-
graph explored by ShortestHyperpathHeuris-
tic, after extracting  h from the heap, the relation 
h.length = d(h) holds. Finally, when recovering the best 
s,t-hyperpath at the end of the heuristic by examin-
ing the in-edges  e to sink  t, for each such hyperedge  e 
the assumptions of Lemma 2  are still met (by the same 
reasoning as above), so the hyperpaths P obtained from 
calling RecoverShortHyperpath on these sink in-
edges e are again shortest s,e-hyperpaths. Since a shortest 
s,t-hyperpath consists of doubly-reachable hyperedges 
(by the proof of Theorem 2), and is a shortest s,e-hyper-
path for some in-edge e to sink t, the best of these recov-
ered hyperpaths  P, which is the hyperpath returned by 
the heuristic, is a shortest s,t-hyperpath.

Theorem  3 (in combination with Theorem  1) shows 
that, while Shortest Hyperpaths is NP-complete for sin-
gleton-head hypergraphs [14], it is polynomial-time solv-
able for singleton-tail hypergraphs.

Generating all source‑sink hyperpaths
In this section, we give a practical algorithm for gener-
ating all s,t-hyperpaths in a given hypergraph for a fixed 
source s and sink t. In our later experimental results, we 
use this algorithm on specific source-sink instances from 
real cell-signaling networks to tractably measure how 
close our heuristic is to optimal.

In general, the technique of inclusion and exclusion 
of Hamacher and Queyranne [27] provides a widely-
applicable method for generating all the solutions to 
any combinatorial optimization problem whose fea-
sible solutions are subsets of a ground set—where in 
our context, hyperpaths are subsets of hyperedges 
from a hypergraph—but it relies on the ability to effi-
ciently compute a feasible solution that is constrained 
to include a given in-set and exclude a given out-set. 
Interestingly, for hyperpaths, Carbonell et al. [20] have 
shown that just determining whether an s,t-hyperpath 
exists that contains a specified in-set of hyperedges 
(regardless of the length of the hyperpath) is already 
NP-complete. Consequently, we cannot generate all 
s,t-hyperpaths using the standard inclusion-exclusion 

�

Fig. 5 Hyperpath from the proof of optimality for singleton-tail 
hypergraphs. Hyperedges inside the dashed circle have been 
extracted from the heap; those outside have not. The next hyperedge 
to be extracted is e, and P is a shortest s,e-hyperpath. The first 
hyperedge of P not yet extracted is f, and Q is the prefix of P up 
through f 
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technique, as we cannot tractably solve the resulting 
subproblem that has both in- and out-set constraints.

Instead, we generate all hyperpaths through a sim-
ple and practical algorithm that only involves out-sets, 
given in Fig.  6. Function AllHyperpaths returns a 
list of all s,t-hyperpaths in hypergraph  G, leveraging 
a function  OneHyperpath that just has to return 
one s,t-hyperpath  P in  G that does not contain any 
hyperedges from set  Out (so P ∩Out = ∅ ), or deter-
mine that no such hyperpath exists. This constrained 
hyperpath problem with only out-sets is easy to solve: 
remove all hyperedges in set  Out from  G, collect all 
vertices  R and hyperedges  F reachable from  s in this 
reduced hypergraph, and if t ∈ R , then find any mini-
mal subset P ⊆ F  in which  t is still reachable from  s; 
otherwise if t  ∈ R , no such hyperpath exists. Func-
tion OneHyperpath can efficiently find such an s,t-
hyperpath  P excluding set  Out using repeated calls 
to ForwardReachable (given earlier in Fig. 2).

Function AllHyperpaths uses a queue of subprob-
lems. A subproblem is described by a pair (Out, Keep) , 
which corresponds to finding an s,t-hyperpath exclud-
ing Out, where any subsequent subproblems that arise 
from this given subproblem must not exclude any 

hyperedges from the set  Keep (though their solutions 
are not required to actually use edges from Keep). The 
purpose of this set Keep is to ensure that all subprob-
lems ever placed on the queue have distinct Out  sets. 
(So any given subproblem described by an out-set is 
only ever solved once, as argued in the later section 
on the time complexity of the hyperpath enumeration 
algorithm in the proof of Theorem  5.) A subproblem 
that directly arises from a given one we call a child 
subproblem (as the entire collection of subproblems 
conceptually forms a tree that is explored breadth-first 
using the queue). Each child subproblem excludes one 
edge from the hyperpath found for its parent subprob-
lem; in this way, the children will generate hyperpaths 
that are distinct from their parent hyperpath, if they 
have a solution. (Once a subproblem becomes infea-
sible due to its out-set eliminating any s,t-hyperpath 
as a solution, it also does not generate further sub-
problems.) Though the whole approach never repeat-
edly solves the same subproblem, in contrast to the 
inclusion-exclusion technique it can generate the same 
hyperpath from different subproblems, so we check 
whether hyperpath  P is distinct from those already 
found before adding it to the list A of all hyperpaths.

function AllHyperpaths (s, t, G) begin • Generate all s, t-hyperpaths in G

Create queue Q • Initialize a queue of subproblems, and a set A of hyperpaths
Q.Put (∅, ∅)

)

A := ∅

while not Q.Empty() do begin • Process all subproblems on the queue
(Out, Keep) := Q.Get()

P := OneHyperpath(s, t, Out, G) • Find an s, t-hyperpath excluding edges in Out
if P �= ∅ and P A∈� then begin

A ∪ := {P •} Save the new hyperpath

K := Keep • Add all child subproblems to the queue
for e ∈ P with e �∈ Keep do begin

Q.Put (Out ∪ {e}, K)
)

• Children cannot exclude edges in Keep ...
K ∪ := {e •} ... or edges excluded by prior siblings

end
end

end

return •A Return the set A of all hyperpaths
end

Fig. 6 Generating all source-sink hyperpaths. Function AllHyperpaths, given source vertex s, sink vertex t, and hypergraph G, returns the set of 
all s,t-hyperpaths in G. It calls a function OneHyperpath that returns an s,t-hyperpath not containing any hyperedge from a specified set Out, and 
which returns the empty path if no such hyperpath exists
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We first prove this enumeration approach is correct, 
and then analyze its time complexity.

Correctness of the hyperpath enumeration algorithm
We next show that function AllHyperpaths solves the 
problem of source-sink hyperpath enumeration.

Theorem 4 (Correctness of hyperpath enumeration)  
The hyperpath enumeration algorithm generates every s,t-
hyperpath exactly once. 

Proof For the function AllHyperpaths (in Fig. 6), 
we view the subproblems it processes as forming a 
tree: when a problem  p is pulled off queue  Q and 
causes a new subproblem  q to be put onto  Q, these 
subproblems q comprise the children of p in the tree. 
Each subproblem is specified by a pair  (Out, Keep) , 
representing the problem of finding an s,t-hyperpath 
that contains no hyperedge in the set Out. Let P be an 
s,t-hyperpath satisfying this out-constraint for prob-
lem p. Any other s,t-hyperpath  P̃ distinct from P that 
also satisfies the out-constraint for p must not contain 
some hyperedge in P. (If  P̃ contains every hyperedge 
of  P yet is distinct, it is a strict superset of  P, con-
tradicting minimality.) Function  AllHyperpaths 
forms the children of p by adding each hyperedge in P 
to the out-set of p for a different child. (So the hyper-
paths satisfying the out-constraints of the children 
are all hyperpaths that both satisfy the constraints of 
parent  p and are distinct from hyperpath  P.) Conse-
quently hyperpath  P, together with every solution to 
the children of p, comprise all possible solutions to 
problem p.

This tree-like process begins at the root with a problem 
having an empty out-set (whose solutions are all possi-
ble s,t-hyperpaths), and continues refining each problem 
into its children subproblems until reaching the leaves 
(which have no solution). Thus the set consisting of each 
hyperpath P found at the nodes of this tree contains all 
s,t-hyperpaths.

In brief, function AllHyperpaths generates every 
s,t-hyperpath. Since it checks for uniqueness, the enu-
meration algorithm generates every source-sink hyper-
path exactly once.

Time complexity of the hyperpath enumeration algorithm
We now bound the running time of function AllHy-
perpaths in terms of the number of subproblems it 
solves, and parameters of the input hypergraph.

Theorem 5 (Time complexity of hyperpath enumer-
ation)   The running time of the hyperpath enumeration 

�

algorithm, when solving k subproblems on a hypergraph of 
size ℓ with m hyperedges, is

Proof We bound the running time of function 
AllHyperpaths (in Fig. 6) as follows. Solving a given 
subproblem from the queue by function OneHyperpath 
(which finds an s,t-hyperpath by iteratively removing 
hyperedges from the hypergraph and testing reachability 
to identify a minimal set in which t is still reachable from s), 
involves at most m calls to function ForwardReachable. 
A call to ForwardReachable takes O(ℓ)  time (by 
the analysis in the proof of Theorem  1), so solving a 
subproblem takes O(ℓm)  time. If AllHyperpaths 
terminates after processing k subproblems, its total time 
is then O(k ℓm).

We argue next that the out-sets of subproblems are all 
distinct. Consider the tree of subproblems processed 
by AllHyperpaths (as in the proof of Theorem 4), and 
two arbitrary subproblems x and y in this tree. If one of x 
and y is a descendant of the other, their out-sets are dis-
tinct, as a child always adds a hyperedge to the out-set of 
its parent. If neither x nor y is a descendant of the other, let 
subproblem u be their nearest common ancestor, subprob-
lems v and w be the children of u on the paths to x and y 
respectively, and assume without loss of generality that 
child v precedes child w. When child v adds hyperedge e to 
the set Out of its parent u, edge e is not added to set Out 
for any other children of u, and e is also added to set Keep 
for all children of u following v, including w. Furthermore, 
the set Out for a descendant is a superset of set Out for its 
ancestors, and set Out for a descendant is always disjoint 
from set  Keep for its ancestors. Consequently, the above 
hyperedge e is in the out-set of subproblem x but not sub-
problem y, so their out-sets are again distinct.

Since subproblem out-sets are distinct, k = O(2m) . Com-
bining this with the prior total time for hyperpath enumera-
tion yields a worst-case time bound of O(2m ℓm).

In practice, typically  k ≪ 2m , so the running time is 
much faster than the worst-case bound suggests. Func-
tion AllHyperpaths can tractably generate all source-
sink hyperpaths for large hypergraphs, as shown in the 
next section on experimental results, since many of its 
subproblems quickly become infeasible for real cell-sign-
aling networks.

Experimental results
We now present results from computational experiments 
on real pathway databases that compare the hyperpath 
found by our heuristic to the optimal solution. We also 

O
(
k ℓm

)
= O

(
2m ℓm

)
.

�
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remark on the prevalence of biological instances with 
cyclic shortest hyperpaths, study the cause of subopti-
mality in our heuristic, report actual running times, and 
discuss biological examples of cyclic hyperpaths.

Datasets
We evaluate the quality of our heuristic on four data-
sets built by combining different annotated signaling 
pathways from two pathway databases, NCI-PID and 
Reactome. NCI-PID [28] is a curated human-pathway 
database containing biochemical reactions for complex 
assembly, cellular transport, and transcriptional regula-
tion. Reactome [29] also contains curated human sign-
aling pathways, and is actively maintained with new 
reactions being continuously added. We constructed 
hypergraphs from three subsets of NCI-PID pathways 
used in Ritz et  al. [5], named the Small, Medium, and 
Large datasets. The Small dataset is a small Wnt sign-
aling pathway consisting of the union of two pathways: 
“degradation of β-catenin” and “canonical Wnt signal-
ing”. The Medium dataset is a larger Wnt signaling path-
way including four additional pathways: “noncanonical 
Wnt signaling”, “Wnt signaling network”, “regulation 
of nuclear β-catenin”, and “presenilin action in Notch 
and Wnt signaling”, which correspond to non-canonical 
branches of Wnt signaling. The Large dataset contains 
all NCI-PID pathways. Similarly, the Reactome dataset 
is the union of all Reactome pathways. The NCI-PID and 
Reactome pathways were downloaded in the BioPAX for-
mat [30] from Pathway Commons, and processed using 
a parser from Franzese et al. [22] built on PaxTools [31].

To construct the hypergraphs for each dataset, we 
mapped each entity (such as a protein, small molecule, and 
so on) to a vertex in the hypergraph. Each complex was 
represented as a unique vertex distinct from the entities 
in the complex. Multiple forms of the same protein map 
to different vertices denoting compartmentalization and 
post-translational modifications, such as phosphorylation 
and ubiquitination. We treated each variant as a distinct 
entity because many pathways describe the transportation 
of a protein from one cellular compartment to another, or 
the marking of a protein for degradation by ubiquitina-
tion, necessitating that the corresponding vertices be dis-
tinct to reflect these variants. Each reaction was mapped 
to a hyperedge, where the reactants and positive regula-
tors comprise the tail of the hyperedge, and the products 
comprise the head. All hyperedges were given unit weight, 
even though the heuristic handles weighted edges, as NCI-
PID is missing reaction rates for some reactions.

Table  1 gives statistics on the hypergraphs constructed 
from each of the four datasets. The hypergraphs are very 
sparse: there are fewer hyperedges than vertices in all 
four datasets, with Reactome being even sparser than 

the NCI-PID datasets. The hypergraphs from the Large 
and Reactome datasets contain respectively  40 and  433 
self-loops, showing that many cyclic hyperpaths are likely 
to exist. However, a small number of these self-loops are 
unreachable, due to an otherwise unreachable vertex appear-
ing in both the head and tail of the hyperedge. The sources 
and targets used in all our experiments are respectively ver-
tices with no in-edges (or vertices whose only in-edge is an 
unreachable self-loop), and vertices with no out-edges. The 
number of forward-reachable, backward-traceable, and 
doubly-reachable hyperedges shows how many hyperedges 
remain after the heuristic prunes the input hypergraph to 
the doubly-reachable subgraph before computing a solution. 
On average, hyperedges from all four hypergraphs have small 
head and tail sets, and vertices have low in- and out-degree, 
reflecting the sparseness of the hypergraphs.

Experimental setup
To prepare the hypergraphs from each dataset for our 
experiments, we parsed the union of the pathways in the 
dataset. We connected a supersource s to all source ver-
tices—namely, the input vertices with no in-edges—by a 
single zero-weight hyperedge whose tail consisted of the 
supersource s and whose head contained all the source 
vertices. We also included in the head of this hyperedge 
from supersource s all input vertices whose sole in-edge 
was a self-loop, since otherwise such a self-loop was not 
traversable. For each specific target vertex  v—namely, 
each input vertex with no out-edges—we had a sepa-
rate version of the hypergraph that differed only by con-
necting this target v to a sink  t by a single zero-weight 
ordinary-graph edge directed from  v to  t, giving us a 
specific target instance. Note that these choices for the 
source and target vertices are reasonable, as they are the 
molecules where biologists stopped annotating a given 
pathway. Note also that the supersource s and the sink t 
remain the same across all target instances in a dataset.

For each target instance, we trimmed the hypergraph 
to the doubly-reachable set: the set of hyperedges that 
were both forward-reachable from supersource  s, and 
backward-traceable from sink  t. Table  1 gives the aver-
age and maximum size of the forward-reachable, back-
ward-traceable, and doubly-reachable sets over all target 
instances for a given dataset, which dramatically reduces 
the size of the hypergraph over which the heuristic per-
forms most of its computation.

For each target instance, we found a hyperpath from 
supersource  s to sink  t using our shortest hyperpath 
heuristic implemented in the new tool  Hhugin [25], 
and compared its length to the solution of the  MILP 
of Ritz et  al. [21] if the heuristic hyperpath was acyclic. 
For each cyclic target instance where the heuristic out-
put a cyclic hyperpath, we exhaustively enumerated all 
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s,t-hyperpaths, and compared the heuristic hyperpath to 
the shortest hyperpath found by this enumeration. (Enu-
merating all s,t-hyperpaths for one source-sink instance 
takes on average around 20 hours in practice—so it is not 
feasible to perform this enumeration on all acyclic target 
instances.)

Abundance of cyclic hyperpaths
Cyclic shortest hyperpaths appear in all four datasets. To 
take just one example, in the Small and Medium data-
sets, the only hyperpath from ubiquitinated β-catenin 
to  APC is cyclic, so for this target instance the acyclic 
shortest-hyperpath MILP fails to find a solution. Admit-
tedly this particular source-target pair is specially chosen, 
as ubiquitinated β-catenin has an in-edge and APC has 
an out-edge so they would not normally be considered 
under our definition of sources and targets. Nevertheless, 
this pair demonstrates there do exist cyclic hyperpaths 
in the NCI-PID database—even in the union of just two 
pathways—that are missed by the current state-of-the-art 
when computing only acyclic shortest hyperpaths.

In the Large dataset, 38 target instances have cyclic 
heuristic hyperpaths. Of these, 22 were cyclic because 
of a self-loop, and 16 were cyclic due to a non-trivial 
cycle. For all these instances, no acyclic hyperpath exists 
between supersource  s and sink  t. It is likely that even 
more cycles exist within the hypergraph from the Large 
dataset, as there were 8 self-loops that were not on any 
hyperpath found by the heuristic.

In the Reactome dataset, the heuristic found a cyclic 
shortest hyperpath on 22 target instances, and only one 

of these instances was cyclic due to a self-loop. In gen-
eral, Reactome is much sparser than NCI-PID, and 432 of 
the 433 self-loops in Reactome are never used in a heu-
ristic hyperpath.

The abundance of cyclic hyperpaths in the NCI-PID 
and Reactome datasets demonstrates the importance 
of a shortest hyperpath algorithm that properly han-
dles cycles. We discuss concrete examples of biological 
cyclic shortest hyperpaths in a later section on biological 
examples.

Quality of the hyperpath heuristic
To determine the quality of our hyperpath heuristic, 
we compared the length of the heuristic hyperpath to 
an optimal shortest hyperpath. In general, no practical 
exact algorithm is currently known for finding a short-
est source-sink hyperpath. Consequently, on the target 
instances where the heuristic found a cyclic hyperpath, 
we determined the optimum by generating all source-
sink hyperpaths and retaining the shortest one, using 
our algorithm for hyperpath enumeration. On the target 
instances where the heuristic found an acyclic hyperpath, 
we compared its length just to the optimal hyperpath 
returned by the MILP for shortest acyclic hyperpaths. An 
even shorter cyclic hyperpath could exist for these latter 
instances, but finding it by enumerating all hyperpaths is 
simply too time-consuming to carry out for every such 
instance.

Table  2 summarizes the quality of the heuristic on 
acyclic instances. On the Small, Medium, and Reac-
tome datasets, the heuristic hyperpath is optimal on all 

Table 1 Dataset Summaries

NCI-PID

Measure Small Medium Large Reactome

Vertices 56 350 9,009 20,458

Hyperedges 36 228 8,456 11,802

Pathways 2 6 213 2,516

Sources 19 138 3,200 8,296

Targets 10 102 2,636 5,066

Self-loops 1 8 40 433

Unreachable self-loops 1 7 14 32

mean max mean max mean max mean max

Tail size 1.8 3 1.9 5 1.9 10 2.4 26

Head size 1.3 3 1.3 4 1.1 5 1.6 28

Forward-reachable set 35 35 192 192 6,169 6,169 4,645 4,645

Backward-traceable set 28 28 49 70 1,198 2,863 4,027 7,021

Doubly-reachable set 27 27 42 60 756 1,836 929 1,725

In-degree 0.8 5 0.8 15 1.0 323 0.9 1,056

Out-degree 1.1 4 1.2 24 1.7 326 1.4 1,167
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target instances, meaning the heuristic hyperpath and the 
shortest acyclic hyperpath from the MILP have the same 
length. On the Large dataset, the heuristic is optimal on 
over  99% of the instances, demonstrating the quality of 
the heuristic on these biological datasets. The small frac-
tion of instances where our heuristic was suboptimal are 
discussed in more detail in the next subsection.

Table  3 summarizes the quality of the heuristic on 
instances where it output a cyclic hyperpath. On all these 
cyclic instances, the acyclic  MILP failed to find a solu-
tion, so we could not compare the heuristic to an optimal 
hyperpath other than by exhaustively enumerating all 
hyperpaths and picking the shortest one—which verified 
that the heuristic on these instances in fact found an opti-
mal solution. Cyclic instances from the Reactome (and 
Large) datasets contain many distinct hyperpaths, with 
a median of 22 (respectively 3) hyperpaths, and a maxi-
mum of  136 (respectively  364) hyperpaths. The hyper-
paths tend to vary in length, with a maximum difference 
between the length of the longest and shortest hyperpath 
of  15 (respectively  43) hyperedges, and a median dif-
ference of  [2,  3] (respectively  1) hyperedges. This dem-
onstrates that the heuristic is discriminating between 
hyperpaths of different lengths and choosing the best 
hyperpath over worse hyperpaths, further indicating the 
quality of the heuristic. In every cyclic target instance, all 
s,t-hyperpaths were cyclic, and many shared a common 
cycle; most of the hyperedges occurring in one hyperpath 
but not another appeared outside this shared cycle.

Studying the suboptimality of the heuristic
We call the small number of target instances in these 
experiments where the heuristic found a known subopti-
mal hyperpath its suboptimal instances. Table 4 summa-
rizes these 23  suboptimal instances, which are all from 
the Large NCI-PID dataset, and are all acyclic instances. 
(The heuristic was optimal on all cyclic instances, and all 
Reactome, Small, and Medium instances. We men-
tion as well that the maximum values across the table 
occur in distinct target instances.) To gain insight into 
why the heuristic found a suboptimal solution on these 
instances, we enumerated all source-sink hyperpaths for 
every suboptimal instance. (This enumeration also veri-
fied that on all suboptimal instances, the acyclic MILP in 
fact found a shortest hyperpath, as there was no shorter 
cyclic hyperpath.)

Hyperpath enumeration confirmed that these subopti-
mal instances are much harder than the cyclic instances. 
The median number of hyperpaths is nearly 140  times 
higher for suboptimal NCI-PID instances compared 
to cyclic NCI-PID instances, and the length difference 
between the longest and shortest hyperpaths is 30 times 
larger. This stark contrast indicates the inherent difficulty 

of these suboptimal instances, where the heuristic must 
now discriminate among a much higher number of 
hyperpaths that have much greater path-length variance. 
The fraction of all hyperpaths that are optimal is fairly 
small, with only around 3% being optimal for the median 
instance. Even faced with many alternate solutions, the 
heuristic still found a hyperpath that was nearly optimal: 
the median difference between the length of the heuris-
tic hyperpath and the shortest hyperpath was 1  hyper-
edge, the maximum difference was 6  hyperedges, and 
the median ratio of the length of the heuristic hyperpath 
to the shortest hyperpath was  1.1 (so it was only  10% 
longer). Next we investigate what could be causing this 
suboptimality.

The suboptimality of the heuristic is likely coming from 
the repeated calls to the function RecoverShortHy-
perpath, which proceeds in two phases. In phase  (I), 
this function recovers an s,e-superpath  S, relying on in-
edge lists to hyperedges f, where the in-edge list for f con-
tains only hyperedges removed from the heap prior to f, 
which may exclude hyperedges in a shortest s,e-hyper-
path. In phase  (II), this function trims superpath  S to a 
hyperpath by greedily considering hyperedges in  S for 
removal, which may also remove a hyperedge in an opti-
mal s,e-hyperpath.

To determine whether the recover or trim phases were 
responsible for suboptimality, we ran the following exper-
iment. After the heuristic determined its estimated path 
length for every hyperedge in the hypergraph, we called 
RecoverShortHyperpath on each in-edge to the tar-
get where we ran its recovery phase but stopped before 
its trimming phase, and unioned together the resulting 
s,t-superpaths from each in-edge to create one large s,t-
superpath  F. We then took an optimal s,t-hyperpath  P 
and examined whether P ⊆ F  : in other words, whether 
the recovery phase permitted the heuristic to potentially 
find an optimal hyperpath. We discovered that for all 
23  suboptimal instances  P  ⊆ F  , indicating phase  (I) of 
RecoverShortHyperpath that recovers an s,e-super-
path was forcing the heuristic to be suboptimal on every 
instance.

On the other hand the trimming phase of Recov-
erShortHyperpath could also be leading to 

Table 2 Acyclic Instance Summaries

NCI-PID

Measure Small Medium Large Reactome

Target instances 10 102 2,636 5,066

Reachable instances 10 90 2,220 2,432

Acyclic instances 9 89 2,182 2,410

Heuristic was optimal 100% (9) 100% (89) 99% (2,159) 100% (2,410)
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suboptimality, which we investigated as follows. For each 
suboptimal instance, we modified the recovery phase 
of RecoverShortHyperpath to use all in-edges in 
the hypergraph to each hyperedge, rather than the in-
edge lists collected by the heuristic. (In this situation, 
the recovered superpath  F definitely contains a shortest 
hyperpath P.) Phase (II) then trimmed this superpath as 
normal. We discovered that the trimming phase often 
fails to find a shortest hyperpath within this larger super-
path (which was the entire doubly-reachable subgraph). 
This indicates that while phase  (I) is definitely caus-
ing suboptimality, simply changing phase  (I) to recover 
a larger superpath may in turn lead to suboptimality in 
phase (II).

Implementation and running time
The heuristic is implemented in Python  2.7.3, compris-
ing around 500 lines of code. The parser used to convert 
the BioPAX format into hypergraphs is from [22]. For 
directed hypergraph representation and reachability we 
used Halp (github.com/Murali-group/halp/). 
All heuristic and hyperpath enumeration source code is 
available at http://hhugin.cs.arizona.edu.

Experiments were run on a laptop with a 2.9 GHz Intel 
Core  i5 CPU, and 16  GB of  RAM. The running time of 
the hyperpath heuristic was 55  seconds on average for 
the instances from the Large and Reactome datasets, 
which have just under 1000 doubly-reachable hyperedges 
on average. Memory usage was low, with the heuristic 
using less than 2 GB of memory.

Enumerating all hyperpaths for the instances is time-
consuming, taking 20.4 hours on average for the subopti-
mal instances with a maximum time of 53.8 hours, which 
is not practical to carry out for all 4600 target instances.

Biological examples
We now discuss three instances with cyclic shortest 
hyperpaths from the Large and Reactome datasets. 
The hyperpath found by our heuristic for these three 
instances is optimal (as was the case for all instances 
where the heuristic found a cyclic path), and is drawn in 
Figs.  7,  8, and  9. We describe the hypergraph structure 
and constituent reactions for each instance.

Assembly of the JUP/DSP complex The first example 
captures the assembly of the JUP/DSP complex from the 
Large dataset. Figure  7 shows the shortest hyperpath 
returned by our heuristic with the JUP/DSP complex as 
the target. All vertices at the top of the figure are con-
nected to the supersource.

This hyperpath includes seven hyperedges from four 
different NCI-PID pathways: “E-cadherin signaling in 
the nascent adherens junction” (hyperedges e1 and e5 ), 
“Posttranslational regulation of adherens junction sta-
bility and dissassembly” (hyperedges  e2 , e6 and  e7 ), 
“Signaling events mediated by  PRL” (hyperedge  e3 ), 

Table 3 Cyclic Instance Summaries

∗Total number of hyperpaths for a cyclic target instance
†Difference between the length of the longest and shortest hyperpaths

Measure NCI-PID

Small Medium Large Reactome

Target instances 10 102 2,636 5,066

Reachable instances 10 90 2,220 2,432

Cyclic instances 1 1 38 22

Heuristic was optimal 100% 100% 100% 100%

Non-trivial cycles 1 1 22 21

median max median max median max median max

Number of hyperpaths∗ 1 1 1 1 3 364 22 136

Path length range† 0 0 0 0 1 43 [2,3] 15

Table 4 Suboptimal Instance Summaries

∗Total number of hyperpaths for a target instance
†Difference between the length of the longest and shortest hyperpaths

Suboptimal instances Reactome 0 / 2,432
NCI-PID 23 / 2,220

median max

Number of hyperpaths* 418 1,470

Path length range† 30 50

Heuristic path-length difference 1 6

Heuristic path-length ratio 1.1 1.3

Number of shortest hyperpaths 7 110

Fraction of shortest hyperpaths 3.1% 26.7%
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and “Signaling events mediated by hepatocyte growth 
factor receptor  (c-Met)” (hyperedge e4 ). We briefly 
describe the key events in this hyperpath. Protein   
γ-catenin (also known as junction plakoglobin or  JUP) 
is initially complexed with Cadherin  1  (CDH1) in the 
tail of hyperedge  e1 . In hyperedge  e2 , the metallopro-
tease meprinβ cleaves E-cadherin  (CDH1), releas-
ing it from its complex with α-catenin (CTNNA1) and  
δ-catenin (CTNND1) [32]. The CDH1/JUP complex adds 
α-catenin (CTNNA1 in hyperedge  e1 ) and CTNND1 
and Ca2+ (in hyperedge e5 ) to form a five-member com-
plex. Hepatocyte growth factor  (HGF) activates the 
proto-oncogene tyrosine-protein kinase  Src (hyper-
edge e4 ) [33]. Src regulates the breakup of this complex 
into its individual components [34] (hyperedge e6 ), free-
ing JUP to bind with DSP and creating the two cycles in 
this hyperpath via CTNNA1 and CTNNB1. The hyper-
path culminates in the formation of a complex between 
desmoplasmin (DSP) and JUP.

The hypergraph for this instance is large, with 
6168  forward-reachable hyperedges, 2642  backward-
traceable hyperedges, and 1665  doubly-reachable 
hyperedges. There is no acyclic hyperpath from the 
supersource to JUP/DSP. When enumerating all s,t-
hyperpaths for this instance, there were 16 alternate 
hyperpaths, and the longest hyperpath had 3 more 
hyperedges than the heuristic path, which was verified 
to be optimal.

Phosphorylation of p53 The second example captures 
the phosphorylation of p53 by NUAK1 (ARK5) from 
the Reactome dataset. The heuristic hyperpath, which 
is optimal, is shown in Fig. 8. All of the vertices at the 
top are connected to the supersource.

Hyperedge e1 shows the complex formation of 
FOXO3 and FOXO4 with the STK11 gene, allowing for 
the transcription of the gene in hyperedge e2 . Hyper-
edges e3 and e4 deal with the transcription of protein 
p53 (TP53), and its formation into a homotetramer. 
The p53 tetramer then forms a complex with NUAK1 
(ARK5) and STK11 in hyperedge e5 , allowing for the 
phosphorylation of NUAK1 via ATP in hyperedge e6 . 
Once NUAK1 is phosphorylated, it directly phospho-
rylates p53 [35], activating it and allowing it to assist 
in DNA damage repair. The final hyperedge e7 , shown 
in red, breaks apart the p53 tetramer/NUAK1/STK11 
complex, resulting in a cycle of free STK11. This hyper-
path features two transcriptional hyperedges e2 and e3 , 
shown dotted.

This example from Reactome is slightly smaller than 
the example from the Large dataset, with only 4645 
forward-reachable edges, 7021 backward-traceable 
edges, and 1632 hyperedges in the doubly-reachable 
set. There was no acyclic hyperpath for this instance. In 
contrast to the first example, no alternate hyperpaths to 
the target exist in the hypergraph.

Fig. 7 Cyclic shortest hyperpath to the JUP/DSP complex in the Large  dataset. All vertices in the hyperpath connected to the supersource 
are shown at the top of the figure. The hyperedges in this hyperpath come from four different pathways, and show the different complexes JUP 
participates in until finally being free to bind with desmoplakin (DSP). Positive regulators of reactions are shown by dashed lines ending in a disc. 
Hyperedges e1 , e5 , and e6 , shown in red, create two separate cycles back to α-catenin and δ-catenin
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HEY2/ARNT complex assembly The final example we 
discuss is the formation of the HEY2/ARNT  complex 
from the Large dataset. The shortest hyperpath from 
the supersource to HEY2/ARNT, which was found by 
the heuristic, is shown in Fig. 9. Once again, the sources 
are at the top of the figure, with the hyperedge from the 
supersource not shown.

This hyperpath with eleven edges spans three path-
ways: “Notch signaling pathway” (hyperdges e1–e7 ), 
“Hypoxic and oxygen homeostasis regulation of HIF-
1-α ” (hyperedges e9, e10 ), and “Notch-mediated HES/
HEY network” (hyperedges e8, e11 ). Hypoxia-inducible 
factor 1 (HIF-1) is a heterodimeric transcription fac-
tor that regulates genes that are induced by hypoxia 
[36]. It is a complex of HIF-1α (HIF1A) and HIF-1β 

(aryl hydrocarbon receptor nuclear translocator or 
ARNT). “Hairy/enhancer-of-split related with YRPW 
motif protein 2” (HEY2) is a transcriptional repressor 
[37] that physically interacts with ARNT (hyperedge 
e11 ). The hyperdges e9 and e11 show a pair of reactions 
where HIF1 is formed and then repressed by HEY2. 
Hyperedges e1–e7 capture events in the Notch signaling 
pathway that occur upstream of the formation of the 
transcriptional activator formed by the complex of the 
nuclear protein “Recombining binding protein suppres-
sor of hairless” (RBPJ) and Notch intracellular domain 
(NICD). The expression of protein HEY2 is up-regu-
lated by the NICD/RBPJ complex [38].

This signaling hypergraph was markedly smaller than 
the other two examples. The hypergraph had 6169 

Fig. 8 Cyclic shortest hyperpath to phosphorylated p53 in the Reactome  dataset. All vertices in the hyperpath connected to the supersource are 
shown at the top of the figure. The hyperedges in this hyperpath show the transcription of STK11 and p53 (TP53) before NUAK1 (ARK5) participates 
in the phosphorylation of the p53 tetramer. Hyperedges e5 , e6 , and e7 , shown in red, create a cycle when the phosphorylation of p53 breaks up a 
complex, returning STK11 to its solitary state. Hyperedges e2 and e3 show transcription, and are drawn dotted

Fig. 9 Cyclic shortest hyperpath to the HEY2/ARNT complex in the Large  dataset. All vertices from the hyperpath connected to the supersource 
are shown at the top of the figure. Positive regulators of reactions are shown by dashed lines ending in a disc. The eleven hyperedges span three 
different NCI-PID pathways, and show the events upstream of HEY2 transcription, ultimately culminating in its repression of ARNT. The cycle 
between hyperedges e9 and e11 , shown in red in the figure, recreates nuclear HIF1A. Edge e8 , shown dotted, is a template reaction, where the 
NOTCH1/RBPJ complex upregulates the transcription of the protein HEY2
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forward-reachable hyperedges, but only 23 hyperedges 
were backward-traceable, hence only 23 hyperedges 
were doubly-reachable, due to the poor connectivity 
of the HEY2/ARNT complex to other vertices in the 
graph. Even though the hypergraph is small, the hyper-
path shown is not the only shortest hyperpath to the 
target, as e2 and e3 can be replaced by hyperedges con-
taining Jagged2 instead of Jagged1.

Conclusions
We have presented the first heuristic for Shortest Hyper-
paths in general directed hypergraphs with positive edge 
weights, where the length of a hyperpath is the sum of the 
weights of its hyperedges. The heuristic handles cycles, is 
guaranteed to be efficient, finds optimal hyperpaths for sin-
gleton-tail hypergraphs, and is highly accurate in practice. It 
matches the state-of-the-art mixed-integer linear program 
for shortest acyclic hyperpaths on over  99% of all instances 
from the NCI-PID and Reactome databases, and surpasses 
the state-of-the-art on all instances where no acyclic hyper-
path exists. Moreover, exhaustively enumerating all source-
sink hyperpaths using our hyperpath enumeration algorithm 
demonstrates that on every cyclic instance from these data-
bases, the heuristic was provably optimal.

Further research
Given that we can quickly find hyperpaths that are close to 
optimal in real cell-signaling hypergraphs, several research 
directions beckon. While the inapproximability of Short-
est Hyperpaths [16] rules out a constant-factor approxima-
tion unless   P=NP , is there an approximation algorithm 
whose approximation ratio on hypergraphs with n vertices 
matches the theoretical lower bound of ln n ? More practi-
cally, given that in our experiments our heuristic was sub-
optimal only on acyclic instances, is there a fast method for 
acyclic hyperpaths that outperforms our heuristic? Since a 
user would like to know how close to optimal a computed 
hyperpath is for their particular input graph, is there an effi-
cient heuristic that, as well as giving an upper bound on the 
optimum through its hyperpath, also outputs a lower bound 
on the length of the shortest hyperpath? Many intriguing 
research avenues are open.
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