
Wawerka et al.
Algorithms for Molecular Biology (2022) 17:11
https://doi.org/10.1186/s13015-022-00218-8

RESEARCH

Embedding gene trees into phylogenetic
networks by conflict resolution algorithms
Marcin Wawerka*, Dawid Dąbkowski, Natalia Rutecka, Agnieszka Mykowiecka and Paweł Górecki*

Abstract

Background: Phylogenetic networks are mathematical models of evolutionary processes involving reticulate events
such as hybridization, recombination, or horizontal gene transfer. One of the crucial notions in phylogenetic network
modelling is displayed tree, which is obtained from a network by removing a set of reticulation edges. Displayed trees
may represent an evolutionary history of a gene family if the evolution is shaped by reticulation events.

Results: We address the problem of inferring an optimal tree displayed by a network, given a gene tree G and a tree-
child network N, under the deep coalescence and duplication costs. We propose an O(mn)-time dynamic program-
ming algorithm (DP) to compute a lower bound of the optimal displayed tree cost, where m and n are the sizes of G
and N, respectively. In addition, our algorithm can verify whether the solution is exact. Moreover, it provides a set of
reticulation edges corresponding to the obtained cost. If the cost is exact, the set induces an optimal displayed tree.
Otherwise, the set contains pairs of conflicting edges, i.e., edges sharing a reticulation node. Next, we show a conflict
resolution algorithm that requires 2r+1

− 1 invocations of DP in the worst case, where r is the number of reticulations.
We propose a similar O(2kmn)-time algorithm for level-k tree-child networks and a branch and bound solution to
compute lower and upper bounds of optimal costs. We also extend the algorithms to a broader class of phyloge-
netic networks. Based on simulated data, the average runtime is �(20.543kmn) under the deep-coalescence cost and
�(20.355kmn) under the duplication cost.

Conclusions: Despite exponential complexity in the worst case, our algorithms perform significantly well on empiri-
cal and simulated datasets, due to the strategy of resolving internal dissimilarities between gene trees and networks.
Therefore, the algorithms are efficient alternatives to enumeration strategies commonly proposed in the literature and
enable analyses of complex networks with dozens of reticulations.

Keywords: Phylogenetic network, Tree-child network, Gene tree, Species tree, Deep coalescence, Reticulation,
Optimal displayed tree

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Evolutionary networks are mathematical models of evo-
lutionary processes with reticulate events such as hybrid-
ization, recombination, or horizontal gene transfer [1, 2].
Hybridization is a common phenomenon in plants and is
often used in agriculture to create new breeds [3]. Recom-
bination and reassortment are two shuffling processes in

which variants of genetic material are created from pairs
of highly similar DNA sequences. For example, many
viruses have segmented genomes, including influenza
viruses and rotaviruses [4], while horizontal gene trans-
fer is common in bacteria [5]. In the last decades, math-
ematical and computational properties of phylogenetic
networks have been intensively studied (see books [2, 6]).
One of the most classic notions is a tree displayed by a
network, obtained from a network by removing a set of
reticulation edges. Displayed trees may represent an evo-
lutionary history of a gene family [2], if the evolution of

Open Access

Algorithms for
Molecular Biology

*Correspondence: marcin.wawerka@gmail.com; gorecki@mimuw.edu.pl

University of Warsaw, Faculty of Mathematics, Informatics and Mechanics,
Banacha 2, 02-097 Warsaw, Poland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-022-00218-8&domain=pdf

Page 2 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

genes and their species is shaped by reticulation events.
Alternative approaches include embedding a gene tree
into a displayed tree [7–9] or using a parental species tree
as a generalization of a displayed tree [9–11].

The pioneering work by Maddison [12] introduced the
deep coalescence (DC) cost, which measures the extra
gene lineages of a gene tree when embedded into a spe-
cies tree. When a gene is embedded into its species tree,
each edge of the species contains several mapped gene
lineages. For example, when both trees have the same
topology, there are no extra gene lineages in the perfect
situation. DC and general coalescent-based methods are
popular in classical problems of computational biology,
e.g., estimation of species trees [13–15], tree reconcilia-
tion [15–19], or gene tree error correction [20].

Goodman et al. [21] introduced a duplication model
more than 40 years ago to explain potential discordance
between the gene tree and the species tree originat-
ing from complex histories of gene duplication and loss
events. This approach is based on embedding the gene
tree into the species tree using a mapping [22] that relates
every gene in the gene tree to its host species that is the
most recent species that could have contained the gene.
Consequently, the mapping relates every leaf-gene of
the gene tree to the species from which it has been sam-
pled. Based on this mapping, evolutionary events such
as gene duplications are identified. A node in a gene tree
denotes a gene duplication when it has a child with the
same host species. While many embeddings are possible
[23], the classic mapping describes the most parsimoni-
ous embedding in terms of the number of gene duplica-
tion and loss events [23, 24]. The gene duplication model
has many theoretical and practical applications [15, 18,
25–27].

There are two main general approaches to embed a
gene tree into a network using the parsimony princi-
ple: (1) choosing the tree displayed by the network with
the lowest cost, i.e. solving the optimal displayed tree
(ODT) problem, in which a reticulation node can be
reached only from one fixed parent, or (2) a direct tree-
network embedding, without the above constraint. These
approaches are present in relevant articles concern-
ing inferences of networks under Robinson-Foulds (RF)
embedding cost [8], the duplication-loss cost [9], and the
deep coalescence cost [7]. The latter includes the gen-
eral parsimony framework using the concept of parental
species trees [10]. Alternative studies are based on mini-
mizing deep coalescence criterion [25] or on probabil-
istic models on coalescent histories [28]. Model-based
approaches are usually computationally demanding since
they often require enumeration of all possible coales-
cence histories [28, 29]. Finally, perhaps one of the most

prominent applications of the above methods is the prob-
lem of network inference (e.g. [2, 8–10, 29, 30]).

From the theoretical point of view, ODT under deep
coalescence (or duplication cost) corresponds to NP-
hard problems: (1) best switching (i.e., choosing the set
of reticulation edges) for the duplication-loss model [9],
and (2) the computation of RF-embedding cost [8]. In [9],
the problem is solved in O(|N | + p2k |G|) time, where G
is a gene tree and p is the number of biconnected com-
ponents in a level-k network N. [8] proposed an O(2r |N |)

-time optimized algorithm to compute RF-embedding
cost, where r is the number of reticulations in N. Another
relevant contribution is from [7] with an O(4k |G||N |

2)

-time tree vs. level-k network reconciliation algorithm
under DC events. However, the latter cannot be directly
compared to ours since we solve a different problem. In
all of the above contributions, the complexity related to
2r (or 2k) is reached due to exhaustive enumeration strat-
egies. In this article, we show how to avoid such strate-
gies by proposing an efficient in practice method to infer
optimal displayed trees despite the theoretical intracta-
bility of ODT in general.

Our contribution: We address the problem of infer-
ence of an optimal tree displayed by a tree-child network
(ODT), given a gene tree G and a tree-child network N
under the deep coalescence (DC) and duplication (D)
costs. We propose a novel approach in which we define
scenarios for embedding G into N using sets of reticula-
tion edges from N, with a property that the score of a sce-
nario approximates the displayed tree cost. In particular,
we prove that the score of a scenario is a lower bound of
the cost of the optimal displayed tree. In a specific case,
when a scenario induces a non-conflicting set of reticu-
lation edges, we provide the correspondence between a
score of this scenario and a cost of a displayed tree. Next,
we propose an O(|G||N|) time dynamic programming
(DP) algorithm to compute an optimal scenario. We show
that an optimal scenario with no conflicts corresponds to
a solution of ODT. Based on DP, we design a recursive
algorithm to ODT by resolving conflicts in sets of reticu-
lation edges. This algorithm has exponential time com-
plexity O(2r |G||N |) , where r is the number of reticulation
nodes in N. We propose a similar O(2k |G||N |)-time
algorithm for level-k tree-child networks. We also show
how the algorithms can be extended to a broader class
of phylogenetic networks defined by the property: each
node has at most one reticulation child. Finally, we show
experimental studies on random, simulated, and empiri-
cal datasets. We show that our algorithm has significantly
improved runtime on simulated datasets by reducing the
exponent from r to nearly half of r on average.

Page 3 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

Methods
In this section, we present the main theoretical and algo-
rithmic methods on the inference of an optimal tree dis-
played by a network problem (ODT). We mainly focus on
the details related to the variant of the problem under the
deep coalescence cost (ODT-DC). At the end of the sec-
tion, we show how the theory can be adopted to solve the
problem under the duplication cost (ODT-DUP).

Trees and networks
A network on a set of species X is a directed acyclic
graph N = (V (N),E(N)) with a single root such that: (1)
its leaves, i.e., nodes of indegree 1 and outdegree 0, are
labeled by the species from X, and (2) there is a directed
path from the root to any other vertex. A network is
binary if its leaves, root, and the remaining nodes have
degrees 1, 2 and 3, respectively. A node is called a reticu-
lation if it has indegree two and outdegree one, and a tree
node if it has indegree at most one and outdegree two.
A network is semi-binary, if additionally, it may contain
semi-binary nodes of indegree at most one and outdegree
one, which includes the root having exactly one child. We
can contract a semi-binary node v of indegree one as fol-
lows: (1) remove v, (2) remove both edges incident with v,
and (3) insert a new directed edge connecting the unique
parent of v with the only child of v. Similarly, if v has
indegree zero we remove v, and the child of v becomes a
new root. If a directed graph G′ is obtained from a graph
G by a sequence of contract operations, then G is called a
subdivision of G′.

If �v,w� ∈ E(N) , then v is a parent of w and w is a child
of v, denoted w.parent = v if w is a non-root tree node or
a leaf. We write v.sibling = w if v = w have the same par-
ent. We write v � w if there is a directed path from v to
w, and v ≻ w if v � w and v = w . The set of all leaves in a
network is denoted L(N), by R(N) ⊂ V (N) we denote the
set of reticulation nodes in N, by T (N) ⊂ V (N) we denote
the set of all tree nodes in N, and by ER(N) ⊂ E(N) we
denote the set of all reticulation edges in N, that is, edges
�v, r� ∈ E(N) with r ∈ R(N) . We say that a reticulation
edge e is a sibling of a reticulation edge e′ if they share the
same bottom reticulation node. By degN (v) we denote the
outdegree of v in N.

A phylogenetic network is a binary network on X in
which the leaves are labeled one-to-one with the species
from X1. A species tree is a phylogenetic network with-
out reticulation nodes. A gene tree, or in short a tree,
is a binary network without reticulation nodes. Note
that the leaf labeling in a gene tree does not have to be

one-to-one. Such labelled trees are called multi-labelled
trees or MUL-trees [31]. A phylogenetic network is tree-
child network, if each non-leaf node has a child that is
either a tree node or a leaf [32–35].

Deep coalescence cost: embedding a tree into a (displayed)
tree
Given a gene tree G and a species tree S on X, the lca-
mapping M : V (G) → V (S) is defined as follows: (1) if g
is a leaf labeled x ∈ X then M(g) is the unique leaf labeled
x in S, and (2) if g has two children g ′ and g ′′ , then M(g)
is the lowest common ancestor of M(g ′) and M(g ′′) in S.
Embedding G into S is performed by mapping each edge
�v,w� ∈ E(G) to a path connecting M(v) and M(w) in S.
We say that the gene edge visits edges from that path.
Let ||v, w|| denote the number of edges on the path con-
necting v and w. Then, the visited edges contribute to the
deep coalescence cost, denoted DC(G, S) , as follows:

Given a phylogenetic network N on X, we say that a spe-
cies tree T on X is displayed by N, if N contains a sub-
graph T ′ that is a subdivision of T [36].

We now define the Optimal Displayed Tree under
Deep Coalescence problem (ODT-DC) in the parsimony
framework:

Problem 1 (ODT-DC) Given a tree G and a phyloge-
netic network N. Find an optimal tree S∗ displayed by N
that minimizes DC(G, S) in the set of all trees S displayed
by N.

The cost of an optimal displayed tree, we denote
DC(G,N) . While the complexity of ODT-DC remains
unknown for the class of tree-child networks, we claim
that the problem is NP-hard in a general class of net-
works. The proof is similar to the NP-hardness proof of
the best switching problem from [9]. See also [8] for the
related problem of RF-embedding. Figure 1 depicts an
example of DC costs.

Scenarios between gene trees and phylogenetic networks
In the previous Section, we showed how a gene tree is
embedded into a species tree. Here, we propose to embed
a gene tree into a phylogenetic network using a more
general approach than embedding through a displayed
tree. We start with the notion of unfolded network (see
also [37, 38]), then we define scenarios between gene
trees and unfolded networks.

For a phylogenetic network N on X with k reticulations,
the unfolded network N̂ is the tree Nk obtained from N

(1)DC(G, S) =
∑

�v,w�∈E(G)

(||M(v),M(w)|| − 1).

1 Note that two leaves can be labeled by the same label in a binary network,
which is not allowed in a phylogenetic network.

Page 4 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

by a sequence of k unfolding operations defined on pairs
(Ni, σi) , such that Ni is a semi-binary network on X and
σi : V (Ni) → V (N) defines the origin of a node from Ni .
Let (N0, σ0) be a pair such that N0 = N and σ0(v) = v
for each v ∈ V (N) . Then, for a sequence of all reticula-
tion nodes r1, r2, . . . , rk from N in a reversed topological
order, (Ni, σi) is obtained from (Ni−1, σi−1) by unfolding
the reticulation ri as follows:

• Let Si be a copy of the subtree of Ni−1 rooted at ri.
• V (Ni) := V (Ni−1) ∪ V (Si) and E(Ni) := (E(Ni−1)

\{�p, ri�}) ∪ E(Si) ∪ {�p, r
′

i
�} , where p is an arbitrary

parent of ri and r′i is the root of Si.
• σi(v) is σi−1(v) if v ∈ V (Ni−1) ; otherwise, it is σi−1(t) ,

if v is a copy of t from Ni−1.

Informally, for each reticulation node, we copy its sub-
tree, detach the original subtree from one parent, and
attach the copy to the same parent, without changing the
labels. To avoid using k directly, we set σ to be σk.2 Fig-
ure 2 depicts an unfolded network.

Lemma 2 (Correctness of unfolding) The unfolded net-
work N̂ of N is a semi-binary tree.

Proof The proof follows by induction on i = 0, 1, . . . , k ,
by showing that Ni is a semi-binary network on X with
the reticulation nodes ri+1, . . . , rk such that there is no
reticulation node below ri+1 in Ni . For i = 0 the above
statement holds trivially. For each i > 0 , Ni is obtained
from Ni−1 by unfolding ri . Next, it follows from the topo-
logical order, and the inductive assumption, that there is
no reticulation below ri , thus the set of all nodes below ri
induces a rooted subtree in Ni−1 . �

Let a root-leaf path be a directed path connecting the
root with a leaf in a network.

Theorem 3 (Unfolding Soundness) There is a one-to-one
correspondence between root-leaf paths in N and root-leaf
paths in N̂ .

Proof The bijection is established by σ , i.e., if
P = p1, p2, . . . , pm is a root-leaf path in N̂ , then
σ(P) = σ(p1), σ(p2), . . . , σ(pm) is the corresponding
root-leaf path in the network N. �

It follows from Theorem 3 that N and N̂ have the
same structure of root-leaf paths. A scenario for G and
N is a function ξ : L(G) → L(N̂) that preserves the leaf
labeling: for every g ∈ L(G) , the labels of g and ξ(g) are
equal. A scenario ξ can be extended to the lca-mapping
Mξ : V (G) → V (N̂) such that for g ∈ V (G) , Mξ (g) is

a
b c

d

G t
u

a

vp

x

b

yq

c
d

N

a
d

S1

a
d

S3 S2

a
b

b c b c a b c d c d

S4

a
d

G

a
d

S1

a
d

G

a
d

S3

a
d

G S2

a
d

G

a
b

S4

a
d

DC(G,S1)=0

a
b c b c b c b c b c b c

d

DC(G,S3)=1

DC(G,S2)=2

a
b

b c a b c d b c c d a b c d c d

DC(G,S4)=2

Fig. 1 Top left: a gene tree G and a phylogenetic network N with two reticulations. Top right: four trees displayed by N. Bottom: lca-mappings
between G and Si’s, visualization of embeddings of G into Si’s. Here, S1 is the optimal tree displayed by N with the DC cost of 0.

2 We also use σ with edges, e.g., σ(〈v ,w〉) denotes 〈σ(v), σ(w)〉.

Page 5 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

the lowest node v in N̂ such that ξ(g ′) � v , for each leaf
g ′ � g . Note that Mξ (g) is either a leaf or a tree node.

Deep coalescence score of scenarios
Having the lca-mapping determined by a scenario, we
are ready to define the deep coalescence score, denoted
D̃C , to approximate deep coalescence events induced
by scenarios in phylogenetic networks. Our first goal is
to deduce properties allowing us to approximate the DC
cost to solve ODT-DC in the class of tree-child networks.
In particular, our approach differs from the approaches
from [7, 9, 10], e.g., in the way in which a cost of a path is
defined, although the general concept of mapping a gene
tree into a network is analogous.

For a scenario ξ for G and N, we say that �v,w� ∈ E(G)
visits �a, b� ∈ E(N̂) if Mξ (v) � a ≻ b � Mξ (w) . Then, 〈a, b〉
has exactly one of the following types.

• Type I: Mξ (v) = a , i.e., it is the first edge.

• Type II: Mξ (v) ≻ a , degN̂ (a) = 2 and σ(b.sibling) /∈ R(N).
• Type III: Mξ (v) ≻ a , deg

N̂
(a) = 2 and σ(b.sibling) ∈ R(N) ;

we say that ξ bypasses the reticulation edge
σ(〈a, b.sibling〉).

• Type IV: deg
N̂
(a) = 1 (only if σ(a) ∈ R(N)).

In the above definition, type (I) is only for the first (i.e.,
the closest to the root) edge visited by a given edge from
G, while for the remaining visited edges from N̂ an edge
has: Type (II) if the sibling of its bottom node is a tree
node, Type (III) if the sibling of its bottom node is a
reticulation, and Type (IV) if the top node of the edge is a
reticulation.

By κξ (v,w) we denote the set of all edges of Type I or II
visited by 〈v,w〉 . Then, the deep coalescence score for G, N
and a scenario ξ is

(2)D̃C(G,N , ξ) =
∑

�v,w�∈E(G)

(|κξ (v,w)| − 1).

I

I I

IV

I I
IV

I
III

III

I

III
I

IIIV
I I

IV

I
III

III

I

III

I

II
IV

III

I

IIIV
II

IV

I

III
III

I

III

I

II
IV

III

I
III

IIIV

I
III

III

I

III

I

I

IV
III

I

IIIV

I
III

III

I

III

I

II
IV

II
IV

I

IIIV

III

I

III
III

t

u

a1
p

x

b1
q

c1

v

p

x

b2
q

c2

y

q

c3

d1

N^ Used reticulation edges
and DC score by scenarios

up vp xq yq DC~

E1

E2

E3

E4

E5

E6

dp dp 0
dp p p dp 0
p dp dp 0
p dp p dp 0
dp dp dp p 1
dp dp dp p 1

d - directly used, p - potentially used

a1

b1 c1
b2 c2

c3
d1

E1

a1

b1 c1
b2 c2

c3
d1

E3

a1

b1 c1
b2 c2

c3
d1

E5

a1

b1 c1
b2 c2

c3
d1

E2

a1

b1 c1
b2 c2

c3
d1

E4

a1

b1 c1
b2 c2

c3
d1

E6

Fig. 2 Top left: The unfolded network N̂ of N from Fig. 1 is shown with σ values attached to nodes, where for the leaves, the index is inserted to
distinguish leaves with the same labels/mappings. Bottom: 6 scenarios for G = ((a, (b, c)), d) shown as embeddings of G to N̂ . Numbers I–IV denote
the type of a visited edge. Only E1 is regular, while E1 − E4 are optimal. Top right: DC score and types of used reticulation edges for each scenario (ϒ[.]

).

Page 6 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

Examples of scenarios and D̃C scores are depicted in Fig-
ure 2. Finally, we can define Optimal Scenario Inference
problem, DC-MinRec.

Problem 4 (DC-MinRec) Given a gene tree G and a
phylogenetic network N. Find an optimal scenario ξ∗ that
minimizes D̃C(G,N , ξ) in the set of all scenarios ξ for G
and N.

In the next sections, we propose a dynamic program-
ming algorithm that solves DC-MinRec in O(|G||N|)
time where N is a tree-child network. Note that the time
complexity depends on the size of N (not on the poten-
tially exponential size of N̂).

In a trivial case, the solution to DC-MinRec is induced
by the classical DC cost.

Lemma 5 If N is a phylogenetic network with no retic-
ulation node, there is only one scenario ξ for G and N.
Moreover, D̃C(G,N , ξ) = DC(G,N).

Proof N is a species tree and the scenario is determined
by ξ := M|L(N) . In this case, Mξ = M , all visited edges in
N̂ are of Type I or II. Thus, |κξ (v,w)| = ||M(v),M(w)|| and
the proof is straightforward from (1) and (2). �

Displayed trees in tree‑child networks
Here, we present several important properties of dis-
played trees in tree-child networks.

Given a tree-child network N on X, a set Y ⊆ ER(N)
is called perfect if, for each r ∈ R(N) , Y contains exactly
one edge whose bottom node is r. Given a perfect Y, the
graph denoted N \ Y , obtained from N by removing all
edges from ER(N) \ Y is a semi-binary tree on X, i.e.,
semi-binary network with no reticulations.

Lemma 6 Let N be a tree-child network on X and
Y ⊆ ER(N). Then, Y is perfect if and only if N \ Y is a
semi-binary tree on X.

Proof (⇒) In a tree-child network a node cannot have
all descendands being reticulations. Therefore, N \ Y
contains no unlabelled leaf. Next, every reticulation node
r from N has exactly one parent in N \ Y . Also, N \ Y is
a connected graph on X, which follows by showing that
each node is connected with the root. We omit easy
inductive proof. (⇐) Let r ∈ R(N) . Then, Y must contain
exactly one reticulation edge whose bottom node is r.
Otherwise, N \ Y is not a tree. �

Since N \ Y is a semi-binary tree on X, contracting all
semi-binary nodes from N \ Y yields a species tree NY

on X. Next, the subgraph N \ Y of N is a subdivision of a
tree NY on X. We conclude that NY is a displayed tree of
N. We also have the following property.

Lemma 7 Let T be a displayed tree of a tree-child net-
work N. Then, there is a perfect set Y such that NY = T .

Proof Let T ′ be a subgraph of N such that T ′ is a subdivi-
sion of T. Let Y = ER(N) \ E(T ′) . It remains to show that
Y is perfect. Note that T ′ is a semi-binary tree on X and
the rest follows similarly to the case (⇐) from Lemma 6. �

We say that the perfect set Y is induced by a tree T dis-
played by N if NY = T . Note that different perfect sets
may induce the same displayed tree. E.g., a tree child net-
work with one reticulation and two leaves has two per-
fect sets each one inducing the same displayed tree.

Note that in more general cases of networks (see
relaxed networks in Section Beyond tree-child net-
works) additional removal of non-labeled vertices with
out-degree zero (i.e., unlabelled leaves) from N \ Y is
required to obtain a semi-binary tree on X.

DC scores of scenarios vs. DC costs of displayed trees
This section presents several theoretical results connect-
ing our scoring functions in the class of tree-child net-
works. Note that the notion of a cost will be used only
with the DC cost defined in (1) for trees and for phyloge-
netic networks in Problem 1, while for scenarios, we will
use the notion of a (D̃C) score.

To establish the correspondence between DC scores
and DC costs, we first show that each perfect set Y deter-
mines a scenario. Recall that NY is obtained from N\Y
by contracting semi-binary nodes. Let N̂Y be the graph
obtained from N̂ by removing all edges e such that
σ(e) ∈ ER(N) \ Y and all subtrees whose root is the bot-
tom node of e.

Lemma 8 Let N be a tree-child network and Y ⊆ ER(N)
be perfect. Then, N̂Y and N\Y are isomorphic, and the
isomorphism is established by σ |

V (N̂Y)
.

Proof The proof is by induction with unfolding steps.
Using the same notation, we construct N/Y iteratively
using the sequence of reticulation nodes from the con-
struction of N̂ . Let B0 = N . For each i = 0, 1, . . . , k , Bi
is inferred from Bi−1 by removing the reticulation edge
from ER(N) \ Y adjacent to ri . It is not difficult to see that
Bk = N \ Y (as we removed only edges from ER(N) \ Y).
N̂Y can be equivalently obtained by modification of the
original unfolding step by removing the copy Si or the
original subtree rooted at ri depending on whether the
corresponding reticulation edge is in Y. �

Page 7 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

For a tree-child network N, a gene tree G and a perfect
set Y ⊆ ER(N) , we define a scenario ξY for G and N, such
that for each gene leaf g labeled x, ξY (g) is the only leaf
in L(N̂Y) ⊆ L(N̂) labeled x. Correctness follows from
Lemma 8. For example, in Fig. 2, if Y = {�u, p�, �x, q�} ,
then Y is perfect and NY = S1 from Figure 1. Moreover,
for G = ((a, (b, c)), d) , ξY maps a to a1 , b to b1 c to c1 and
d to d1 as depicted in E1.

We say that e ∈ ER(N) is directly used by scenario
ξ if there is a visited edge e′ of Type I or II such that
σ(e′) = e . Similarly, we say that reticulation edge e is
potentially used by ξ if the sibling edge of e is bypassed by
ξ . By ϒξ ⊆ ER(N) we denote the set of reticulation edges
used directly or potentially by ξ (see Fig. 2).

We say that Y ⊆ ER(N) has a conflict if Y contains two
sibling edges. We say that ξ is regular if ϒξ has no conflict.
For instance, ϒE4 for E4 from Fig. 2 has two possible con-
flicts in N. Observe that ϒξ may not be perfect in general,
even if ξ is regular. For instance, if G = (c, d) and ξ maps c
to c3 in the network from Fig. 2, then ϒξ = {�y, q�}.

Now, we can state the crucial proposition that estab-
lishes a correspondence between regular scenarios and
embedding to trees displayed by a tree-child network.

Proposition 9 (Scenario-Displayed Tree Corre-
spondence) Let N be a tree-child network and let G
be a gene tree. A scenario ξ for G and N is regular, if
and only if for every perfect set Y such that ϒξ ⊆ Y ,
D̃C(G,N , ξ) = DC(G,NY).

Proof (⇐ .) If ϒξ is a subset of a perfect set Y, then ϒξ
has no conflict. Thus, ξ is regular. (⇒). If ξ is regular, then
there is at least one perfect Y such that ϒξ ⊆ Y . Based on
the definitions of DC and D̃C , it is sufficient to prove

for every edge �v,w� ∈ E(G) , where M is the lca-mapping
between G and the species tree NY , for one fixed perfect
set Y ⊇ ϒξ.

We have V (N/Y) = V (N) ⊇ V (NY) , and M(g) ∈ V (NY)
is a leaf or a tree node. Let d = ||M(v),M(w)|| (in NY).
Note that no removed edge from N̂ is visited by sce-
nario ξ , we conclude that σ(Mξ (g)) = M(g) for every g. If
M(w) = M(v) then |κξ (v,w)| = d = 0 . Otherwise, assume
M(v) ≻ M(w) . Let P = p1, p2, . . . , pm be the directed
path from Mξ (v) to Mξ (w) in N̂Y (and in N̂). Then, by
Lemma 8, σ(P) is the unique directed path in N/Y from
M(v) to M(w) . Note that d equals one plus the number of
nodes of outdegree 2 located strictly between M(v) and
M(w) in NY . The same statement holds in N/Y. We show
that d equals the number of Type I and II edges in N̂ . For

(3)|κξ (v,w)| = ||M(v),M(w)||,

an edge ei = �pi, pi+1� , with 0 < i < m we have, the fol-
lowing types of edges:

• Type I: the edge exists since m > 1.
• Type II: deg

N̂
(pi) = deg

N̂Y
(pi) = 2.

• Type III: deg
N̂
(pi) = 2 and ei bypasses the reticula-

tion edge e′ = σ(�pi, pi+1.sibling)�) . The sibling of e′
is in ϒξ ⊆ Y . Y is perfect, so e′ ∈ ER(N) \ Y . Thus,
deg

N̂Y
(pi) = 1.

• Type IV: deg
N̂
(pi) = deg

N̂Y
(pi) = 1.

As deg
N̂Y

(pi) = degN/Y (σ (pi)) , we see that
degN/Y (σ (pi)) = 2 if and only if i > 1 and ei has Type II.
Moreover, the directed path contains one edge of Type I.
Thus, |κξ (v,w)| = d . This completes the proof of (3) and
(⇒) implication. �

In the following proposition, we show that the cost of a
tree displayed by a network using a perfect set is bounded
from below by the cost of its corresponding scenario.

Proposition 10 Let N be a tree-child network and
let G be a gene tree. If Y ⊆ ER(N) is perfect, then
DC(G,NY) ≥ D̃C(G,N , ξY).

Proof The proof is similar to the proof of Prop-
osition 9, with the difference that we show
||M(v),M(w)|| ≥ |κξY (v,w)| , for any gene tree edge 〈v,w〉 ,
where M is the lca-mapping between G and NY . The only
difference is in the edges of Type III in the last part of
the proof. Here, we have deg

N̂
(pi) = 2 and ei bypasses

the reticulation edge e′ . As we do not have the assump-
tion that Yξ ⊆ Y , e′ may be present in Y. In such a case,
deg

N̂
(pi) = 2 . Thus, the node σ(pi) has outdegree 2 in

N̂Y . We conclude that ||M(v),M(w)|| − |κξY (v,w)| is the
number of edges of Type III on the directed path from
Mξ (v) to Mξ (w) that bypass an edge from Y. This com-
pletes the first part of the proof. �

Finally, we show that the equality between the score
and the cost holds only if the induced scenario is regular.

Proposition 11 Let N be a tree-child network and
let G be a gene tree. If Y ⊆ ER(N) is perfect, then
DC(G,NY) = D̃C(G,N , ξY) if and only if ξY is regular.

Proof (⇐). It follows from Proposition 9. (⇒). From
the proof of Proposition 10, we conclude that equality
holds only if there is no edge in Y bypassed by ξY . Thus,
each edge potentially used by ξY must be in Y. As every
directly used edge is also in Y, by the construction of ξY ,
we have ϒξ ⊆ Y . Thus, ϒξ is regular. �

Page 8 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

The next theorem states that the cost of an optimal tree
displayed by a network is bounded from below by the
score of an optimal scenario.

Theorem 12 (Lower Bound Property) Let N be a tree-
child network and let G be a gene tree. If S∗ is an optimal
tree displayed by N, and ξ∗ is an optimal scenario for G
and N then DC(G, S∗) ≥ D̃C(G,N , ξ∗).

Proof If S∗ is a tree displayed by N then there
is a perfect Y such that S∗ = NY . Thus, we have
DC(G,NY) ≥ D̃C(G,N , ξY) from Proposition 10 and
D̃C(G,N , ξY) ≥ D̃C(G,N , ξ∗) from the definition of ξ∗ . �

In our example from Figs. 1 and 2, the cost of S1 and
the score of E1 are equal. However, in general, a regular
scenario may not exist. For instance, if G = (a, d) , there
is only one scenario ξ for N from Fig. 2, where a and d are
mapped to a1 and d1 , respectively. Then, ξ is not regular,
and 0 = D̃C(G,N , ξ) < DC(G,N) = 1 (for S1 or S2).

Finally, we present a crucial theoretical property used
to solve ODT-DC in class of tree-child networks using
solutions to instances of DC-MinRec.

Dynamic programming (DP) algorithms to solve
DC‑MinRec
Dynamic programming algorithms are commonly used
in tree reconciliation, including models based on directed
acyclic graphs (DAGs) [7, 9, 17, 23, 27], where a gene tree
is mapped to a tree or a DAG through the lca-mapping
or general mapping based on concepts close to our sce-
narios. Such approaches often lead to polynomial time
solutions with square time complexity in the best case.
Here, we present two dynamic programming solutions to
Problem 4 by providing formulas to compute the score of
an optimal scenario. We start with a simplified and com-
putationally demanding DP formulation. Then, we show
an efficient approach running in square time.

Additional notation: By v′ and v′′ , we denote the chil-
dren of v ∈ T (N) , and by r′ the child of a reticulation
node r. For simplicity, instead of σ(Mξ (g)) for a gene tree
node g, we write ξg (i.e., ξ[.] is a mapping from G to N).

Dynamic programming formulation in O(|G||N3|) time:
the first approach
We can express the formula for δ in the following way:

where, for s � t in N,

Here ṙ and r̈ denote the parents of a reticulation node r.
The correctness of the above formulas follows from the

following two Lemmas.

Lemma 14 (Correctness of π) For s � t , π(s, t) is the
minimal number of Type I or II edges between two nodes
a � b in N̂ such that σ(a) = s and σ(b) = t.

Proof It follows from Theorem 3, that π can be com-
puted directly from N. The proof is by induction on the
length of the directed path. The cases in π formulas cor-
respond directly to the types of edges (see comments
in (5)), where we add/set 1 if the visited edge has Type I or
II. Note that there is only one branching when t ∈ R(N) .

(4)δ(g , s) :=







mins�t,u δ(g
′, t)+ π(s, t)+ δ(g ′′,u)+ π(s,u) g ∈ T (G) and s /∈ R(N),

0 g , s are leaves with the same label,
+∞ otherwise,

(5)π(s, t) :=



















||s, t|| ||s, t|| ≤ 1 (the empty path or Type I),
1+ π(s, t.parent) {t, t.sibling, t.parent} ∩ R(N) = ∅ (Tp. II),
1+min(π(s, ṫ),π(s, ẗ)) t ∈ R(N) (Type II),
π(s, t.parent) t.sibling or t.parent ∈ R(N) (Type III/IV),
+∞ otherwise.

Theorem 13 (Regularity) Let d be the score of an opti-
mal scenario of a gene tree G and a tree-child network N.
A tree S displayed by N with DC(G, S) = d exists, if and
only if there is an optimal regular scenario of G and N.

Proof (⇐). Take any perfect set Y such that Yξ∗ ⊆ Y
and S := NY . The equality follows from Proposition 11.
(⇒). By Theorem 12, S is an optimal tree displayed by N,
since d is a lower bound for the cost of a displayed tree.
Now, we take the perfect set Y induced by S. The scenario
ξY has score d. Hence, it is optimal. By Proposition 11, ξY
is also regular. �

Page 9 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

In such a case, the formula will choose the directed path
to s with the lower cost. We omit technical details. �

Lemma 15 (Correctness of δ) For g and s, δ(g , s) from
Equation (4) is the minimal number of Type I/II edges vis-
ited by edges from E(G|g) in a scenario ξ, in the set of all
scenarios ξ between G and N such that ξg = s.

Proof The proof follows by the induction on the struc-
ture of G and N, where Lemma 14 is applied to prove the
induction hypothesis in each step. We omit easy details.
�

Computing δ using the above formulas requires
O(|N |

2
+ |G||N |

3) time and O(|G||N | + |N |
2) space.

Therefore, this approach is rather prohibitive for larger
instances.

Efficient DP solution in O(|G||N|) time
By G|g, we denote the subtree of G rooted at g. The main
component of dynamic programming is δ such that for
g ∈ V (G) and s ∈ V (N) , δ(g , s) is the minimum score for
G|g in the set of all scenarios ξ between G|g and N̂ such
that ξg = s . For simplicity, we ignore −1 from the D̃C for-
mula in the partial costs in δ as this yields a constant term
dependent on the size of G.

Let τ (s) be 0 if s is a reticulation, and 1 otherwise. Then,
we have the following dynamic programming formula
that solves DC-MinRec:

In the next Lemma, we express properties satisfied by
the above formulas.

Lemma 16 Let g ∈ V (G) , s ∈ V (N) and all scenarios
below are for G and N.

D1 δ(g , s) is equal to minimum number of Type I/II
edges visited by edges from E(G|g) among scenar-
ios ξ satisfying ξg = s.

D2 If c is a child of g and t is not a reticulation. Then,
δ↑(c, t) is equal to minimum number of Type I/
II edges visited by edges from E(G|c) plus the
number of edges e′ = �a, b� of Type II visited by
{�c, g�} with t � σ(a) among scenarios ξ such that
ξg = s ≻ t � ξc.

D3 If c is a child of g and s is a tree node. Then, δf (c, s)
is equal to minimum number of Type I/II edges
visited by edges from E(G|c) ∪ {�c, g�} among sce-
narios ξ satisfying ξg = s.

Proof We follow with D1, where the proofs for D2-D3
are included as internal statements. The proof is by
induction on the structure of G and N. The base is when
g and s are leaves, for which D1 is obvious. Inductive
assumption: D1 holds, for every x, y such that g � x ,
s � y , and either x = g or y = s . Inductive hypothesis: D1
holds for g and s, where at least one of g and s is not a leaf.

Page 10 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

The proof for D2. Let ξ be the scenario having the mini-
mal number of I/II-edges as defined in D2 and let k be
the number of these edges. We follow by induction by
assuming that δ↑(c,u) satisfies D2 for all u, such that
t ≻ u /∈ R(N) . We prove D2 for t. The base step is when
ξc = t . Then, k = δ(c, t) and D2 follows from the induc-
tion assumption for D1 with cases (11) (the first expres-
sion when t is a tree node) and (13) (when t is a leaf).
Assume that t ≻ ξc , then 〈g , c〉 visits the edge e = �a, b�
such that σ(e) = �t, t ′� . We have three cases. (Case D2.i)
If both children of t are tree nodes, then e has Type II.
Note that ξ also has the minimal number of edges satisfy-
ing the inductive assumption with nodes c and t ′ . Oth-
erwise, if there is a scenario ξ ′ with a score < k − 1 for
c and t ′ then by visiting e, we will have a scenario with
< k edges for D2. This contradicts the assumption that
k is minimal. Thus, k = 1+ δ↑(c, t ′) , by the inductive
assumption. As τ (t ′)τ (t ′′) = 1 , this matches the second
expression in (11). (Case D2.ii) If t ′ is a tree node and
t ′′ is a reticulation then ξ bypasses the reticulation edge
�t, t ′′� . Similarly to the previous case, we show that ξ satis-
fies inductive assumption with c and t ′ (we omit details).
Thus, k = δ↑(c, t ′) and τ (t ′)τ (t ′′) = 0 , again this matches
the second expression in (11). (Case D2.iii) If t ′ is a tree
node and t ′ is a reticulation then ξ directly uses reticula-
tion edge �t, t ′� , i.e., e has Type II. Again, we show that
ξ satisfies inductive assumption with c and a tree node
v being the child of reticulation t ′ (we omit details). By
the inductive assumption, we have k = 1+ δ↑(c, v) ,
which equals δ↑(c, t ′) = 1+ δ↑(c, v) , by (11) with
τ (t ′)τ (t ′′) = 0 , then by (12).

The proof for D3. Let ξ be the scenario having the mini-
mal number of I/II-edges as defined in D3 and let k be
the number of these edges. If ξc = s , then there is no
edge visited by 〈c, g〉 . Thus, k = δ(c, s) by the induction
assumption, which is the first expression in min of (6).
Otherwise, assume that for a child s′ of s, s′ � ξc = t .
Then, there is one edge of Type I visited by 〈c, g〉 . We have
two cases. (Case D3.i) If s′ is a reticulation, then τ (s′) = 0
and k = δ↑(g , s′) = 1+ δ↑(g , t) where t is the child of s′ .
The latter follows from (12) and D2 (with s := t). Note
that ξ has the minimal number of edges k − 1 satisfying
the corresponding assumptions of D2 (see a similar argu-
ment in the proof of case D2.i). (Case D3.ii) If s′ is a tree
node or a leaf then k = 1+ δ↑(g , s′) by D2 (with s′). In
both cases Type I edge is included. The rest is similar to
case D3.i. This completes the proof of D3.

The proof of D1. It follows from D3, that
δf (c, s) = mins�t δ(c, t)+ π(s, t)) (see def. of π in
section Dynamic programming formulation in
O(|G||N 3

|) time: the first approach), for a child c
of g. Thus, if g and s are tree nodes we show that
δ(g , s) = (mins�t δ(g

′, t)+ π(s, t))+ (mins�u δ(g
′′,u)+ π(s,u)) .

The proof follows similarly to the previous cases by
analysing ξ with the minimal number of edges satisfy-
ing constraints from D1 (see also the recursion from (4)
and Lemma 15). The case relates to (6). We skip details.
Finally, we have two remaining cases. If g is a leaf and s is
a tree node, then there is no scenario ξ satisfying ξg = s .
Then, the number is +∞ (case (9)). If s is a leaf and g is
a tree node, we have δ(g , s) = 0 if all leaves below g are
labeled by the label of s, and +∞ otherwise. This agrees
with the number of visited Type I/II edges, where, in the
second case, the set of scenarios satisfying the assump-
tions is empty. �

The optimal score is given by the following theorem,
whose proof follows immediately from the definitions of
δ , D̃C and Lemma 16.

Theorem 17 Given a gene tree G and a tree-child
network N. The score of an optimal scenario ξ∗ is
D̃C(G,N , ξ∗) = −|E(G)| +mins∈V (N) δ(G. root , s).

To infer an optimal scenario, we apply standard back-
tracking based on values of δ array. Since there are three
arrays, each of size |G||N| and every cell of an array can
be computed in O(1) time, DP has O(|G||N|) time and
space complexity. Note that in implementation δf can be
embedded into δ computation. Thus, the space may be
reduced to two arrays.

Inferring used reticulations edges from DP
An optimal scenario can be inferred from DP formu-
las using standard backtracking. However, this scenario
may not be perfect. To further utilize the results of DP,
we infer the set of used reticulation edges. For two nodes
v and w, let ρ(v,w) = {�v,w�} denote the one-element
set with 〈v,w〉 if this edge is a reticulation edge in N, and
ρ(v,w) = ∅ otherwise. Similarly, by ρ̄(v,w) we denote the
one-element set with the sibling edge of e = �v,w� if e is a
reticulation edge in N, and ρ̄(v,w) = ∅ , otherwise. Then,
DP components δ , δf and δ↑ are associated with reticula-
tion edge usage rules u, uf , and u↑ , resp., as follows:

Page 11 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

The correctness of above formulas follows from the next
lemma.

Lemma 18 If the backtracking of DP results in a sce-
nario ξ, then ϒξ = u(G. root , ξG. root).

Proof The proof follows by analysis of cases when retic-
ulation edges are directly or potentially used by ξ and it is
based on the details from the proof of Lemma 16. There
are three main cases when a reticulation edge is inserted
using ρ or ρ̄.

Case I. When the first edge (Type I) on the visited,
directed path is a reticulation edge, then, its correspond-
ing reticulation edge from N is inserted in uf (g , s) using
ρ(s, c) in the second case. See also (D3.ii) in the proof of
Lemma 16.

Case II. When the visited reticulation edge has Type II,
then the corresponding reticulation edge is inserted in
u↑(g , s) using ρ(s, c) in the last case. See also (D2.iii) in
the proof of Lemma 16.

Case III. When the scenario bypasses a reticulation edge
e, then e inserted in u↑(g , s) using ρ̄(s, c.sibling) in the last
case. See also (D2.ii) in the proof of Lemma 16. �

u(g , s) =

�

uf (g ′, s) ∪ uf (g ′′, s) in (6),
∅ in (7)-(9),

uf (g , s) =

�

u(g , s) if δf (g , s) = δ(g , s) in (10),

u↑(g , c) ∪ ρ(s, c) if δf (g , s) = τ (c)+ δ↑(g , c) for some c ∈ {s′, s′′} in (10),

u↑(g , s) =















u(g , s) if δ↑(g , s) = δ(g , s) in (11) or (13),
u↑(g , c) in (12),
u↑(g , c) ∪ ρ(s, c) ∪ ρ̄(s, c.sibling) δ↑(g , s) = τ (s′)τ (s′′)+ δ↑(g , c)

for some c ∈ {s′, s′′} in (11).

Inferring optimal displayed trees under deep coalescence
cost
In this Section, we propose algorithms to solve ODT-
DC in the class of tree-child networks. We also show
how to adopt the solution to use structural properties
of tree-child networks (e.g., level-k tree-child networks).
Also, we answer whether the problem can be analo-
gously solved when the class of networks is broader than
tree-child.

Solution to ODT‑DC in the class of tree‑child networks
Theorem 13 motivates the following general branching
algorithm to solve ODT-DC. Suppose DP returns a solu-
tion with a conflict. Then, such a conflict can be resolved
by branching and solving two sub-instances of the prob-
lem with phylogenetic networks induced from the input
phylogenetic network by removing exactly one edge from
the conflict. Let Ne be the tree-child network obtained
from N/{e} by contracting all semi-binary nodes3. Algo-
rithm 1 details the procedure to infer an optimal tree dis-
played by a given network. Here, branching occurs when
there is a conflict in the set of used reticulation edges.
Thus, if the number of conflicts is low, e.g., when G and N
are similar, we expect a small number of DP invocations.

3 Recall that N\X is the network obtained from N by removing all edges from
X.

Page 12 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

Correctness of Algorithm 1 follows from Theorem 13
and the following theorem.

Theorem 19 If e, e′ ∈ ER(N) are sibling edges then
DC(G,N) = min{DC(G,Ne),DC(G,Ne′)}. Moreover, T is
an optimal tree displayed by N if and only if T is an opti-
mal tree displayed by a network Ne or Ne′ with minimum
cost.

Proof Let �(N) be the set of all trees displayed by
N. Then, the first statement follows from the fact that
for tree-child networks, �(N) = �(Ne) ∪�(Ne′) and
�(Ne) ∩�(Ne′) = ∅ . The second statement follows easily
from the above observation. �

In the worst case, we need to branch for every reticu-
lation twice, which gives 2r+1

− 1 invocations of DP.
Thus, Algorithm 1 has time complexity O(2r |G||N |) in
the worst case. However, as mentioned previously, we
expect Algorithm 1 to behave better than worst com-
plexity in practice. See also our experimental evaluation
in Section Results.

Lower and upper bounds of the optimal cost of a displayed
tree
[3]Recall that N/X is the network obtained from N by
removing all edges from X.

Lemma 20 For a gene tree G and a tree-child network N,
Algorithm 2 returns l and u such that l ≤ DC(G,N) ≤ u.

Proof The proof follows by induction on the number of
reticulation nodes in a network. If N is a tree, then the
statement is obvious, as the scenario has no conflicts
l = u = DC(G,N) . Otherwise, we have several cases. If
the scenario from DP has no conflict, then we have the
exact solution (see Line 4). Otherwise, there is a conflict,
and if the recursion depth is reached, then the computa-
tion is completed in Line 5 with proper bounds (see The-
orem 12). In the final case, we have two pairs of bounds
from two invocations. By the inductive assumption, the

b

a

N1

a
b c

d

N2

b
a

c

N3

Fig. 3 Left: A relaxed network N1 which is not tree-sibling. Middle: A
tree-sibling network N2 which is not relaxed network. Right: A non
tree-child network N3 (also non-relaxed).

In applications where only the optimal cost is needed,
for instance, in problems of network inference, we can
use the Lower Bound Theorem 12. As the cost of an opti-
mal displayed tree is bounded below by the score from
DP, we can also compute the upper bound using regular
scenarios returned from multiple invocations of DP. See
details in Algorithm 2.

bounds are correct for Ne and Ne′ . For the lower bound
of N, we have to take a minimum of l and l′ , as there may
exist the optimal scenario for the network Ne or N ′

e with
the cost min(l, l′) in the “worst” case. Such a scenario
is optimal for N. Similarly, we proceed with the upper
bound. �

Page 13 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

Inferring optimal trees displayed by level‑k tree‑child
networks
Our results can also be extended to level-k tree-child net-
works. The definition and properties are adopted from
[9, 39, 40]. A level-k network is a phylogenetic network
in which every biconnected component has at most k
reticulation nodes [39]. If B is a biconnected component
of N, then by B. root we denote the unique node in B with
no ancestors in B. Using the notation from [9], by bc(N)
we denote the tree obtained from N by contracting all its
biconnected components. Let Lab(N) denote the set of
species present in N as leaf labels.

In Algorithm 3, edges visited by subtrees of G have
to be connected in the embedding. Therefore, for
each non-root component B in b(N), we minimize the
score using the additional costs of a path to the root
of B. Formally, DC↑(G,N) is the minimum value of
DC(G, S)+ ||M(G. root), S. root || in the set of all dis-
played trees S of N. Computing the value (almost) does
not require modification of our algorithms. Here, instead
of the formula from Theorem 17, we compute DC↑(G,N)
using −|E(G)| + δ↑(G. root , S. root) . The correctness fol-
lows from Lemma 16 case D2. The formula can be eas-
ily embedded into Algorithm 1. The time complexity of
Algorithm 3 is O(2k |G||N |).

Beyond tree‑child networks
DP can be extended to analyse a broader class of net-
works, which is more beneficial from a practical point
of view. Assume that instead of a tree-child network
condition, our class of networks satisfies a relaxed con-
dition: each node has at most one reticulation child.
This assumption admits the child of reticulation to be a

reticulation, which is not allowed in tree-child networks.
Such networks, we call relaxed. We did not find an equiv-
alent class in the literature. Note that the relaxed class
is incomparable with a well-known class of Tree-Sibling
networks (see networks N1 and N2 in Fig. 3), character-
ized by the condition: each reticulation has a tree-node
sibling. Also, relaxed networks are not stable [41] in gen-
eral, since the relaxed condition admits non-compressed
networks (see Theorem 1 from [38]). For example, N1
from Fig. 3 is not stable.

For the relaxed class, we modify DP in (12):
τ (s′)+ δ↑(g , s′) , and in usage rules in the 2nd case of u↑
referring to (12): u↑(g , s) ∪ ρ(s, c) , which is needed when
the child is also a reticulation. Under this modification,
Algorithm 1 returns a correct optimal displayed tree. We
omit details for brevity.

We also analysed a general class of binary networks, i.e.,
in which a tree node may have two reticulation children.
However, DP cannot correctly analyse such networks.
When embedding a gene tree (a, b) into the network
N3 from Fig. 3, we see that the optimal displayed tree is
S = ((a, b), c) with the cost 0. Here, S is constructed by
removing a node x and all three incident edges, and a tree
node x.parent with two children is also contracted. In the
current DP, when a gene edge 〈a.parent, a〉 from G visits
x.parent DP will increase the cost. Therefore, the lower
bound property is not satisfied in this case unless a solution
in which such removed tree nodes are detected is imple-
mented. It remains open whether it can be done in polyno-
mial time without checking all variants of displayed trees.

Page 14 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

Optimal displayed trees under gene duplication cost
(ODT‑DUP)
Algorithms presented in the previous Section can natu-
rally by modified to operate on cost functions such as
gene duplication or gene duplication and loss [16]. The
main difference is the way an optimal scenario is com-
puted. Here, we present a dynamic programming solu-
tion for optimal scenario problem under duplication cost.
Since the results are analogous to the deep coalescence
cost, we omit most of the theoretical details for brevity.

Given previously defined lca-mapping between a gene
tree G and a species tree S, M : V (G) → V (S) , we define
duplication contribution of vertex g ∈ V (G) , which has
two children g ′, g ′′ as

If g is a leaf, then dup(g) = 0 . Then, the duplication cost
between G and S (denoted by DUP(G, S)) is defined as
DUP(G, S) =

∑

g∈T (G) dup(g) [22].
In this section we solve the following problem.

(14)

dup(g) =

{

1 ifM(g) = M(g ′) orM(g) = M(g ′′),

0 otherwise.

Problem 21 (DUP-ODT) Given a rooted tree G and
a phylogenetic network N. Find a tree S displayed by N
with the minimum DUP(G, S).

Similarly to deep coalescence score, given a scenario
ξ : V (G) → V (S) , we define duplication score contribu-
tion of a vertex g ∈ V (G) as follows. If there is a child g ′ of
g such that Mξ (g) = Mξ (g

′) , then ˜dup(g) = 1 . Otherwise,
˜dup(g) = 0 . Then, the duplication score for G, N and a

scenario ξ is defined as ˜DUP(G,N , ξ) =
∑

g∈T (G)
˜dup(g) .

Duplication score has analogous properties to the ones
proved in Theorem 12 and Theorem 13, thus the score
can be applied in our branch-and-bound framework. We
omit details for brevity.

Similar to the DC case, we have two dynamic program-
ming arrays, δ and δ↑ . Recall, that δ(g , s) is the minimum
score for G|g in the set of all scenarios ξ between G|g and
N̂ such that ξg = s , and δ↑(g , s) is the minimum score for
G|g in the set of all scenarios ξ between G|g and N̂ such
that ξg = y , where s � y . Dynamic programming formu-
lation is as follows

Fig. 4 Performance of Algorithm 1 vs naïve approach for random datasets R1, R2 and R3. Each dot represents the average speedup computed from
the runtimes of 100 pairs of gene trees and phylogenetic networks.

Page 15 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

Fig. 5 Distance between the simulated displayed trees and the
corresponding gene trees for six sets of simulation parameters. For
visualisation purposes we smoothed out the obtained histogram
using a Gaussian kernel density estimate calculated by [59] with
bandwidth set to 0.03.

DP components δ and δ↑ are associated with usage rules
u, u↑ respectively, as follows:

Results
In this section, we present the experimental evaluation
using our prototype implementation of DP, Algorithm 1
and Algorithm 2 called EmbRetNet written in Python 3.
The algorithms were extended to analyse the class of net-
works in which a node has at most one reticulation child
(see discussion in the previous sections). The software
package is available from the bitbucket repository.

Performance of inferring optimal displayed trees
We show the performance of our algorithm where the
gene tree is simulated using its network. Since both the
gene tree and its network are topologically related, we
expect better performance than in the worst case sce-
nario. We summarize the results of several experiments
to compare the performance of our implementation of
Algorithm 1 to the naïve implementation in which all
trees displayed by a given network are generated, and
then, the costs are computed using a linear time solution
from [15]. Note that both algorithms have exponential
time complexity; however, the naïve algorithm always has
the same number of steps, proportional to 2r(|G| + |N |) ,
where r is the number of reticulations in N. Experi-
ments were conducted on a Ubuntu server with Intel(R)
Xeon(R) CPU E5-2698 v4@2.20GHz (80 cores) and 500
GB of RAM.

Evaluation on random datasets
Data preparation: To generate random tree-child phy-
logenetic networks, we used an algorithm from [42] and
its implementation in Python from GitHub with a slight
modification to generate only binary networks. Random
gene trees with one-to-one labeling of leaves were gener-
ated using the Yule-Harding model. Then, we generated
datasets R1, R2, and R3, each consisting of 2 · 10 · 100
pairs of random gene trees and networks. For each
n ∈ {12, 20} and r ∈ {1, 2, . . . , 10} , we generated 100 pairs
〈G,N 〉 , such that N is a network with n leaves and r retic-
ulations and in dataset R1 |L(G)| = n , in R2 the number

u(g , s) =























u(g ′, s) ∪ u↑(g ′′, s) for first case in (15),
u↑(g ′, s) ∪ u(g ′′, s) for second case in (15),
u↑(g ′, s′) ∪ u↑(g ′′, s′′) ∪ ρ(s, s′) ∪ ρ(s, s′′) for third case in (15),
u↑(g ′′, s′) ∪ u↑(g ′, s′′) ∪ ρ(s, s′) ∪ ρ(s, s′′) for fourth case in (15),
∅ in (16)-(18),

u↑(g , s) =







u(g , s) if δ↑(g , s) = δ(g , s) in (19) or (21),
u↑(g , c) in (20),
u↑(g , c) ∪ ρ(s, c) if δ↑(g , s) = δ↑(g , c) for some c ∈ {s′, s′′} in (19).

of leaves in G is sampled uniformly from the interval
[2, n], and in R3 G is a randomly chosen tree displayed
by N.

Discussion: In Figs. 4 and 6, we summarize the experi-
mental evaluation results of R1, R2 and R3 with our
solution to ODT-DC, where G and N were generated
independently. Since R1 and R3 represent extremes, in
which G and N are highly different, our algorithm fre-
quently infers conflicted sets of reticulation edges by
visiting almost every possible scenario, thus achieving
nearly the pessimistic exponential complexity. In con-
sequence, it is noticeably slower than the naïve one for
R1. On the contrary, with data from R3 the algorithm
rarely branches, and its average runtime matches the
complexity of DP, i.e., O(|G||N|). Even with a larger con-
stant factor, we outperform the naïve algorithm for r > 4 ,
achieving > 15 times speedup for r = 10.

Evaluation on simulated datasets
Our simulation procedure can be divided into three
major phases: (i) simulating tree-child phylogenetic net-
works, (ii) simulating gene trees, and (iii) introducing
errors to the gene trees. The selection of the parameters

https://github.com/RemieJanssen/Cherry-picking_TC_Network_Containment

Page 16 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

in all three phases is mainly based on the simulation
study conducted by Molloy and Warnow [43], which uses
parameters derived from a fungal dataset presented by
Rasmussen and Kellis [44].

(i) Simulating tree-child phylogenetic networks. First,
we simulated species trees using a general sampling
approach implemented in R package TreeSim version
2.4 [45] with the parameters from [43]. Specifically, we
ran sim.bd.taxa.age function with the following param-
eters: tree height = 1800000337.5 years, speciation rate
= 1.8 ∗ 10−9 events/year and extinction rate = 0 events/
year. The number of leaves was set to 12 or 20.

After simulating each species tree, we assigned a time
value to all of its nodes, corresponding to a length of a
path connecting the root with the node. Note that the
general sampling approach produces ultrametric species
trees, therefore time values assigned to the leaves were
equal.

Next, we inferred a network with k reticulations from
each of the simulated species trees, where k was uni-
formly sampled from [1, 10]. We added k reticulations
one by one, following a popular study by Solis-Lemus and
Ané [46]. Similarly to [8] we constrained the networks to

a tree-child class. To add a reticulation edge to a species
tree/network, we started by randomly choosing a pair
of distinct non-reticulation edges and subdivided them,
making two new vertices. We then sampled a time value
for each of the vertices from uniform(vertex.parent.time,
vertex.child.time). Finally, we added a reticulation edge
from the vertex with the lower time value tl to the vertex
with the higher time value th , creating a tree-based net-
work [47]. If the addition disturbed the tree-child prop-
erty, we deleted the reticulation edge and contracted the
vertices. Otherwise, we set the length of the reticulation
edge to th - tl . The above procedure was repeated until k
reticulations were successfully added.

Note that this way of introducing reticulation edges
does not change time values of the leaves, hence all dis-
played trees of the resulting network are ultrametric and
have equal heights.

(ii) Simulating gene trees. For each phylogenetic net-
work, we randomly chose one of its base trees [47],
obtaining one of the possible trees, along which gene
families evolve. We simulated one gene tree per each
base tree using SimPhy version 1.0.2 [48] with the follow-
ing command:

Fig. 6 Average number of DP invocations necessary to calculate an answer for random datasets R1, R2 and R3.

Page 17 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

where<tree>is a nexus file containing the ran-
domly chosen base tree, $ps is the effective popula-
tion size and $dl is a duplication/loss rate. Similarly
to [43], we used three rates of duplication/loss (DL)
{10−10, 2 · 10−10, 5 · 10−10

} and two values of the effec-
tive population size {107, 5 · 107} , corresponding respec-
tively to a low and a medium level of incomplete lineage
sorting (ILS). Altogether, we used six sets of simulation
parameters, which allowed us to obtain a diversified set
of gene trees. Note that low DL and ILS parameters were
obtained based on biological data of Saccharomycetales
fungi [44], whilst higher parameters were used to test
the performance of the algorithms in a more challenging
environment.

(iii) Simulating sequences and estimating gene trees. To
introduce errors to the generated gene trees, we simu-
lated sequences and estimated gene trees from multiple
sequence alignments using the maximum-likelihood
method (MLE). DNA sequences were simulated by
INDELible v1.03 [49] by running a perl script INDEL-
ible_wrapper.pl included in SimPhy [48]. Again, we fol-
lowed the parameters proposed in [43]. We used GTR
model with substitution rates (AC, AG, AT, CG, CT
and GT respectively) sampled for each gene tree from

Dirichlet(12.776722, 20.869581, 5.647810, 9.863668,
30.679899, 3.199725). The nucleotide frequencies (T,
C, A and G respectively) were sampled from Dirichlet
(113.48869, 69.02545, 78.66144, 99.83793), whilst α
parameter was sampled from Lognormal (−0.470703916,
0.348667224). The alignment length was set to 1000
bp. To estimate gene trees, we used a true alignment
returned by INDELible. Then, we inferred ML-trees by
PhyML v.3.1 [50] using GTR+Ŵ model. Finally, to obtain
a rooted gene tree from an unrooted ML-tree, we con-
ducted midpoint-plateau rooting implemented in URec
[51] using the corresponding displayed tree inferred in
step (ii) of our pipeline.

Finally, for each set of parameters of duplication-loss
rates, population sizes, reticulation values, and leaf-set
sizes we simulated 100 networks and 100 corresponding
gene trees.

Then, we examined the impact of duplication-loss
rates and population sizes on the results of the simula-
tion. We calculated a distance between the displayed tree
used to simulate a gene tree in step (ii) of our simulation
pipeline and the rooted ML gene tree for each sample.
We used a strict metric implemented in [52], which was
designed to compare species trees with gene trees in the

Fig. 7 Performance of Algorithm 1 vs naïve approach for three simulated datasets with low ILS 1 · 107.

Fig. 8 Performance of Algorithm 1 vs naïve approach for three simulated datasets with medium ILS 5 · 107

Page 18 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

presence of duplication events. The results are depicted
in Fig. 5. We observe that the distances are significantly
higher for high and medium DL rates than for the low DL
rate. It suggests that increasing the parameter resulted in
more demanding datasets for our algorithms than aver-
age empirical data. Interestingly, we see little difference
between the dataset simulated using low and medium
ILS parameters, suggesting that incomplete lineage sort-
ing rarely changed the tree topology during our simula-
tion study.

The simulations were run in parallel on ten cores and
the total simulation time was under 8 h. The algorithm

took 2 h to process all datasets, and it took, on average,
45 s to run 100 instances with 20 leaves and 10 reticula-
tions for low ILS and low DL.

Results for deep coalescence cost
Discussion. In Figs. 7 and 8, we present diagrams show-
ing the results of evaluations for our datasets. The way we
simulated data makes trees and networks more similar to
each other. Thus, we can see significant improvements
vs. random datasets. Regardless of parameter choices,
we start to outperform the naïve solution for r > 9 . For
simulated data closest to reality (low ILS, low DL), we

Fig. 9 Average number of DP invocations necessary to calculate an answer for deep coalescence cost, for datasets with low ILS. The blue line
represents coefficients calculated by linear regression for data with low and medium ILS combined.

Fig. 10 Average number of DP invocations necessary to calculate an answer for deep coalescence cost, for datasets with medium ILS. Recall that
blue line represents coefficients calculated by linear regression for data with low and medium ILS combined.

Page 19 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

achieved better results for r > 7 . The results suggest a
hybrid approach in Algorithm 1: enumerate all displayed
trees to compute DC costs directly if the network has a
low number of reticulations (e.g., r < 9).

To estimate the average runtime of our algorithm, we
first calculated the depths d of the recursive calls as log2
of the number of DP invocations from each experiment.
Then, we found that for all points 〈r, d〉 from our experi-
ments, d = 0.543r − 0.1135 is the fitted least squares
regression line having the standard error of .011 (see
Figs. 9, 10). We conclude that, despite the worst case
theoretical complexity, i.e., O((2r+1

− 1)|G||N |) , the

real runtime of our implementation on simulated data is
proportional to 20.543r |G||N | and outperforms the naïve
approach starting from small r’s. We claim that a similar
statement holds for the algorithm with level-k networks.
In other words, it is possible to analyse empirical net-
works even with r = k = 40 , since the exponent can be
reduced by half.

Results for duplication cost
We also have conducted analogous experiments on the
same datasets under the duplication cost and the imple-
mentation of dynamic programming formulas (15)-(21).
In summary, our implementation outperforms naïve

Fig. 11 Average number of DP invocations necessary to calculate an answer for duplication cost, for datasets with low ILS. The blue line represents
coefficients calculated by linear regression for data with low and medium ILS combined.

Fig. 12 Average number of DP invocations necessary to calculate an answer for duplication cost, for datasets with medium ILS. Recall that blue line
represents coefficients calculated by linear regression for data with low and medium ILS combined.

Page 20 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

approach for r > 5 . Using the same method to calculate
the least squares regression line, we conclude that the
average complexity for duplication is proportional to
20.355r |G||N | (see Figs. 11, 12; we omit the rest of the dia-
grams for brevity). Despite the same theoretical complex-
ity of computing duplication and deep coalescence costs,
dynamic programming formulas, and branch and bound
strategies, we observe that the duplication cost has
improved performance in practice in terms of the runt-
ime and the exponent obtained in the regression formula.
We claim that these improvements come directly from

technically simpler formulas present in our algorithms
under the duplication cost.

Empirical tests
Our final experiment was conducted using real data. We
revisited research presented in [53] concerning corona-
virus (CoV) phylogeny. In the cited paper, the authors
investigated the origins of the SARS-CoV-2 virus, which
causes severe respiratory disease. They validated the
hypothesis that the appearance of this new coronavirus
is a consequence of several recombination events that

Table 1 List of the full names and database accession numbers of coronavirus species used in our research. Species were chosen from
the dataset studied in [53]

Abbreviated name Organism name Accession Number (GenBank/
GISAID)

Host organism

Hu-Wuhan BetaCoV Wuhan-Hu-1 NC045512.2 Human

Hu-Italy hCoV-19/Italy/ ABR-IZSGC-TE4836/2020 EPIISL418260 Human

RaTG13 Bat CoV RaTG13 MN996532.1 Bat

Guangdong-Png hCoV-19/pangolin/ Guangdong/1/2019 EPIISL410721 Pangolin

Guanxi-Png-P2V Pangolin CoV isolate PCoVGX − P2V MT072864 Pangolin

Bat-CoVZC45 Bat SARS-like CoV isolate bat-SL-CoVZC45 MG772933.1 Bat

Bat-CoVZXC21 Bat SARS-like CoV isolate bat-SL-CoVZXC21 MG772934.1 Bat

Bat-CoV273 Bat CoV BtCoV/273/2005 DQ648856.1 Bat

Bat-CoV 279 Bat CoV BtCoV/279/2005 DQ648857.1 Bat

HKU3-12 Bat SARS CoV HKU3-12 GQ153547.1 Bat

Rf1 Bat SARS CoV Rf1 DQ412042.1 Bat

SARS SARS CoV BJ01 AY278488.2 Human

SARS-BJ182-4 SARS CoV BJ182-4 EU371562 Human

Rs3367 Bat SARS-like CoV Rs3367 KC881006.1 Bat

BM48-31-BGR Bat CoV BM48-31/ BGR/2008 GU190215.1 Bat

Fig. 13 Coronavirus species tree with recombinations H1–H7
reported in [53]. Genes-recombinations assignment from [53]:
H1:ORF1ab, H2:ORF8, H3:M, H4:ORF8, H5:ORF3a, H6:ORF6, H7:ORF3a,
ORF8, ORF10.

Fig. 14 Results for coronavirus dataset showing which
recombination edges were used by each gene tree in the scenarios
with the lowest DC cost for each network variant.

Page 21 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

occurred between some evolutionarily close CoV species.
The results showed that both intergenic and intragenic
recombination played a significant role in the SARS-
CoV-2 evolution.

The goal of our study was to test whether scenarios with
the lowest DC cost inferred for the phylogenetic network
from [53] and individual gene trees confirm recombina-
tions identified in the cited paper. In our experiment, we
focused on intergenic recombinations, in which a whole
gene is transferred from one species and integrated into
another species genome.

Data preparation: In the gene trees inference step, we
followed the cited work. We selected 15 out of 25 exam-
ined coronavirus species, omitting a few species to avoid
multifurcations. As representatives of SARS-Cov-2, two
variants were used. One was sampled from a patient from
Wuhan (Hu-Wuhan), the origin of the pandemic spread
of coronavirus, and the other was collected in Italy (Hu-
Italy). Other selected species were RaTG13 bat CoV
from R. affinis which, at first, was considered the only
close relative of SARS-CoV-2, bat CoV ZC45 and ZXC21
strains from Zhejiang province of China (Bat-CoVZC45,
and Bat-CoVZXC21), bat coronaviruses collected from
species found in several provinces of China and from
Bulgaria (Rf1, HKU3-12, BatCoV273, BatCoV279, and
BM48-31 BGR), two CoV strains from Guangdong and
Guangxi pangolins (Guangdong-Png, Guangxi-Png-
P2V), and three SARS CoV related species (SARS, SARS-
BJ182-4, and Rs3367). For the list of full names and
database accession numbers, please refer to Table 1.

Coronavirus sequences were obtained from GenBank
[54] and GISAID [55] databases. In the studied phyloge-
netic network, recombinations were found in the case of
the genes M, ORF1ab, ORF3a, ORF6, ORF8, and ORF10;
therefore, our research was focused on this set of genes.
Multiple sequence alignments for the gene families were
performed with MUSCLE [56] and corrected by GBlocks
[57] with a less stringent correction option. The ML gene
trees were inferred using RAxML [58] with parameters
described in [53]. All species were present in all gene
families except ORF8, which lacks the BM48-31-BGR
species.

Phylogenetic networks: The coronavirus tree with
marked intergenic recombinations (H1-H7) identified in
[53] is depicted in Fig. 13. Since the direction of three out
of seven recombinations was not certain, we prepared 8
networks corresponding to all combinations of the direc-
tions of gene transfers. Each network is named with three
letters L/R responding to the direction of H5, H6, and
H7, respectively, i.e. in the LRL network, H5 and H7 are
directed left, and H6 is directed right. Please note that
the inferred networks are not tree-child, and therefore, in

this experiment, we use the extended version of our algo-
rithm described in Sect. Beyond tree-child networks.

Discussion: The results of the experiment are depicted
in Fig. 14. For each gene family, we checked whether the
expected reticulation edge was used by the inferred sce-
nario with the lowest DC cost. We can distinguish three
possibilities for reticulation edge e: 1. e was used by the
expected gene, 2. e was used by one or more extra genes,
and 3. the expected gene didn’t use e. We were able to
confirm most of the reticulations except two: H2 that
was reported in [53] with the lowest support wasn’t con-
firmed by any of the networks, and H7 was confirmed
only by networks with H6 directed right. The most extra
uses were found for H5 and gene ORF10, which gene tree
had low support values. Further research might be per-
formed for these cases. The least extra uses were present
in RLL(5) and LLL(6), which may be some lead when
investigating the direction of H6 and H7.

We observed that, for a fixed gene tree, the set of opti-
mal displayed trees inferred by our algorithm and their
cost, is independent of the network variant. This phe-
nomenon needs further theoretical investigation. Costs
for each gene tree have the following values: ORF3a: 0,
ORF10: 5, ORF6: 1, M: 3, ORF8: 2, ORF1ab: 2. This obser-
vation may lead to discovering some important property
and can be a subject for further investigation.

Conclusions
In this work, we have investigated the problem of infer-
ring an optimal tree displayed by a network under the
deep coalescence and duplication costs. For each cost
function, we proposed a new score function to approxi-
mate the cost. We have shown that these score functions
have nice mathematical and computational properties
allowing us to bound the cost of an optimal displayed
tree from below. We have proposed a polynomial-time
dynamic programming (DP) algorithm to compute the
score together with the set of used reticulation edges that
yielded the score. Then, we have proposed a new way to
infer a displayed tree by a recursive procedure resolv-
ing conflicts detected in multiple invocations of DP. In
the worst case, our algorithm to infer an optimal tree
requires 2r+1-1 DP invocations, where r is the number
of reticulations. However, numerous tests on simulated
data have indicated that the exponent may be reduced by
half on average. This phenomenon is explained by simi-
larity, i.e., we expect a low number of conflicts if a gene
tree is more congruent with its network. In other words,
the average runtime of �(20.543r |G||N |) for the DC cost
and �(20.355r |G||N |) for the duplication cost can com-
pete on empirical datasets with exhaustive enumeration
strategies (either on the level of a whole network or each

Page 22 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

biconnected component independently) commonly used
in alternative approaches to scoring tree-network pairs
[7, 9, 10]. We also claim that the statement holds for
level-k networks by replacing r by k in the formula. We
conclude that our conflict resolution algorithm enables
analyses of complex networks with dozens of reticulation
events. We also claim that resolving conflicts returned
by dynamic programming is a new alternative towards
designing efficient algorithms that utilize internal simi-
larities of empirical datasets.

Resolving conflicts in the usage of reticulation edges
can be naturally generalized to other cost functions, e.g.,
gene duplication and loss cost. Also, it is not difficult to
extend DP to analyze unrooted gene trees. Another criti-
cal question is whether the runtime exponent can be fur-
ther reduced, e.g., by choosing optimal scenarios with
the smallest possible sets of conflicted reticulation edges.
Also, the experimental results on the naïve approach
justify the usage of a hybrid solution: when the recur-
sion reaches networks with small number of reticula-
tions, apply the brute force method instead of DP. Here,
additional optimizations of the naïve approach could be
applied; for instance, by improving displayed tree genera-
tor by adopting novel theoretical characterizations of sta-
ble networks [41].

Furthermore, we would like to test the efficiency and
accuracy of the branch and bound algorithm to approxi-
mate the optimal cost. Also, we plan to apply the meth-
ods in computationally demanding problems of network
inference from sets of gene trees, which may require
reimplementation in a low-level programming language
(e.g., C/C++).

Abbreviations
DC: Deep coalescence; ODT: Optimal displayed tree; ODT-DC: Optimal dis-
played tree under deep coalescence; ODT-DUP: Optimal displayed tree under
duplication cost; DP: Dynamic programming; DL: Duplication and loss.

Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable
suggestions and comments.

Authors contributions
MW and PG developed and implemented the algorithms. NR and MW
performed the simulations and computational tests. AM performed the
empirical evaluation. DD contributed to the development of the software, and
all authors contributed to the writing. All authors reviewed and approved the
manuscript. All authors read and approved the final manuscript.

Funding
The support was provided by National Science Centre grant #2019/33/B/
ST6/00737.

Availability of data and materials
The software package and the simulated datasets are available at https://bit-
bucket.org/pgor17/embretnet.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 15 November 2021 Accepted: 22 March 2022

References
 1. Bapteste E, van Iersel L, Janke A, Kelchner S, Kelk S, McInerney JO,

et al. Networks: expanding evolutionary thinking. Trends Genet.
2013;29(8):439–41.

 2. Huson DH, Rupp R, Scornavacca C. Phylogenetic networks: concepts
algorithms and applications. New York: Cambridge University Press; 2010.

 3. Goulet BE, Roda F, Hopkins R. Hybridization in plants: old ideas. New Tech-
niq Plant Physiol. 2016;173(1):65–78.

 4. McDonald SM, Nelson MI, Turner PE, Patton JT. Reassortment in seg-
mented RNA viruses: mechanisms and outcomes. Nat Rev Microbiol.
2016;14(7):448–60.

 5. Boto L. Horizontal gene transfer in evolution: facts and challenges. Proc R
Soc B Biol Sci. 2009;277(1683):819–27.

 6. Gusfield D. ReCombinatorics: the Algorithmics of ancestral recombina-
tion graphs and explicit phylogenetic networks. Boston: MIT Press; 2014.

 7. LeMay M, Libeskind-Hadas R, Wu YC. A polynomial-time algorithm for
minimizing the deep coalescence cost for level-1 species networks.
bioRxiv. 2020.

 8. Markin A, Anderson TK, Vadali VS, Eulenstein O. Robinson-Foulds reticula-
tion networks. In: Proceedings of the 10th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics; 2019;
p. 77–86.

 9. To TH, Scornavacca C. Efficient algorithms for reconciling gene trees
and species networks via duplication and loss events. BMC Genomics.
2015;16(S10).

 10. Iersel LV, Jones M, Scornavacca C. Improved maximum parsimony models
for phylogenetic networks. Syst Biol. 2017;67(3):518–42.

 11. Zhu J, Yu Y, Nakhleh L. In the light of deep coalescence: revisiting trees
within networks. BMC Bioinformat. 2016;17(S14).

 12. Maddison WP. Gene trees in species trees. Syst Biol. 1997;46(3):523–36.
 13. Mirarab S, Warnow T. ASTRAL-II: coalescent-based species tree estimation

with many hundreds of taxa and thousands of genes. Bioinformatics.
2015;31(12):i44–52.

 14. Than C, Nakhleh L. Species tree inference by minimizing deep coales-
cences. PLoS Comput Biol. 2009;5(9):e1000501.

 15. Zhang L. From gene trees to species trees II: species tree inference by
minimizing deep coalescence events. IEEE/ACM Trans Comput Biol Bioinf.
2011;8(6):1685–91.

 16. Górecki P, Eulenstein O, Tiuryn J. Unrooted tree reconciliation: a unified
approach. IEEE/ACM Trans Comput Biol Bioinf. 2013;10(2):522–36.

 17. Donati B, Baudet C, Sinaimeri B, Crescenzi P, Sagot MF. EUCALYPT: efficient
tree reconciliation enumerator. Alg Mol Biol. 2015;10(1):3.

 18. Wu YC, Rasmussen MD, Bansal MS, Kellis M. Most parsimonious reconcili-
ation in the presence of gene duplication, loss, and deep coalescence
using labeled coalescent trees. Genome Res. 2014;24(3):475–86.

 19. Gorecki P, Eulenstein O. Maximizing deep coalescence cost. IEEE/ACM
Trans Comput Biol Bioinf. 2014;11(1):231–42.

 20. Chaudhary R, Burleigh JG, Eulenstein O. Efficient error correction algo-
rithms for gene tree reconciliation based on duplication, duplication
and loss, and deep coalescence. In: BMC Bioinformatics. vol. 13. BioMed
Central; 2012. p. 1–10.

Page 23 of 23Wawerka et al. Algorithms for Molecular Biology (2022) 17:11

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 21. Goodman M, et al. Fitting the gene lineage into its species lineage, a
parsimony strategy illustrated by cladograms constructed from globin
sequences. 1979;28(2):132–163.

 22. Page RD. GeneTree: comparing gene and species phylogenies using
reconciled trees. Bioinformatics. 1998;14(9):819–20.

 23. Górecki P, Tiuryn J. DLS-trees: a model of evolutionary scenarios. Theoret
Comput Sci. 2006;359(1–3):378–99.

 24. Bonizzoni P, Della Vedova G, Dondi R. Reconciling a gene tree to a
species tree under the duplication cost model. Theoret Comput Sci.
2005;347(1–2):36–53.

 25. Yu Y, Warnow T, Nakhleh L. Algorithms for MDC-based multi-locus
phylogeny inference: beyond rooted binary gene trees on single alleles. J
Comput Biol. 2011;18(11):1543–59.

 26. Paszek J, Górecki P. Genomic duplication problems for unrooted gene
trees. BMC Genomics. 2016;17(S1).

 27. Scornavacca C, Mayol JCP, Cardona G. Fast algorithm for the reconcilia-
tion of gene trees and LGT networks. J Theor Biol. 2017;418:129–37.

 28. Yu Y, Degnan JH, Nakhleh L. The probability of a gene tree topology
within a phylogenetic network with applications to hybridization detec-
tion. PLoS Genet. 2012;8(4):e1002660.

 29. Than C, Ruths D, Nakhleh L. PhyloNet: a software package for analyzing
and reconstructing reticulate evolutionary relationships. BMC Bioinfor-
mat. 2008;9(1).

 30. Yu Y, Barnett RM, Nakhleh L. Parsimonious inference of hybridization in
the presence of incomplete lineage sorting. Syst Biol. 2013;62(5):738–51.

 31. Hellmuth M, Huber KT, Moulton V. Reconciling event-labeled gene trees
with MUL-trees and species networks. J Math Biol. 2019;79(5):1885–925.
https:// doi. org/ 10. 1007/ s00285- 019- 01414-8.

 32. Cardona G, Rosselló F, Valiente G. Comparison of tree-child phylogenetic
networks. IEEE/ACM Trans Comput Biol Bioinf. 2008;6(4):552–69.

 33. Cardona G, Rossello F, Valiente G. Comparison of tree-child phylogenetic
networks. IEEE/ACM Trans Comput Biol Bioinf. 2009;6(4):552–69.

 34. Cardona G, Zhang L. Counting and enumerating tree-child networks and
their subclasses. J Comput Syst Sci. 2020;114:84–104.

 35. Murakami Y, van Iersel L, Janssen R, Jones M, Moulton V. Reconstructing
tree-child networks from reticulate-edge-deleted subnetworks. Bull Math
Biol. 2019;81(10):3823–63.

 36. Steel M. Phylogeny. Society for Industrial and Applied Mathematics; 2016.
Available from: https:// doi. org/ 10. 1137/1. 97816 11974 485.

 37. Huber KT, Moulton V. Phylogenetic networks from multi-labelled trees. J
Math Biol. 2006;52(5):613–32.

 38. Huber KT, Moulton V, Steel M, Wu T. Folding and unfolding phylogenetic
trees and networks. J Math Biol. 2016;73(6–7):1761–80.

 39. Choy C, Jansson J, Sadakane K, Sung WK. Computing the maxi-
mum agreement of phylogenetic networks. Theoret Comput Sci.
2005;335(1):93–107.

 40. Fischer M, Van Iersel L, Kelk S, Scornavacca C. On computing the maxi-
mum parsimony score of a phylogenetic network. SIAM J Discret Math.
2015;29(1):559–85.

 41. Huber KT, Scholz GE. Phylogenetic networks that are their own fold-ups.
Adv Appl Math. 2020;113:101959. https:// doi. org/ 10. 1016/j. aam. 2019.
101959.

 42. Janssen R, Murakami Y. Linear time algorithm for tree-child network con-
tainment. In: International Conference on Algorithms for Computational
Biology. Springer; 2020. p. 93–107.

 43. Molloy EK, Warnow T. FastMulRFS: fast and accurate species tree estima-
tion under generic gene duplication and loss models. Bioinformatics.
2020;36(Supplement1):i57–65.

 44. Rasmussen MD, Kellis M. Unified modeling of gene duplication, loss, and
coalescence using a locus tree. Genome Res. 2012;22(4):755–65.

 45. Hartmann K, Wong D, Stadler T. Sampling trees from evolutionary models.
Syst Biol. 2010;52(4):465–76.

 46. Solís-Lemus C, Ané C. Inferring phylogenetic networks with maximum
pseudolikelihood under incomplete lineage sorting. PLoS Genet.
2016;12(3):1–21.

 47. Francis AR, Steel M. Which phylogenetic networks are merely trees with
additional arcs? Syst Biol. 2015;64(5):768–77.

 48. Mallo D, De Oliveira Martins L, Posada D. SimPhy: phylogenomic simula-
tion of gene, locus, and species trees. Syst Biol. 2015;65(2):334–44.

 49. Fletcher W, Yang Z. INDELible: a flexible simulator of biological sequence
evolution. Mol Biol Evol. 2009;26(8):1879–88.

 50. Guindon S, Dufayard JF, Vincent L, Anisimova M, Hordijk W, Gascuel
O. New algorithms and methods to estimate maximum-likelihood
phylogenies: assessing the performance of PhyML 3.0. Syst Biol.
2010;59(3):307–21.

 51. Górecki P, Tiuryn J. URec: a system for unrooted reconciliation. Bioinfor-
matics. 2007;23(4):511–2.

 52. Marcet-Houben M, Gabaldón T. TreeKO: a duplication-aware algo-
rithm for the comparison of phylogenetic trees. Nucleic Acids Res.
2011;39(10):e66–e66.

 53. Makarenkov V, Mazoure B, Rabusseau G, Legendre P. Horizontal gene
transfer and recombination analysis of SARS-CoV-2 genes helps
discover its close relatives and shed light on its origin. BMC Ecol Evol.
2021;21(1):1–18.

 54. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank.
Nucleic Acids Res. 2010;39(suppl1):D32–7.

 55. Shu Y, McCauley J. GISAID: global initiative on sharing all influenza data-
from vision to reality. Eurosurveillance. 2017;22(13):30494.

 56. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced
time and space complexity. BMC Bioinformat. 2004;5(1):1–19.

 57. Castresana J. Selection of conserved blocks from multiple alignments for
their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52.

 58. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models. Bioinformatics.
2006;22(21):2688–90.

 59. Waskom M, et al. mwaskom/seaborn: v0.8.1 (September 2017). Zenodo;
2017. Available from: https:// doi. org/ 10. 5281/ zenodo. 883859.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/s00285-019-01414-8
https://doi.org/10.1137/1.9781611974485
https://doi.org/10.1016/j.aam.2019.101959
https://doi.org/10.1016/j.aam.2019.101959
https://doi.org/10.5281/zenodo.883859

	Embedding gene trees into phylogenetic networks by conflict resolution algorithms
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Trees and networks
	Deep coalescence cost: embedding a tree into a (displayed) tree
	Scenarios between gene trees and phylogenetic networks
	Deep coalescence score of scenarios
	Displayed trees in tree-child networks
	DC scores of scenarios vs. DC costs of displayed trees
	Dynamic programming (DP) algorithms to solve DC-MinRec
	Dynamic programming formulation in time: the first approach
	Efficient DP solution in O(|G||N|) time

	Inferring used reticulations edges from DP
	Inferring optimal displayed trees under deep coalescence cost
	Solution to ODT-DC in the class of tree-child networks
	Lower and upper bounds of the optimal cost of a displayed tree
	Inferring optimal trees displayed by level-k tree-child networks
	Beyond tree-child networks

	Optimal displayed trees under gene duplication cost (ODT-DUP)

	Results
	Performance of inferring optimal displayed trees
	Evaluation on random datasets

	Evaluation on simulated datasets
	Results for deep coalescence cost
	Results for duplication cost

	Empirical tests

	Conclusions
	Acknowledgements
	References

