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Abstract 

Objective In mathematical phylogenetics, a labeled rooted binary tree topology can possess any of a number of 
labeled histories, each of which represents a possible temporal ordering of its coalescences. Labeled histories appear 
frequently in calculations that describe the combinatorics of phylogenetic trees. Here, we generalize the concept of 
labeled histories from rooted phylogenetic trees to rooted phylogenetic networks, specifically for the class of rooted 
phylogenetic networks known as rooted galled trees.

Results Extending a recursive algorithm for enumerating the labeled histories of a labeled tree topology, we pre-
sent a method to enumerate the labeled histories associated with a labeled rooted galled tree. The method relies 
on a recursive decomposition by which each gall in a galled tree possesses three or more descendant subtrees. We 
exhaustively provide the numbers of labeled histories for all small galled trees, finding that each gall reduces the 
number of labeled histories relative to a specified galled tree that does not contain it.

Conclusion The results expand the set of structures for which labeled histories can be enumerated, extending a well-
known calculation for phylogenetic trees to a class of phylogenetic networks.

Keywords Galled trees, Labeled histories, Mathematical phylogenetics, Phylogenetic networks

Introduction
Labeled histories represent a fundamental concept in 
mathematical phylogenetics, tabulating sequences in 
which the branching events that have given rise to a set 
of labeled lineages could have taken place. Given a set 
of labeled lineages at the leaves of a rooted binary tree, 
many topological relationships are possible for those lin-
eages, each describing a labeled topology, each of which 
in turn is compatible with one or more labeled histories 
(p. 47 of [24]).

Labeled histories, sometimes also termed ordered trees 
[23] or coalescence sequences [20], have appeared in many 
types of studies. They arise in basic phylogenetic com-
binatorics, in which classes of phylogenetic trees are 
enumerated and their features assessed [11, 24]. In coa-
lescent theory, which studies genetic lineages sampled 
in a population, the labeled histories, viewed backward 
in time from the present, describe the set of possible 
sequences in which the sampled gene lineages coalesce 
to a common ancestor [26]. Probability computations in 
coalescent theory often consider a set of labeled histories 
that is compatible with a desired tree shape [16, 17, 19]. 
Labeled histories arise frequently in the combinatorics 
of gene trees and species trees, in which labeled topolo-
gies for gene lineages sampled from a set of species are 
considered in relation to labeled topologies for the spe-
cies themselves [5]. Algorithms that traverse tree spaces 
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in searching for labeled topologies that could underlie 
molecular data also make use of labeled histories [13].

Fundamental results on labeled histories include the 
number of labeled histories possible for n labeled line-
ages [6] and the number of labeled histories for a speci-
fied labeled topology [3, 24] (see also problem 20 on p. 67 
of [15]). The labeled topologies that, for a specified num-
ber of lineages, possess the largest number of labeled his-
tories are also known [10].

Recently, much attention in mathematical phylogenet-
ics has considered phylogenetic networks, generaliza-
tions of phylogenetic trees in which evolution has not 
necessarily proceeded in a tree-like manner [12]. Because 
biological phenomena such as admixture, horizontal gene 
transfer, hybridization, and the genetic exchanges that 
occur via migration can induce non-tree-like evolution 
for a set of biological groups, phylogenetic networks are 
increasingly relevant to a variety of biological problems.

Similar concepts to labeled histories can be defined for 
networks, in particular, those networks that are meant to 
represent evolution in time. Indeed, Bienvenu et  al. [1] 
suggest the study of labeled histories for phylogenetic 
networks, focusing on tree–child networks. They pose 
the problem of enumerating the analogue of labeled his-
tories for networks: the problem of enumerating labeled 
phylogenetic networks whose internal nodes are placed 
in distinct temporal orders, or rankings, but that share 
an unranked labeled structure in common (p. 656). Here, 
we solve this enumeration for a class of phylogenetic 
networks, namely the rooted labeled galled trees. Galled 
trees, which first emerged from the study of ancestral 
recombination graphs [9, 22], represent a relatively sim-
ple type of network structure, a subset of the tree–child 
networks.

We first introduce precise notions of galled trees and 
labeled histories. Next, we perform the enumeration of 
labeled histories for an example labeled galled tree. The 
example is followed by the general computation of the 
number of labeled histories for an arbitrary labeled galled 
tree. We then use the general computation to exhaus-
tively count labeled histories for all labeled galled trees 
with at most 6 leaves. We conclude with a discussion.

Preliminaries
Definitions
Our focus is on rooted galled trees, a type of rooted 
binary phylogenetic network. Following Definition 1.1 
of Bienvenu et  al. [1], we consider a rooted binary phy-
logenetic network to be a directed acyclic graph such 
that (i) there is a unique root node with in-degree 0 and 
out-degree 2, (ii) all leaf nodes have in-degree 1 and out-
degree 0, (iii) non-leaf and non-root nodes have either in-
degree 2 and out-degree 1 or in-degree 1 and out-degree 

2, and (iv) all edges are directed away from the root. 
Nodes with in-degree 2 and out-degree 1 are termed 
reticulation nodes, and nodes with in-degree 1 and out-
degree 2 are tree nodes.

Note that although, as a directed acyclic graph, a rooted 
binary phylogenetic network has no directed cycles, if the 
sense of direction is removed, then the associated undi-
rected graph can possess cycles. If this undirected graph 
has no cycles, then the network is simply a tree. The 
undirected graph of a galled tree does not contain nested 
cycles (Fig. 1).

A rooted galled tree is a rooted binary phylogenetic 
network in which (i) each reticulation node ar has a 
unique ancestor node r such that exactly two nonoverlap-
ping paths of edges exist from r to ar ; if the direction of 
edges is ignored, then r, ar , and these two paths form a 
cycle Cr , known as a gall. In addition, (ii) for reticulation 
nodes ar and as , the sets of nodes in the galls Cr associ-
ated with ar and Cs associated with as are disjoint.

By convention, we refer to a galled tree as a tree, even 
though in a technical sense, a galled tree with one or 
more galls is not a tree. In the literature on phylogenetic 
networks, a galled network is distinct from a galled tree, 
so that this term is not available for galled trees. As all 
trees and networks that we consider are rooted and 
binary, we usually omit these terms, understanding that 
they are implied.

It is convenient to name various features associated 
with a gall in a galled tree (Fig. 2). First, all nodes that 
are not leaf nodes are internal nodes, including the 
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Fig. 1 Galled trees. A A galled tree with two galls. B A galled tree 
with the same labeled topology as A but with a different labeled 
history. C A network that is not a galled tree because it contains 
nested cycles. D A network that is not a galled tree because it has 
cycles that share vertices. This network would be included in the class 
of galled networks [8], which is distinct from the class of galled trees
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root. The internal nodes include the tree nodes and the 
reticulation nodes. For a gall with reticulation node ar , 
ancestor node r, and cycle Cr , because we draw galled 
trees with the ancestors at the top of the diagram, with 
descent proceeding from top to bottom, we refer to 
the ancestor node r as the top node. The reticulation 
node ar is termed a hybrid node. All nodes in the set 
Cr of nodes in the gall, other than the top node and 
the hybrid node, are side nodes. Each gall has two side 
nodes that are special; these side nodes are the nodes 
that are the immediate parents of the hybrid node; we 
call them hybridizing side nodes or simply hybridiz-
ing nodes. For visual clarity, we draw the bottom of a 
gall as a horizontal line, representing the idea that the 
hybridizing nodes instantaneously hybridize to produce 
the hybrid node. On this horizontal line, we always 
place the hybrid node between the two hybridizing side 
nodes.

All side nodes other than the two hybridizing side 
nodes are termed non-hybridizing side nodes. Each side 
node is a left side node or right side node. We use the 
terms “left” and “right” for convenience, associating “left” 
side nodes with the left side of a gall in drawings of galled 
trees and “right” side nodes with the right side; however, 
we regard a galled tree as invariant with respect to the 
exchange of left and right descendants of one or more 
top nodes. The gall has subtrees associated with each side 
node, the hybridizing nodes, and the hybrid node. We 
denote the set of subtrees associated with the gall by T  , 

the subtree descended from internal node i by Ti , and the 
number of internal nodes in a tree T by v(T).

Note that we follow Bienvenu et  al. [1] in only con-
sidering networks to which it is possible to assign a 
chronological order of internal nodes in addition to a 
genealogical order. That is, supposing each node is asso-
ciated with an instant in time, we disallow networks that 
involve such temporal impossibilities as a hybridization 
of node v1 with a child node of v2 occurring in a network 
that also contains a hybridization of v2 with a child of v1 . 
In the same manner that Bienvenu et al. [1] consider tree-
child networks and ranked tree-child networks, we con-
sider galled trees and ranked galled trees, where a ranked 
galled tree is a galled tree together with its labeled his-
tory: the chronological order in which its branching—or 
coalescence—and hybridization events take place.

Given a set of labeled leaves of a phylogenetic tree or 
network, a labeled topology is the structure that describes 
the topological relationship ancestral to the leaves. The 
labeled topology includes both coalescences and hybridi-
zation events. Thus, for example, the labeled topology of 
the galled tree in Fig.  2 is obtained by disregarding the 
temporal sequence of the internal nodes, so that only the 
connectivity of the nodes is considered.

We interpret galled trees with a sense of time proceed-
ing from the root to the leaves, all of which are contem-
poraneous. With this interpretation, a labeled topology 
might permit several distinct orders in which its coales-
cence and hybridization events can occur. For a given 
labeled topology, a labeled history is a specific order of its 
coalescences and hybridizations. That is, a labeled history 
of a tree or network is the labeled topology of the tree or 
network together with the associated temporal sequence 
of its internal nodes. For the example in Fig. 2, forward 
in time, the labeled history places the internal nodes in 
the sequence 12, 8, 11, 10, 2, (5, 6, 7), 3, 4, 9, 1, where 5, 6, 
and 7 are contemporaneous. More generally, for our enu-
meration of labeled histories compatible with the labeled 
topology of a galled tree, we treat each hybrid node as 
contemporaneous with its two parental nodes.

Formally, consider a galled tree labeled topology with 
a node set V including n leaves, an edge set E, and a par-
tial order � that describes ancestor–descendant rela-
tionships. In particular, two nodes v1, v2 in V satisfy 
v1 � v2 if v1 lies on a path from the root node to v2 ; a pair 
of edges e1, e2 in E can also satisfy e1 � e2 if e1 lies on a 
path from the root node to e2 , and a node v and edge e 
can also satisfy v � e if v is ancestral to e, or e � v if 
e is ancestral to v. Trivially, a node or edge is ancestral 
to itself and descended from itself. Associate with each 
node v a time t(v), such that t(v1) ≤ t(v2) if v1 � v2 . For 
v1  = v2 , we require t(v1) = t(v2) if {v1, v2} contains (i) a 
hybrid node and one of its parental hybridizing nodes; 

Fig. 2 Parts of a gall. These include the top node (12), left 
non-hybridizing side nodes (8), right non-hybridizing side nodes 
(10, 11), left hybridizing side node (6), right hybridizing side node 
(7), and hybrid node (5). In this galled tree, leaf nodes (orange) are 
labeled with letters A–K. Internal nodes (black) are numbered using a 
postorder traversal, with child nodes assigned smaller numbers than 
parent nodes; at hybridization events, the subtree that receives the 
smallest numbers is the subtree descended from the hybrid node, 
and the hybrid node receives a smaller number than the hybridizing 
side nodes
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(ii) the two hybridizing nodes that are the parents of 
the same hybrid node; or (iii) two leaves. Otherwise, 
t(v1)  = t(v2) . A labeled history is a sequence of sets of 
nodes W1,W2, . . . ,Wn such that (i) for all i and all nodes 
vi1, vi2 ∈ Wi , t(vi1) = t(vi2) , and (ii) for all i,  j with i < j 
and all nodes vi, vj with vi ∈ Wi and vj ∈ Wj , t(vi) < t(vj) . 
W1 contains only the root node, and Wn contains the 
leaves. Note that the number of sequences of sets Wi—
the number of distinct points in time occupied by the 
nodes of a galled tree—is equal to the number of leaves 
in the galled tree and does not depend on the number of 
galls.

In the same way that the term “galled tree” abuses 
the term tree, we also abuse the term subtree by allow-
ing a “subtree” to contain galls. Technically, a “subtree” 
that contains galls is not a tree, but it is convenient to 
think of it as tree-like. Hence, each internal node of 
a galled tree has a subtree to which it is ancestral; for 
a hybridizing node that has two child nodes, one of 
which is a hybrid node, that hybridizing node is imme-
diately ancestral to the root of a subtree that includes 
the child node that is not the hybrid node. When refer-
ring to subtrees “descended” from an internal node, we 
are describing the subtrees rooted at children of the 
node. A non-hybridizing side node has exactly one such 
subtree, rooted at one of its child nodes; the other child 
node is part of its associated gall.

Labeled histories for trees
We recall results concerning the enumeration of 
labeled histories for trees (without galls). The number 

of labeled histories for a rooted binary tree with n 
leaves has been obtained both recursively and nonre-
cursively. We will have occasion to use both the recur-
sive and nonrecursive formulas, as our enumeration 
of galled trees follows the reasoning of the recursive 
approach, and the nonrecursive formula is convenient 
in steps that count labeled histories for non-galled sub-
trees of a galled tree.

The root of a binary tree has two subtrees. To obtain 
a labeled history for a full labeled binary tree, the inter-
nal nodes of the two subtrees can be arranged in any 
order in relation to one another, maintaining the order 
within each subtree. The number of labeled histories of 
a tree is the product of the numbers of labeled histories 
of the two subtrees and the number of ways in which 
the internal nodes of the two subtrees can be interwo-
ven once the subtree labeled histories are fixed. Hence, 
the recursive formula for the number of labeled histo-
ries of a tree T whose subtrees Tℓ and Tr have v(Tℓ) and 
v(Tr) internal nodes, respectively, is

where LH (T ) = 1 if T has a single leaf or if T is a 2-leaf 
tree [3, 11].

In nonrecursive form (Lemma 1 of [25]), the number of 
labeled histories is

where V 0(T ) is the set of internal nodes of T (including 
the root) and Ti is the subtree descended from internal 
node i.

Example
To count labeled histories of galled trees, we use a recur-
sive approach that generalizes the recursive count for 
labeled histories of a tree without galls. Informally, we 
can view a galled tree as a network that is structurally 
similar to a true tree. In particular, in a gall, side nodes 
and the hybrid node each give rise to descendant sub-
trees, which might themselves include galls. Note that if 
such a subtree includes galls, then it is more accurately 
termed a subnetwork; for convenience, we continue to 
call it a subtree.

We begin from the root node of the galled tree. If the 
root is not the top node of a gall, then we proceed toward 
its child nodes as in the recursive enumeration of labeled 
histories for trees. We count labeled histories for the left 
subtree and for the right subtree, and we count ways that 

(1)LH (T ) = LH (Tℓ) LH (Tr)

(

v(Tℓ)+ v(Tr)

v(Tr)

)

,

(2)LH (T ) =
(n− 1)!

∏

i∈V 0(T ) v(Ti)
,

Fig. 3 An example galled tree. This tree has three galls. One gall has 
a top node at the root (node 22), with two side nodes on the left and 
two on the right. A second gall is in the subtree TL descended from 
the left hybridizing side node of the first gall (node 12); this second 
gall has only one side node on the left and one side node on the 
right (its hybridizing side nodes). A third gall is descended from the 
right non-hybridizing side node of the first gall (node 21)
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these labeled histories can be interwoven in relation to 
one another.

If, instead, the root node is a top node of a gall, then 
we introduce a new recursive function that enumerates 
labeled histories for the subtrees of all side nodes of the 
gall, both hybridizing nodes of the gall, and the unique 
hybrid node of the gall, and that enumerates the ways 
in which the labeled histories of these subtrees can be 
interwoven.

We apply this recursive function proceeding down 
through the galled tree. Each gall contains, at minimum, 
three associated subtrees—two descended from the two 
hybridizing side nodes, and one from the hybrid node. 
Hence, the recursive component of our enumeration of 
labeled histories associated with a galled tree considers at 
least three subtrees; in other words, it proceeds by noting 
that all galls are divided into three or more parts.

Figure 3 shows an example of a small galled tree. Con-
sidering the gall at the root node (node 22), subtrees Tℓ1 
(descended from node 14, a left non-hybridizing side 
node), TL (descended from node 12, the left hybridiz-
ing side node), TC (descended from node 11, the hybrid 
node), TR (descended from node 13, the right hybridiz-
ing side node), and Tr1 (descended from node 21, a right 
non-hybridizing side node) are galled trees with 1, 1, 1, 2, 
and 3 labeled histories, respectively. For Tℓ1 , TC , and TR , 
the subtrees are trees in the usual sense, and the numbers 
of labeled histories follow eqs. 1 and 2. Galled subtree TL 
trivially possesses only one labeled history. For Tr1 , both 
its subtrees each trivially possess a single labeled history. 
The left subtree possesses a coalescence at node 18 and a 
hybridization represented by simultaneous nodes 15–17, 
and the right subtree has the one coalescence at node 19. 
The right subtree can be arranged in one of three ways in 
relation to the left subtree: node 19 nearer in time to the 
root than node 18, between node 18 and nodes 15–17, 
or more recent than nodes 15–17. Hence, the number of 
labeled histories for Tr1 is 3.

For the gall at the root node, the left non-hybridizing 
side node can be arranged in relation to the right non-
hybridizing side node. The number of arrangements 
of these non-hybridizing side nodes in relation to one 
another is 

(

1+1

1

)

= 2 , as we are counting arrangements of 
1 left non-hybridizing side node and 1 right non-hybrid-
izing side node. In general, when including the hybridiz-
ing side nodes in node counts nℓ and nr , the number of 
arrangements of nℓ left side nodes and nr right side nodes 
is 
(nℓ+nr−2

nℓ−1

)

.
The arrangement of the side nodes creates “time peri-

ods.” The arrangement depicted in the example has three 
nontrivial time periods. The first lies below the first side 

node (node 21), the next is below the next side node 
(node 14), and a final period lies after the hybridization 
(nodes 11–13). The internal nodes in the subtree of a side 
node can only be placed in the periods subsequent to 
the side node itself, so the number of time periods avail-
able for such a subtree is determined by the arrangement 
of the side nodes on the gall. The internal nodes in the 
subtrees of the side nodes are then distributed into the 
available time periods. For each time period, the num-
ber of ways of arranging all nodes assigned to that time 
period across the various subtrees is given by a multino-
mial coefficient. The number of labeled histories for each 
assignment of internal nodes to time periods is then the 
product across time periods of the associated multino-
mial coefficients for the time periods. The total number 
of labeled histories for each ordering of the side nodes on 
the gall is the sum across assignments of internal nodes 
to time periods of the number of labeled histories for 
each assignment.

In the example, we have two arrangements for the side 
nodes: (14,  21) and (21,  14). We first consider arrange-
ment (21, 14) depicted in Fig. 3. We calculate the num-
ber of ways to distribute the nodes from the subtrees into 
the time periods, and for each distribution we then cal-
culate the numbers of arrangements within each of the 
time periods. There are three time periods: (i) between 
21 and 14, (ii) between 14 and the hybridizing side nodes, 
and (iii) below the hybridizing side nodes. The ordering 
of the internal nodes within a subtree does not affect the 
permissible placements of these nodes within the time 
periods. Therefore, the number of labeled histories for 
a particular ordering of the side nodes on the gall is the 
product of two quantities: (1) the product across sub-
trees of the numbers of labeled histories for the subtrees, 
∏

Ti
LH (Ti) , and (2) the number of ways that these labeled 

histories can be interwoven in relation to one another for 
the fixed ordering of the side nodes on the gall.

To count this latter quantity, we must consider all pos-
sible placements of subtree nodes into time periods. We 
define an “event” to be either a (non-hybridizing) coales-
cence or a hybridization. This concept of an event cor-
responds to that of an internal node used in the recursive 
calculation of the number of labeled histories for trees in 
eq.  1. Each non-hybridizing tree node corresponds to a 
coalescence event. We denote the number of events in 
a subtree Ti as v(Ti) . The total number of events in any 
galled tree is two times the number of hybrid nodes sub-
tracted from the total number of internal nodes, because 
each hybridization event is represented by three simulta-
neous internal nodes—the hybrid node and two hybridiz-
ing nodes. For a subtree Ti , the number of time periods in 
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which the events of that subtree can occur, p(Ti) , depends 
on the arrangement of the side nodes. The events in the 
subtree cannot occur in time periods preceding the side 
node from which the subtree descends. For each subtree 
Ti , we count the available time periods for the events of 
Ti . When the left side node, node 14, occurs after the right 
side node, node 21, the numbers of time periods available 
to Tℓ1 , TL , TC , TR , and Tr1 are 2, 1, 1, 1, and 3, respectively.

The number of ways to distribute n events—which 
have already been ordered—into t time periods is 
(n+t−1

n

)

 . Let v(Ti) denote the number of events in sub-
tree Ti . When node 21 precedes node 14, the total 
number of ways to arrange the subtree events into 
time periods is 

∏

Ti

(v(Ti)+p(Ti)−1

v(Ti)

)

 , or in this case, 
(

2+2−1

2

)(

2+1−1

2

)(

1+1−1

1

)(

3+1−1

3

)(

4+3−1

4

)

= 45.
Consider one of these 45 arrangements of events into 

time periods, say, in which tree Tℓ1 has its nodes 1 and 2 
in the third and second time periods, respectively, and Tr1 
has its internal node 20 in the second period and nodes 
15–19 in the third (Fig. 3). For TL , TC , and TR , the internal 
nodes are trivially in the final (third) period. For each of the 
periods, we must count the number of orderings permit-
ted for internal nodes allowed within the period. The first 
period (between nodes 21 and 14) has no nodes, so this 
period trivially has one arrangement. Nodes 2 and 20 occur 
in the second period between node 14 and the hybridiza-
tion represented by nodes 11-13. Because nodes 2 and 20 
are from different subtrees, they can be arranged in either 
of two orders in relation to one another, so there are 2 pos-
sible orderings within the second time period. The final 
period has 10 events; 1, 2, 1, 3, and 3 from Tℓ1 , TL , TC , TR , 
and Tr1 , respectively. Hence, there are 

(

10

1,2,1,3,3

)

= 50, 400 
possible orderings of events in that period. For the fixed 
subtree labeled histories and distribution of events across 
periods shown in Fig. 3, the number of labeled histories is 
2× 50, 400 = 100, 800.

We repeat this procedure for each of the 45 cases, for 
each case counting its associated product of multino-
mial coefficients. We will see that by careful indexing, the 
appropriate product of multinomial coefficients can be 
obtained generally. Summing across the 45 cases, we obtain 
2,162,160 labeled histories.

Keeping the labeled histories of the subtrees fixed, 
we count labeled histories for the other arrange-
ment of the side nodes with node 14 preceding node 
21, obtaining 1,801,800; this calculation sums across 
(

2+3−1

2

)(

2+1−1

2

)(

1+1−1

1

)(

3+1−1

3

)(

4+2−1

4

)

= 30 cases. Mul-
tiplying by 

∏

Ti
LH (Ti) = 2× 1× 1× 1× 3 = 6 , the 

product across subtrees of the numbers of labeled histo-
ries for the subtrees, the total number of labeled histories is 
6× (2, 162, 160+ 1, 801, 800) = 23, 783, 760.

We are now ready for the general computation.

General algorithm
Our general result follows the example to recursively cal-
culate the number of labeled histories in any galled tree. 
Consider a galled tree T with root node v. Either v is the 
top node of a gall or it is not the top node of a gall.

If v is not a top node, then the number of labeled his-
tories of the tree rooted at v is the product of the num-
bers of labeled histories for the two subtrees of v and the 
number of ways in which those subtrees can be interwo-
ven. We recursively proceed to the children of v to count 
labeled histories for the subtrees descended from these 
children.

If v is the top node of a gall, then we proceed as in 
the example. Denote by G the gall for which v is the top 
node. Suppose G has left non-hybridizing side nodes 
gℓ1, gℓ2, . . . , gℓN and right non-hybridizing side nodes 
gr1, gr2, . . . , grM . The subtrees of the galled tree are then 
TL from the left hybridizing side node, TR from the right 
hybridizing side node, TC from the hybrid node, and 
Tℓ1,Tℓ2, . . . ,TℓN ,Tr1,Tr2, . . . ,TrM from the non-hybrid-
izing side nodes. We can count the number of labeled 
histories for the subtree defined by the gall rooted at v, 
supposing the numbers of labeled histories are known for 
all these various subtrees. 

1. We enumerate the possible orderings of the left side 
nodes in relation to the right side nodes. Let the set 
of all orderings of side nodes of the gall rooted at v 
be Sv . The ordering of the left side nodes is fixed and 
the ordering of the right side nodes is fixed; this step 
counts the ways in which the left and right side nodes 
can be interwoven. Hence, Sv has cardinality 

(N+M
N

)

 . 
Each arrangement of the side nodes defines “time 
periods” between side nodes, into which other nodes 
can be placed.

2. We separately consider each of the 
(N+M

N

)

 arrange-
ments of the non-hybridizing side nodes—the ele-
ments of Sv—and enumerate assignments of inter-
nal nodes of the subtrees descended from the 
non-hybridizing side nodes (and the hybridizing 
nodes and hybrid node) into time periods. Let the set 
of all assignments in an arrangement of side nodes 
s ∈ Sv be X(s). The number of assignments of these 
internal nodes depends on the numbers of time 
periods that are available to the various subtrees. 
Internal nodes in a subtree can only be assigned 
into time periods that occur after the non-hybridiz-
ing side node (or hybridizing node or hybrid node) 
from which the subtree descends. Let the num-
ber of time periods available to subtree Ti be p(Ti) . 
Recalling that v(Ti) is the number of coalescence or 
hybridization events in the galled tree Ti , the num-
ber of ways to arrange the internal nodes of subtree 
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Ti into subtrees is 
(v(Ti)+p(Ti)−1

v(Ti)

)

 . That is, because 
each subtree can have its nodes assigned without 
considering the assignment of other subtrees, the 
total number of assignments of internal nodes to 
time periods is the product of the number of assign-
ments over all subtrees. Therefore X(s) has cardinal-
ity 

∏

i

(v(Ti)+p(Ti)−1

v(Ti)

)

 , where the product traverses 
N +M + 3 nodes: the N +M non-hybridizing side 
nodes as well as the two hybridizing nodes and the 
hybrid node.

3. For each assignment of internal nodes to time peri-
ods, we count the number of orderings of those 
internal nodes within the time periods. For each 
assignment, we list the numbers of nodes assigned to 
each of the N +M + 1 time periods. We construct 
a matrix for assignment x, Ax ∈ Z

(N+M+3)×(N+M+1) , 
where entry Ax(i,j) is the number of events from 
subtree i that are placed in time period j and 
∑N+M+1

j=1 Ax(i,j) = v(Ti) . The number of labeled his-
tories for the specific assignment is then equal to 

4. We combine steps 1–3 to obtain the number of 
labeled histories for the gall whose top node is v. In 
particular, we now have the total number of labeled 
histories for each specific arrangement of the side 
nodes and fixed set of labeled histories for the sub-
trees. The number of labeled histories for the subtree 
defined by the gall is then the sum of the number 
of labeled histories across each arrangement of the 
side nodes on the gall multiplied by the numbers of 
labeled histories of the subtrees. In other words, the 
number of labeled histories for the gall rooted at v is 

N+M+1
∏

j=1

( ∑N+M+3
i=1 Ax(i,j)

Ax(1,j),Ax(2,j), . . . ,Ax(N+M+3,j)

)

.

 where T = {Tℓ1,Tℓ2, . . . ,TℓN ,Tr1,Tr2, . . . ,TrM ,TL,TR ,TC }.
We recursively enumerate the labeled histories of a galled 

tree, applying the steps beginning from the tree root and 
proceeding to the leaves through each top node of a gall.

Small galled trees
We exhaustively count the labeled histories for all galled 
trees with six or fewer leaves. For each unlabeled galled tree 
with six or fewer leaves, Tables 1, 2, 3, 4, and 5 report the 
numbers of labeled histories associated with an arbitrary 
labeling of the galled tree; a summary appears in Table 6.

Enumeration of small galled trees
First, we enumerate all unlabeled galled trees with six or 
fewer leaves. This enumeration proceeds by first listing 
all trees with no galls. The number of such trees follows 
the Wedderburn-Etherington numbers,

The number of unlabeled trees with n leaves is obtained 
by combining all possible pairs of subtrees, one with k 
leaves, 1 ≤ k ≤ ⌊n

2
⌋ , and the other with n− k leaves.

(3)

(

∏

k∈T
LH (Tk)

)

×
∑

s∈Sv

∑

x∈X(s)

N+M+1
∏

j=1

(
∑N+M+3

i=1 Ax(i,j)

Ax(1,j),Ax(2,j), . . .Ax(N+M+3,j)

)

,

U1 =1

Un =
(

n
2
−1

∑

k=1

UkUn−k

)

+
Un

2
(Un

2
+ 1)

2
, even n ≥ 2

Un =

n−1
2

∑

k=1

UkUn−k , odd n ≥ 3.

Fig. 4 Removing a gall does not decrease the number of labeled histories. A A tree with one gall. B A tree obtained from A via a transformation 
that removes the gall; we remove the hybrid node and one of the hybridizing side nodes, choosing the right hybridizing side node arbitrarily here. 
We then add two edges, between the left hybridizing side node and the child of the hybrid node, and between the parent and remaining child of 
the right hybridizing side node (blue). Each labeled history for A has a corresponding labeled history in B 
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To enumerate all galled trees with n leaves, we follow 
a similar procedure of combining smaller galled trees to 
form a galled tree of a fixed number of leaves. We con-
sider two cases: either the root node is the top node of 
a gall or it is not. If the root node is not the top node of 
a gall, then we recursively form galled trees in the same 
way as in the case of no galls, by combining pairs of 
smaller galled trees.

For the other case, if the root node is a top node of a 
gall, then we consider all galls that are possible at the 
top of the tree. For a galled tree with n leaves, a gall has 
a minimum of 3 subtrees: two for the hybridizing nodes 
and one for the hybrid node. The maximum number of 
subtrees emanating from the gall is n, corresponding to 
the case in which there are n− 3 non-hybridizing side 
nodes, each of which has a leaf node for its associated 
subtree.

The non-hybridizing side nodes can be placed into the 
left and right sides of the gall in each of multiple ways. 
Without loss of generality, suppose that the number 
of non-hybridizing side nodes on the left side is always 
greater than or equal to the number on the right, nℓ ≥ nr . 
The number of subtrees emanating from the gall then 
equals nℓ + nr + 3 (here we exclude the hybridizing side 
nodes from nℓ and nr ). We enumerate the ways to par-
tition n leaves into nℓ + nr + 3 labeled categories—the 
number of compositions of n into nℓ + nr + 3 parts, 

where each part represents a specific one of the subtrees. 
Each subtree of each composition is a smaller galled tree.

For nℓ  = nr , we proceed by allowing each combination 
of smaller galled trees of the nℓ + nr + 3 sizes specified. 
In the case with nℓ = nr , we must be careful not to dou-
ble-count. Write a vector c representing the composition 
that counts leaves in the nℓ + nr + 3 subtrees. The com-
position is ordered from “left” to “right,” starting from the 

Table 1 Number of labeled histories for galled trees with at 
most 4 leaves

Galled trees with different numbers of galls appear in different colors (0, black; 1, 
orange; 2, purple). For each unlabeled galled tree shown, an arbitrary labeling of 
the leaves is assumed, and the number of labeled histories associated with that 
arbitrary labeling is shown

Number of 
leaves

Number of 
galls

Galled tree Number 
of labeled 
histories

1 0
 

1

2 0  1

3 0
 

1

3 1
 

1

4 0
 

1

4 1
 

1

4 0
 

2

4 1
 

1

4 1
 

1

4 1
 

1

Table 2 Number of labeled histories for galled trees with 5 
leaves

Number of 
leaves

Number of 
galls

Galled tree Number 
of labeled 
histories

5 0
 

1

5 1
 

1

5 0
 

2

5 1
 

1

5 1
 

1

5 1
 

1

5 0
 

3

5 1
 

3

5 1
 

1

5 2
 

1

5 1
 

2

5 1
 

2

5 1
 

1

5 2
 

1

5 1
 

2

5 1
 

1

5 1
 

1

5 1
 

1

5 1
 

1

5 1
 

1
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most ancestral left side node, proceeding from ancestor 
to descendant to the left hybridizing side node, then the 
hybrid node and the right hybridizing side node, and pro-
ceeding from descendant to ancestor to the most ances-
tral right side node.

A composition can be “palindromic” in the sense that 
it is invariant with respect to inversion of the order of its 
terms; for example (3,  2,  4,  2,  3) is a palindromic com-
position of 14, whereas (2, 2, 3, 3, 4) is non-palindromic. 
For a non-palindromic composition c, let c′ be the com-
position obtained by inverting the order of its terms: 
(4, 3, 3, 2, 2) for (2, 2, 3, 3, 4), for example. We consider 
two cases: 

 (i) For each pair of non-palindromic compositions of 
nℓ + nr + 3 , (c, c′) , we only consider one of the two.

 (ii) For each palindromic composition c, we enumerate 
the set of all possible lists of nℓ + 1 subtrees for the 
left side nodes, including the left hybridizing side 
node, in some specified order. We choose two lists 
in this set, allowing replacement, one for the sub-
trees of the left side nodes, and one for the subtrees 
of the right side nodes (proceeding backward from 
the end of the composition). If the two lists are dif-
ferent, then we always use for the left side nodes 
the list that appears earlier in the order. To com-
plete the enumeration, we combine all possible lists 
of subtrees for the left and right side nodes with all 
possible subtrees for the hybrid node.

Note that for a tree with n leaves, the maximal number 
of galls is ⌊n−1

2
⌋ . To verify this claim, start with a galled 

tree with a single gall and three leaves—the minimum 
number of leaves for a galled tree, as the hybridizing 
and hybrid nodes must each have at least one descend-
ant. Each subsequent gall adds at least two leaves, as a 
gall can replace at most one existing leaf. Therefore, the 
minimum number of leaves for a galled tree with g galls is 
2g + 1 , so that n ≥ 2g + 1 , or g ≤ ⌊n−1

2
⌋.

Labeled histories for small galled trees
Examining Tables  1, 2, 3, 4,  and 5, we can observe the 
pattern that for a fixed number of leaves, for trees with 
no galls, the number of labeled histories increases with 
increasing tree balance. Caterpillar trees, in which there 
exists an internal node descended from all other internal 
nodes, possess only one labeled history.

In general, trees with more galls tend to have fewer 
labeled histories than trees with fewer galls. Indeed, we 
can always remove a gall while retaining the same num-
ber of leaves and retaining or increasing the number of 

labeled histories. Consider a galled tree T. We delete the 
hybrid node and the right hybridizing side node. We then 
add an edge that joins the left hybridizing side node and 
the child of the hybrid node, and another edge that joins 
the parent and child of the right hybridizing side node 
(Fig. 4). The resulting galled tree T ′ has the same number 
of leaves as T. Further, each labeled history for T contin-
ues to have an associated labeled history for T ′—the coa-
lescence of the left hybridizing side node, hybrid node, 
and right hybridizing side node in T is now indexed only 
by the left hybridizing side node in T ′ . Hence T ′ has at 
least as many labeled histories as T, and indeed might 
have more, as the nodes in the subtree of the former right 
hybridizing side node of T can now move above the for-
mer left hybridizing node, and hence are less constrained 
in T ′.

As a corollary of this argument, given a fixed number 
of leaves, in the set of galled trees that possess the larg-
est number of labeled histories—a set that contains at 
least one and potentially more than one element—at least 
one element is a tree with no galls. Other consequences 
include: (i) for galled trees with n leaves, the galled tree 
that maximizes the number of labeled histories among 
galled trees with g galls, g ≥ 1 , has no more labeled his-
tories than the galled tree that maximizes the number 
of labeled histories among galled trees with g − 1 galls. 
Further, (ii) no galled tree with n leaves has more labeled 
histories than the labeled topology (with no galls) that 
maximizes the number of labeled histories.

Discussion
We have devised a method for enumerating the labeled 
histories for rooted binary labeled galled trees. The 
method generalizes the classic enumeration of labeled 
histories for labeled topologies, extending it to a simple 
family of phylogenetic networks. We have applied our 
new algorithm to enumerate labeled histories both in 
an illustrative example and exhaustively for small galled 
trees with at most six leaves. In this latter analysis, we 
have found that for a fixed number of leaves, adding galls 
generally reduces the number of labeled histories.

Labeled histories have long been a focus of studies in 
phylogenetics [6, 11], appearing often in calculations 
that describe the probability that random trees pro-
duce specified shapes under evolutionary models [18, 
24, 26]. Recent studies have been expanding the sense 
in which labeled histories are considered. For example, 
King & Rosenberg [14] examined a concept of labeled 
histories in which simultaneous binary mergers of lin-
eages are permitted. Bienvenu et  al. [1] explored the 
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possibility of providing labeled histories to phyloge-
netic networks, specifically tree–child networks. They 
emphasized that ranked tree-child networks, which 
impose a temporal structure on tree-child networks, 
have biological relevance because chronological pro-
cesses are, by definition, rankable. Bienvenu et  al. [1] 
suggested the problem of enumerating labeled histo-
ries for a tree–child network, noting the difficulty that 

Table 3 Number of labeled histories for galled trees with 6 
leaves (first part)

Number of 
leaves

Number of 
galls

Galled tree Number 
of labeled 
histories

6 0
 

1

6 1
 

1

6 0
 

2

6 1
 

1

6 1
 

1

6 1
 

1

6 0
 

3

6 1
 

3

6 1
 

1

6 2
 

1

6 1
 

2

6 1
 

2

6 1
 

1

6 2
 

1

6 1
 

2

6 1
 

1

6 1
 

1

6 1
 

1

6 1
 

1

6 1
 

1

Table 4 Number of labeled histories for galled trees with 6 
leaves (second part)

Number of 
leaves

Number of 
galls

Galled tree Number 
of labeled 
histories

6 0
 

4

6 1
 

4

6 0
 

8

6 1
 

4

6 1
 

4

6 1
 

4

6 0
 

6

6 1
 

6

6 2
 

6

6 1
 

1

6 2
 

1

6 1
 

2

6 2
 

1

6 2
 

1

6 2
 

1

6 1
 

3

6 2
 

3

6 1
 

3

6 2
 

3

6 1
 

3

6 2
 

3

6 1
 

6

6 1
 

1

6 2
 

1
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networks do not possess the recursive properties of 
trees. We have found that for the galled trees, a subset 
of the tree–child networks, we can continue to use a 
tree-like recursive approach to enumerate labeled his-
tories. To our knowledge, our calculation provides the 
first enumeration of labeled histories beyond trees to a 
class of phylogenetic networks.

Our enumeration facilitates the understanding of 
factors that affect the number of labeled histories for 
galled trees. We found that for a fixed number of leaves, 
increasing the number of galls does not increase, and 
often decreases, the number of labeled histories. We have 
only considered small numbers of leaves, and as the num-
ber of leaves increases, it will be of interest to explore 
the effect on the number of labeled histories of gall 
locations—for example, with a top node located or not 
located at the tree root, or with multiple galls descended 
from one another or not descended from one another. 
For labeled topologies with a fixed number of leaves, the 
topology with the maximum number of labeled histories 
has a high level of “balance” [10], and permitting galls 
does not change the identity of the galled tree with the 
maximal number of labeled histories. Future work, how-
ever, can examine more generally the effect of balance on 
the number of labeled histories for galled trees.

An important aspect of our analysis is that the sense 
in which we consider galled trees has an explicit tempo-
ral ordering, in which each gall possesses two hybridiz-
ing nodes and a hybrid node that are contemporaneous. 
With their explicit potential to be temporally ordered, the 
rooted galled trees here and galled trees in other stud-
ies are not generally precisely identical, as the tempo-
ral requirement we have imposed is a case of the recent 
approach of Bienvenu et  al. [1] and has not yet been 
frequently assumed. We have provided an enumeration 
algorithm for the galled trees we consider; the counts 
of 1, 1, 2, 6, 20, and 72 for the numbers of rooted unla-
beled galled trees for 1 to 6 leaves (Table 6) differ from 
counts and formulas reported in related enumerative 
studies [2, 4, 7, 8, 21]. In studies of labelings for galled 
trees and phylogenetic networks more generally, care is 

Table 5 Number of labeled histories for galled trees with 6 
leaves (third part)

Number of 
leaves

Number of galls Galled tree Number 
of labeled 
histories

6 1
 

2

6 2
 

1

6 2
 

1

6 2
 

1

6 1
 

3

6 2
 

3

6 1
 

3

6 1
 

3

6 1
 

3

6 1
 

1

6 2
 

1

6 1
 

2

6 1
 

2

6 1
 

2

6 2
 

2

6 1
 

2

6 1
 

2

6 2
 

2

6 1
 

2

6 1
 

2

6 1
 

2

6 1
 

2

6 1
 

2

6 1
 

2

6 1
 

2

6 1
 

2

6 1
 

2

Table 5 (continued)

Number of 
leaves

Number of galls Galled tree Number 
of labeled 
histories

6 1
 

2
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needed in recognizing the precise set of objects under 
consideration.

The enumeration of labeled histories is more compu-
tationally challenging for galled trees than for trees with 
no galls. Whereas the evaluation of the number of labeled 
histories for trees with no galls can use a simple nonre-
cursive formula (eq.  2), the algorithmic enumeration of 
labeled histories for galled trees requires a number of 
steps that, for some trees, increases at least exponentially 
in the number of leaves. In enumerating labeled histo-
ries, the first step for each gall is to sum over all orderings 
of the left side nodes in relation to the right side nodes. 
Consider a family of trees Tn with n = 4k + 1 leaves for 
k ≥ 1 . Suppose Tn has a root gall with k left side nodes 
and k right side nodes, each with two descendant leaves, 
for a total of 4k leaves descended from the side nodes; the 
last leaf is descended from the hybrid node. The num-
ber of orderings of left and right side nodes over which 
we must sum in eq.  3 is 

(

2k
k

)

 , a quantity that increases 
exponentially, as 4k/

√
πk  , or (

√
2)n

√
2/[π(n− 1)] . Con-

sidering galled trees more generally, computation time 
increases with the number of side nodes in galls, the 
number of leaves descended from those side nodes, and 
the number of galls descended from one another along a 
path from the root to the leaves. For a fixed number of 
leaves n, maximizing any of these three quantities occurs 
by reducing the other two, so that the configuration of 
galls and leaves that maximizes computation time for the 
enumeration—as well as the complexity of the computa-
tion itself—remains unknown.

The potential to embed galled trees in a recursive 
framework is central to our solution for enumerat-
ing labeled histories for labeled galled trees. The solu-
tion enables us to treat galls similarly to internal nodes 
in standard phylogenetic trees by defining subtrees that 
descend from nodes of a gall. It is possible that a more 
general solution to the enumeration of labeled histories 

for other classes of phylogenetic networks could rely on 
creatively finding such recursive properties.
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