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Abstract 

Background Adding sequences into an existing (possibly user-provided) alignment has multiple applications, 
including updating a large alignment with new data, adding sequences into a constraint alignment constructed 
using biological knowledge, or computing alignments in the presence of sequence length heterogeneity. Although 
this is a natural problem, only a few tools have been developed to use this information with high fidelity.

Results We present EMMA (Extending Multiple alignments using MAFFT--add) for the problem of adding a set 
of unaligned sequences into a multiple sequence alignment (i.e., a constraint alignment). EMMA builds on MAFFT-
-add, which is also designed to add sequences into a given constraint alignment. EMMA improves on MAFFT--add 
methods by using a divide-and-conquer framework to scale its most accurate version, MAFFT-linsi--add, to constraint 
alignments with many sequences. We show that EMMA has an accuracy advantage over other techniques for adding 
sequences into alignments under many realistic conditions and can scale to large datasets with high accuracy (hun-
dreds of thousands of sequences). EMMA is available at https:// github. com/ c5shen/ EMMA.

Conclusions EMMA is a new tool that provides high accuracy and scalability for adding sequences into an existing 
alignment.

Keywords Multiple sequence alignment, Constraint alignment, MAFFT

Background
Adding sequences to a multiple sequence alignment
Multiple sequence alignment (MSA) is a crucial precur-
sor to many downstream biological analyses, such as 
phylogeny estimation [1], RNA structure prediction [2], 
protein structure prediction [3], etc. Obtaining an accu-
rate MSA can be challenging, especially when the data-
set is large (i.e., more than 1000 sequences). In some 
cases, the problem of estimating an alignment on a large 

dataset can be addressed through approaches that seek 
to add sequences into a given alignment without allow-
ing the given alignment to change; for this reason, the 
given alignment is referred to as a “constraint alignment”. 
For example, biological knowledge can be used to form 
a reference alignment on a subset of the sequences, and 
then the remaining sequences can be added to the refer-
ence alignment; this has the potential to improve accu-
racy compared to methods that do not include biological 
knowledge to define a constraint alignment. Another 
case where adding sequences into an existing alignment 
occurs is when new sequences or genomes are added 
to databases, leading to the opportunity to add the new 
sequences for each gene in the genome into a growing 
alignment. In this second case, adding sequences into 
the existing alignment avoids the need to recompute the 
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alignment from scratch and could lead to substantial run-
ning time benefits. A third case is for de novo multiple 
sequence alignment, where a subset of the sequences is 
selected and aligned, and then the remaining sequences 
are added into this “backbone alignment”; examples of 
such methods include UPP [4], UPP2 [5], WITCH [6], 
WITCH-ng [7], HMMerge [8], and MAFFT-sparsecore 
[9]. One of the motivations for this type of alignment 
method (which we refer to as “two-stage” methods) is 
when the input dataset has substantial sequence length 
heterogeneity, which can result in poor alignment accu-
racy using standard methods [4]. Thus, adding sequences 
into existing alignments is a natural problem with multi-
ple applications to biological sequence analysis.

A few methods have been developed to add sequences 
into an existing alignment, with MAFFT--add [10] per-
haps the most well-known. However, multiple sequence 
alignment methods that operate in two steps—i.e., they 
first extract and align the backbone sequences and then 
add the remaining sequences into this backbone align-
ment—can be modified to enable sequences to be added 
into a user-provided alignment.

HMM‑based methods
Many of the methods that have been developed for add-
ing sequences into a given multiple-sequence alignment 
operate by representing the existing alignment by either a 
single HMM or by an ensemble of HMMs. Then, for every 
additional sequence, which we call “query sequences,” the 
HMM or ensemble of HMMs is used to find an alignment 
of the query sequence to the given alignment. Exam-
ples of such approaches include functionality provided 
in UPP [4], UPP2 [5], WITCH [6], WITCH-ng [7], and 
HMMerge [8]. We refer to these functions by appending 
“-add” to the MSA method name (e.g., this functionality 
in WITCH is referred to as WITCH-add). In this study, 
we examine the performance of WITCH-ng-add as it has 
been shown to be at least as accurate and generally faster 
than WITCH-add, and both are, in turn, at least as accu-
rate as UPP-add and UPP2-add. Finally, HMMerge-add 
is slower than WITCH-ng-add, and so is omitted from 
this study. See Additional file 1: Section S1 for additional 
details about these HMM-based methods.

Because HMM-based methods operate by aligning the 
query sequences to one or more HMMs, homologies 
between query sequences can only be discovered if these 
homologies align through match states in the HMMs. 
This approach has the potential to miss valid homolo-
gies between query sequences, for example, when the 
given alignment is insufficiently representative of the 
entire family. Thus, only query sequence characters (i.e., 
nucleotides or residues) that are aligned through match 
states in the HMMs can be placed in columns that have 

other nucleotides or residues; if the character is added 
to the alignment through an insertion state, it will never 
be detected as homologous to any other character in any 
other sequence. This aspect of using HMMs for align-
ment has a potentially significant impact on the accuracy 
of the alignments of query sequences to the backbone 
alignment.

MAFFT‑‑add and MAFFT‑linsi‑‑add
MAFFT--add [10] in its default setting uses a standard 
progressive alignment procedure with two iterations to 
add query sequences. In each iteration, it computes the 
pairwise distance matrix between the complete set of 
sequences (both in the backbone and the query sequence 
set) using shared 6-mers. Then, it computes a guide tree 
using the distance matrix and builds an alignment. More 
specifically, for each node in the guide tree, MAFFT--add 
does an alignment computation only if a query sequence 
is involved at the node (i.e., at least one child has some 
query sequences). Otherwise, it simply uses the align-
ment from the backbone and so is guaranteed to preserve 
the input backbone alignment. This property of guaran-
teeing that the input backbone alignment is not changed 
is true of the more accurate variants of MAFFT--add, 
including the variant that uses MAFFT-linsi to add query 
sequences (which we refer to as MAFFT-linsi--add), 
which we briefly describe below.

MAFFT-linsi--add has two differences to the default 
version of MAFFT--add. First, MAFFT-linsi--add uses 
localpair (local pairwise alignment scores) for the dis-
tance matrix calculation, which is more accurate than 
shared 6-mers. Second, it only runs for one iteration of 
progressive alignment and uses at most 1000 iterations 
of iterative refinement after the progressive alignment 
finishes. MAFFT--add and MAFFT-linsi--add have runt-
imes that are at least quadratic in the input size due to 
the O((m+ q)2) distance matrix calculation, where there 
are q query sequences and m sequences in the provided 
backbone alignment. MAFFT-linsi--add is even less scal-
able since its distance calculation is more costly. In addi-
tion, MAFFT-linsi--add does many steps of refinement 
that further impact the runtime. Hence, the developers of 
MAFFT recommend that MAFFT-linsi--add be limited 
to a few hundred sequences [12].

Limitations of HMM‑based methods
Both MAFFT-linsi--add and MAFFT--add can recover 
homologies between query sequences that do not have 
homologous characters in the backbone alignment, 
and—as mentioned above—they are guaranteed to leave 
the backbone alignment unchanged as they add query 
sequences.
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In contrast, methods such as WITCH-add, WITCH-
ng-add, etc., that use HMMs or ensembles of HMMs to 
represent the backbone alignment cannot find homolo-
gies between letters in the query sequences that do not 
also have homologs in the backbone alignment. This is 
an inherent limitation of HMM-based methods for add-
ing sequences into backbone alignment and implies 
that MAFFT--add and MAFFT-linsi--add may be more 
robust to the selection of the backbone sequences than 
the HMM-based methods.

Figure  1 gives an example of a backbone alignment 
and query sequences, comparing MAFFT-linsi--add and 
UPP-add. Note that MAFFT-linsi--add finds homolo-
gous nucleotides in the query sequences that do not cor-
respond to homologs in the backbone alignment, while 
UPP-add fails to recover these. This is an inherent limita-
tion of HMM-based methods and motivates the develop-
ment of EMMA.

New method: EMMA
Comparing MAFFT‑‑add and MAFFT‑linsi‑‑add
In a preliminary study (Experiment 0), we compared 
MAFFT--add and MAFFT-linsi--add to determine their 
relative accuracy and computational performance, espe-
cially as the number of sequences increased. We used 
5000M2, a simulated dataset developed for this study 
(see "Datasets" section), for this comparison. For this 
experiment, the backbone alignment has 1000 sequences 
and we varied the total number of added sequences from 
100 to 2000.

Figure  2 demonstrates that MAFFT-linsi--add (i.e., 
MAFFT--add run using-linsi) has a substantial accuracy 
improvement over MAFFT--add when run in default 
mode, but is limited to relatively small datasets. Hence, 
we are motivated to see if we can improve the scalability 
of MAFFT-linsi--add to large datasets.

EMMA’s algorithmic design
EMMA takes as input a multiple sequence align-
ment C on subset S0 and a set S1 of additional “query” 
sequences, and returns an alignment on S = S0 ∪ S1 
that is required to induce alignment C (thus C is treated 
as a constraint). We refer to C as a backbone alignment 
or as a constraint alignment.

EMMA was designed to enable MAFFT-linsi--add to 
scale to datasets where the total number of sequences 
in S (backbone plus query sequences) is very large. 
To achieve this, we use a divide-and-conquer strategy 
where we create a number of problems with smaller 
numbers of backbone sequences and query sequences 
on which MAFFT-linsi--add can efficiently and accu-
rately run. We then show how we can combine the 
results into a solution to the overall problem of adding 
sequences into the backbone alignment. Some of the 
techniques in EMMA are adapted from PASTA [14] 
and UPP [4], as described below and in the supplemen-
tary materials.

EMMA has two algorithmic parameters, l and u, 
that govern the decomposition strategy; our study set 
default values for these parameters, but they can be 
supplied by the user. Given the input backbone align-
ment C, unaligned sequences, and (optional) values for 
parameters l and u, EMMA operates as follows: 

1. Step 1: Construct set of constraint subalignments: 
Compute a tree on C (default: using the maximum 
likelihood heuristic FastTree2 [15]), and break it 
into smaller subsets by repeatedly deleting centroid 
edges (i.e., edges whose removal splits the leaf set 
into two sets of roughly equal size), and retaining 
only those subsets that contain at least l and at most 
u sequences. Each subset of the tree defines a suba-

Fig. 1 Comparing MAFFT-linsi--add to UPP-add We ran MAFFT-linsi--add and UPP-add on a backbone alignment and two query sequences. 
The initial two sites in the MAFFT-linsi--add alignment each contains two letters from the query sequences, thus indicating it detects them 
as homologous to each other, although there are no letters from the backbone alignment in these two sites. This is impossible for any method 
that represents the backbone alignment by one or more HMMs and then adds sequences to the backbone alignment using the HMMs. Thus, 
UPP-add places these initial letters of the query sequences into separate sites. Visualization is done with WASABI [11]
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lignment Ci of C (defined by the set Si of sequences 
in the subset). For each subalignment Ci, i = 1 . . . k , 
construct a profile HMM.

2. Step 2: Define the set of subproblems: For each query 
sequence q, assign q to the constraint subalignment 
whose HMM has the best fit, as determined by the 
adjusted bitscore (introduced in [6]), which provides 
an estimate of the probability that the given HMM 
generates the given query sequence. This defines a set 
of subproblems: the constraint subalignment Ci and 
the set of query sequences Qi assigned to Ci . For each 
i, if the total number of sequences in Si ∪ Qi exceeds 
500, then partition the query sequences in Qi into the 
smallest number of subsets needed in order to have 
at most 500 sequences in each subset, and ensure 
that have the subsets are as balanced in size as pos-
sible.

3. Step 3: Apply MAFFT-linsi--add to add the query 
sequences: For each resultant subproblem, use 
MAFFT-linsi--add to add all assigned query 
sequences to the selected constraint subalignment. 
The output of this step is a collection of extended 
subalignments (i.e., an alignment that agrees with 
the constraint alignment Ci but has some query 
sequences added).

4. Step 4: Merge the extended subalignments using 
transitivity: Each subalignment contains sites that 
come from the backbone alignment as well as newly 

introduced sites (representing homologies inferred 
between query sequence letters through the use of 
MAFFT-linsi--add). The sites from the backbone 
alignment allow us to merge these subalignments 
in an obvious way: if subalignments A1 and A2 both 
have sites drawn from site j from the backbone align-
ment, then these two sites are merged in the output 
alignment. Furthermore, the left-to-right ordering of 
columns in the subalignments can be used to define 
the left-to-right ordering in the output alignment. 
Transitivity was first used in PASTA and has been 
used in many subsequent methods, such as UPP, 
WITCH, and WITCH-ng. See Additional file 1: Fig. 
S2 for an example of transitivity merging.

Theorem 1 Given backbone alignment C on set S0 and 
query sequences S1 , EMMA outputs an alignment on 
S0 ∪ S1 that induces C when restricted to S0.

Proof Every subproblem consists of a constraint suba-
lignment C ′ and a set of query sequences Q′ . MAFFT-
linsi--add applied to subproblem ( C ′,Q′ ) is guaranteed 
to return an extended subalignment that induces C ′ when 
restricted to the sequences for that set. Since every query 
sequence is in exactly one subalignment, all the extended 
subalignments will be consistent with C, the constraint 
alignment given to EMMA. By definition, the transitivity 

Fig. 2 Experiment 0: MAFFT-linsi--add scalability issues. Alignment error (left) and runtime in hours (right) of MAFFT--add and MAFFT-linsi--add 
for adding 100, 200, 1000, or 2000 sequences to a 1000-taxon backbone alignment computed using MAGUS [13] on the INDELible 5000M2-het 
dataset with 5000 sequences. Averages over ten replicates are shown. Error bars shown for alignment errors are standard errors and standard 
deviations for runtime. We exclude replicate 4 because MAFFT-linsi--add encountered out-of-memory issues (64 GB) when adding 100 or 200 query 
sequences. Additionally, MAFFT-linsi--add is not shown for 1000 or 2000 query sequences because it either encountered out-of-memory issues 
or failed to complete within 12 h. Alignment error is the average of SPFN (fraction of true pairwise homologies missing in the estimated alignment) 
and SPFP (fraction of pairwise homologies in the estimated alignment not found in the true alignment). Results for SPFN and SPFP separately show 
the same trends and can be found in Additional file 1: Fig. S1
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merge cannot undo homologies in any extended suba-
lignment nor in the i. Furthermore, because each query 
sequence and each backbone sequence are in exactly one 
subalignment, the transitivity merge never merges col-
umns in the constraint alignment; hence, it is guaranteed 
to return an alignment that induces the backbone align-
ment when restricted to the backbone sequences. �

In addition to guaranteeing that the output of EMMA 
is consistent with the constraint alignment, the four-step 
design achieves several properties that are beneficial for 
alignment accuracy and scalability to a large number of 
sequences: (1) all runs of MAFFT-linsi--add have at most 
500 sequences in total and (2) the division into subalign-
ments is based on an estimated phylogeny so that the 
sequences in each subalignment are likely to be closely 
related, and (3) each query sequence is assigned to a 
subalignment of sequences for which they are likely to be 
closely related (based on the bit-score calculation of the 
fit between the query sequence and the subalignment). 
These properties together make for subproblems that are 
small enough for MAFFT-linsi--add to run well on (i.e., 
we reduce the computational effort) and closely related 
enough for MAFFT-linsi--add to be highly accurate.

Note that EMMA uses HMMs to determine which sub-
set alignment to assign a given query sequence but does 
not use the HMMs to perform the alignment. Instead, 
the alignment of the query sequence to the subalignment 
is performed using MAFFT-linsi--add in batch mode 
(i.e., all the query sequences assigned to the same suba-
lignment are aligned together), which allows MAFFT-
linsi--add to find homologies between letters in query 
sequences even if the backbone alignment does not have 
homologies as well.

Experimental design
Overview
Experiment 1 sets the parameters l and u in EMMA; 
these experiments are performed on the training data. 
In Experiment 2, we compare EMMA to MAFFT--
add (v7.490, run in default mode), MAFFT-linsi--add 
(v7.490), and WITCH-ng-add (v0.0.2), using the testing 
datasets (disjoint from the training data).

All methods are evaluated for running time as well as 
alignment error (see below). Experiment 1 analyses were 
limited to 64 GB and 12  h. Experiment 2 was run with 
16 cores and 64 GB memory, with 24 h of runtime. For 
MAFFT-linsi--add and MAFFT--add, we allowed 128 GB 
memory. All experiments were run on the UIUC Campus 
Cluster. See Additional file 1:  Section S3 for exact com-
mands of all methods, and Additional file  1: Section S4 
for additional details on dataset generation.

Alignment error
For alignment error, we compare the estimated to the 
reference/true alignment, restricted to the (added) query 
sequences from the reference alignment. We report 
SPFN, SPFP, and expansion scores, which are defined 
as follows. The expansion score is the length of the esti-
mated alignment divided by the length of the true or 
reference alignment; thus, the best result is 1.0, align-
ments that have expansion scores less than 1.0 are said 
to be “over-aligned”, while alignments that have expan-
sion scores greater than 1.0 are “under-aligned”. The 
SPFN and SPFP error metrics are based on homologies, 
i.e., pairs of letters (nucleotides or amino acids) found in 
the same column in the true or estimated alignment. The 
sum-of-pairs false-negative (SPFN) rate is the fraction of 
homologies in the reference alignment that are missing in 
the estimated alignment. The sum-of-pairs false-positive 
(SPFP) rate is the fraction of pairs of homologies in the 
estimated alignment that are missing in the reference 
alignment. These metrics are calculated using FastSP 
[16].

Datasets
We use both simulated and biological datasets of nucleo-
tide and protein to evaluate EMMA. In addition to data-
sets from prior studies [14, 17, 18], we also generated one 
new simulated dataset using INDELible [19] and we use 
two new biological datasets (Rec and Res). The training 
datasets were used in Experiments 0 and 1, and all subse-
quent experiments used the testing data (a separate col-
lection of datasets). Empirical statistics for these datasets 
can be found in Additional file  1: Table  S1. All datasets 
are described below, with the new datasets freely availa-
ble online through the Illinois Data Bank (see Data Avail-
ability statement).

Simulated datasets
All simulated datasets are based on evolving sequences 
down model trees with indels so that all sequence align-
ments involve gaps. As described below, these simulated 
datasets vary in terms of indel length distribution, rate 
of evolution, and whether the sites evolve identically and 
independently or under selection. All simulated datasets 
have at least 1000 sequences.

ROSE: We included datasets from [17], which were 
generated using the ROSE [20] software. We used 
four model conditions (1000M1, 1000M2, 1000M3, 
and 1000M4) from [17]. Each model condition has 
10 replicates, and each replicate has 1000 sequences, 
with an average sequence length of ∼1000 bp. The 
1000M1–1000M4 models vary in rate of evolution (with 
1000M1 the highest, and reducing rates as the index 
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increases), thus enabling us to evaluate the impact of 
rates of evolution on alignment difficulty. All site evolu-
tion is non-ultrametric, and the sites evolve identically 
and independently.

The INDELible simulated datasets: These datasets 
were generated for this study. We used INDELible [19] 
to evolve sequence datasets down a tree with a hetero-
geneous indel (insertion and deletion) model. Under this 
model, with a small probability, an indel event can be 
promoted to long indel events, modeling infrequent 
large gain or loss during the evolutionary process (e.g., 
domain-level indels). Hence, we name these new model 
conditions “het” to reflect their heterogeneous indels. 
Each replicate has 5000 sequences, and the model con-
ditions range in evolutionary rates (and hence alignment 
difficulty), with model condition 5000M2-het having the 
highest rate of evolution, 5000M3-het somewhat slower, 
and 5000M4-het the slowest. We used non-ultrametric 
model trees, and all sites evolved identically and indepen-
dently. See Additional file 1: Section S4 for details of the 
data generation and Additional file  1: Tables S2 and S3 
for the parameter values used in the simulations.

RNASim: The RNASim million-sequence dataset is 
from [14] and has been used in prior studies to evaluate 
alignment methods [4, 21]. In the RNASim simulation, 
RNA sequences evolve under a biophysical model and 
under selection in order to conserve the rRNA structure. 
Thus, the sites do not evolve independently. In this study, 
we subsampled 10 replicates, each with 10,000 sequences.

Biological datasets
CRW: The Comparative Ribosomal Website [18] (CRW) 
is a collection of nucleotide datasets with curated align-
ments based on secondary structure. We include 16 S.3, 
16  S.T, and 16  S.B.ALL, three large datasets from the 
CRW, with 5323, 6350, and 27,643 sequences, respec-
tively. These datasets have been used in previous studies 
[4, 21, 22] and exhibit sequence length heterogeneity. We 
use the cleaned versions from [21], for which any ambi-
guity codes or entirely gapped columns are removed.

10AA: The “10 AA” dataset is a publicly available col-
lection of large curated protein alignments, originally 
assembled for the study evaluating PASTA [14], but also 
used to evaluate multiple sequence alignment meth-
ods [4, 22]. These curated alignments are based on pro-
tein structure and range from 320 to 807 sequences and 
include the eight largest BAliBASE datasets [23] and two 
datasets from [24].

Serine recombinases (Rec and Res): These datasets 
were assembled for this study and are for two domains 
from serine recombinase. Protein sequences were taken 
from 350,378 GenBank bacterial and archaeal genome 

assemblies (Additional file 1: Section S4) using Prodigal 
[25]. Serine recombinases were identified using the Pfam 
HMMs [26] Resolvase (Res) for the catalytic domain, and 
Recombinase (Rec) for the integrase-specific domain 
using hmmsearch from the HMMER package with the 
“trusted cutoffs” supplied by Pfam. Standards phiC31 
and Bxb1 were added. From the 199,090 unique protein 
sequences, the Rec and Res domains were separately 
extracted using the boundaries determined by the HMM 
hits.

The Rec and Res datasets have reference alignments 
on a subset of the sequences (i.e., the seed alignment 
from Pfam), with Rec having 66 and Res having 112 seed 
sequences. Hence, the reference set for each dataset is 
much smaller than the entire set of sequences. Align-
ment error is evaluated only on these specific reference 
sequences.

Constraint alignment selection
Recall that we have true alignments for the simulated 
datasets and reference alignments (based on structure) 
for the biological datasets. However, for the Rec and Res 
datasets, we have reference alignments only on a subset 
of the sequences. Alignment error is evaluated only on 
sequences for which we have reference alignments, which 
means that for the Rec and Res datasets we can only eval-
uate alignment error on a subset of the sequences.

In Experiment 2, we designed different ways of select-
ing a subset of the reference sequences to form the con-
straint alignment. The reference alignment, restricted to 
the selected sequences, is treated as the backbone align-
ment (i.e., the constraint alignment), and the remaining 
sequences are query sequences.

We considered three different scenarios for the selec-
tion of the backbone sequences, for which a constraint 
alignment would be provided by the user. The first two 
scenarios select sequences randomly from across the 
assume that the backbone sequences are selected ran-
domly from the input. For these two scenarios, we vary 
the number of sampled sequences from “large” (at 25% 
of the full set of sequences) to “small” (at 10% of the 
sequences). The third scenario is designed for the case 
where a curated alignment is available for a small and 
likely closely related set of sequences found within a 
clade. 

1. Large random subset:  We begin by determining 
the set of reference sequences that are “full-length,” 
which means their length is within 25% of the median 
length. From the set of F full-length sequences, we 
randomly select min(1000, 0.25F) sequences.
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2. Small random subset:  The protocol is identical to the 
large random subset protocol, except that we ran-
domly select min(100, 0.1F) full-length sequences. 
However, if this number is less than 10, we just pick 
10 sequences at random.

3. Large clade-based subset:  Here, we restrict to 
sequences from a clade (as defined on either the true 
tree for simulated data or a maximum likelihood tree 
for the biological data), selecting a clade that has at 
most 1000 sequences, and that comes as close as pos-
sible to 25% of the reference sequences. In the case of 
ties, we pick the clade randomly,

Results
Experiment 1: Designing EMMA
Experiment 1 is the experiment where we set the algo-
rithmic parameters, l and u, for EMMA. We vary l 
between 10 and 50 and u between l and 100, using the 
INDELiBLE 5000M2-het model condition, which has 
a high rate of evolution and so makes for difficult align-
ments. We use the large random subset scenario so that 
the backbone alignment contains 1000 randomly selected 
sequences, and the remaining 4000 sequences are query 
sequences.

Results for EMMA with different settings of (l,  u) on 
5000M2-het (10 replicates) are presented in Additional 
file 1:  Fig. S3. The lowest error is found when l = 10 , and 
for this setting of l, u then has little impact. However, the 
setting for u does impact runtime, with the fastest runt-
ime found (across all settings) with l = 10 and u = 25 . 
Based on this experiment, we set these as the default set-
tings for l and u.

Experiment 2: Evaluating EMMA to other sequence‑adding 
methods
Here, we show comparisons of EMMA using the default 
settings of l = 10 and u = 25 to WITCH-ng-add and 
MAFFT-linsi--add. We show a comparison to MAFFT-
-add in default mode only for a limited set of analyses 
since its error rates were much higher than the other 
methods; see Additional file  1: Figs. S4–S14 for full 
results, including MAFFT--add.

Expansion scores and SPFP
The expansion score is the estimated alignment length 
normalized by the reference or true alignment length. 
As seen in the Additional file 1: Table S4, MAFFT-linsi-
-add had the best expansion scores, coming close to 1.0 
in most cases. All the other methods, however, produced 
alignments that were longer than the true alignment (and 
hence were under-aligning), as indicated by expansion 
scores being greater than 1. MAFFT--add under-aligned 
the least of these methods, followed closely by EMMA, 

and WITCH-ng-add has by far the largest expansion 
scores. For the expansion score, WITCH-ng is the outlier, 
as its expansion scores were excessively high. This level 
of under-alignment also means that interpreting its SPFP 
rates is difficult since under-alignment also reduces false 
positives.

With these observations, we now consider the SPFP 
scores. Results for large random backbones are pro-
vided in Fig. 3, and results for the two other conditions 
are shown in Additional file 1: Figs. S4 and S5. WITCH-
ng-add typically had among the best SPFP scores, but 
MAFFT-linsi-add and EMMA sometimes had better 
SPFP scores. Thus, the improved SPFP scores achieved 
by WITCH-ng-add are partially the result of its very high 
degree of under-alignment.

EMMA and MAFFT-linsi--add both had SPFP scores 
that are relatively close. There is an advantage to MAFFT-
linsi--add over EMMA on the simulated ROSE datasets 
(1000M1–1000M4) but not on the 10AA datasets (the 
only biological datasets on which MAFFT-linsi--add 
completed).

We also see that MAFFT--add had higher SPFP 
scores than MAFFT-linsi--add on the datasets on which 
MAFFT-linsi--add could run. Given that MAFFT--add 
also had worse expansion scores than MAFFT-linsi--
add, this indicates that MAFFT--add was generally infe-
rior to MAFFT-linsi--add (consistent with Experiment 0, 
and also with other prior studies). Interestingly, although 
MAFFT--add had lower expansion scores than EMMA, 
it had higher SPFP scores. Given these trends, we omit 
MAFFT--add from the rest of the study (though see 
Additional file  1: Figs. S3–S8 for comparisons involving 
MAFFT--add).

We note that the SPFP scores, other than for WITCH-
ng-add, were all relatively close (and generally low), mak-
ing SPFP scores not very informative. Therefore, for the 
remainder of this study, we focus on SPFN, noting that 
1-SPFN is the same as recall (or SP-Score).

SPFN alignment error on large random backbones
Figure  4 shows the SPFN of the three sequence-adding 
methods (i.e., EMMA, WITCH-ng-add, and MAFFT-
linsi--add) when adding to large random backbone 
alignments. The most striking observation is that 
MAFFT-linsi--add only succeeded in completing the 
datasets with at most 1000 sequences (i.e., the 10AA 
biological datasets and the ROSE simulated datasets 
with 1000 sequences); on all the other datasets, it failed 
to complete within the allowed time (24 h). For all data-
sets, EMMA had the best SPFN score, better than both 
MAFFT-linsi--add and WITCH-ng. We also note that its 
advantage in SPFN was more noticeable on datasets with 
high rates of evolution (1000M1, 1000M2).
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SPFN alignment error on small random backbones
As with large random backbones, MAFFT-linsi--add 
only succeeded in finishing on the datasets with at most 
1000 sequences (Fig.  5), but on those datasets, it was 
among the most accurate methods. The relative accuracy 

between the three methods is very similar to that dis-
played on the large backbones: EMMA was still the most 
accurate, followed by MAFFT-linsi--add when it can 
run, then by WITCH-ng. Finally, the gaps in accuracy 
between methods were smaller than when placing into 

Fig. 3 Expansion score (top) and SPFP (bottom) on large random backbones. In each subfigure, the top panel denotes biological datasets, 
and the bottom panel denotes simulated datasets (note the change in the y-axis range for expansion scores between the top and bottom panels). 
The horizontal dashed line indicates a perfect expansion score of 1. MAFFT-linsi--add failed to finish within 24 h for datasets except for 10AA 
and ROSE 1000M1–4 and was not run on Rec and Res (due to their very large size, we knew it would not complete within the allowed time), 
and MAFFT--add encountered out-of-memory issues on the Res dataset (failed runs, or runs that were not attempted, are marked with “X”). The 
expansion score is the length of the estimated alignment normalized by the length of the reference or true alignment; optimal is 1.0, and values 
above 1.0 indicate alignments that are too long (and so are under-aligned)
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Fig. 4 SPFN of EMMA, WITCH-ng-add, and MAFFT-linsi--add when adding sequences into large random backbone alignments. The top panel 
denotes biological datasets, and the bottom panel denotes simulated datasets. Error bars indicate standard errors. MAFFT-linsi--add only completed 
within the allowed 24 h on datasets with at most 1000 sequences, and we did not run it on Rec or Res due to their large numbers of sequences 
(failed runs, or runs that were not attempted, are marked with “X”). Comparisons with MAFFT--add can be found in Additional file 1: Fig. S7. SPFN 
results for each of the 10AA datasets are in Additional file 1: Fig. S12

Fig. 5 SPFN of EMMA, WITCH-ng-add, and MAFFT-linsi--add when adding sequences into small random backbone alignments. The top panel 
denotes biological datasets, and the bottom panel denotes simulated datasets. Error bars indicate standard errors. MAFFT-linsi--add failed to finish 
within 24 h for datasets except for 10AA and ROSE 1000M1–4, and we did not run it on Rec or Res due to their large numbers of sequences (failed 
runs, or runs that were not attempted, are marked with “X”). Comparisons with MAFFT--add can be found in Additional file 1: Fig. S8. SPFN results 
for each of the 10AA datasets are in Additional file 1: Fig. S13
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large random backbones, while the absolute error rates 
were higher.

SPFN alignment error on clade‑based backbones
As with the other conditions, when adding sequences 
into a clade-based backbone alignment, MAFFT-linsi-
-add failed to complete on any dataset with more than 
1000 sequences. However, in many respects, the results 
for the clade-based backbone are different than for the 
random backbones (Fig. 6). The most noteworthy differ-
ence is that error rates increased for all methods when 
given clade-based backbones instead of random back-
bones, but the increase was largest for WITCH-ng-add. 
MAFFT-linsi--add is clearly the most accurate of all the 
methods on the 1000M1, 1000M2, and 1000M3 datasets 
and then ties for best on 1000M4. EMMA is strictly more 
accurate than WITCH-ng-add, usually by a large margin, 
on all datasets. Nevertheless, both EMMA and WITCH-
ng-add have high errors on datasets with high rates of 
evolution (1000M1, 5000M3-het).

Computational performance
MAFFT-linsi--add and MAFFT--add are the only 
methods that failed to complete on at least one of the 
datasets within the allowed runtime (24  h), using 16 
cores and 128 GB memory. Additional file  1: Section 

S5 shows that both methods reported out-of-mem-
ory issues or crashes. Specifically, MAFFT-linsi--add 
had an out-of-memory issue when attempting to ana-
lyze the INDELible 5000M2-het training dataset and 
allowed 64 GB. We also noted that MAFFT--add had 
an out-of-memory issue on the Res dataset with ∼186K 
sequences, even when allowed 128 GB of memory. This 
is perhaps not surprising since MAFFT--add also com-
putes the n× n pairwise distance matrix, where n is the 
number of sequences in total (backbone sequences and 
query sequences together), and shows that MAFFT--
add as well as MAFFT-linsi--add both have large mem-
ory requirements.

Figure  7 compares the methods given a large random 
backbone. MAFFT-linsi--add was the slowest method 
on all the datasets when it could run (as noted above, it 
failed to complete on any dataset with more than 1000 
sequences). WITCH-ng-add was overall the next slow-
est method, but it was faster than EMMA on the 10AA 
datasets (which are the smallest datasets we examined, 
all below 1000 sequences). MAFFT--add was overall the 
fastest method, but WITCH-ng-add was faster on the 
Rec dataset, and EMMA was faster on the 5000M3-het 
dataset. Overall, EMMA was in between WITCH-ng-
add and MAFFT--add in terms of running time on these 
datasets.

Fig. 6 SPFN of EMMA, WITCH-ng-add, and MAFFT-linsi--add when adding sequences into clade-based backbone alignments. The top panel 
denotes biological datasets, and the bottom panel denotes simulated datasets. Error bars indicate standard errors. MAFFT-linsi--add failed to finish 
within 24 h for datasets except for 10AA and ROSE 1000M1–4, and we did not run it on Rec or Res due to their large numbers of sequences (failed 
runs, or runs that were not attempted, are marked with “X”). Comparisons with MAFFT--add can be found in Additional file 1: Fig. S9. SPFN results 
for each of the 10AA datasets are in Additional file 1: Fig. S14
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The runtimes of all methods on the other conditions 
(small random backbones and clade-based backbones) 
are shown in Additional file  1: Figs. S10 and S11. On 
these datasets, we see somewhat similar trends, with 
EMMA faster than MAFFT-linsi--add on the datasets 
where MAFFT-linsi--add can run, but now EMMA is 
slower than both WITCH-ng-add and MAFFT--add.

The only methods that succeeded in completing all 
datasets were EMMA and WITCH-ng-add, and the 
maximum runtimes used by EMMA and WITCH-
ng-add were 12.2 and 10.5  h, respectively. Given that 
WITCH-ng-add and EMMA completed so quickly 
using under 64 GB memory on these datasets and that 
the datasets had up to ∼186,000 sequences, it is rea-
sonable to say that WITCH-ng-add and EMMA are 
acceptable with respect to speed and scalability.

We also tried to give MAFFT-linsi--add three days 
(72 h instead of 24 h) to run on 16 S.3 and 16 S.T for 
the small random backbone and large clade-based 
backbone, but it still could not complete. Finally, we 
consider MAFFT--add to be reasonably scalable since 
it only had computational problems with the largest 
dataset (Res), and it is by far the fastest method we 
tested.

Discussion
The four methods we have evaluated—EMMA, MAFFT-
-add, MAFFT-linsi--add, and WITCH-ng-add, vary 
in their ability to run on large datasets (i.e., scalability), 
runtime, and accuracy (here focused on SPFN). The rela-
tive performance is summarized in Table 1, and discussed 
further below.

Our study showed clear differences in scalability, with 
EMMA and WITCH-ng-add the most scalable (complet-
ing on all datasets within the time and memory limits), 
MAFFT--add the next most scalable (failing to complete 
on one dataset), and MAFFT-linsi--add the least scal-
able (failing on all but the datasets with at most 1000 
sequences). It is easy to see why EMMA can scale to the 

Fig. 7 Experiment 2: Runtime (log-scale) in minutes when adding to large random backbone alignments. The top panel denotes biological 
datasets, and the bottom panel denotes simulated datasets. Except for the datasets with at most 1000 sequences, MAFFT-linsi--add failed to finish 
within 24 h and was not attempted on Rec and Res due to their large number of sequences. MAFFT--add encountered out-of-memory issues 
on the Res dataset. Failed runs, or runs not attempted due to dataset size, are marked with “X”. Error bars indicate standard deviation

Table 1 Overall performance of the tested methods

For scalability, we indicate which study datasets the method completed on

For SPFN and speed, we indicate the relative position (1 is best, 2 is second best, 
etc.)

Criterion EMMA WITCH‑
ng‑add

MAFFT‑‑add MAFFT‑linsi‑‑add

Scalability All All All but largest ≤ 1000 sequences

SPFN-random 1 2 3 1

SPFN-clade 2 3 4 1

Speed 2 2 1 3
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largest datasets, as the decomposition strategy and tran-
sitivity merge are both very fast, and the only potentially 
computationally intensive part is when it runs MAFFT-
linsi--add on subsets of query sequences to add them to 
subsets of the backbone alignment. However, by design, 
the subproblems are all small (at most u = 25 backbone 
sequences and at most 500 query sequences). This design 
strategy allows EMMA to complete on all the datasets in 
our study. It is also easy to see why MAFFT-linsi--add is 
limited in scalability since its algorithmic design involves 
a quadratic runtime.

Accuracy differences were also apparent but were 
generally very small when the rates of evolution were 
low enough. This also is as expected since prior studies 
have shown differences in alignment error often are very 
small or negligible when sequence identity is high, which 
occurs under low rates of evolution (e.g., [17, 27]).

When comparing accuracy under higher rates of evolu-
tion, we see that the selection strategy for the backbone 
sequences—i.e., whether they were selected randomly 
or from within a clade and the number of backbone 
sequences—impacts both absolute and relative alignment 
error. In particular, all methods have better accuracy with 
random sampling than with clade-based sampling and 
also have better accuracy when there are more sequences 
in the backbone alignment. These trends are expected 
since the constraint alignment is used as a model of the 
family, and dense sampling throughout the family (i.e., 
the large random backbone) ensures a better model than 
sparse random sampling (i.e., the small random back-
bone) or sampling from just within a clade.

The comparison between EMMA and WITCH-ng-add 
with respect to accuracy favors EMMA across all sam-
pling strategies, although the two methods have nearly 
identical accuracy for some conditions. The accuracy 
advantage of EMMA is more noticeable on datasets with 
high rates of evolution, such as ROSE 1000M1, 1000M2, 
and INDELible 5000M3-het. Since WITCH-ng-add relies 
on using HMMs created from the backbone to align the 
queries, whereas EMMA uses MAFFT-linsi--add to align 
the queries, the improvement in accuracy for EMMA is 
likely to be due to the greater sensitivity of MAFFT-linsi-
-add for detecting homologies than the HMM-based 
approach within WITCH-ng-add.

The comparison between MAFFT-linsi--add and 
EMMA, although restricted to just those datasets on 
which MAFFT-linsi--add could run (i.e., the datasets with 
at most 1000 sequences), reveals the following trends. 
When given a large random backbone, EMMA matches 
or improves on MAFFT-linsi--add under all conditions, 
but has an advantage given on the ROSE 1000M1 and 
1000M2 conditions, and then matches MAFFT-linsi--
add for the 1000M3 and 1000M4 conditions. The same 

relative performance is seen for the small random back-
bone, but with a smaller difference between the meth-
ods. Thus, the rate of evolution impacts the relative 
accuracy of the two methods, favoring EMMA when the 
rate of evolution is high, suggesting that MAFFT-linsi--
add accuracy is impacted more substantially by the rate 
of evolution than EMMA. This trend is consistent with 
prior studies showing that MAFFT-linsi is sensitive to 
rate of evolution, an observation that led to the design of 
SATé [17] and its descendent methods [13, 14, 28].

Interestingly, MAFFT-linsi--add improves on EMMA 
when the sequences are drawn from a clade, with a sub-
stantial improvement under the higher rate of evolu-
tion. In other words, when the backbone is drawn from a 
clade, the algorithmic strategy in EMMA—which applies 
MAFFT-linsi--add to subsets that contain at most 25 
backbone sequences from the clade – is inferior to using 
the entire backbone. This is clearly a condition where the 
EMMA divide-and-conquer strategy is not well-suited.

In understanding the conditions where MAFFT-linsi--
add is more accurate than EMMA, it is helpful to under-
stand that the homologies between query sequences 
found by EMMA are either found directly by MAFFT-
linsi-add on a small subset (with at most 500 sequences) 
or inferred when combining these extended alignments 
using transitivity. Thus, the relative accuracy of EMMA 
and MAFFT-linsi--add is impacted by the divide-and-
conquer strategy and, in particular, the size of the sub-
sets in the decomposition of the backbone tree. Given 
that our default setting currently sets u = 25 , this choice 
creates subsets that have very few backbone sequences 
(at most 25) and then adds query sequences, but not so 
many as to exceed 500 total sequences. This is potentially 
why MAFFT-linsi-add can be more accurate than EMMA 
since MAFFT-linsi-add can find homologies between all 
pairs of query sequences, whereas EMMA (which applies 
MAFFT-linsi-add to small subsets) can only achieve this 
within the subsets it produces. Our Experiment 1, where 
we set the parameters l = 10 and u = 25 , was based on 
the INDELible 5000M2 dataset, which has a high rate 
of evolution. It seems likely that other settings for l and 
u might lead to improved accuracy when the model 
condition has a lower rate of evolution since MAFFT-
linsi--add’s accuracy improves as the rate of evolution 
decreases. In other words, EMMA’s algorithmic design 
aimed to reduce runtime and improve scalability, but for 
some challenging inputs (e.g., clade-based backbones) 
where MAFFT-linsi--add can run, the algorithmic design 
of EMMA may reduce accuracy relative to MAFFT-linsi-
-add. Hence, there is room for improvement in designing 
EMMA.

However, MAFFT-linsi--add could not complete the 
study datasets with more than 1000 sequences given 
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the limitations in computational resources we imposed. 
In contrast, EMMA was able to complete all study data-
sets. Thus, while MAFFT-linsi--add had a clear accuracy 
advantage over EMMA for the clade-based backbones 
(though not on the random backbones), EMMA has 
a computational advantage over MAFFT-linsi--add in 
being able to scale to larger datasets.

Given the impact of clade-based sampling for the 
backbone sequences, it is important to remember that 
EMMA is never identical to MAFFT-linsi--add, even 
when analyzing small subsets. When we run MAFFT-
linsi--add on the datasets with at most 1000 sequences, 
all the query sequences are considered together when 
added to the backbone alignment. In contrast, by con-
struction, EMMA only adds query sequences to subsets 
of the backbone alignment with at most u sequences, and 
in our study, we set u = 25 by default. From a computa-
tional standpoint, this strategy allows EMMA to scale 
to very large datasets. From an accuracy perspective, 
however, the impact clearly depends on how the back-
bone sequences were sampled. EMMA has an accuracy 
advantage over MAFFT-linsi--add when the backbone 
sequences are randomly sampled and there is a high rate 
of evolution and matches MAFFT-linsi--add for accuracy 
when the backbone sequences are randomly sampled 
with a lower rate of evolution. However, as we have seen, 
this strategy is poor when the backbone sequences are 
sampled from a clade, and the rate of evolution is high.

This observation also indicates that two-phase multiple 
sequence alignment methods that operate by selecting 
and aligning a set of sequences for the backbone and then 
adding in the remaining sequences should—if possible—
select the backbone sequences from across the evolution-
ary tree for the dataset to obtain the best representative 
model of the gene family.

Conclusions
This study presented EMMA, a new method for adding 
sequences into existing constraint alignments (also called 
backbone alignments). EMMA uses a divide-and-con-
quer strategy to enable MAFFT-linsi--add, a highly accu-
rate version of MAFFT--add, to scale to large datasets. By 
itself, MAFFT-linsi--add was unable to complete using 
the computational resources on the datasets we studied 
with more than 1000 sequences, but EMMA succeeded 
in completing with even fewer resources on the largest 
dataset we studied, with more than 180,000 sequences.

Our study shows that EMMA has comparable or better 
alignment accuracy than MAFFT--add and WITCH-ng-
add under all the conditions tested, and also compara-
ble or better accuracy than MAFFT-linsi--add when the 
backbone sequences are selected randomly. However, our 
study also showed that when the backbone sequences are 

selected from a clade and the dataset is sufficiently small, 
then MAFFT-linsi--add is more accurate than EMMA. 
This finding indicates clearly that the design of EMMA 
needs to be reconsidered for the case where the user pro-
vides a curated alignment for a closely related group of 
sequences contained within a clade and wishes to add 
additional sequences that are distantly related to the 
backbone sequences.

Thus, future work should investigate appropriate modi-
fications to the divide-and-conquer strategy in EMMA 
to address the case where the backbone sequences are 
distantly related to the query sequences. EMMA align-
ment accuracy could potentially be improved with a re-
alignment stage to see if sets of sites could be merged 
together through the detection of additional homologies 
between query sequences. We should also explore other 
biological datasets to document the accuracy of these 
methods under a wider range of real-world conditions. 
EMMA is not yet optimized for speed, and a more care-
ful parallel implementation may provide a substantial 
speed-up. Finally, EMMA could be studied as the second 
stage of the standard two-stage pipeline protocol used by 
UPP/UPP2, WITCH, and WITCH-ng for de novo mul-
tiple sequence alignment. Given the high accuracy of 
these two-stage methods for aligning datasets with high 
sequence length heterogeneity, this is likely to provide 
improved accuracy.
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