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Abstract 

We present a novel problem, called MetaEC, which aims to infer gene-species assignments in a collection of partially 
leaf-labeled gene trees labels by minimizing the size of duplication episode clustering (EC). This problem is par-
ticularly relevant in metagenomics, where incomplete data often poses a challenge in the accurate reconstruction 
of gene histories. To solve MetaEC, we propose a polynomial time dynamic programming (DP) formulation that veri-
fies the existence of a set of duplication episodes from a predefined set of episode candidates. In addition, we design 
a method to infer distributions of gene-species mappings. We then demonstrate how to use DP to design an algo-
rithm that solves MetaEC. Although the algorithm is exponential in the worst case, we introduce a heuristic modifica-
tion of the algorithm that provides a solution with the knowledge that it is exact. To evaluate our method, we perform 
two computational experiments on simulated and empirical data containing whole genome duplication events, 
showing that our algorithm is able to accurately infer the corresponding events.
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Introduction
In the field of computational biology, the use of gene 
families and the reconciliation model has become 
increasingly popular for studying the evolution of diverse 
organisms. These tools have facilitated the development 
of new algorithms and computational methods capable 
of handling large and complex datasets and exploring 
various types of evolutionary events. These events range 
from simple macroevolutionary processes such as gene 
duplications, gene losses, and horizontal gene transfers to 
more complex ones such as genomic duplications, speci-
ations, and hybridizations. The reconciliation model has 
enabled researchers to reconstruct evolutionary histories 
by reconciling gene trees with species trees and identify-
ing the evolutionary events that have led to the observed 

patterns of gene evolution. In the context of metagenom-
ics, the reconciliation model has also been used to detect 
missing gene-species assignments using polynomial time 
algorithms. These developments have led to a better 
understanding of the evolutionary processes.

A classical reconciliation model  [1, 2] defines a map-
ping from every node from a gene tree into a node in the 
species tree and determines if such a node is related to a 
speciation or can be classified as a single gene duplica-
tion [3]. In result, an embedding of the set of gene trees 
into a species tree can be interpreted as a joint evolu-
tionary scenario  [4]. The classical least common ances-
tor (LCA) mapping minimizes the number of single gene 
duplications and losses for one gene tree and the species 
tree [4].

The whole genome duplication (WGD) phenomenon 
incorporates additional copies of a complete genome 
into the original genetic material, thus creating an 
opportunity to introduce novel evolutionary traits  [5, 
6]. From a macro perspective, this phenomenon played 
a crucial role in the divergence and formation of species 
and shaped the evolution of almost all major lineages 
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of life. In particular, many WGDs were uncovered in 
the evolutionary histories of plants, especially crops. 
WDGs potentially enabled the successful domestica-
tion of plants  [7] and are important in the fight against 
famine  [8]. Many traces and evidence of whole genome 
duplications can be found in the genomes of yeast and 
other fungal species  [5, 9]. From the perspective of sin-
gle cell evolution studies, WGDs are prevalent in can-
cer progression [10] and can lead us to the prognosis of 
advanced cancer stages [11] or the creation of strategies 
for targeted therapy [12].

Guigó et al. [13] proposed the first approach for detect-
ing multiple gene duplication episodes from a collec-
tion of rooted gene trees. They designed a heuristic that 
aggregates single gene duplication events into a large 
gene duplication, given a collection of rooted gene trees 
and a rooted species tree. This approach was formalized 
and improved by Page and Cotton [14], who defined the 
problem of episode clustering ( EC ) as the task of identify-
ing the minimal number of locations in the species tree 
where all duplications from the input gene trees can be 
placed. Fellows [15] applied this model in the context of 
the supertree problem. Polynomial-time solutions for 
two types of multiple gene duplication problems episode 
clustering and a more general variant of clustering called 
minimum episodes (ME) were proposed in  [16, 17]. Luo 
et al. [18] proposed linear time and space algorithms, par-
tially based on [19], for these problems. [20] introduced 
a unified approach by proposing a concept of interval 
models with a linear time and space solution to a broad 
class of clustering problems including EC and ME. Alter-
native approaches include generalization to unrooted 
gene trees; however, such approaches are often compu-
tationally complex  [21, 22]. Other approaches include 
variants of clustering rules that depend on the maximal 
number of duplication episodes placed in one path  [23, 
24]. A comprehensive analysis of various models is avail-
able in [20]. Furthermore, [25] proposes an integer linear 
programming formulation that simplifies the process of 
testing these models. Relevant computational complexity 
results on the ME problem are presented in [26].

Metagenomic studies provide valuable information for 
analyzing entire communities of organisms and reveal-
ing a complete picture of their functional and adaptive 
capacities crucial for ecology [27] or human health [28]. 
Genetic material isolated in such studies can be used to 
detect whole genome duplication events.

One of the steps in metagenomic analysis is called bin-
ning. The aim of this procedure is to assign sequenced 
DNA fragments to the appropriate taxonomic groups. 
The assignment of certain genes to species can be ambig-
uous due to the limitations of annotation methods. A 
precise and comprehensive gene tree topology is essential 

for the accurate identification of potential duplication 
sites. The absence or misplacement of duplications in 
gene trees can, in turn, result in incorrect outcomes of 
methods aimed at determining whole genome duplica-
tion events.

To tackle the challenge of missing gene-species assign-
ments in evolutionary studies, previous research has 
introduced methods based on the reconciliation score 
using gene duplication and loss events  [29, 30]. In a 
related work, Mykowiecka et al. [31] extended this model 
by including horizontal gene transfer to better analyze 
bacterial evolution and proposed polynomial time algo-
rithms for these models. These approaches utilize tree 
reconciliation according to the classical scheme, in which 
the gene tree includes symbols representing sequences 
with unclear species assignment in addition to the known 
gene labels. The objective is to assign the unknown gene 
labels to their corresponding species in a gene tree while 
minimizing the total reconciliation score, which is typi-
cally a weighted sum of evolutionary events such as gene 
duplication, gene loss, and horizontal gene transfer.

Here, we present a novel problem called MetaEC, 
which aims to infer gene-species assignments in a col-
lection of gene trees with unknown labels by minimizing 
the size of episode clustering. This problem is particularly 
relevant in metagenomics, where incomplete data often 
poses a challenge in the accurate reconstruction of gene 
histories. To solve MetaEC, we propose a dynamic pro-
gramming (DP) algorithm that verifies the existence of a 
set of duplication episodes from a predefined set of epi-
sode candidates. We then demonstrate how to use DP to 
design an algorithm that solves MetaEC. In addition, we 
design an algorithm to infer distributions of gene-species 
mappings from the set of all optimal solutions inferred by 
DP. Although the algorithm is exponential in the worst 
case, we introduce a heuristic modification of the algo-
rithm that provides a solution with the knowledge that it 
is exact. To evaluate our method, we perform two com-
putational experiments on simulated and empirical data 
containing WGD events, showing that our algorithm can 
accurately infer the corresponding events. It is important 
to note that a direct comparison of our novel algorithm 
with alternative methods is not possible, as there is cur-
rently no existing approach for the simultaneous infer-
ence of duplications and gene-species mappings.

Basic definitions
Gene trees, species trees, and the duplication cost
We begin by recalling some basic definitions from 
graph theory. All trees in this article are rooted and 
binary, therefore we refer to them as trees. For a tree 
T = (V (T ),E(T )) , by root(T ) we denote the root, and 
by L(T) we denote the set of all leaves. Every non-leaf 
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node will be called internal. A species tree is a tree whose 
leaves are called species. A gene tree over a species tree 
S is a tree with leaves labeled by the species from S. The 
set of all species present in a species tree or a gene tree 
T is denoted by L(T ) . Note that for a species tree S, 
L(S) = L(S) . Also, for a gene tree G over S, L(G) ⊆ L(S).

For nodes a and b, a � b means that a and b are on the 
same path from the root, with b being closer to the root 
than a. We write a ≺ b if a � b and a  = b.

For a gene tree G over a species tree S, the least com-
mon ancestor (lca) mapping between G and S is a func-
tion MG : V (G) → V (S) defined as follows. If v is a leaf in 
G then MG(v) is the label of v. When v is an internal node 
in T having two children a and b, then MG(v) is the least 
common ancestor of MG(a) and MG(b) in S. An internal 
node g ∈ V (G) is called a duplication if MG(g) = MG(a) 
for a child a of g. The duplication cost, denoted by 
D(G, S) , is the total number of duplications in G. Each 
non-duplication internal node of G we call a speciation. 
In the latter part of the article, a duplication g is called an 
s-duplication if MG(g) = s . Similarly, we use the notation 
for an s-speciation and an s-leaf.

An example of tree reconciliation and the lca-mapping 
is depicted in the leftmost part of Fig. 1.

Episode clustering problems
Below we present a model of duplication episodes pro-
posed in [20]. In short, this model admits all evolutionary 
scenarios using duplication and loss events with a mini-
mal number of gene duplications.

Formally, the model of gene duplication episodes 
allows for relocating a gene duplication from its lca-map-
ping node to one of its ancestors under some additional 
constraints required to preserve the biological sound-
ness of the scenario. For a gene tree G over S, a mapping 
FG : V (G) → V (S) is called valid if the following condi-
tions are satisfied:

• FG(a) � FG(b) if a � b (time consistency),
• FG(a) = MG(a) for any speciation node a (fixed spe-

ciations),
• FG(a) � MG(a) for any duplication node a (duplica-

tion can be raised),
• FG(a) ≺ MG(b) for any speciation node b such that 

a ≺ b (fixed number of gene duplications).

Note that the model of valid mappings described above 
is more comprehensive than the model presented in [16].

Figure  1 provides an example of valid mappings that 
uniquely define an evolutionary scenario that can be rep-
resented as a tree with an additional decoration of nodes. 
For more information on the formal modeling of evolu-
tionary scenarios, refer to [4].

We denote by DupT ⊂ V (T ) , the set of all duplication 
nodes in T. Let G1,G2, . . . ,Gn be a collection of rooted 
gene trees over a species tree S. Assume that, for every 
i ∈ {1, 2, . . . , n} , Fi is a valid mapping between Gi and S. 
Every element s ∈

⋃

i Fi[DupGi
]1 denotes the location of 

multiple gene duplication events in S. We will refer to 
such locations as duplication episodes or simply episodes. 
Later on, we may also use the term episode to refer to the 
set of duplications that are mapped into it.

Problem 1 (Episode Clustering, EC) Given a collection 
of rooted gene trees G1,G2, . . . ,Gn over a species tree S. 
Compute the minimal number of duplication episodes, 
denoted by EC(G1,G2, . . . ,Gn, S) , in the set of all valid 
mappings F1,F2, . . . ,Fn such that Fi : V (Gi) → V (S).

This problem can be solved in linear time and space 
[18].

Fig. 1 From the left side: a gene tree G and a species tree S with the lca-mapping M shown using arrows from the internal nodes of G to the nodes 
of S. There are 5 gene duplications, 2 speciation nodes in G (red bars), and 8 valid mappings depicted as embeddings of G into S [4], where the blue 
lines in these embeddings correspond to the edges of G. ELCA is induced by the lca-mapping. Here, EC (G, S) as depicted in the three rightmost 
scenarios with episode sets {a, b, abcd} for E5 and {a, abc, abcd} for E6 and E7 . The example trees are partially adapted from [24]

1 Here, the notation F[D] denotes the image of D on the function F.
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Gene‑species mappings
We present the main problem for joint reconstruction 
of gene-species mappings and minimizing the set of 
episodes.

A partial gene tree is a rooted binary tree where each 
leaf is labeled by a species or has no label. Let G be a 
partial gene tree over S. By �G : L(G) → L(S) we denote 
the partial leaf labeling function such that �G(g) is the 
label (species) of the leaf g in G if defined. Note that 
any gene tree is a partial gene tree with the leaf labe-
ling being a total function. If a leaf in G has no label, 
we say that the label is unknown and write �G(g) = ⊥ . 
We say that a gene tree G∗ over S extends a partial gene 
tree G over S if G and G∗ are isomorphic as graphs (i.e., 
V (G) = V (G∗) and E(G) = E(G∗) ), and, �G∗ is a total 
function that extends �G.

Inferring labelings by minimizing episodes
Now, we present the problem of the simultaneous 
reconstruction of leaf labelings and duplication epi-
sodes from collections of partial gene trees.

Problem  2 (MetaEC) Given a collection of partial 
gene trees G1,G2, . . . ,Gk over a species tree S. Com-
pute the minimum EC(G∗

1 ,G
∗
2 , . . . ,G

∗
k , S) , denoted 

EC(G1,G2, . . . ,Gk , S) , in the set of all collections of gene 
trees G∗

1 ,G
∗
2 , . . . ,G

∗
k such that G∗

i  extends Gi , for each i.

For example, if (a, (⊥, (⊥,⊥))) is a single gene tree 
with three unknown labels and (a,  (b,  c)) is a species 
tree, then the problem is to replace all occurrences of 
⊥ by a, b or c such that the total number of duplica-
tion episodes is minimized. In this case, the optimal 
cost is 1, since at least one duplication is needed when 
the gene tree has four leaves and there are only three 
species.

Methods
We begin by solving a simpler problem in which we 
assume that the set of duplication episodes is con-
strained to a given set of species tree nodes. Next, we 
show how to solve MetaEC for a single gene tree. Sec-
tion  MetaEC in the general case presents the general 
solution.

Episode feasibility problem
We start with a related constrained problem. Given a par-
tial gene tree, we are interested in the question of whether 
there is an extension of the partial gene tree such that the 
set of corresponding duplication episodes is contained in a 
given fixed set of episode candidates.

Problem  3 (Episode Feasibility) Given a partial gene 
tree G over a species tree S and X ⊆ V (S) . Does there 
exist a gene tree G∗ and a valid mapping FG∗ such that G∗ 
extends G and FG∗(DupG∗) ⊆ X?

If a partial gene tree G satisfies the above property, we 
call G X-feasible with respect to a species tree S. If the con-
text is clear, we omit the reference to S.

The solution to Episode Feasibility is a dynamic pro-
gramming (DP) formulation expressed using Łukasiewicz’s 
Three-Valued Logic Ł 3  [32] with three constants True , 
False , and Unknown (representing uncertainty) and 
ordered linearly: False < Unknown < True . The logic 
has binary operators ∨ (disjunction, max ), ∧ (conjunction, 
min ), and two unary operators L (certainty) and M (possibil-
ity). See the interpretation in Table 1.

For a node g of a gene tree G, by G|g we denote the sub-
tree of G rooted at g. For any non-leaf node t in a tree, by 
t ′ and t ′′ , we denote the children of t. To simplify the nota-
tion, we assume that the set X ⊆ V (S) is fixed. Then, we 
have the following dynamic programming formulas that 
solve Episode Feasibility. Let g ∈ V (G) and s ∈ V (S).

Table 1 Boolean operations in Three-Valued-Logic

Here, F = False , U = Unknown , and T = True
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where

In the next Lemma, we express properties satisfied by the 
above formulas.

For a partial gene tree G over S, and nodes 
g ∈ V (G) and s ∈ V (S) , we say that a valid mapping 
FT : V (G|g) → V (S|s) is feasible for (g, s, X) if and only 
if T extends G|g and FT (DupT ) ⊆ X . Feasible mappings 
represent episode scenarios that correspond to par-
tial solutions to the instance of Episode Feasibility that 
forces duplications from G|g to be present in episodes 
from X ∩ V (S|s).

We say a duplication g in a gene tree T is upper if 
the path from g to the root of T contains only dupli-
cations. The set of all upper duplications in a tree 
T is denoted by UDupT  . We say that a valid map-
ping FT : V (G|g) → V (S|s) is weakly feasible for 
(g,  s,  X) if and only if there is no feasible mapping for 
(g, s, X), but there is T that extends G|g, T has at least 
one upper duplication d such that FT (d) /∈ X  and 
FT (DupT\UDupT ) ⊆ X  . In contrast to feasible map-
pings, in weakly feasible mappings we constrain only 
non-upper duplications present in G|g. Here, the upper 
duplications are elements of episodes s /∈ X . This situ-
ation is modeled by Unknown value returned from 
δ↓(g , s) and δ(g , s) calls, meaning that there is at least 
one duplication that needs to be assigned later (if pos-
sible) to an episode from X \ V (S|s) , which eventually 
occurs at levels of recursion shallower than the level of 
(g, s).

Informally, the meaning of DP formulas can be under-
stood as follows. Below, let T be an extension of the 
subtree of G rooted at a node g. The value of δ(g , s) is 
True if there exists T where g is an s-duplication and all 
duplications are assigned to the episodes from X (where 
s ∈ X as well). Similarly, the value of σ(g , s) is True if 
there exists T, where g represents an s-speciation or an 

δ(g , s) =







δ∗(g , s) g is internal and s ∈ X , (1)

δ∗(g , s) ∧ Unknown g is internal and s /∈ X , (2)

False otherwise, (3)

δ↓(g , s) =







ǫ(g , s) s is a leaf, (4)

ǫ(g , s) ∨Mδ↓(g , s′) ∨Mδ↓(g , s′′) s internal, and s ∈ X . (5)

ǫ(g , s) ∨ δ↓(g , s′) ∨ δ↓(g , s′′) otherwise, (6)

σ (g , s) =







L
�

δ↓(g ′, s′) ∧ δ↓(g ′′, s′′) ∨ δ↓(g ′, s′′) ∧ δ↓(g ′′, s′)
�

g and s are internal, (7)

True g ∈ L(G),�G(g) ∈ {s,⊥}, (8)

False otherwise, (9)

(10)ǫ(g , s) =σ(g , s) ∨ δ(g , s),

(11)
δ∗(g , s) =ǫ(g ′, s) ∧ δ↓(g ′′, s) ∨ ǫ(g ′′, s) ∧ δ↓(g ′, s).

s-leaf node. Next, δ(g , s) is Unknown if the condition for 
δ(g , s) = True is not met. However, there still exists T, 
where g represents an s-duplication, and all non-upper 
duplications from T are assigned to the episodes from 
X, while the upper duplications are assigned to episodes 
outside of X. It is important to note that in this case, s is 
not an element of X. Note that σ(g , s) cannot be Unknown 
since speciation nodes are fixed. Moving on, δ↓(g , s) is 
True if there exists T where all duplications are assigned 
to the episodes from X. Lastly, δ↓(g , s) is Unknown if the 
condition for δ↓(g , s) = True is not met. However, there 
still exists T, where all non-upper duplications from T are 
assigned to the episodes from X, while the upper duplica-
tions are assigned to episodes outside of X.

While ǫ and δ∗ should be treated as “local” in the main 
formulas (i.e., they should not form separate arrays in 
implementation), their properties can be formulated 
as follows. Generally, if ǫ(g , s) is True , then there is a 
tree T where g is mapped into s and all duplications are 
assigned to the episodes from X. Since σ(g , s) cannot be 
Unknown , ǫ(g , s) is Unknown only if σ(g , s) is False and 
δ(g , s) = Unknown . Again, here g is mapped to s. Now, 
δ∗(g , s) is True only if there is T where g is an s-duplica-
tion, and all duplication nodes below g are assigned to 
episodes from X. Importantly, at least one of the children 
of g must be mapped to s, which is captured by ǫ . Fur-
thermore, δ∗(g , s) resembles δ(g , s) , but the condition that 
duplications must be assigned to episodes from X only 
applies to the duplications (or upper-duplications) below 
g if δ∗(g , s) is True (or Unknown , respectively).

The following Lemma formalizes the conditions 
described above.

Lemma 1 Given a partial gene tree G over a species tree 
S and X ⊆ V (S) . Let g ∈ V (G) , s ∈ V (S) . Then, 

P1 δ(g , s) = True if and only if there is a gene tree T and 
a feasible mapping FT for (g,  s,  X) such that g is  an 
s-duplication in T.
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P2 δ(g , s) = Unknown if and only if there is a gene tree 
T and a weakly feasible mapping FT for (g, s, X) such 
that g is an s-duplication in T.

P3 σ(g , s) = True if and only if there a gene tree T and a 
feasible mapping FT for (g, s, X) such that and g is an 
s-speciation or an s-leaf in T.

P4 For any g and s, σ(g , s)  = Unknown.
P5 δ↓(g , s) is True if and only if there is a feasible map-

ping for (g, s, X).
P6 δ↓(g , s) is Unknown if and only if there is a weakly 

feasible mapping for (g, s, X).

Proof The proof is by induction on the structure of 
G and S. The base of induction is when g ∈ L(G) and 
s ∈ L(S) , for which all properties are easy to verify.
Inductive assumption: For every x, y such that g ≻ x , and 
s � y or g � x and s ≻ y , P1-P6 are satisfied. Inductive 
hypothesis: For g and s, where at least one of g and s is not 
a leaf, P1-P6 are satisfied.

Additional notation: since functions are relations, 
we identify a function f : A → B with the sets of 
pairs {(x, f (x) : x ∈ A} . If FT ′ : V (G|g ′) → V (S|s) 
and FT ′′ : V (G|g ′′) → V (S|s) are valid map-
pings, then by FT ′ ⊕ FT ′′ we denote the map-
ping FT ′ |V (T ′)\UDupT ′ ∪ FT ′ |V (T ′′)\UDupT ′′ ∪ {(g , s)}

∪(UDupT ′ ∪ UDupT ′′)× {s} . Note that the resulting 
mapping is valid for a gene tree (T ′,T ′′) that extends G|g.

We start with several properties.

(A1) if δ↓(g ′, s) = Unknown , then s /∈ X . Assume that 
s ∈ X . Then, by P6, there is a weakly feasible mapping FT ′ for 
(g ′, s,X) . Now, let F′

T ′ := FT ′ |V (T ′)\UDupT ′ ∪ UDupT ′ × {s} . 
It is not difficult to see that the mapping is feasible for 
(g ′, s,X) . A contradiction.

(A2) If ǫ(g ′, s) = Unknown , then there is a weakly feasible 
FT ′ for (g ′, s,X) and g ′ is an s-duplication. Here, σ(g ′, s) 
cannot be True , thus σ(g ′, s) = False , by P3 and P4. 
Therefore, δ(g ′, s) = Unknown . The rest follows from P2.

We first prove properties P1-P4 for δ and σ . Then, we 
show that P5 and P6 hold for g and s.

(P1, ⇒ ): If δ(g , s) = True , then, from (1) g is internal, 
s ∈ X and δ∗(g , s) = True . Then, w.l.o.g., for a child g ′ of g 
ǫ(g ′, s) ∧ δ↓(g ′, s) = True . Since, δ(g ′, s) ∨ σ(g ′, s) is True , 
it follows from the inductive assumption for P1 and P3, 
that there is a feasible mapping FT ′ for (g ′, s,X) such that 
MT ′(g ′) = s . For, the other child, we have δ↓(g ′′, s) = True . 

From P5, there is a feasible mapping FT ′′ for (g ′′, s,X) . Now, 
let T = (T ′,T ′′) . Then, the mapping FT ′ ⊕ FT ′′ is feasible 
for (g, s, X) and g is an s-duplication in T.

(P1, ⇐ ): Assume there is a feasible FT for (g,  s,  X) 
such that MT (g) = s and g is  a  duplication in T. Since 
g ∈ UDupT , we have that s ∈ X and only (1) is satis-
fied. Thus, δ(g , s) = δ∗(g , s) . W.l.o.g. we may assume 
that MT (g

′) = s (recall that g is a duplication). Then, 
FT |V (T |g ′) is feasible for (g ′, s,X) . By the inductive 
assumption for P1 (if g ′ is a duplication) or P3 (if g ′ is a 
speciation or a leaf ), we conclude that ǫ(g ′, s) = True . For 
the second child, we have MT (g

′′) � s , thus FT |V (T |g ′′) is 
feasible for (g ′′, s,X) and by P5, δ↓(g ′′, s) = True . Finally, 
δ∗(g , s) = True = δ(g , s).

(P2, ⇒ ): Let δ(g , s) = Unknown . (Case P2.a) If s ∈ X then, 
from (1) g is internal and δ∗(g , s) = Unknown . W.l.o.g., we 
may assume that ǫ(g ′, s) ∧ δ↓(g ′′, s) = Unknown . Since 
s ∈ X , from (A1), we conclude that δ↓(g ′′, s) = True . Next, 
ǫ(g ′, s) = Unknown and by (A2) there is a weakly feasible 
mapping FT ′ for (g ′, s,X) and g ′ is an s-duplication. Since 
s ∈ X , similarly to the proof of P1, we can construct a 
feasible mapping for (g ′, s,X) from weakly feasible FT ′ . A 
contradiction. (Case P2.b) Assume that s /∈ X . Then, from 
(2) g is internal and δ∗(g , s) ∧ Unknown = Unknown . 
We have that δ∗(g , s) ∈ {True,Unknown} . (Case 
P2.b.1) Let δ∗(g , s) = True . W.l.o.g. assume that 
ǫ(g ′, s) = δ↓(g ′′, s) = True . From P1 and s /∈ X , δ(g ′, s) 
cannot be True , thus, σ(g ′, s) = True . From P3, there 
is a feasible FT ′ for (g ′, s,X) and MT ′(g ′) = s . From P5, 
there is a feasible FT ′′ for (g ′′, s,X) . Let T = (T ′,T ′′) , then 
FT ′ ⊕ FT ′′ , is weakly feasible for (g, s, X). Note that there 
is no feasible mapping for (g, s, X), which follows from the 
fact that g ′ is an s-speciation, thus g is an s-duplication and 
s /∈ X.

(Case P2.b.2) Let δ∗(g , s) = Unknown . W.l.o.g. assume 
that ǫ(g ′, s) ∧ δ↓(g ′′, s) = Unknown . If ǫ(g ′, s) = True 
then δ↓(g ′′, s) = Unknown . Then, similarly to the pre-
vious case g ′ is an s-speciation and there is a feasible 
FT ′ for (g ′, s,X) , while, from P6, there is a weakly fea-
sible FT ′′ for (g ′′, s,X) . Then, similarly to the previous 
case, let T = (T ′,T ′′) . Then, FT ′ ⊕ FT ′′ is weakly feasi-
ble mapping for (g,  s,  X). It remains to analyse the case 
when ǫ(g ′, s) = Unknown . By (A2) there is a weakly 
feasible FT ′ for (g ′, s,X) and g ′ is an s-duplication. Here, 
δ↓(g ′′, s) ∈ {True,Unknown} , and depending on the value 
either, by P5 there is a feasible ( True ) or, by P6, weakly 
feasible ( Unknown ) FT ′′ for (g ′′, s,X) . We conclude that 
FT ′ ⊕ FT ′′ is weakly feasible mapping for (g,  s,  X). Since 
g ′ is an s-duplication and s /∈ X , there is no feasible map-
ping for (g, s, X) in this case.
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(P2, ⇐ ). Let FT be a weakly feasible mapping for 
(g,  s,  X) such that g is an s-duplication in T. Since 
g is an s-duplication, g is upper and s /∈ X . Thus, 
δ(g , s) = δ∗(g , s) ∧ Unknown from (2). W.l.o.g. we may 
assume that MT (g

′) = s (note that g is an s-duplication). 
If g ′ is a speciation or a leaf, then FT |g

′ is feasible for 
(g ′, s,X) since no upper duplication is present in T |g ′ . 
From P3, σ(g ′, s) = ǫ(g ′, s) = True . If g ′ is a duplication 
then g ′ is upper in T |g ′ , thus FT |g

′ is weakly feasible. From 
P2, δ(g ′, s) = Unknown . In all cases, ǫ(g ′, s) ≥ Unknown . 
Similarly, for the second child of g, the mapping FT |g

′′ is 
either weakly feasible for (g ′′, s,X) if g ′′ is upper dupli-
cation outside X, or feasible otherwise. By P5 and P6, 
δ↓(g ′′, s) ≥ Unknown . Finally, δ∗(g , s) ≥ Unknown and 
δ(g , s) = δ∗(g , s) ∧ Unknown = Unknown.

(P3, ⇒ ). Let σ(g , s) = True . Note that at least one of g 
and s is internal by the inductive assumption. Then, both 
nodes must be internal, from (7). W.l.o.g. we may assume 
that δ↓(g ′, s′) ∧ δ↓(g ′′, s′′) = True . Thus, from P5, we 
have two feasible mappings FT ′ for (g ′, s′,X) and FT ′′ for 
(g ′′, s′′,X) . Let T = (T ′,T ′′) , then g is an s-speciation and 
FT ′ ⊕ FT ′′ is feasible for (s, g, X).

(P3, ⇐ ). Assume that is a feasible mapping FT for 
(g,  s,  X) such that g is an s-speciation or an s-leaf in T. 
If g is a leaf, the statement is obvious. Assume that g is 
an s-speciation, then s is internal and σ(g , s) follows 
from (7). W.l.o.g. we may assume that MT (g

′) � s′ and 
MT (g

′′) � s′′ . Thus, FT |V (T |g ′) is feasible for (g ′, s′,X) 
since FT (V (T |g ′)) ⊆ V (S|s′) . From P5, δ↓(g ′, s′) = True . 
Similarly, we obtain δ↓(g ′′, s′′) = True . Finally, 
σ(g , s) = L(δ↓(g ′, s′) ∧ δ↓(g ′′, s′′)) = True.

(P4) It follows easily from the definition of σ and the 
operator L.

(P5, ⇒ ) Assume that δ↓(g , s) = True . (Case P5.1) If s is 
a leaf, then g is internal by the inductive assumption. 
Then, by (4), δ↓(g , s) = ǫ(g , s) = δ(g , s) ∨ σ(g , s) = True . 
Note, that σ(g , s) = False , otherwise both g and s 
must be leaves. Thus, δ(g , s) = True and the feasi-
ble mapping for (g,  s,  X) exists by the already proven 
P1. (Case P5.2). If s is internal and s /∈ X , then, by 
(6), δ(g , s) ∨ σ(g , s) ∨ δ↓(g , s′) ∨ δ↓(g , s′′) = True . 
If δ(g , s) = True , there is a feasible mapping for 
(g,  s,  X) from already proven P1 for g and s. Simi-
larly, we have the mapping from P3 if σ(g , s) = True . If 
δ↓(g , s′) = True , then there is a feasible mapping FT for 
(g , s′,X) from the inductive assumption for P5. It should 
be clear that the mapping obtained from FT by enlarg-
ing the codomain from V (S|s′) to V(S|s) is feasible for 
(g,  s,  X). The remaining case when δ↓(g , s′′) = True is 

analogous. (Case P5.3). If s is internal and s ∈ X , then, 
by (5), δ(g , s) ∨ σ(g , s) ∨Mδ↓(g , s′) ∨Mδ↓(g , s′′) = True . 
The proof is the same as above if δ(g , s) = True , 
σ(g , s) = True , δ↓(g , s′) = True or δ↓(g , s′′) = True . For 
the remaining case, let δ↓(g , s′) = Unknown , then there is 
a weakly feasible mapping FT for (g , s′,X) from the induc-
tive assumption for P6. By placing all upper duplications 
from FT at episode s and enlarging the codomain from 
V (S|s′) to V(S|s), we construct a feasible mapping for 
(g, s, X). The remaining case when δ↓(g , s′′) = Unknown 
is analogous.

(P5, ⇐ ) Assume there is a feasible mapping for (g, s, X). 
(Case P5.1) If s is a leaf, then g is internal by the induc-
tive assumption. Thus, g is an upper s-duplication in T. 
Thus, s ∈ X and by already proven P1, δ(g , s) = True , 
ǫ(g , s) = True and δ↓(g , s) = True . (Case P5.2) Assume 
s is an internal node. If g is an s-duplication, then simi-
larly to the above case, from P1, s ∈ X , and δ(g , s) = True 
and δ↓(g , s) = True using (5). Analogously, we have the 
same conclusion, if g is an s-speciation (here, s does not 
have to be in X). For the remaining cases, there is v ≺ s , 
such that g is either an v-duplication, or an v-speciation. 
W.l.o.g., we may assume that v � s′ ≺ s . (Case P5.2.a) If g 
is an v-speciation, then FT (g) = v and there is no upper 
duplication in T. Since T|v is a subtree of T |s′ , FT with 
a codomain V (T |s′) is feasible for (g , s′,X) . From, the 
inductive assumption for P5, δ↓(g , s′) = True and also 
Mδ↓(g , s′) = True (if s ∈ X ). In all cases, δ↓(g , s) = True . 
(Case P5.2.b) If g is an v-duplication, then, from the fea-
sibility of FT , there is at least one node w ∈ X on the 
path from s to v (there must be a duplication episode for 
g). Let w be the lowest (i.e., closest to v) node with the 
property. Now, we have two cases. If w = s , then s ∈ X , 
and there is no candidate in X for g below s, therefore, 
there is no the feasible mapping for (g , s′,X) . However, 
there is a weakly feasible F′

T for (g , s′,X) infered from FT 
by setting F′

T (d) := s′ all upper duplications d in T hav-
ing FT (d) = s , and F′

T (u) := FT (u) for the remaining 
nodes u from T. Clearly, F′

T (V (T )) ⊆ V (S|s′) . Hence, 
from the inductive assumption P6, δ↓(g ′, s) = Unknown . 
Next, Mδ↓(g ′, s) = True and δ↓(g , s) = True using (5). 
It remains to analyse the case when, w � s′ ≺ s . Since, 
FT is �-monotonic, FT (V (T )) ⊆ V (S|w) ⊆ V (S|s′) . 
Then, FT with the codomain shrinked to V (S|s′) is feasi-
ble for (g , s′,X) . From the inductive assumption for P5, 
δ↓(g , s′) = True . Here, it does not matter whether s ∈ X , 
in both cases we get δ↓(g , s) = True from (5) or (6).

(P6, ⇒ ) Assume, δ↓X (g , s) is Unknown . Here, Unknown is 
obtained only from (6), i.e., when s /∈ X and s is internal. We 
have δ(g , s) ∨ σ(g , s) ∨ δ↓(g , s′) ∨ δ↓(g , s′′) = Unknown . 
By P4, σ(g , s) = False . If δ(g , s) = Unknown , then, we 
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have a weakly feasible mapping from already proven P2. 
If δ↓(g , s′) = Unknown , then, we have a weakly feasible 
mapping from the inductive assumption for P6. The same 
holds for s′′.

(P6, ⇐ ) Assume there is a weakly feasible map-
ping FT for (g,  s,  X). (Case P6.1) If s is a leaf, then g is 
internal by the inductive assumption. Thus, g is an 
upper s-duplication in T. Thus, s /∈ X and by already 
proven P2, δ(g , s) = Unknown . Since, σ(g , s) = False , 
ǫ(g , s) = Unknown and δ↓(g , s) = Unknown from (4). 
(Case P6.2) Assume s is internal. Note that g cannot be 
an v-speciation for any v, otherwise there is no upper 
duplication in T and FT cannot be weakly feasible. If g 
is an s-duplication in T, then similarly to the previous 
case, from P2, s /∈ X , and δ(g , s) = Unknown . Note that 
δ↓(g , s′) = δ↓(g , s′′) = False (since MT (g) = s ). We con-
clude that δ↓(g , s) = Unknown from (6). For the remain-
ing case, there is v ≺ s , such that g is an v-duplication. 
W.l.o.g., we may assume that v � s′ ≺ s . From the weak 
feasibility of FT , no node from the path between s to v 
(inclusively) is in X. Similarly, to P5.2, we construct weakly 
feasible F′

T for (g , s′,X) from FT by setting F′
T (d) := s′ 

all upper duplications d in T having FT (d) = s , and 
F′
T (u) := FT (u) for the remaining nodes u from T. By the 

inductive assumption for P6, δ↓(g ′, s) = Unknown . Next, 
if v = s′ , then δ(g , s′) = Unknown (since x /∈ X ) by P2, 
otherwise δ(g , s′) = False . Also, δ↓(g , s′′) = False . This 
yields δ(g , s) = Unknown using (6).  �

To solve Episode Feasibility, we have to apply δ↓ on the 
roots of the input trees.

Theorem  2 (Correctness) Given a partial gene tree G 
over a species tree S and X ⊆ V (S) . G is X-feasible if and 
only if δ↓X (root(G), root(S)) is True.

Proof The proof follows immediately from P5 of 
Lemma 1: δ↓X (root(G), root(S)) is True if and only if there 
is a feasible FT for (root(G), root(S),X)) such that T 
extends G and FT (DupT ) ⊆ X .  �

Theorem  3 (Complexity) Given a partial gene tree G 
over a species tree S and X ⊆ V (S) . The time and space 
complexity of solving Episode Feasibility by the dynamic 
programming algorithm is O(|V(G)||V(S)|).

Proof We have three arrays δX , δ↓X and σX (note that ǫ 
and δ∗ can be directly inserted in their calls), each of size 
O(|V(G)||V(S)|) and every cell of an array can be com-
puted in O(1) time.  �

An example of DP execution with a feasible solution is 
depicted in Fig. 2.

Solving MetaEC for a single partial gene tree
Here we describe the main algorithm to solve MetaEC for 
instances with a single gene tree. First, we characterize an 
important property of episodes.

Lemma 4 (Fixed Episodes) Given a partial gene tree G 
over a species tree S. Assume that there are nodes g in G 
and s in S such that

• if s is the root of S, then at least one proper subtree of 
G contains species (leaf-labels) from both children of 
s.

• otherwise, let p be the parent of s, then G|g is a gene 
tree, g is a p-speciation and a child of g is an s-dupli-
cation.

Then, for any G∗ that extends G, s is an episode in every 
valid mapping between G∗ and S.

Proof For the first case, all nodes above the root of the 
subtree are gene duplications mapped to the root of S in 
any G∗ that extends G. Therefore, the root of S is an epi-
sode in all valid mappings. In the second case, the dupli-
cation child cannot be raised, therefore, its mapping is 
fixed.  �

The nodes satisfying the above conditions we call fixed 
episodes (for G and S). For example, for trees from Fig. 1, 
there are two fixed episodes: the root of S and the leaf b, 
where the duplications with fixed mappings are depicted 
using white marks in the exemplary gene tree G. The set 
of all fixed episodes can be computed in linear time and 
space by bottom-up traversal of the partial gene tree G 
and by using LCA-queries in the species tree S as follows. 
For each node g from V(G), the algorithm computes a 
tuple (u, s, d), where

• u ∈ {True,False} is True if and only if there is a leaf 
with unknown label reachable from g,

• s ∈ V (S) ∪ {None} is the least common ancestor of 
all non-⊥ labels reachable from g in S and None if 
only ⊥ ’s are visible from g,

• and d ∈ {True,False} is True if and only if u = False 
and g is a duplication node in a gene tree G|g.

Then, for each g and its tuple (u, s, d), and for each child 
of g with a tuple (u′, s′, d′):
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• if s = s′ = root(S) , then s (the root of S) is a fixed epi-
sode,

• if u = d = False , d′ = True and the parent of s′ is s, 
then s′ is a fixed episode.

We omit correctness and complexity proofs for brev-
ity. Note that the number of fixed episodes is the lower 
bound of EC(G, S).

Algorithm 1 takes as input a partial gene tree G over a 
species tree S and outputs EC(G, S) . It first computes the 
set of fixed episodes F (see Lemma 4). The algorithm then 
starts with an initial maximal episode number b equal to 

Fig. 2 An example of the dynamic programming algorithm (from Sect. Episode Feasibility Problem) execution. The partial gene tree 
is G = ((⊥, (b, ((⊥,⊥), (⊥,⊥)))), (d, (c, a))) , which contains five unknown labels. The species tree, denoted as S, is represented as ((a, c), (b, d)). 
The marked nodes in S indicate episode candidates from X: the root of S (abcd) and the leaf node a. By applying dynamic programming, we 
obtain a feasible solution, depicted in the bottom-right corner. The resulting extension of the partial gene tree G is G∗ , where the valid mapping 
between G∗ and S is the lowest common ancestor (LCA) mapping. In G∗ , each duplication node is marked with a triangle or a square denoting 
their corresponding episode in S. Each node in G is decorated with an array that represents the values of DP formulas, where each row corresponds 
to a node in S, starting from abcd, bd, and so on as indicated in the first column. The next columns have the values of δ , δ↓ , σ , and ǫ , respectively, 
for the gene tree node and the corresponding species tree node. For example, considering the root of G and the root of S, the top row of the array 
contains the following values: δ(root(G), root(S)) = δ↓(root(G), root(S)) = ǫ(root(G), root(S)) = True , while σ(root(G), root(S)) = False



Page 10 of 20Górecki et al. Algorithms for Molecular Biology            (2024) 19:7 

the number of nodes in S. In each iteration of a while 
loop, the algorithm checks if there is a set C of size 
b− |F | − 1 from the vertices of S that are not in F, such 
that the partial gene tree G is C ∪ F-feasible using the 
dynamic programming algorithm. This step requires 
(

|V (S)| − |F |
b− |F | − 1

)

 calls of DP in the worst case. If such a set 

C exists, the algorithm computes EC(G∗, S) by the linear 
time algorithm from  [20], where G∗ is the gene tree 
obtained by backtracking from the corresponding call of 
DP and updates b with the result. Note that b is not 
assigned the value of |C ∪ F | , since the minimal set of epi-
sodes for G∗ and S is a subset of C ∪ F  , and it is often sig-
nificantly smaller than C ∪ F  in early steps of iteration. 
Updating b with EC(G∗, S) guarantees the minimal num-
ber of episodes, where some elements of C may be 
unused. This is an important optimization step. If such a 
set C does not exist, the algorithm terminates and returns 
the current value of b.

Algorithm 1 Solution to MetaEC with a single gene tree

The correctness of the algorithm follows from the fact 
that if there is no set X of size b− 1 such that G is X-fea-
sible, then there is no set of any size smaller than b that 
satisfies the property. Since b represents the number of 
episodes from some valid mapping, it is also minimal in 
such a case. Therefore, when the algorithm terminates, 
b = EC(G, S) , and the algorithm returns the correct 
value.

The algorithm’s worst-case time complexity is 
∑n−f

k=f

(

n− f
k

)

nm = O(nm2n) , where f is the size of the 

set of fixed episodes ( f = |F | ), n denotes the number of 
vertices in S, and m denotes the number of vertices in G. 
Despite the exponential time complexity, in our experi-
ments on both simulated and empirical data, we were 
able to compute exact solutions after only a few execu-
tions of the main loop.

Distributions of gene‑species mappings
To evaluate the accuracy of gene-species mappings, we 
propose a method that enhances the DP algorithm by 

incorporating formulas for inferring the number of gene-
species mappings present in all feasible reconstructed 
mappings. These counts can be collectively integrated 
to determine, for any leaf with unknown label, the pre-
cise frequency of its mappings to each species leaf within 
these feasible mappings. An alternative method for 
approximating these frequencies was suggested in  [31] 
using uniform sampling. However, in this work, we intro-
duce an exact algorithm for this purpose.

For a fixed species tree S, and a node g 
from a partial gene tree G, we call a mapping 
f : L(G|g)× L(S) → {0, 1, 2, . . . } a counter on L(G|g) if 
for every leaf l with unknown label, the sum 

∑

s f (l, s) , 
denoted #f  , does not depend on l. Counters will be used 
to count how many times a given gene ⊥-leaf is assigned 
to a species leaf in all feasible mappings. In such a case, 
#f  is the number of all such feasible mappings. The coun-
ter fixed to a gene tree ⊥-leaf l and represented by the 

function f (l, ·) , is referred to as the gene-species distribu-
tion (of l). Subsequently, we often examine normalized 
distributions, wherein each value is divided by #f  (then 
∑

s f (l, s) = 1 ). For convenience counters also include 
other leaves, but their counts will be set to 0. We have the 
following basic counters:

• ∅A is the zero counter on A, i.e., the counter with 
#∅ = 0,

• for s in L(S), Bl,s is a counter on {l} such that 
Bl,s(l, s) = 1 , and Bl,s(l, s

′) = 0 for all s′ �= s.

Let ⊕ and ⊗ be commutative operators, where ⊗ has 
higher precedence that ⊕ , satisfying the following 
properties.

• If f and g are counters on disjoint sets A and B, 
respectively, then f ⊗ g is the counter on A ∪ B , such 
that for every l ∈ A , (f ⊗ g)(l, s) = f (l, s) · #g.
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• If f and g are counters on A, then f ⊕ g is 
the counter on A, such that, for every l ∈ A , 
(f ⊕ g)(l, s) = f (l, s)+ g(l, s).

The empty counter is used when a part of a gene tree 
has no leaves with unknown labels, while the counter 
Bl,s represents the situation when leaf l is assigned to s. 
Additionally, we use a special counter E that represents 
situations where DP formulas return F . The counter is 
evaluated as follows: E⊕ f = f  and E⊗ f = E for any 
counter f including E.

By using the notation introduced in the dynamic pro-
gramming algorithm, we define counters for DP δ#T(g , s) , 
δ#U(g , s) , δ

↓
#T
(g , s) , δ↓

#U
(g , s) , ǫ#T(g , s) , ǫ#U(g , s) and σ#(g , s) 

to count distributions of gene-species mappings. E.g., 
δ#T(g , s) is a counter for the leaves from L(G|g) that 
counts mappings for these leaves for the cases when 
δ(g , s) is True , and so on.

• In (1), δ#T(g , s) = eT,T ⊕ r where, ei,j = ǫ#i(g
′, s)⊗ ǫ#j

(g ′′, s) and if sib(v) is the sibling of a node v, 
r =

⊕

i,j∈{T,U},v∈{g ′,g ′′},w∈{s′,s′′} ǫ#i(v, s)⊗ δ
↓
#j(sib(v),w).

• In (1–2) δ#U(g , s) = eT,T ⊕ eU,T ⊕ eT,U ⊕ eU,U ⊕ r , 
where, r and ei,j are defined above.

• In (10), ǫ#T(g , s) = σ#(g , s)⊕ δ#T(g , s) , and, if 
δ(g , s) = Unknown , then ǫ#U(g , s) = δ#U(g , s).

• In (4), δ↓
#U
(g , s) = ǫ#U(g , s) and δ↓

#T
(g , s) = ǫ#T(g , s).

• In (5), δ
↓
#T
(g , s) = ǫ#T(g , s)⊕ δ

↓
#T
(g , s′)⊕ δ

↓
#U
(g , s′)

⊕δ
↓
#T
(g , s′′)⊕ δ

↓
#U
(g , s′′) and δ↓

#U
(g , s) = ǫ#U(g , s).

• In (6), δ
↓
#T
(g , s) = ǫ#T(g , s)⊕ δ

↓
#T
(g , s′)⊕ δ

↓
#T
(g , s′′) 

and δ↓
#U
(g , s) = ǫ#U(g , s)⊕ δ

↓
#U
(g , s′)⊕ δ

↓
#U
(g , s′′).

• In (7), 
σ#(g , s) = δ

↓
#T
(g ′, s′)⊗ δ

↓
#T
(g ′′, s′′)⊕ δ

↓
#T
(g ′, s′′)⊗ δ

↓
#T
(g ′′, s′).

• In (8), σ#(g , s) = Bg ,s if g = ⊥ , otherwise 
σ#(g , s) = ∅{g}.

• In all remaining uncovered cases the counters are 
equal to E.

The following lemma states the crucial property of DP 
counters.

Lemma 5 (Correctness of counters for DP) Given a par-
tial gene tree G and a species tree S and X ⊆ V (S) . G is 
X-feasible if and only if the counter δ↓

#T
(root(G), root(S)) 

is not E and for every leaf l of G with unknown label, 
δ
↓
#T
(root(G), root(S))(l, s) is the number of all gene trees 

G∗ extending G such that FG∗ is a valid mapping satisfying 
FG∗(DupG∗) ⊆ X and FG∗(l) = s.

The proof of the above lemma follows by induction, 
similar to the proof of correctness of DP. We omit techni-
cal details.

An example of gene-species distributions is depicted in 
Fig. 3. DP counters with verification algorithm are imple-
mented in the software package metaEC.

Extensions
To identify the optimal solution within the main loop, 
enumerating all possible combinations of size b− f − 1 
from the set of episode candidates V (S) \ F  may be time-
consuming for larger instances. To address this issue, we 
propose a heuristic approach that randomly samples 

combinations of size b− f − 1 if 
(

n− f
b− f − 1

)

 is large 

(e.g., > 1000 ) and adds a stopping condition based on the 
number of dynamic programming (DP) calls without 
improvement (e.g., after 100 calls). This approach not 
only speeds up the algorithm but also provides additional 
information on whether the returned value is exact or an 
upper bound obtained by switching to a heuristic mode. 
See Sect. 4 for more details.

Fig. 3 An example of gene-species distributions of for the leaves 
with unknown label from a partial gene tree with three such leaves 
and a species tree S. In this case, the optimal number of episodes is 1, 
and the episode is located at the root of S, marked accordingly. The 
total number of feasible mappings is 52. The histograms at the leaves 
of the gene tree depict how many times a specific leaf is mapped 
to the corresponding species leaf in these feasible mappings. In other 
words, they represent δ↓

#T
(root(G), root(S))(l, ·) , where l is the gene 

tree leaf associated with each histogram

Fig. 4 Converting a multiple gene tree instance to a single gene tree instance using an outgroup ω . Red bars in Gω denote speciation nodes 
mapped to the root of Sω . Green squares represent new duplications clustered at a new duplication episode in the root of Sω
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Furthermore, based on our experiments, we have 
observed that the solution is often close to the set of fixed 
episodes. To leverage this observation, we propose a bot-
tom-up algorithm that explores candidate sets starting 
from sizes 0, 1, 2, and so on until a feasible solution is 
found. In this case, the internal search has a time com-

plexity of O(

(

n− f
i

)

) , starting from i = 0 . This algo-

rithm can be combined with the heuristic variant 
described earlier to improve its effectiveness. However, 
the experimental evaluation did not show significant 
improvement compared to the top-down method in 
Algorithm 1.

MetaEC in the general case
Here we show that MetaEC in a general case can be 
solved using a single partial gene tree under an addi-
tional assumption. Given a collection of partial gene 
trees G1,G2, . . . ,Gk over a species tree S, let ω be a new 
species, called outgroup, not present in S. We first add 
the outgroup to every input tree. Let Sω be species tree 
(S,ω) , Gω

1 = (G1,ω) and Gω
i = ((Gi,ω),G

ω
i−1

) , for i > 1 . 
Then, by ω-MetaEC we define the problem MetaEC with 
a single partial gene tree, where the extension of a par-
tial labeling cannot introduce ω , i.e., if �G1

(v) = ⊥ then 
�G∗

1
(v) �= ω . See Fig. 4 for illustration.

We have the following property.

Lemma 6 Given a collection of at least two partial 
gene trees G1,G2, . . . ,Gk over a species tree S such that 
ω /∈ L(S) . X ⊆ V (S) is the set of episodes that yields the 
solution of MetaEC for G1,G2, . . . ,Gk and S if and only if 
X ∪ {root(Sω)} is the set of episodes that yields the solu-
tion to the instance Gω

k  and Sω of ω-MetaEC.

Proof (⇒ ) Assume that G∗
i  extends Gi , for each i. Then, 

(G∗
i )

ω extends Gω
i  . Since the extension of Gi introduces 

only nodes from L(S), we have the same property with 
(G∗

i )
ω . Now, every parent of a leaf labeled ω in (G∗

k )
ω is 

speciation mapped to the root of Sω , since, for some i, its 
sibling is a root of G∗

i  and ω /∈ L(G∗
i ) . Thus, if i > 1 , the 

root of (G∗
i )

ω is a duplication mapped to the root of Sω . 
In summary, all duplications from gene trees G∗

i  in (G∗
k )

ω 
are mapped below the root of Sω , and they are sepa-
rated by speciation nodes from the duplications mapped 
to the root of Sω as indicated in Fig.  4. Now, we define 
a valid mapping Fω

k = F(G∗
k )

ω : V ((G∗
k )

ω) → V (Sω) . 
For each i, Fω

k  on the set of nodes of Gi equals the cor-
responding valid mapping between V (G∗

i ) and V(S) that 
yields the solution to MetaEC, while for the remaining 
nodes v we set Fω

k (v) = root(Sω) . It should be clear that 
Fω
k  is a valid mapping. Now, it is not difficult to see that 

the set of duplication episodes in (G∗
k )

ω is X ∪ root(Sω) . 
If there is a solution to ω-MetaEC with a lower number 
of episodes than |X | + 1 , say obtained by X ′ ∪ {root(Sω)} 
with |X ′| < |X | , then the construction can be reversed to 
obtain valid mappings and the corresponding duplication 
episodes X ′ for the initial instance of MetaEC. However, 
this is a contradiction with the assumption that |X| is the 
solution to the initial instance of MetaEC.
(⇐ ) The proof of the second direction is analogous since 
the transformation between collections of partial gene 
trees and the partial gene tree Gω

k  is reversible. We omit 
easy details.  �

Note that the algorithms provided in the previous 
sections can be easily modified to solve ω-MetaEC, by 
replacing case (8) with:

Then, DP will exclude extensions of ⊥ by ω.

Experiments
In this Section we present two computational studies 
based on simulated and empirical data.

Simulated dataset
The species trees having none, one, or two whole 
genome duplication events were taken directly from 
[25]. Then, we estimated gene trees via tree inference 
software from simulated sequences and modified them 
to represent the uncertainty commonly associated with 
metagenomic data. Finally, our algorithm was evaluated 
on six datasets consisting of estimated gene trees.

To begin, we describe how the species and gene 
trees were generated. Then, we explain the modifica-
tions made to the gene trees to represent the uncer-
tainty of metagenomic data. Finally, we show how the 
results obtained with our algorithms allow us to infer 
genome-wide duplication events and gene and species 
distributions.

A species tree
First, we briefly summarize the simulation procedure 
from  [25]. The simulated species trees were gener-
ated by SimPhy  [33] with parameter settings used in 
a simulated study  [34] that was based on an empirical 
dataset of 16 Fungi species  [35]. The species tree S of 
20 taxa was generated by SimPhy with the speciation 
rate parameter equal to 1.8× 10−9 and the tree height 
parameter set to 1.8× 109.

σ(g , s) = True if g ∈ L(G) and (�G(g)

= s or (�G(g) = ⊥ and s �= ω)).
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To simulate a whole genome duplication (WGD), 
a node v in the species tree S was chosen as the loca-
tion of the event. Subsequently, a modified species tree, 
denoted as S′ , was constructed by substituting a subtree 
S|v with a duplicated version of itself. This duplication 
involved creating a new root connected to the original 
root of S|v and the root of its copy. The WGD variants 
used in the simulations are illustrated in Fig.  5, where 
S1 represents a single recent WGD Ŵ , S2 represents a 
single ancient WGD � , S3 represents two WGDs � and 
� , with � occurring after � , S4 represents two close 
WGDs � and �′ at the same branch, and S5 represents 
two recent independent WGDs � and � . Let us refer 
to the original tree S with no WGD events as S0 . Note 
that these simulation methods do not incorporate frac-
tionation, that is, the loss of a gene copy to eliminate 
the redundancy [36].

Gene trees
For every Si , i ∈ {0, 1, . . . , 5} , one hundred true gene 
trees were generated using SimPhy. The duplication and 
loss rate parameter was set to 2−10 events per genera-
tion per lineage. To minimize the effect of incomplete 
lineage sorting, the population size parameter was set 
to 10. All other parameters were taken from [34].

Next, we describe our pipeline to infer estimated trees 
from true trees. For every true tree G, we first simulated a 
multiple sequence alignment (MSA).

For the MSA simulation, we used INDELible [37] and 
parameters from [34], with one difference, we used a 
constant sequence length of 1000. Then, we inferred an 
unrooted maximum-likelihood tree from each MSA 
using FastTree [38] with the GTR model. Finally, we per-
formed midpoint-plateau rooting of each unrooted gene 
tree using URec [39]. The rooting was inferred in a way 

Fig. 5 Summary of the inferred gene-species mappings and duplication episodes on the simulated datasets. Locations of the simulated 
whole-genome duplication (WGD) events are denoted by Greek letters. For clarity, all leaf labels have been removed from the visualization 
of species trees (see [25] for details). Each bar in the histograms shows the normalized average p-support of the corresponding species node. The 
key to histograms is present at the bottom-right corner. The number above a single bar represents the maximum height of a bar in its histogram. 
A histogram at node v is omitted as insignificant if the normalized average p-support is below 10 for all values of p 

Fig. 6 Summary of simulated dataset experiments for the estimated 
trees: histograms of exact and heuristic solutions returned 
by Algorithm 1
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that minimizes the duplication-loss cost between the 
gene tree and the species tree S.

In summary, we obtained six datasets of estimated 
rooted gene trees denoted Gi = {Gi,1,Gi2 , . . . ,Gi,100} , 
where each dataset comprises 100 gene trees generated 
using the same species tree S but with a different WGD 
scenario Si . In our evaluation study, for each dataset 
Gi , we generated a set of partial gene trees G̃k ,p

i  by ran-
domly removing each leaf label from every gene tree 
Gi,j in Gi with probability p. We considered values of p 
from 0.0 to 0.6 in increments of 0.1 and generated 100 
instances of G̃k ,p

i  for each value of p and k = 1, 2, . . . ,K  , 
with K = 100 . This resulted in a total of 4200 instances 
(G̃

k ,p
i , S) of MetaEC, where S is the species tree used to 

generate Gi , and G̃k ,p
i  consists of 100 partial gene trees. 

Note that the instances for p = 0 , correspond to no 
removal of leaf labels, i.e., G̃k ,0.0

i = Gi , for each i and k.

WGD detection
The results of our algorithm on the estimated partial 
gene trees are depicted in Fig.  5, where we summarize 

the episode sizes in the form of histograms. Also, addi-
tional data is provided in Figs.  6 and  7. The evaluation 
took about 24 h of a computing server with 80 cores. In 
general, we observed that the runtime and the number 
of DP calls grow linearly with the value of parameter p 
on average as indicated in the bottom diagram of Fig. 8. 
We used the heuristic variant of the algorithm, where 
random sampling was applied if the number of combina-
tions exceeded 100 trees, and with the stopping criterion 
equal to 50. Out of 4200 instances, 3037 were completed 
with the exact solution (see Fig.  6). The resulting costs 
without exact guarantee, were more often obtained for 
larger values of p. Additionally, we observed that the 
lower bound given by the number of fixed episodes was a 
tight approximation of the inferred cost (see Fig. 8). As p 
increased, the number of fixed episodes decreased. Note 
that for p = 1 (not included in our analysis), the solution 
to MetaEC is 1. In such a case the leaf labelings are con-
stant functions and all internal nodes of each gene tree 
are duplications. Then there is just one episode, which 
can be placed at the root of the species tree.

Now, we briefly summarize the outcome of WGD 
detection. Initially in the preliminary version of the 
article  [40], we quantified support by counting the 
number of single gene duplications aggregated within 
a particular episode. Here, to reflect the contributions 
of single gene families while mitigating the influence of 
large gene families with potentially numerous duplica-
tions, we count the number of gene trees that contain 
duplications clustered within the episode. Note that 
in contrast to  [40] where the true trees were used to 
detect WGD events, here we perform the detection on 
estimated gene trees.

In the context of the scenario without WGDs ( S0 ), the 
episodes can be treated as background noise consisting 
of single duplication events. Consequently, when sub-
tracting the contribution of background duplication 
episodes from the duplication clustering results on sim-
ulated datasets containing WGDs, we can emphasize 
the simulated WGD events as significant occurrences. 
Formally, our analysis is conducted using the following 
formulas.

Given a dataset (G̃k ,p
i , S) and a node s in S, the p-sup-

port of s (w.r.t. k and i), denoted µp,s,i,k is the number 
of gene trees obtained by applying the DP algorithm on 
trees from the dataset Gk ,p

i  , that have at least one dupli-
cation in the episode s. Then, the normalized average 
p-support of a species node s in scenario Si is defined as

Fig. 7 Summary of simulated dataset experiments for the estimated 
trees: EC cost and the number of fixed episodes

Fig. 8 Summary of simulated dataset experiments for the estimated 
trees: the runtime in seconds and the number of executed DP calls
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Recall that K = 100 is the number of estimated gene tree 
datasets for fixed p and i. In other words, the normalized 
average support accounts for the difference between the 
average support values of Si and S0 . For example, given 
that every gene tree dataset consists of 100 estimated 
gene trees, the normalized average p-support of s in the 
scenario Si close to 100, denotes high support for the 
duplication episode at s (in Si ). Note also that the normal-
ized p-support can be negative due to normalization.

The results for S1 (as depicted in Fig.  5) reveal that 
WGD Ŵ is uniquely well-supported when p ≤ 0.4 , with 
support values exceeding 20. It is noteworthy that the 
outcomes obtained for S1 outperform the analysis con-
ducted in  [40], which utilized true trees, in terms of 
accurately identifying the simulated WGD event. In 
summary, the WGD detection outcome depends on the 
location of a WGD and the value of p. In general, when 
p increases, the support of WGDs decreases. Recent 
WGDs like Ŵ , � , and � are well supported up to p = .3 , 
while more ancient � up to p = .2 . For ancient WGDs 
� , � , � , �′ , the normalized average p-support is low 
and, for most cases, indistinguishable from non-WGD 
nodes. However, the root episode is generally well sup-
ported in scenarios having ancient WGDs, which sug-
gest such an event close to the root location.

Gene‑species distributions
We implemented the algorithm outlined in Sect.  Dis-
tributions of gene-species mappings to derive counters 
with gene-species distributions for ⊥-leaves across all 
gene tree datasets, i.e., for all six species trees S0-S5 , all 
six different positive values of p (i.e., we inferred 36× 100 
counter collections for each gene tree set). The results 
frequently yielded remarkably high numbers of feasi-
ble mappings, often exceeding 101000 . As a remedy, we 
employed normalization by dividing the values of the 
gene-species distributions by #f  , where f was the relevant 
counter.

We first analyzed the domain of distributions with 
positive values. Let d : L(S) → [0, 1] be a gene-species 
distribution. The span of d is the set of all species leaves 
with a positive value. Furthermore, if the span of this dis-
tribution is the set of leaves originating from a subtree 
rooted at s within the species tree S, we categorize this 
distribution as a subtree-spanning distribution. A sum-
mary of subtree-spanning and non-subtree-spanning 
distributions can be found in Table  2. It is noteworthy 

1

K

∑

k

µp,s,i,k − µp,s,0,k .
that spanning distributions occur with high frequency. 
Furthermore, they often encompass significant portions 
of the species tree, and the property gets stronger with 
the increase of p. This, however, is not the desired char-
acteristic, as the most sought-after distributions are the 
one-point distributions where a single species leaf has 
the maximum value of 1.

Subsequently, we conducted an analysis to determine 
the extent to which these distributions deviate from uni-
formity. Detailed insights can be found in Fig. 9. In this 
figure, we present a computed coefficient of variation 
(CV) for each distribution, which is the standard devia-
tion normalized by the mean. Lower CV values signify a 
closer resemblance to a uniform distribution. The major-
ity of histograms display a tall blue bar indicating low 
CV values. This suggests that the distributions tended to 
exhibit a significant degree of near-uniformity in nearly 
all simulated datasets.

In summary, our study reveals that the species pre-
sented in the reconstructed gene leaf mappings extend 
across a substantial portion of the species tree. Addition-
ally, the frequency distribution across all feasible map-
pings typically exhibits an almost uniform shape. As a 
result, identifying the true gene-species mapping signal 
within the leaf mapping proves challenging with the cur-
rent approach. This challenge is, in part, attributed to the 
combinatorial explosion in the number of feasible map-
pings, consequently leading to flattened distributions of 
gene-species mappings based on leaf counts.

Empirical evaluation
To ensure that our algorithm was properly tested, we 
required a dataset that would capture the characteristics 
of the metagenomic data as closely as possible, while 
allowing us to assess the quality and accuracy of the 
results obtained. For this reason, we decided to prepare 
a dataset consisting of gene trees for species identified 
during metagenomic analysis. To simulate unknown 
gene-species assignments, we artificially removed some 
of the gene labels from the gene trees and retained infor-
mation about their taxonomic origin for further analysis 
of the results. Another important issue was the presence 
of a previously described whole-genome duplication 
event that occurred in the evolutionary tree of selected 
species. Given the above requirements, we decided 
to use proteomes belonging to yeast species identified 
during metagenomic analysis of kefir  [41]. Note that a 
direct comparison of our results with alternative meth-
ods is not possible due to the absence of any existing 
approach for the simultaneous inference of duplications 
and gene-species mappings.
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Data preparation
The eight selected species are: Kazachstania Africana, 
Kazachstania naganishii, Naumovozyma dairenensis, 

Tetrapisispora blatte, Tetrapisispora phaffi, Torulaspora 
delbrueckii, Zygosaccharomyces rouxii and Saccharomy-
ces cerevisiae. A species tree containing the listed species, 

Fig. 9 This figure summarizes coefficients of variations (CV) for gene-species distributions obtained from unlabeled leaves across 36 simulated 
datasets each with 100 gene trees (excluding datasets with p = 0 ). Each bar corresponds to the average number of gene-species distributions 
for leaves with unknown label across the entire tree (A), the left subtree (B), and the right subtree (C), having the CV values falling within a specified 
range. All other distributions covering a subtree have all frequencies at most 1.5 and are therefore not included here. In D, a summary is presented 
for cases where the distributions do not span any subtree in the species tree. The panel (E) shows the average number of removed leaf-labels 
in the corresponding datasets. For example, the highest blue bar in S4 with p = 0.6 in A represents approximately 2400 leaves with ⊥ (out 
of an average of 3786.53 in this gene tree set) whose mapping inferences give every leaf in S4 with nearly identical frequency, as indicated 
by the corresponding CV values falling within the interval [0− 0.05) . The key to histograms is on the right, where each bar represents the average 
count of gene-species distributions for ⊥-leaves in a gene tree set with CV values falling within a specific interval. Intervals with CV values greater 
than 0.25 are excluded due to their low frequencies
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consistent with the NCBI taxonomy and many papers 
on yeast evolution, is shown in Fig. 10. It also shows the 
location of the whole-genome duplication event con-
firmed by previous studies [42, 43].

The proteomes used to infer gene trees were sourced 
from the UniProt database  [44]. Protein families were 
created by dividing the proteins into groups using the 
mcl program [45] with parameters I = 2 and I = 5 . How-
ever, since the differences between the obtained sets were 

minimal, we used the set obtained for I = 2 in subse-
quent steps. The protein sequences in each group were 
aligned with the MUSCLE algorithm [46], and unrooted 
gene trees were inferred using the phyml program  [47] 
with the default parameter setting. Rooting of the gene 
trees was performed by URec program  [39] using the 
minimal duplication-loss cost as the rooting criterion.

We removed trees containing fewer than 3 leaves or 3 
species, as well as trees with edges of length 0 from the 

Table 2 Summary of spanning and no-spanning distributions of gene-species mappings for the simulated dataset

Dataset Average Subtree No‑subtree Spanning

Species tree p number Spanning Spanning Root Root left child Root right child Other 
nodes

of ⊥’s

S0 0.1 215.43 179.87 35.56 32.31 105.39 42.04 0.13

S0 0.2 431.72 362.62 69.10 311.17 36.35 14.63 0.47

S0 0.3 647.30 547.66 99.64 540.35 4.40 2.03 0.88

S0 0.4 862.65 750.17 112.48 748.47 0.04 0.14 1.52

S0 0.5 1080.50 973.41 107.09 951.94 14.58 4.80 2.09

S0 0.6 1296.19 1206.18 90.01 1191.55 9.34 2.56 2.73

S1 0.1 243.81 198.68 45.13 30.74 117.40 50.29 0.25

S1 0.2 491.06 407.81 83.25 358.28 34.72 14.19 0.62

S1 0.3 729.12 624.81 104.31 611.53 9.14 3.59 0.55

S1 0.4 972.27 853.71 118.56 816.90 26.18 9.12 1.51

S1 0.5 1219.75 1104.48 115.27 1059.34 32.34 10.78 2.02

S1 0.6 1462.94 1363.53 99.41 1320.33 30.68 9.42 3.10

S2 0.1 356.48 305.48 51.00 166.29 114.21 24.39 0.59

S2 0.2 705.68 613.17 92.51 588.20 20.41 3.98 0.58

S2 0.3 1055.63 934.53 121.10 914.00 16.33 3.31 0.89

S2 0.4 1412.78 1268.31 144.47 1229.30 32.19 5.67 1.15

S2 0.5 1769.39 1620.15 149.24 1569.99 41.02 6.78 2.36

S2 0.6 2120.37 1976.13 144.24 1914.45 50.39 7.62 3.67

S3 0.1 416.78 367.52 49.26 365.73 0.27 1.48 0.04

S3 0.2 827.17 735.44 91.73 734.82 0.02 0.26 0.34

S3 0.3 1244.67 1095.73 148.94 1094.94 0.01 0.14 0.64

S3 0.4 1660.26 1490.09 170.17 1488.61 0.10 0.13 1.25

S3 0.5 2069.44 1872.54 196.90 1869.82 0.14 0.21 2.37

S3 0.6 2486.96 2316.49 170.47 2313.02 0.10 0.09 3.28

S4 0.1 633.11 603.36 29.75 546.99 50.66 5.40 0.31

S4 0.2 1267.87 1147.66 120.21 1135.46 10.60 1.29 0.31

S4 0.3 1888.89 1717.59 171.30 1700.55 14.95 1.61 0.48

S4 0.4 2530.90 2307.88 223.02 2100.00 188.21 17.67 2.00

S4 0.5 3162.44 2923.63 238.81 2834.49 79.56 7.12 2.46

S4 0.6 3786.53 3564.52 222.01 3386.89 160.26 13.52 3.85

S5 0.1 348.07 301.20 46.87 74.72 186.24 38.68 1.56

S5 0.2 698.21 615.30 82.91 582.68 26.10 6.01 0.51

S5 0.3 1047.30 924.45 122.85 923.35 0.03 0.31 0.76

S5 0.4 1395.93 1245.19 150.74 1218.45 21.38 3.87 1.49

S5 0.5 1748.75 1593.88 154.87 1527.58 54.01 10.12 2.17

S5 0.6 2100.72 1964.41 136.31 1941.82 16.87 2.77 2.95
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final set of trees. This resulted in 3430 rooted gene trees. 
Similar to the first experiment, we created 10 datasets for 
each p ∈ {0.1, 0.2, . . . , 0.6} by randomly removing each 
leaf label with the probability p. This resulted in 60 data-
sets plus the original dataset representing p = 0.

Results
Figure  10 depicts histograms showing the results 
obtained for the described dataset. The evaluation was 
performed on the same computing server as before and 
took approximately one hour. For this evaluation, we 
set the sampling threshold and stopping criterion to 50, 
which yielded exact solutions for all cases. The num-
ber of fixed episodes was consistent across datasets 
with p < 0.6 , at 12 (note that the number of leaves in a 
tree was 15). For p = 0.6 , the number of fixed episodes 
fell within the range of 9 to 12. The number of DP calls 
ranged from 2 to 3 for p < 0.6 and between 2 and 11 for 
p = 0.6.

The results obtained by the algorithm for the yeast 
dataset are consistent with our knowledge of the whole-
genome duplication localization. For the dataset with all 
leaf labels present and for p = 0.1 , we have the highest 
support for the WGD event. The number of supporting 
single duplications decreases gradually for successive 
p′s . For values of p ≥ 0.5 , the correct WGD localiza-
tion is still supported by a significantly large number of 
single duplications. It is worth noting that even for the 
p = 0.6 , the right location is supported by three times as 
many duplications as the second most supported loca-
tion, which is in the root. Additionally, we observed an 
increase in duplications at the leaves of the species tree as 
p increased. Since most of the leaves are fixed episodes, 
the algorithm often assigned labels to create duplications 
at the leaves, resulting in larger sizes of episodes at leaves.

Conclusions and future outlook
In this article, we presented a novel problem that inte-
grates gene-species mapping inference and genomic 
duplication detection. We proposed efficient algo-
rithms to solve the problem exactly in the majority of 
instances, along with a heuristic modification for cases 
where exact solutions are not feasible. To demonstrate 
the effectiveness and accuracy of our proposed algo-
rithm, we conducted computational experiments on 
both simulated and empirical data. While there is pres-
ently no established method for the simultaneous infer-
ence of duplications and gene-species mappings, the 
results showed that our algorithm was able to accurately 
infer recent WGD events when the number of missing 
labels was relatively small for simulated data. Moreo-
ver, the algorithm performed even better on empirical 
data, demonstrating its robustness and applicability to 
real-world scenarios. Nevertheless, our findings regard-
ing gene-species mapping inference underscore the 
challenging nature of the problem with the current 
approach. Inferring true gene leaf labels proves difficult 
due to the combinatorial explosion of potential solu-
tions and the resulting nearly-uniform distributions of 
gene-species mappings, which extend across substantial 
portions of the species tree.

To maximize topological similarities between a gene 
tree and its species tree, speciation nodes should more 
frequently appear in the resulting extensions of input 
partial gene trees. We observe that the optimization 
model tends to reconstruct leaf labels in a way that pri-
oritizes duplication events assigned to the nearest fixed 
episodes or the root, in the absence of such episodes. 
This is confirmed by the property that fixed episodes are 
tight approximations of the EC cost, leading to a reduc-
tion in the number of speciation events in the final gene 

Fig. 10 Summary of gene-species mappings and duplication episodes inference for the yeast dataset consisting of 3430 gene trees. Each 
bar with confidence levels represents the average percentage of the number of gene trees participating in the given duplication episodes 
at samples with value p from 0.0 to 0.6. WGD denotes the whole genome duplication event postulated in [42, 43]. For the description of symbols 
refer to Fig. 5
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tree extensions. As a consequence, the model’s effective-
ness may be limited in some cases when the number of 
unknown labels in partial gene trees is significant.

Several avenues for future research exist. For instance, 
the simulation pipeline could be extended to model frac-
tionation [36, 48], offering a more detailed understanding 
of the biological processes involved. Alternatively, tools 
for segmental duplications  [49] might provide a more 
accurate representation of gene duplication processes. 
Also, we plan to extend the analyzed model to strengthen 
the importance of the topological similarities between 
gene and species trees. Alternatively, one may limit the 
distance between the lca-mapping of a gene duplication 
and its destination mapping in the final scenario similarly 
to [25]. Additionally, there are models of genomic dupli-
cations providing a higher level of detail than EC , such as 
minimum episodes (ME)  [20] and RMP [23], which can 
be adapted in a similar way to infer gene-species map-
pings and minimize the number of duplication episodes 
simultaneously. These models can be further combined 
with more general models of valid mappings, which allow 
the introduction of more duplication events than the 
minimum obtained by the lca-mapping [4]. The combina-
tion of these models can provide a more comprehensive 
approach to inferring gene-species mappings and identi-
fying the minimum number of duplication episodes.
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