
Górecki et al.
Algorithms for Molecular Biology (2024) 19:7
https://doi.org/10.1186/s13015-024-00252-8

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Unifying duplication episode clustering
and gene-species mapping inference
Paweł Górecki1*, Natalia Rutecka1, Agnieszka Mykowiecka1 and Jarosław Paszek1

Abstract

We present a novel problem, called MetaEC, which aims to infer gene-species assignments in a collection of partially
leaf-labeled gene trees labels by minimizing the size of duplication episode clustering (EC). This problem is par-
ticularly relevant in metagenomics, where incomplete data often poses a challenge in the accurate reconstruction
of gene histories. To solve MetaEC, we propose a polynomial time dynamic programming (DP) formulation that veri-
fies the existence of a set of duplication episodes from a predefined set of episode candidates. In addition, we design
a method to infer distributions of gene-species mappings. We then demonstrate how to use DP to design an algo-
rithm that solves MetaEC. Although the algorithm is exponential in the worst case, we introduce a heuristic modifica-
tion of the algorithm that provides a solution with the knowledge that it is exact. To evaluate our method, we perform
two computational experiments on simulated and empirical data containing whole genome duplication events,
showing that our algorithm is able to accurately infer the corresponding events.

Keywords Genomic duplication, Gene-species mapping, Duplication episode, Gene tree, Species tree

Introduction
In the field of computational biology, the use of gene
families and the reconciliation model has become
increasingly popular for studying the evolution of diverse
organisms. These tools have facilitated the development
of new algorithms and computational methods capable
of handling large and complex datasets and exploring
various types of evolutionary events. These events range
from simple macroevolutionary processes such as gene
duplications, gene losses, and horizontal gene transfers to
more complex ones such as genomic duplications, speci-
ations, and hybridizations. The reconciliation model has
enabled researchers to reconstruct evolutionary histories
by reconciling gene trees with species trees and identify-
ing the evolutionary events that have led to the observed

patterns of gene evolution. In the context of metagenom-
ics, the reconciliation model has also been used to detect
missing gene-species assignments using polynomial time
algorithms. These developments have led to a better
understanding of the evolutionary processes.

A classical reconciliation model [1, 2] defines a map-
ping from every node from a gene tree into a node in the
species tree and determines if such a node is related to a
speciation or can be classified as a single gene duplica-
tion [3]. In result, an embedding of the set of gene trees
into a species tree can be interpreted as a joint evolu-
tionary scenario [4]. The classical least common ances-
tor (LCA) mapping minimizes the number of single gene
duplications and losses for one gene tree and the species
tree [4].

The whole genome duplication (WGD) phenomenon
incorporates additional copies of a complete genome
into the original genetic material, thus creating an
opportunity to introduce novel evolutionary traits [5,
6]. From a macro perspective, this phenomenon played
a crucial role in the divergence and formation of species
and shaped the evolution of almost all major lineages

*Correspondence:
Paweł Górecki
gorecki@mimuw.edu.pl
1 Faculty of Mathematics, Informatics, and Mechanics, University
of Warsaw, Banacha 2, Warsaw 02-097, Poland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-024-00252-8&domain=pdf

Page 2 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

of life. In particular, many WGDs were uncovered in
the evolutionary histories of plants, especially crops.
WDGs potentially enabled the successful domestica-
tion of plants [7] and are important in the fight against
famine [8]. Many traces and evidence of whole genome
duplications can be found in the genomes of yeast and
other fungal species [5, 9]. From the perspective of sin-
gle cell evolution studies, WGDs are prevalent in can-
cer progression [10] and can lead us to the prognosis of
advanced cancer stages [11] or the creation of strategies
for targeted therapy [12].

Guigó et al. [13] proposed the first approach for detect-
ing multiple gene duplication episodes from a collec-
tion of rooted gene trees. They designed a heuristic that
aggregates single gene duplication events into a large
gene duplication, given a collection of rooted gene trees
and a rooted species tree. This approach was formalized
and improved by Page and Cotton [14], who defined the
problem of episode clustering (EC) as the task of identify-
ing the minimal number of locations in the species tree
where all duplications from the input gene trees can be
placed. Fellows [15] applied this model in the context of
the supertree problem. Polynomial-time solutions for
two types of multiple gene duplication problems episode
clustering and a more general variant of clustering called
minimum episodes (ME) were proposed in [16, 17]. Luo
et al. [18] proposed linear time and space algorithms, par-
tially based on [19], for these problems. [20] introduced
a unified approach by proposing a concept of interval
models with a linear time and space solution to a broad
class of clustering problems including EC and ME. Alter-
native approaches include generalization to unrooted
gene trees; however, such approaches are often compu-
tationally complex [21, 22]. Other approaches include
variants of clustering rules that depend on the maximal
number of duplication episodes placed in one path [23,
24]. A comprehensive analysis of various models is avail-
able in [20]. Furthermore, [25] proposes an integer linear
programming formulation that simplifies the process of
testing these models. Relevant computational complexity
results on the ME problem are presented in [26].

Metagenomic studies provide valuable information for
analyzing entire communities of organisms and reveal-
ing a complete picture of their functional and adaptive
capacities crucial for ecology [27] or human health [28].
Genetic material isolated in such studies can be used to
detect whole genome duplication events.

One of the steps in metagenomic analysis is called bin-
ning. The aim of this procedure is to assign sequenced
DNA fragments to the appropriate taxonomic groups.
The assignment of certain genes to species can be ambig-
uous due to the limitations of annotation methods. A
precise and comprehensive gene tree topology is essential

for the accurate identification of potential duplication
sites. The absence or misplacement of duplications in
gene trees can, in turn, result in incorrect outcomes of
methods aimed at determining whole genome duplica-
tion events.

To tackle the challenge of missing gene-species assign-
ments in evolutionary studies, previous research has
introduced methods based on the reconciliation score
using gene duplication and loss events [29, 30]. In a
related work, Mykowiecka et al. [31] extended this model
by including horizontal gene transfer to better analyze
bacterial evolution and proposed polynomial time algo-
rithms for these models. These approaches utilize tree
reconciliation according to the classical scheme, in which
the gene tree includes symbols representing sequences
with unclear species assignment in addition to the known
gene labels. The objective is to assign the unknown gene
labels to their corresponding species in a gene tree while
minimizing the total reconciliation score, which is typi-
cally a weighted sum of evolutionary events such as gene
duplication, gene loss, and horizontal gene transfer.

Here, we present a novel problem called MetaEC,
which aims to infer gene-species assignments in a col-
lection of gene trees with unknown labels by minimizing
the size of episode clustering. This problem is particularly
relevant in metagenomics, where incomplete data often
poses a challenge in the accurate reconstruction of gene
histories. To solve MetaEC, we propose a dynamic pro-
gramming (DP) algorithm that verifies the existence of a
set of duplication episodes from a predefined set of epi-
sode candidates. We then demonstrate how to use DP to
design an algorithm that solves MetaEC. In addition, we
design an algorithm to infer distributions of gene-species
mappings from the set of all optimal solutions inferred by
DP. Although the algorithm is exponential in the worst
case, we introduce a heuristic modification of the algo-
rithm that provides a solution with the knowledge that it
is exact. To evaluate our method, we perform two com-
putational experiments on simulated and empirical data
containing WGD events, showing that our algorithm can
accurately infer the corresponding events. It is important
to note that a direct comparison of our novel algorithm
with alternative methods is not possible, as there is cur-
rently no existing approach for the simultaneous infer-
ence of duplications and gene-species mappings.

Basic definitions
Gene trees, species trees, and the duplication cost
We begin by recalling some basic definitions from
graph theory. All trees in this article are rooted and
binary, therefore we refer to them as trees. For a tree
T = (V (T),E(T)) , by root(T) we denote the root, and
by L(T) we denote the set of all leaves. Every non-leaf

Page 3 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

node will be called internal. A species tree is a tree whose
leaves are called species. A gene tree over a species tree
S is a tree with leaves labeled by the species from S. The
set of all species present in a species tree or a gene tree
T is denoted by L(T) . Note that for a species tree S,
L(S) = L(S) . Also, for a gene tree G over S, L(G) ⊆ L(S).

For nodes a and b, a � b means that a and b are on the
same path from the root, with b being closer to the root
than a. We write a ≺ b if a � b and a = b.

For a gene tree G over a species tree S, the least com-
mon ancestor (lca) mapping between G and S is a func-
tion MG : V (G) → V (S) defined as follows. If v is a leaf in
G then MG(v) is the label of v. When v is an internal node
in T having two children a and b, then MG(v) is the least
common ancestor of MG(a) and MG(b) in S. An internal
node g ∈ V (G) is called a duplication if MG(g) = MG(a)
for a child a of g. The duplication cost, denoted by
D(G, S) , is the total number of duplications in G. Each
non-duplication internal node of G we call a speciation.
In the latter part of the article, a duplication g is called an
s-duplication if MG(g) = s . Similarly, we use the notation
for an s-speciation and an s-leaf.

An example of tree reconciliation and the lca-mapping
is depicted in the leftmost part of Fig. 1.

Episode clustering problems
Below we present a model of duplication episodes pro-
posed in [20]. In short, this model admits all evolutionary
scenarios using duplication and loss events with a mini-
mal number of gene duplications.

Formally, the model of gene duplication episodes
allows for relocating a gene duplication from its lca-map-
ping node to one of its ancestors under some additional
constraints required to preserve the biological sound-
ness of the scenario. For a gene tree G over S, a mapping
FG : V (G) → V (S) is called valid if the following condi-
tions are satisfied:

• FG(a) � FG(b) if a � b (time consistency),
• FG(a) = MG(a) for any speciation node a (fixed spe-

ciations),
• FG(a) � MG(a) for any duplication node a (duplica-

tion can be raised),
• FG(a) ≺ MG(b) for any speciation node b such that

a ≺ b (fixed number of gene duplications).

Note that the model of valid mappings described above
is more comprehensive than the model presented in [16].

Figure 1 provides an example of valid mappings that
uniquely define an evolutionary scenario that can be rep-
resented as a tree with an additional decoration of nodes.
For more information on the formal modeling of evolu-
tionary scenarios, refer to [4].

We denote by DupT ⊂ V (T) , the set of all duplication
nodes in T. Let G1,G2, . . . ,Gn be a collection of rooted
gene trees over a species tree S. Assume that, for every
i ∈ {1, 2, . . . , n} , Fi is a valid mapping between Gi and S.
Every element s ∈

⋃

i Fi[DupGi
]1 denotes the location of

multiple gene duplication events in S. We will refer to
such locations as duplication episodes or simply episodes.
Later on, we may also use the term episode to refer to the
set of duplications that are mapped into it.

Problem 1 (Episode Clustering, EC) Given a collection
of rooted gene trees G1,G2, . . . ,Gn over a species tree S.
Compute the minimal number of duplication episodes,
denoted by EC(G1,G2, . . . ,Gn, S) , in the set of all valid
mappings F1,F2, . . . ,Fn such that Fi : V (Gi) → V (S).

This problem can be solved in linear time and space
[18].

Fig. 1 From the left side: a gene tree G and a species tree S with the lca-mapping M shown using arrows from the internal nodes of G to the nodes
of S. There are 5 gene duplications, 2 speciation nodes in G (red bars), and 8 valid mappings depicted as embeddings of G into S [4], where the blue
lines in these embeddings correspond to the edges of G. ELCA is induced by the lca-mapping. Here, EC (G, S) as depicted in the three rightmost
scenarios with episode sets {a, b, abcd} for E5 and {a, abc, abcd} for E6 and E7 . The example trees are partially adapted from [24]

1 Here, the notation F[D] denotes the image of D on the function F.

Page 4 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

Gene‑species mappings
We present the main problem for joint reconstruction
of gene-species mappings and minimizing the set of
episodes.

A partial gene tree is a rooted binary tree where each
leaf is labeled by a species or has no label. Let G be a
partial gene tree over S. By �G : L(G) → L(S) we denote
the partial leaf labeling function such that �G(g) is the
label (species) of the leaf g in G if defined. Note that
any gene tree is a partial gene tree with the leaf labe-
ling being a total function. If a leaf in G has no label,
we say that the label is unknown and write �G(g) = ⊥ .
We say that a gene tree G∗ over S extends a partial gene
tree G over S if G and G∗ are isomorphic as graphs (i.e.,
V (G) = V (G∗) and E(G) = E(G∗)), and, �G∗ is a total
function that extends �G.

Inferring labelings by minimizing episodes
Now, we present the problem of the simultaneous
reconstruction of leaf labelings and duplication epi-
sodes from collections of partial gene trees.

Problem 2 (MetaEC) Given a collection of partial
gene trees G1,G2, . . . ,Gk over a species tree S. Com-
pute the minimum EC(G∗

1 ,G
∗
2 , . . . ,G

∗
k , S) , denoted

EC(G1,G2, . . . ,Gk , S) , in the set of all collections of gene
trees G∗

1 ,G
∗
2 , . . . ,G

∗
k such that G∗

i extends Gi , for each i.

For example, if (a, (⊥, (⊥,⊥))) is a single gene tree
with three unknown labels and (a, (b, c)) is a species
tree, then the problem is to replace all occurrences of
⊥ by a, b or c such that the total number of duplica-
tion episodes is minimized. In this case, the optimal
cost is 1, since at least one duplication is needed when
the gene tree has four leaves and there are only three
species.

Methods
We begin by solving a simpler problem in which we
assume that the set of duplication episodes is con-
strained to a given set of species tree nodes. Next, we
show how to solve MetaEC for a single gene tree. Sec-
tion MetaEC in the general case presents the general
solution.

Episode feasibility problem
We start with a related constrained problem. Given a par-
tial gene tree, we are interested in the question of whether
there is an extension of the partial gene tree such that the
set of corresponding duplication episodes is contained in a
given fixed set of episode candidates.

Problem 3 (Episode Feasibility) Given a partial gene
tree G over a species tree S and X ⊆ V (S) . Does there
exist a gene tree G∗ and a valid mapping FG∗ such that G∗
extends G and FG∗(DupG∗) ⊆ X?

If a partial gene tree G satisfies the above property, we
call G X-feasible with respect to a species tree S. If the con-
text is clear, we omit the reference to S.

The solution to Episode Feasibility is a dynamic pro-
gramming (DP) formulation expressed using Łukasiewicz’s
Three-Valued Logic Ł 3 [32] with three constants True ,
False , and Unknown (representing uncertainty) and
ordered linearly: False < Unknown < True . The logic
has binary operators ∨ (disjunction, max), ∧ (conjunction,
min), and two unary operators L (certainty) and M (possibil-
ity). See the interpretation in Table 1.

For a node g of a gene tree G, by G|g we denote the sub-
tree of G rooted at g. For any non-leaf node t in a tree, by
t ′ and t ′′ , we denote the children of t. To simplify the nota-
tion, we assume that the set X ⊆ V (S) is fixed. Then, we
have the following dynamic programming formulas that
solve Episode Feasibility. Let g ∈ V (G) and s ∈ V (S).

Table 1 Boolean operations in Three-Valued-Logic

Here, F = False , U = Unknown , and T = True

Page 5 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

where

In the next Lemma, we express properties satisfied by the
above formulas.

For a partial gene tree G over S, and nodes
g ∈ V (G) and s ∈ V (S) , we say that a valid mapping
FT : V (G|g) → V (S|s) is feasible for (g, s, X) if and only
if T extends G|g and FT (DupT) ⊆ X . Feasible mappings
represent episode scenarios that correspond to par-
tial solutions to the instance of Episode Feasibility that
forces duplications from G|g to be present in episodes
from X ∩ V (S|s).

We say a duplication g in a gene tree T is upper if
the path from g to the root of T contains only dupli-
cations. The set of all upper duplications in a tree
T is denoted by UDupT . We say that a valid map-
ping FT : V (G|g) → V (S|s) is weakly feasible for
(g, s, X) if and only if there is no feasible mapping for
(g, s, X), but there is T that extends G|g, T has at least
one upper duplication d such that FT (d) /∈ X and
FT (DupT\UDupT) ⊆ X . In contrast to feasible map-
pings, in weakly feasible mappings we constrain only
non-upper duplications present in G|g. Here, the upper
duplications are elements of episodes s /∈ X . This situ-
ation is modeled by Unknown value returned from
δ↓(g , s) and δ(g , s) calls, meaning that there is at least
one duplication that needs to be assigned later (if pos-
sible) to an episode from X \ V (S|s) , which eventually
occurs at levels of recursion shallower than the level of
(g, s).

Informally, the meaning of DP formulas can be under-
stood as follows. Below, let T be an extension of the
subtree of G rooted at a node g. The value of δ(g , s) is
True if there exists T where g is an s-duplication and all
duplications are assigned to the episodes from X (where
s ∈ X as well). Similarly, the value of σ(g , s) is True if
there exists T, where g represents an s-speciation or an

δ(g , s) =







δ∗(g , s) g is internal and s ∈ X , (1)

δ∗(g , s) ∧ Unknown g is internal and s /∈ X , (2)

False otherwise, (3)

δ↓(g , s) =







ǫ(g , s) s is a leaf, (4)

ǫ(g , s) ∨Mδ↓(g , s′) ∨Mδ↓(g , s′′) s internal, and s ∈ X . (5)

ǫ(g , s) ∨ δ↓(g , s′) ∨ δ↓(g , s′′) otherwise, (6)

σ (g , s) =







L
�

δ↓(g ′, s′) ∧ δ↓(g ′′, s′′) ∨ δ↓(g ′, s′′) ∧ δ↓(g ′′, s′)
�

g and s are internal, (7)

True g ∈ L(G),�G(g) ∈ {s,⊥}, (8)

False otherwise, (9)

(10)ǫ(g , s) =σ(g , s) ∨ δ(g , s),

(11)
δ∗(g , s) =ǫ(g ′, s) ∧ δ↓(g ′′, s) ∨ ǫ(g ′′, s) ∧ δ↓(g ′, s).

s-leaf node. Next, δ(g , s) is Unknown if the condition for
δ(g , s) = True is not met. However, there still exists T,
where g represents an s-duplication, and all non-upper
duplications from T are assigned to the episodes from
X, while the upper duplications are assigned to episodes
outside of X. It is important to note that in this case, s is
not an element of X. Note that σ(g , s) cannot be Unknown
since speciation nodes are fixed. Moving on, δ↓(g , s) is
True if there exists T where all duplications are assigned
to the episodes from X. Lastly, δ↓(g , s) is Unknown if the
condition for δ↓(g , s) = True is not met. However, there
still exists T, where all non-upper duplications from T are
assigned to the episodes from X, while the upper duplica-
tions are assigned to episodes outside of X.

While ǫ and δ∗ should be treated as “local” in the main
formulas (i.e., they should not form separate arrays in
implementation), their properties can be formulated
as follows. Generally, if ǫ(g , s) is True , then there is a
tree T where g is mapped into s and all duplications are
assigned to the episodes from X. Since σ(g , s) cannot be
Unknown , ǫ(g , s) is Unknown only if σ(g , s) is False and
δ(g , s) = Unknown . Again, here g is mapped to s. Now,
δ∗(g , s) is True only if there is T where g is an s-duplica-
tion, and all duplication nodes below g are assigned to
episodes from X. Importantly, at least one of the children
of g must be mapped to s, which is captured by ǫ . Fur-
thermore, δ∗(g , s) resembles δ(g , s) , but the condition that
duplications must be assigned to episodes from X only
applies to the duplications (or upper-duplications) below
g if δ∗(g , s) is True (or Unknown , respectively).

The following Lemma formalizes the conditions
described above.

Lemma 1 Given a partial gene tree G over a species tree
S and X ⊆ V (S) . Let g ∈ V (G) , s ∈ V (S) . Then,

P1 δ(g , s) = True if and only if there is a gene tree T and
a feasible mapping FT for (g, s, X) such that g is an
s-duplication in T.

Page 6 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

P2 δ(g , s) = Unknown if and only if there is a gene tree
T and a weakly feasible mapping FT for (g, s, X) such
that g is an s-duplication in T.

P3 σ(g , s) = True if and only if there a gene tree T and a
feasible mapping FT for (g, s, X) such that and g is an
s-speciation or an s-leaf in T.

P4 For any g and s, σ(g , s) = Unknown.
P5 δ↓(g , s) is True if and only if there is a feasible map-

ping for (g, s, X).
P6 δ↓(g , s) is Unknown if and only if there is a weakly

feasible mapping for (g, s, X).

Proof The proof is by induction on the structure of
G and S. The base of induction is when g ∈ L(G) and
s ∈ L(S) , for which all properties are easy to verify.
Inductive assumption: For every x, y such that g ≻ x , and
s � y or g � x and s ≻ y , P1-P6 are satisfied. Inductive
hypothesis: For g and s, where at least one of g and s is not
a leaf, P1-P6 are satisfied.

Additional notation: since functions are relations,
we identify a function f : A → B with the sets of
pairs {(x, f (x) : x ∈ A} . If FT ′ : V (G|g ′) → V (S|s)
and FT ′′ : V (G|g ′′) → V (S|s) are valid map-
pings, then by FT ′ ⊕ FT ′′ we denote the map-
ping FT ′ |V (T ′)\UDupT ′ ∪ FT ′ |V (T ′′)\UDupT ′′ ∪ {(g , s)}

∪(UDupT ′ ∪ UDupT ′′)× {s} . Note that the resulting
mapping is valid for a gene tree (T ′,T ′′) that extends G|g.

We start with several properties.

(A1) if δ↓(g ′, s) = Unknown , then s /∈ X . Assume that
s ∈ X . Then, by P6, there is a weakly feasible mapping FT ′ for
(g ′, s,X) . Now, let F′

T ′ := FT ′ |V (T ′)\UDupT ′ ∪ UDupT ′ × {s} .
It is not difficult to see that the mapping is feasible for
(g ′, s,X) . A contradiction.

(A2) If ǫ(g ′, s) = Unknown , then there is a weakly feasible
FT ′ for (g ′, s,X) and g ′ is an s-duplication. Here, σ(g ′, s)
cannot be True , thus σ(g ′, s) = False , by P3 and P4.
Therefore, δ(g ′, s) = Unknown . The rest follows from P2.

We first prove properties P1-P4 for δ and σ . Then, we
show that P5 and P6 hold for g and s.

(P1, ⇒): If δ(g , s) = True , then, from (1) g is internal,
s ∈ X and δ∗(g , s) = True . Then, w.l.o.g., for a child g ′ of g
ǫ(g ′, s) ∧ δ↓(g ′, s) = True . Since, δ(g ′, s) ∨ σ(g ′, s) is True ,
it follows from the inductive assumption for P1 and P3,
that there is a feasible mapping FT ′ for (g ′, s,X) such that
MT ′(g ′) = s . For, the other child, we have δ↓(g ′′, s) = True .

From P5, there is a feasible mapping FT ′′ for (g ′′, s,X) . Now,
let T = (T ′,T ′′) . Then, the mapping FT ′ ⊕ FT ′′ is feasible
for (g, s, X) and g is an s-duplication in T.

(P1, ⇐): Assume there is a feasible FT for (g, s, X)
such that MT (g) = s and g is a duplication in T. Since
g ∈ UDupT , we have that s ∈ X and only (1) is satis-
fied. Thus, δ(g , s) = δ∗(g , s) . W.l.o.g. we may assume
that MT (g

′) = s (recall that g is a duplication). Then,
FT |V (T |g ′) is feasible for (g ′, s,X) . By the inductive
assumption for P1 (if g ′ is a duplication) or P3 (if g ′ is a
speciation or a leaf), we conclude that ǫ(g ′, s) = True . For
the second child, we have MT (g

′′) � s , thus FT |V (T |g ′′) is
feasible for (g ′′, s,X) and by P5, δ↓(g ′′, s) = True . Finally,
δ∗(g , s) = True = δ(g , s).

(P2, ⇒): Let δ(g , s) = Unknown . (Case P2.a) If s ∈ X then,
from (1) g is internal and δ∗(g , s) = Unknown . W.l.o.g., we
may assume that ǫ(g ′, s) ∧ δ↓(g ′′, s) = Unknown . Since
s ∈ X , from (A1), we conclude that δ↓(g ′′, s) = True . Next,
ǫ(g ′, s) = Unknown and by (A2) there is a weakly feasible
mapping FT ′ for (g ′, s,X) and g ′ is an s-duplication. Since
s ∈ X , similarly to the proof of P1, we can construct a
feasible mapping for (g ′, s,X) from weakly feasible FT ′ . A
contradiction. (Case P2.b) Assume that s /∈ X . Then, from
(2) g is internal and δ∗(g , s) ∧ Unknown = Unknown .
We have that δ∗(g , s) ∈ {True,Unknown} . (Case
P2.b.1) Let δ∗(g , s) = True . W.l.o.g. assume that
ǫ(g ′, s) = δ↓(g ′′, s) = True . From P1 and s /∈ X , δ(g ′, s)
cannot be True , thus, σ(g ′, s) = True . From P3, there
is a feasible FT ′ for (g ′, s,X) and MT ′(g ′) = s . From P5,
there is a feasible FT ′′ for (g ′′, s,X) . Let T = (T ′,T ′′) , then
FT ′ ⊕ FT ′′ , is weakly feasible for (g, s, X). Note that there
is no feasible mapping for (g, s, X), which follows from the
fact that g ′ is an s-speciation, thus g is an s-duplication and
s /∈ X.

(Case P2.b.2) Let δ∗(g , s) = Unknown . W.l.o.g. assume
that ǫ(g ′, s) ∧ δ↓(g ′′, s) = Unknown . If ǫ(g ′, s) = True
then δ↓(g ′′, s) = Unknown . Then, similarly to the pre-
vious case g ′ is an s-speciation and there is a feasible
FT ′ for (g ′, s,X) , while, from P6, there is a weakly fea-
sible FT ′′ for (g ′′, s,X) . Then, similarly to the previous
case, let T = (T ′,T ′′) . Then, FT ′ ⊕ FT ′′ is weakly feasi-
ble mapping for (g, s, X). It remains to analyse the case
when ǫ(g ′, s) = Unknown . By (A2) there is a weakly
feasible FT ′ for (g ′, s,X) and g ′ is an s-duplication. Here,
δ↓(g ′′, s) ∈ {True,Unknown} , and depending on the value
either, by P5 there is a feasible (True) or, by P6, weakly
feasible (Unknown) FT ′′ for (g ′′, s,X) . We conclude that
FT ′ ⊕ FT ′′ is weakly feasible mapping for (g, s, X). Since
g ′ is an s-duplication and s /∈ X , there is no feasible map-
ping for (g, s, X) in this case.

Page 7 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

(P2, ⇐). Let FT be a weakly feasible mapping for
(g, s, X) such that g is an s-duplication in T. Since
g is an s-duplication, g is upper and s /∈ X . Thus,
δ(g , s) = δ∗(g , s) ∧ Unknown from (2). W.l.o.g. we may
assume that MT (g

′) = s (note that g is an s-duplication).
If g ′ is a speciation or a leaf, then FT |g

′ is feasible for
(g ′, s,X) since no upper duplication is present in T |g ′ .
From P3, σ(g ′, s) = ǫ(g ′, s) = True . If g ′ is a duplication
then g ′ is upper in T |g ′ , thus FT |g

′ is weakly feasible. From
P2, δ(g ′, s) = Unknown . In all cases, ǫ(g ′, s) ≥ Unknown .
Similarly, for the second child of g, the mapping FT |g

′′ is
either weakly feasible for (g ′′, s,X) if g ′′ is upper dupli-
cation outside X, or feasible otherwise. By P5 and P6,
δ↓(g ′′, s) ≥ Unknown . Finally, δ∗(g , s) ≥ Unknown and
δ(g , s) = δ∗(g , s) ∧ Unknown = Unknown.

(P3, ⇒). Let σ(g , s) = True . Note that at least one of g
and s is internal by the inductive assumption. Then, both
nodes must be internal, from (7). W.l.o.g. we may assume
that δ↓(g ′, s′) ∧ δ↓(g ′′, s′′) = True . Thus, from P5, we
have two feasible mappings FT ′ for (g ′, s′,X) and FT ′′ for
(g ′′, s′′,X) . Let T = (T ′,T ′′) , then g is an s-speciation and
FT ′ ⊕ FT ′′ is feasible for (s, g, X).

(P3, ⇐). Assume that is a feasible mapping FT for
(g, s, X) such that g is an s-speciation or an s-leaf in T.
If g is a leaf, the statement is obvious. Assume that g is
an s-speciation, then s is internal and σ(g , s) follows
from (7). W.l.o.g. we may assume that MT (g

′) � s′ and
MT (g

′′) � s′′ . Thus, FT |V (T |g ′) is feasible for (g ′, s′,X)
since FT (V (T |g ′)) ⊆ V (S|s′) . From P5, δ↓(g ′, s′) = True .
Similarly, we obtain δ↓(g ′′, s′′) = True . Finally,
σ(g , s) = L(δ↓(g ′, s′) ∧ δ↓(g ′′, s′′)) = True.

(P4) It follows easily from the definition of σ and the
operator L.

(P5, ⇒) Assume that δ↓(g , s) = True . (Case P5.1) If s is
a leaf, then g is internal by the inductive assumption.
Then, by (4), δ↓(g , s) = ǫ(g , s) = δ(g , s) ∨ σ(g , s) = True .
Note, that σ(g , s) = False , otherwise both g and s
must be leaves. Thus, δ(g , s) = True and the feasi-
ble mapping for (g, s, X) exists by the already proven
P1. (Case P5.2). If s is internal and s /∈ X , then, by
(6), δ(g , s) ∨ σ(g , s) ∨ δ↓(g , s′) ∨ δ↓(g , s′′) = True .
If δ(g , s) = True , there is a feasible mapping for
(g, s, X) from already proven P1 for g and s. Simi-
larly, we have the mapping from P3 if σ(g , s) = True . If
δ↓(g , s′) = True , then there is a feasible mapping FT for
(g , s′,X) from the inductive assumption for P5. It should
be clear that the mapping obtained from FT by enlarg-
ing the codomain from V (S|s′) to V(S|s) is feasible for
(g, s, X). The remaining case when δ↓(g , s′′) = True is

analogous. (Case P5.3). If s is internal and s ∈ X , then,
by (5), δ(g , s) ∨ σ(g , s) ∨Mδ↓(g , s′) ∨Mδ↓(g , s′′) = True .
The proof is the same as above if δ(g , s) = True ,
σ(g , s) = True , δ↓(g , s′) = True or δ↓(g , s′′) = True . For
the remaining case, let δ↓(g , s′) = Unknown , then there is
a weakly feasible mapping FT for (g , s′,X) from the induc-
tive assumption for P6. By placing all upper duplications
from FT at episode s and enlarging the codomain from
V (S|s′) to V(S|s), we construct a feasible mapping for
(g, s, X). The remaining case when δ↓(g , s′′) = Unknown
is analogous.

(P5, ⇐) Assume there is a feasible mapping for (g, s, X).
(Case P5.1) If s is a leaf, then g is internal by the induc-
tive assumption. Thus, g is an upper s-duplication in T.
Thus, s ∈ X and by already proven P1, δ(g , s) = True ,
ǫ(g , s) = True and δ↓(g , s) = True . (Case P5.2) Assume
s is an internal node. If g is an s-duplication, then simi-
larly to the above case, from P1, s ∈ X , and δ(g , s) = True
and δ↓(g , s) = True using (5). Analogously, we have the
same conclusion, if g is an s-speciation (here, s does not
have to be in X). For the remaining cases, there is v ≺ s ,
such that g is either an v-duplication, or an v-speciation.
W.l.o.g., we may assume that v � s′ ≺ s . (Case P5.2.a) If g
is an v-speciation, then FT (g) = v and there is no upper
duplication in T. Since T|v is a subtree of T |s′ , FT with
a codomain V (T |s′) is feasible for (g , s′,X) . From, the
inductive assumption for P5, δ↓(g , s′) = True and also
Mδ↓(g , s′) = True (if s ∈ X). In all cases, δ↓(g , s) = True .
(Case P5.2.b) If g is an v-duplication, then, from the fea-
sibility of FT , there is at least one node w ∈ X on the
path from s to v (there must be a duplication episode for
g). Let w be the lowest (i.e., closest to v) node with the
property. Now, we have two cases. If w = s , then s ∈ X ,
and there is no candidate in X for g below s, therefore,
there is no the feasible mapping for (g , s′,X) . However,
there is a weakly feasible F′

T for (g , s′,X) infered from FT
by setting F′

T (d) := s′ all upper duplications d in T hav-
ing FT (d) = s , and F′

T (u) := FT (u) for the remaining
nodes u from T. Clearly, F′

T (V (T)) ⊆ V (S|s′) . Hence,
from the inductive assumption P6, δ↓(g ′, s) = Unknown .
Next, Mδ↓(g ′, s) = True and δ↓(g , s) = True using (5).
It remains to analyse the case when, w � s′ ≺ s . Since,
FT is �-monotonic, FT (V (T)) ⊆ V (S|w) ⊆ V (S|s′) .
Then, FT with the codomain shrinked to V (S|s′) is feasi-
ble for (g , s′,X) . From the inductive assumption for P5,
δ↓(g , s′) = True . Here, it does not matter whether s ∈ X ,
in both cases we get δ↓(g , s) = True from (5) or (6).

(P6, ⇒) Assume, δ↓X (g , s) is Unknown . Here, Unknown is
obtained only from (6), i.e., when s /∈ X and s is internal. We
have δ(g , s) ∨ σ(g , s) ∨ δ↓(g , s′) ∨ δ↓(g , s′′) = Unknown .
By P4, σ(g , s) = False . If δ(g , s) = Unknown , then, we

Page 8 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

have a weakly feasible mapping from already proven P2.
If δ↓(g , s′) = Unknown , then, we have a weakly feasible
mapping from the inductive assumption for P6. The same
holds for s′′.

(P6, ⇐) Assume there is a weakly feasible map-
ping FT for (g, s, X). (Case P6.1) If s is a leaf, then g is
internal by the inductive assumption. Thus, g is an
upper s-duplication in T. Thus, s /∈ X and by already
proven P2, δ(g , s) = Unknown . Since, σ(g , s) = False ,
ǫ(g , s) = Unknown and δ↓(g , s) = Unknown from (4).
(Case P6.2) Assume s is internal. Note that g cannot be
an v-speciation for any v, otherwise there is no upper
duplication in T and FT cannot be weakly feasible. If g
is an s-duplication in T, then similarly to the previous
case, from P2, s /∈ X , and δ(g , s) = Unknown . Note that
δ↓(g , s′) = δ↓(g , s′′) = False (since MT (g) = s). We con-
clude that δ↓(g , s) = Unknown from (6). For the remain-
ing case, there is v ≺ s , such that g is an v-duplication.
W.l.o.g., we may assume that v � s′ ≺ s . From the weak
feasibility of FT , no node from the path between s to v
(inclusively) is in X. Similarly, to P5.2, we construct weakly
feasible F′

T for (g , s′,X) from FT by setting F′
T (d) := s′

all upper duplications d in T having FT (d) = s , and
F′
T (u) := FT (u) for the remaining nodes u from T. By the

inductive assumption for P6, δ↓(g ′, s) = Unknown . Next,
if v = s′ , then δ(g , s′) = Unknown (since x /∈ X) by P2,
otherwise δ(g , s′) = False . Also, δ↓(g , s′′) = False . This
yields δ(g , s) = Unknown using (6). �

To solve Episode Feasibility, we have to apply δ↓ on the
roots of the input trees.

Theorem 2 (Correctness) Given a partial gene tree G
over a species tree S and X ⊆ V (S) . G is X-feasible if and
only if δ↓X (root(G), root(S)) is True.

Proof The proof follows immediately from P5 of
Lemma 1: δ↓X (root(G), root(S)) is True if and only if there
is a feasible FT for (root(G), root(S),X)) such that T
extends G and FT (DupT) ⊆ X . �

Theorem 3 (Complexity) Given a partial gene tree G
over a species tree S and X ⊆ V (S) . The time and space
complexity of solving Episode Feasibility by the dynamic
programming algorithm is O(|V(G)||V(S)|).

Proof We have three arrays δX , δ↓X and σX (note that ǫ
and δ∗ can be directly inserted in their calls), each of size
O(|V(G)||V(S)|) and every cell of an array can be com-
puted in O(1) time. �

An example of DP execution with a feasible solution is
depicted in Fig. 2.

Solving MetaEC for a single partial gene tree
Here we describe the main algorithm to solve MetaEC for
instances with a single gene tree. First, we characterize an
important property of episodes.

Lemma 4 (Fixed Episodes) Given a partial gene tree G
over a species tree S. Assume that there are nodes g in G
and s in S such that

• if s is the root of S, then at least one proper subtree of
G contains species (leaf-labels) from both children of
s.

• otherwise, let p be the parent of s, then G|g is a gene
tree, g is a p-speciation and a child of g is an s-dupli-
cation.

Then, for any G∗ that extends G, s is an episode in every
valid mapping between G∗ and S.

Proof For the first case, all nodes above the root of the
subtree are gene duplications mapped to the root of S in
any G∗ that extends G. Therefore, the root of S is an epi-
sode in all valid mappings. In the second case, the dupli-
cation child cannot be raised, therefore, its mapping is
fixed. �

The nodes satisfying the above conditions we call fixed
episodes (for G and S). For example, for trees from Fig. 1,
there are two fixed episodes: the root of S and the leaf b,
where the duplications with fixed mappings are depicted
using white marks in the exemplary gene tree G. The set
of all fixed episodes can be computed in linear time and
space by bottom-up traversal of the partial gene tree G
and by using LCA-queries in the species tree S as follows.
For each node g from V(G), the algorithm computes a
tuple (u, s, d), where

• u ∈ {True,False} is True if and only if there is a leaf
with unknown label reachable from g,

• s ∈ V (S) ∪ {None} is the least common ancestor of
all non-⊥ labels reachable from g in S and None if
only ⊥ ’s are visible from g,

• and d ∈ {True,False} is True if and only if u = False
and g is a duplication node in a gene tree G|g.

Then, for each g and its tuple (u, s, d), and for each child
of g with a tuple (u′, s′, d′):

Page 9 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

• if s = s′ = root(S) , then s (the root of S) is a fixed epi-
sode,

• if u = d = False , d′ = True and the parent of s′ is s,
then s′ is a fixed episode.

We omit correctness and complexity proofs for brev-
ity. Note that the number of fixed episodes is the lower
bound of EC(G, S).

Algorithm 1 takes as input a partial gene tree G over a
species tree S and outputs EC(G, S) . It first computes the
set of fixed episodes F (see Lemma 4). The algorithm then
starts with an initial maximal episode number b equal to

Fig. 2 An example of the dynamic programming algorithm (from Sect. Episode Feasibility Problem) execution. The partial gene tree
is G = ((⊥, (b, ((⊥,⊥), (⊥,⊥)))), (d, (c, a))) , which contains five unknown labels. The species tree, denoted as S, is represented as ((a, c), (b, d)).
The marked nodes in S indicate episode candidates from X: the root of S (abcd) and the leaf node a. By applying dynamic programming, we
obtain a feasible solution, depicted in the bottom-right corner. The resulting extension of the partial gene tree G is G∗ , where the valid mapping
between G∗ and S is the lowest common ancestor (LCA) mapping. In G∗ , each duplication node is marked with a triangle or a square denoting
their corresponding episode in S. Each node in G is decorated with an array that represents the values of DP formulas, where each row corresponds
to a node in S, starting from abcd, bd, and so on as indicated in the first column. The next columns have the values of δ , δ↓ , σ , and ǫ , respectively,
for the gene tree node and the corresponding species tree node. For example, considering the root of G and the root of S, the top row of the array
contains the following values: δ(root(G), root(S)) = δ↓(root(G), root(S)) = ǫ(root(G), root(S)) = True , while σ(root(G), root(S)) = False

Page 10 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

the number of nodes in S. In each iteration of a while
loop, the algorithm checks if there is a set C of size
b− |F | − 1 from the vertices of S that are not in F, such
that the partial gene tree G is C ∪ F-feasible using the
dynamic programming algorithm. This step requires
(

|V (S)| − |F |
b− |F | − 1

)

 calls of DP in the worst case. If such a set

C exists, the algorithm computes EC(G∗, S) by the linear
time algorithm from [20], where G∗ is the gene tree
obtained by backtracking from the corresponding call of
DP and updates b with the result. Note that b is not
assigned the value of |C ∪ F | , since the minimal set of epi-
sodes for G∗ and S is a subset of C ∪ F , and it is often sig-
nificantly smaller than C ∪ F in early steps of iteration.
Updating b with EC(G∗, S) guarantees the minimal num-
ber of episodes, where some elements of C may be
unused. This is an important optimization step. If such a
set C does not exist, the algorithm terminates and returns
the current value of b.

Algorithm 1 Solution to MetaEC with a single gene tree

The correctness of the algorithm follows from the fact
that if there is no set X of size b− 1 such that G is X-fea-
sible, then there is no set of any size smaller than b that
satisfies the property. Since b represents the number of
episodes from some valid mapping, it is also minimal in
such a case. Therefore, when the algorithm terminates,
b = EC(G, S) , and the algorithm returns the correct
value.

The algorithm’s worst-case time complexity is
∑n−f

k=f

(

n− f
k

)

nm = O(nm2n) , where f is the size of the

set of fixed episodes (f = |F |), n denotes the number of
vertices in S, and m denotes the number of vertices in G.
Despite the exponential time complexity, in our experi-
ments on both simulated and empirical data, we were
able to compute exact solutions after only a few execu-
tions of the main loop.

Distributions of gene‑species mappings
To evaluate the accuracy of gene-species mappings, we
propose a method that enhances the DP algorithm by

incorporating formulas for inferring the number of gene-
species mappings present in all feasible reconstructed
mappings. These counts can be collectively integrated
to determine, for any leaf with unknown label, the pre-
cise frequency of its mappings to each species leaf within
these feasible mappings. An alternative method for
approximating these frequencies was suggested in [31]
using uniform sampling. However, in this work, we intro-
duce an exact algorithm for this purpose.

For a fixed species tree S, and a node g
from a partial gene tree G, we call a mapping
f : L(G|g)× L(S) → {0, 1, 2, . . . } a counter on L(G|g) if
for every leaf l with unknown label, the sum

∑

s f (l, s) ,
denoted #f , does not depend on l. Counters will be used
to count how many times a given gene ⊥-leaf is assigned
to a species leaf in all feasible mappings. In such a case,
#f is the number of all such feasible mappings. The coun-
ter fixed to a gene tree ⊥-leaf l and represented by the

function f (l, ·) , is referred to as the gene-species distribu-
tion (of l). Subsequently, we often examine normalized
distributions, wherein each value is divided by #f (then
∑

s f (l, s) = 1). For convenience counters also include
other leaves, but their counts will be set to 0. We have the
following basic counters:

• ∅A is the zero counter on A, i.e., the counter with
#∅ = 0,

• for s in L(S), Bl,s is a counter on {l} such that
Bl,s(l, s) = 1 , and Bl,s(l, s

′) = 0 for all s′ �= s.

Let ⊕ and ⊗ be commutative operators, where ⊗ has
higher precedence that ⊕ , satisfying the following
properties.

• If f and g are counters on disjoint sets A and B,
respectively, then f ⊗ g is the counter on A ∪ B , such
that for every l ∈ A , (f ⊗ g)(l, s) = f (l, s) · #g.

Page 11 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

• If f and g are counters on A, then f ⊕ g is
the counter on A, such that, for every l ∈ A ,
(f ⊕ g)(l, s) = f (l, s)+ g(l, s).

The empty counter is used when a part of a gene tree
has no leaves with unknown labels, while the counter
Bl,s represents the situation when leaf l is assigned to s.
Additionally, we use a special counter E that represents
situations where DP formulas return F . The counter is
evaluated as follows: E⊕ f = f and E⊗ f = E for any
counter f including E.

By using the notation introduced in the dynamic pro-
gramming algorithm, we define counters for DP δ#T(g , s) ,
δ#U(g , s) , δ

↓
#T
(g , s) , δ↓

#U
(g , s) , ǫ#T(g , s) , ǫ#U(g , s) and σ#(g , s)

to count distributions of gene-species mappings. E.g.,
δ#T(g , s) is a counter for the leaves from L(G|g) that
counts mappings for these leaves for the cases when
δ(g , s) is True , and so on.

• In (1), δ#T(g , s) = eT,T ⊕ r where, ei,j = ǫ#i(g
′, s)⊗ ǫ#j

(g ′′, s) and if sib(v) is the sibling of a node v,
r =

⊕

i,j∈{T,U},v∈{g ′,g ′′},w∈{s′,s′′} ǫ#i(v, s)⊗ δ
↓
#j(sib(v),w).

• In (1–2) δ#U(g , s) = eT,T ⊕ eU,T ⊕ eT,U ⊕ eU,U ⊕ r ,
where, r and ei,j are defined above.

• In (10), ǫ#T(g , s) = σ#(g , s)⊕ δ#T(g , s) , and, if
δ(g , s) = Unknown , then ǫ#U(g , s) = δ#U(g , s).

• In (4), δ↓
#U
(g , s) = ǫ#U(g , s) and δ↓

#T
(g , s) = ǫ#T(g , s).

• In (5), δ
↓
#T
(g , s) = ǫ#T(g , s)⊕ δ

↓
#T
(g , s′)⊕ δ

↓
#U
(g , s′)

⊕δ
↓
#T
(g , s′′)⊕ δ

↓
#U
(g , s′′) and δ↓

#U
(g , s) = ǫ#U(g , s).

• In (6), δ
↓
#T
(g , s) = ǫ#T(g , s)⊕ δ

↓
#T
(g , s′)⊕ δ

↓
#T
(g , s′′)

and δ↓
#U
(g , s) = ǫ#U(g , s)⊕ δ

↓
#U
(g , s′)⊕ δ

↓
#U
(g , s′′).

• In (7),
σ#(g , s) = δ

↓
#T
(g ′, s′)⊗ δ

↓
#T
(g ′′, s′′)⊕ δ

↓
#T
(g ′, s′′)⊗ δ

↓
#T
(g ′′, s′).

• In (8), σ#(g , s) = Bg ,s if g = ⊥ , otherwise
σ#(g , s) = ∅{g}.

• In all remaining uncovered cases the counters are
equal to E.

The following lemma states the crucial property of DP
counters.

Lemma 5 (Correctness of counters for DP) Given a par-
tial gene tree G and a species tree S and X ⊆ V (S) . G is
X-feasible if and only if the counter δ↓

#T
(root(G), root(S))

is not E and for every leaf l of G with unknown label,
δ
↓
#T
(root(G), root(S))(l, s) is the number of all gene trees

G∗ extending G such that FG∗ is a valid mapping satisfying
FG∗(DupG∗) ⊆ X and FG∗(l) = s.

The proof of the above lemma follows by induction,
similar to the proof of correctness of DP. We omit techni-
cal details.

An example of gene-species distributions is depicted in
Fig. 3. DP counters with verification algorithm are imple-
mented in the software package metaEC.

Extensions
To identify the optimal solution within the main loop,
enumerating all possible combinations of size b− f − 1
from the set of episode candidates V (S) \ F may be time-
consuming for larger instances. To address this issue, we
propose a heuristic approach that randomly samples

combinations of size b− f − 1 if
(

n− f
b− f − 1

)

 is large

(e.g., > 1000) and adds a stopping condition based on the
number of dynamic programming (DP) calls without
improvement (e.g., after 100 calls). This approach not
only speeds up the algorithm but also provides additional
information on whether the returned value is exact or an
upper bound obtained by switching to a heuristic mode.
See Sect. 4 for more details.

Fig. 3 An example of gene-species distributions of for the leaves
with unknown label from a partial gene tree with three such leaves
and a species tree S. In this case, the optimal number of episodes is 1,
and the episode is located at the root of S, marked accordingly. The
total number of feasible mappings is 52. The histograms at the leaves
of the gene tree depict how many times a specific leaf is mapped
to the corresponding species leaf in these feasible mappings. In other
words, they represent δ↓

#T
(root(G), root(S))(l, ·) , where l is the gene

tree leaf associated with each histogram

Fig. 4 Converting a multiple gene tree instance to a single gene tree instance using an outgroup ω . Red bars in Gω denote speciation nodes
mapped to the root of Sω . Green squares represent new duplications clustered at a new duplication episode in the root of Sω

Page 12 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

Furthermore, based on our experiments, we have
observed that the solution is often close to the set of fixed
episodes. To leverage this observation, we propose a bot-
tom-up algorithm that explores candidate sets starting
from sizes 0, 1, 2, and so on until a feasible solution is
found. In this case, the internal search has a time com-

plexity of O(

(

n− f
i

)

) , starting from i = 0 . This algo-

rithm can be combined with the heuristic variant
described earlier to improve its effectiveness. However,
the experimental evaluation did not show significant
improvement compared to the top-down method in
Algorithm 1.

MetaEC in the general case
Here we show that MetaEC in a general case can be
solved using a single partial gene tree under an addi-
tional assumption. Given a collection of partial gene
trees G1,G2, . . . ,Gk over a species tree S, let ω be a new
species, called outgroup, not present in S. We first add
the outgroup to every input tree. Let Sω be species tree
(S,ω) , Gω

1 = (G1,ω) and Gω
i = ((Gi,ω),G

ω
i−1

) , for i > 1 .
Then, by ω-MetaEC we define the problem MetaEC with
a single partial gene tree, where the extension of a par-
tial labeling cannot introduce ω , i.e., if �G1

(v) = ⊥ then
�G∗

1
(v) �= ω . See Fig. 4 for illustration.

We have the following property.

Lemma 6 Given a collection of at least two partial
gene trees G1,G2, . . . ,Gk over a species tree S such that
ω /∈ L(S) . X ⊆ V (S) is the set of episodes that yields the
solution of MetaEC for G1,G2, . . . ,Gk and S if and only if
X ∪ {root(Sω)} is the set of episodes that yields the solu-
tion to the instance Gω

k and Sω of ω-MetaEC.

Proof (⇒) Assume that G∗
i extends Gi , for each i. Then,

(G∗
i)

ω extends Gω
i . Since the extension of Gi introduces

only nodes from L(S), we have the same property with
(G∗

i)
ω . Now, every parent of a leaf labeled ω in (G∗

k)
ω is

speciation mapped to the root of Sω , since, for some i, its
sibling is a root of G∗

i and ω /∈ L(G∗
i) . Thus, if i > 1 , the

root of (G∗
i)

ω is a duplication mapped to the root of Sω .
In summary, all duplications from gene trees G∗

i in (G∗
k)

ω
are mapped below the root of Sω , and they are sepa-
rated by speciation nodes from the duplications mapped
to the root of Sω as indicated in Fig. 4. Now, we define
a valid mapping Fω

k = F(G∗
k)

ω : V ((G∗
k)

ω) → V (Sω) .
For each i, Fω

k on the set of nodes of Gi equals the cor-
responding valid mapping between V (G∗

i) and V(S) that
yields the solution to MetaEC, while for the remaining
nodes v we set Fω

k (v) = root(Sω) . It should be clear that
Fω
k is a valid mapping. Now, it is not difficult to see that

the set of duplication episodes in (G∗
k)

ω is X ∪ root(Sω) .
If there is a solution to ω-MetaEC with a lower number
of episodes than |X | + 1 , say obtained by X ′ ∪ {root(Sω)}
with |X ′| < |X | , then the construction can be reversed to
obtain valid mappings and the corresponding duplication
episodes X ′ for the initial instance of MetaEC. However,
this is a contradiction with the assumption that |X| is the
solution to the initial instance of MetaEC.
(⇐) The proof of the second direction is analogous since
the transformation between collections of partial gene
trees and the partial gene tree Gω

k is reversible. We omit
easy details. �

Note that the algorithms provided in the previous
sections can be easily modified to solve ω-MetaEC, by
replacing case (8) with:

Then, DP will exclude extensions of ⊥ by ω.

Experiments
In this Section we present two computational studies
based on simulated and empirical data.

Simulated dataset
The species trees having none, one, or two whole
genome duplication events were taken directly from
[25]. Then, we estimated gene trees via tree inference
software from simulated sequences and modified them
to represent the uncertainty commonly associated with
metagenomic data. Finally, our algorithm was evaluated
on six datasets consisting of estimated gene trees.

To begin, we describe how the species and gene
trees were generated. Then, we explain the modifica-
tions made to the gene trees to represent the uncer-
tainty of metagenomic data. Finally, we show how the
results obtained with our algorithms allow us to infer
genome-wide duplication events and gene and species
distributions.

A species tree
First, we briefly summarize the simulation procedure
from [25]. The simulated species trees were gener-
ated by SimPhy [33] with parameter settings used in
a simulated study [34] that was based on an empirical
dataset of 16 Fungi species [35]. The species tree S of
20 taxa was generated by SimPhy with the speciation
rate parameter equal to 1.8× 10−9 and the tree height
parameter set to 1.8× 109.

σ(g , s) = True if g ∈ L(G) and (�G(g)

= s or (�G(g) = ⊥ and s �= ω)).

Page 13 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

To simulate a whole genome duplication (WGD),
a node v in the species tree S was chosen as the loca-
tion of the event. Subsequently, a modified species tree,
denoted as S′ , was constructed by substituting a subtree
S|v with a duplicated version of itself. This duplication
involved creating a new root connected to the original
root of S|v and the root of its copy. The WGD variants
used in the simulations are illustrated in Fig. 5, where
S1 represents a single recent WGD Ŵ , S2 represents a
single ancient WGD � , S3 represents two WGDs � and
� , with � occurring after � , S4 represents two close
WGDs � and �′ at the same branch, and S5 represents
two recent independent WGDs � and � . Let us refer
to the original tree S with no WGD events as S0 . Note
that these simulation methods do not incorporate frac-
tionation, that is, the loss of a gene copy to eliminate
the redundancy [36].

Gene trees
For every Si , i ∈ {0, 1, . . . , 5} , one hundred true gene
trees were generated using SimPhy. The duplication and
loss rate parameter was set to 2−10 events per genera-
tion per lineage. To minimize the effect of incomplete
lineage sorting, the population size parameter was set
to 10. All other parameters were taken from [34].

Next, we describe our pipeline to infer estimated trees
from true trees. For every true tree G, we first simulated a
multiple sequence alignment (MSA).

For the MSA simulation, we used INDELible [37] and
parameters from [34], with one difference, we used a
constant sequence length of 1000. Then, we inferred an
unrooted maximum-likelihood tree from each MSA
using FastTree [38] with the GTR model. Finally, we per-
formed midpoint-plateau rooting of each unrooted gene
tree using URec [39]. The rooting was inferred in a way

Fig. 5 Summary of the inferred gene-species mappings and duplication episodes on the simulated datasets. Locations of the simulated
whole-genome duplication (WGD) events are denoted by Greek letters. For clarity, all leaf labels have been removed from the visualization
of species trees (see [25] for details). Each bar in the histograms shows the normalized average p-support of the corresponding species node. The
key to histograms is present at the bottom-right corner. The number above a single bar represents the maximum height of a bar in its histogram.
A histogram at node v is omitted as insignificant if the normalized average p-support is below 10 for all values of p

Fig. 6 Summary of simulated dataset experiments for the estimated
trees: histograms of exact and heuristic solutions returned
by Algorithm 1

Page 14 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

that minimizes the duplication-loss cost between the
gene tree and the species tree S.

In summary, we obtained six datasets of estimated
rooted gene trees denoted Gi = {Gi,1,Gi2 , . . . ,Gi,100} ,
where each dataset comprises 100 gene trees generated
using the same species tree S but with a different WGD
scenario Si . In our evaluation study, for each dataset
Gi , we generated a set of partial gene trees G̃k ,p

i by ran-
domly removing each leaf label from every gene tree
Gi,j in Gi with probability p. We considered values of p
from 0.0 to 0.6 in increments of 0.1 and generated 100
instances of G̃k ,p

i for each value of p and k = 1, 2, . . . ,K ,
with K = 100 . This resulted in a total of 4200 instances
(G̃

k ,p
i , S) of MetaEC, where S is the species tree used to

generate Gi , and G̃k ,p
i consists of 100 partial gene trees.

Note that the instances for p = 0 , correspond to no
removal of leaf labels, i.e., G̃k ,0.0

i = Gi , for each i and k.

WGD detection
The results of our algorithm on the estimated partial
gene trees are depicted in Fig. 5, where we summarize

the episode sizes in the form of histograms. Also, addi-
tional data is provided in Figs. 6 and 7. The evaluation
took about 24 h of a computing server with 80 cores. In
general, we observed that the runtime and the number
of DP calls grow linearly with the value of parameter p
on average as indicated in the bottom diagram of Fig. 8.
We used the heuristic variant of the algorithm, where
random sampling was applied if the number of combina-
tions exceeded 100 trees, and with the stopping criterion
equal to 50. Out of 4200 instances, 3037 were completed
with the exact solution (see Fig. 6). The resulting costs
without exact guarantee, were more often obtained for
larger values of p. Additionally, we observed that the
lower bound given by the number of fixed episodes was a
tight approximation of the inferred cost (see Fig. 8). As p
increased, the number of fixed episodes decreased. Note
that for p = 1 (not included in our analysis), the solution
to MetaEC is 1. In such a case the leaf labelings are con-
stant functions and all internal nodes of each gene tree
are duplications. Then there is just one episode, which
can be placed at the root of the species tree.

Now, we briefly summarize the outcome of WGD
detection. Initially in the preliminary version of the
article [40], we quantified support by counting the
number of single gene duplications aggregated within
a particular episode. Here, to reflect the contributions
of single gene families while mitigating the influence of
large gene families with potentially numerous duplica-
tions, we count the number of gene trees that contain
duplications clustered within the episode. Note that
in contrast to [40] where the true trees were used to
detect WGD events, here we perform the detection on
estimated gene trees.

In the context of the scenario without WGDs (S0), the
episodes can be treated as background noise consisting
of single duplication events. Consequently, when sub-
tracting the contribution of background duplication
episodes from the duplication clustering results on sim-
ulated datasets containing WGDs, we can emphasize
the simulated WGD events as significant occurrences.
Formally, our analysis is conducted using the following
formulas.

Given a dataset (G̃k ,p
i , S) and a node s in S, the p-sup-

port of s (w.r.t. k and i), denoted µp,s,i,k is the number
of gene trees obtained by applying the DP algorithm on
trees from the dataset Gk ,p

i , that have at least one dupli-
cation in the episode s. Then, the normalized average
p-support of a species node s in scenario Si is defined as

Fig. 7 Summary of simulated dataset experiments for the estimated
trees: EC cost and the number of fixed episodes

Fig. 8 Summary of simulated dataset experiments for the estimated
trees: the runtime in seconds and the number of executed DP calls

Page 15 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

Recall that K = 100 is the number of estimated gene tree
datasets for fixed p and i. In other words, the normalized
average support accounts for the difference between the
average support values of Si and S0 . For example, given
that every gene tree dataset consists of 100 estimated
gene trees, the normalized average p-support of s in the
scenario Si close to 100, denotes high support for the
duplication episode at s (in Si). Note also that the normal-
ized p-support can be negative due to normalization.

The results for S1 (as depicted in Fig. 5) reveal that
WGD Ŵ is uniquely well-supported when p ≤ 0.4 , with
support values exceeding 20. It is noteworthy that the
outcomes obtained for S1 outperform the analysis con-
ducted in [40], which utilized true trees, in terms of
accurately identifying the simulated WGD event. In
summary, the WGD detection outcome depends on the
location of a WGD and the value of p. In general, when
p increases, the support of WGDs decreases. Recent
WGDs like Ŵ , � , and � are well supported up to p = .3 ,
while more ancient � up to p = .2 . For ancient WGDs
� , � , � , �′ , the normalized average p-support is low
and, for most cases, indistinguishable from non-WGD
nodes. However, the root episode is generally well sup-
ported in scenarios having ancient WGDs, which sug-
gest such an event close to the root location.

Gene‑species distributions
We implemented the algorithm outlined in Sect. Dis-
tributions of gene-species mappings to derive counters
with gene-species distributions for ⊥-leaves across all
gene tree datasets, i.e., for all six species trees S0-S5 , all
six different positive values of p (i.e., we inferred 36× 100
counter collections for each gene tree set). The results
frequently yielded remarkably high numbers of feasi-
ble mappings, often exceeding 101000 . As a remedy, we
employed normalization by dividing the values of the
gene-species distributions by #f , where f was the relevant
counter.

We first analyzed the domain of distributions with
positive values. Let d : L(S) → [0, 1] be a gene-species
distribution. The span of d is the set of all species leaves
with a positive value. Furthermore, if the span of this dis-
tribution is the set of leaves originating from a subtree
rooted at s within the species tree S, we categorize this
distribution as a subtree-spanning distribution. A sum-
mary of subtree-spanning and non-subtree-spanning
distributions can be found in Table 2. It is noteworthy

1

K

∑

k

µp,s,i,k − µp,s,0,k .
that spanning distributions occur with high frequency.
Furthermore, they often encompass significant portions
of the species tree, and the property gets stronger with
the increase of p. This, however, is not the desired char-
acteristic, as the most sought-after distributions are the
one-point distributions where a single species leaf has
the maximum value of 1.

Subsequently, we conducted an analysis to determine
the extent to which these distributions deviate from uni-
formity. Detailed insights can be found in Fig. 9. In this
figure, we present a computed coefficient of variation
(CV) for each distribution, which is the standard devia-
tion normalized by the mean. Lower CV values signify a
closer resemblance to a uniform distribution. The major-
ity of histograms display a tall blue bar indicating low
CV values. This suggests that the distributions tended to
exhibit a significant degree of near-uniformity in nearly
all simulated datasets.

In summary, our study reveals that the species pre-
sented in the reconstructed gene leaf mappings extend
across a substantial portion of the species tree. Addition-
ally, the frequency distribution across all feasible map-
pings typically exhibits an almost uniform shape. As a
result, identifying the true gene-species mapping signal
within the leaf mapping proves challenging with the cur-
rent approach. This challenge is, in part, attributed to the
combinatorial explosion in the number of feasible map-
pings, consequently leading to flattened distributions of
gene-species mappings based on leaf counts.

Empirical evaluation
To ensure that our algorithm was properly tested, we
required a dataset that would capture the characteristics
of the metagenomic data as closely as possible, while
allowing us to assess the quality and accuracy of the
results obtained. For this reason, we decided to prepare
a dataset consisting of gene trees for species identified
during metagenomic analysis. To simulate unknown
gene-species assignments, we artificially removed some
of the gene labels from the gene trees and retained infor-
mation about their taxonomic origin for further analysis
of the results. Another important issue was the presence
of a previously described whole-genome duplication
event that occurred in the evolutionary tree of selected
species. Given the above requirements, we decided
to use proteomes belonging to yeast species identified
during metagenomic analysis of kefir [41]. Note that a
direct comparison of our results with alternative meth-
ods is not possible due to the absence of any existing
approach for the simultaneous inference of duplications
and gene-species mappings.

Page 16 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

Data preparation
The eight selected species are: Kazachstania Africana,
Kazachstania naganishii, Naumovozyma dairenensis,

Tetrapisispora blatte, Tetrapisispora phaffi, Torulaspora
delbrueckii, Zygosaccharomyces rouxii and Saccharomy-
ces cerevisiae. A species tree containing the listed species,

Fig. 9 This figure summarizes coefficients of variations (CV) for gene-species distributions obtained from unlabeled leaves across 36 simulated
datasets each with 100 gene trees (excluding datasets with p = 0). Each bar corresponds to the average number of gene-species distributions
for leaves with unknown label across the entire tree (A), the left subtree (B), and the right subtree (C), having the CV values falling within a specified
range. All other distributions covering a subtree have all frequencies at most 1.5 and are therefore not included here. In D, a summary is presented
for cases where the distributions do not span any subtree in the species tree. The panel (E) shows the average number of removed leaf-labels
in the corresponding datasets. For example, the highest blue bar in S4 with p = 0.6 in A represents approximately 2400 leaves with ⊥ (out
of an average of 3786.53 in this gene tree set) whose mapping inferences give every leaf in S4 with nearly identical frequency, as indicated
by the corresponding CV values falling within the interval [0− 0.05) . The key to histograms is on the right, where each bar represents the average
count of gene-species distributions for ⊥-leaves in a gene tree set with CV values falling within a specific interval. Intervals with CV values greater
than 0.25 are excluded due to their low frequencies

Page 17 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

consistent with the NCBI taxonomy and many papers
on yeast evolution, is shown in Fig. 10. It also shows the
location of the whole-genome duplication event con-
firmed by previous studies [42, 43].

The proteomes used to infer gene trees were sourced
from the UniProt database [44]. Protein families were
created by dividing the proteins into groups using the
mcl program [45] with parameters I = 2 and I = 5 . How-
ever, since the differences between the obtained sets were

minimal, we used the set obtained for I = 2 in subse-
quent steps. The protein sequences in each group were
aligned with the MUSCLE algorithm [46], and unrooted
gene trees were inferred using the phyml program [47]
with the default parameter setting. Rooting of the gene
trees was performed by URec program [39] using the
minimal duplication-loss cost as the rooting criterion.

We removed trees containing fewer than 3 leaves or 3
species, as well as trees with edges of length 0 from the

Table 2 Summary of spanning and no-spanning distributions of gene-species mappings for the simulated dataset

Dataset Average Subtree No‑subtree Spanning

Species tree p number Spanning Spanning Root Root left child Root right child Other
nodes

of ⊥’s

S0 0.1 215.43 179.87 35.56 32.31 105.39 42.04 0.13

S0 0.2 431.72 362.62 69.10 311.17 36.35 14.63 0.47

S0 0.3 647.30 547.66 99.64 540.35 4.40 2.03 0.88

S0 0.4 862.65 750.17 112.48 748.47 0.04 0.14 1.52

S0 0.5 1080.50 973.41 107.09 951.94 14.58 4.80 2.09

S0 0.6 1296.19 1206.18 90.01 1191.55 9.34 2.56 2.73

S1 0.1 243.81 198.68 45.13 30.74 117.40 50.29 0.25

S1 0.2 491.06 407.81 83.25 358.28 34.72 14.19 0.62

S1 0.3 729.12 624.81 104.31 611.53 9.14 3.59 0.55

S1 0.4 972.27 853.71 118.56 816.90 26.18 9.12 1.51

S1 0.5 1219.75 1104.48 115.27 1059.34 32.34 10.78 2.02

S1 0.6 1462.94 1363.53 99.41 1320.33 30.68 9.42 3.10

S2 0.1 356.48 305.48 51.00 166.29 114.21 24.39 0.59

S2 0.2 705.68 613.17 92.51 588.20 20.41 3.98 0.58

S2 0.3 1055.63 934.53 121.10 914.00 16.33 3.31 0.89

S2 0.4 1412.78 1268.31 144.47 1229.30 32.19 5.67 1.15

S2 0.5 1769.39 1620.15 149.24 1569.99 41.02 6.78 2.36

S2 0.6 2120.37 1976.13 144.24 1914.45 50.39 7.62 3.67

S3 0.1 416.78 367.52 49.26 365.73 0.27 1.48 0.04

S3 0.2 827.17 735.44 91.73 734.82 0.02 0.26 0.34

S3 0.3 1244.67 1095.73 148.94 1094.94 0.01 0.14 0.64

S3 0.4 1660.26 1490.09 170.17 1488.61 0.10 0.13 1.25

S3 0.5 2069.44 1872.54 196.90 1869.82 0.14 0.21 2.37

S3 0.6 2486.96 2316.49 170.47 2313.02 0.10 0.09 3.28

S4 0.1 633.11 603.36 29.75 546.99 50.66 5.40 0.31

S4 0.2 1267.87 1147.66 120.21 1135.46 10.60 1.29 0.31

S4 0.3 1888.89 1717.59 171.30 1700.55 14.95 1.61 0.48

S4 0.4 2530.90 2307.88 223.02 2100.00 188.21 17.67 2.00

S4 0.5 3162.44 2923.63 238.81 2834.49 79.56 7.12 2.46

S4 0.6 3786.53 3564.52 222.01 3386.89 160.26 13.52 3.85

S5 0.1 348.07 301.20 46.87 74.72 186.24 38.68 1.56

S5 0.2 698.21 615.30 82.91 582.68 26.10 6.01 0.51

S5 0.3 1047.30 924.45 122.85 923.35 0.03 0.31 0.76

S5 0.4 1395.93 1245.19 150.74 1218.45 21.38 3.87 1.49

S5 0.5 1748.75 1593.88 154.87 1527.58 54.01 10.12 2.17

S5 0.6 2100.72 1964.41 136.31 1941.82 16.87 2.77 2.95

Page 18 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

final set of trees. This resulted in 3430 rooted gene trees.
Similar to the first experiment, we created 10 datasets for
each p ∈ {0.1, 0.2, . . . , 0.6} by randomly removing each
leaf label with the probability p. This resulted in 60 data-
sets plus the original dataset representing p = 0.

Results
Figure 10 depicts histograms showing the results
obtained for the described dataset. The evaluation was
performed on the same computing server as before and
took approximately one hour. For this evaluation, we
set the sampling threshold and stopping criterion to 50,
which yielded exact solutions for all cases. The num-
ber of fixed episodes was consistent across datasets
with p < 0.6 , at 12 (note that the number of leaves in a
tree was 15). For p = 0.6 , the number of fixed episodes
fell within the range of 9 to 12. The number of DP calls
ranged from 2 to 3 for p < 0.6 and between 2 and 11 for
p = 0.6.

The results obtained by the algorithm for the yeast
dataset are consistent with our knowledge of the whole-
genome duplication localization. For the dataset with all
leaf labels present and for p = 0.1 , we have the highest
support for the WGD event. The number of supporting
single duplications decreases gradually for successive
p′s . For values of p ≥ 0.5 , the correct WGD localiza-
tion is still supported by a significantly large number of
single duplications. It is worth noting that even for the
p = 0.6 , the right location is supported by three times as
many duplications as the second most supported loca-
tion, which is in the root. Additionally, we observed an
increase in duplications at the leaves of the species tree as
p increased. Since most of the leaves are fixed episodes,
the algorithm often assigned labels to create duplications
at the leaves, resulting in larger sizes of episodes at leaves.

Conclusions and future outlook
In this article, we presented a novel problem that inte-
grates gene-species mapping inference and genomic
duplication detection. We proposed efficient algo-
rithms to solve the problem exactly in the majority of
instances, along with a heuristic modification for cases
where exact solutions are not feasible. To demonstrate
the effectiveness and accuracy of our proposed algo-
rithm, we conducted computational experiments on
both simulated and empirical data. While there is pres-
ently no established method for the simultaneous infer-
ence of duplications and gene-species mappings, the
results showed that our algorithm was able to accurately
infer recent WGD events when the number of missing
labels was relatively small for simulated data. Moreo-
ver, the algorithm performed even better on empirical
data, demonstrating its robustness and applicability to
real-world scenarios. Nevertheless, our findings regard-
ing gene-species mapping inference underscore the
challenging nature of the problem with the current
approach. Inferring true gene leaf labels proves difficult
due to the combinatorial explosion of potential solu-
tions and the resulting nearly-uniform distributions of
gene-species mappings, which extend across substantial
portions of the species tree.

To maximize topological similarities between a gene
tree and its species tree, speciation nodes should more
frequently appear in the resulting extensions of input
partial gene trees. We observe that the optimization
model tends to reconstruct leaf labels in a way that pri-
oritizes duplication events assigned to the nearest fixed
episodes or the root, in the absence of such episodes.
This is confirmed by the property that fixed episodes are
tight approximations of the EC cost, leading to a reduc-
tion in the number of speciation events in the final gene

Fig. 10 Summary of gene-species mappings and duplication episodes inference for the yeast dataset consisting of 3430 gene trees. Each
bar with confidence levels represents the average percentage of the number of gene trees participating in the given duplication episodes
at samples with value p from 0.0 to 0.6. WGD denotes the whole genome duplication event postulated in [42, 43]. For the description of symbols
refer to Fig. 5

Page 19 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

tree extensions. As a consequence, the model’s effective-
ness may be limited in some cases when the number of
unknown labels in partial gene trees is significant.

Several avenues for future research exist. For instance,
the simulation pipeline could be extended to model frac-
tionation [36, 48], offering a more detailed understanding
of the biological processes involved. Alternatively, tools
for segmental duplications [49] might provide a more
accurate representation of gene duplication processes.
Also, we plan to extend the analyzed model to strengthen
the importance of the topological similarities between
gene and species trees. Alternatively, one may limit the
distance between the lca-mapping of a gene duplication
and its destination mapping in the final scenario similarly
to [25]. Additionally, there are models of genomic dupli-
cations providing a higher level of detail than EC , such as
minimum episodes (ME) [20] and RMP [23], which can
be adapted in a similar way to infer gene-species map-
pings and minimize the number of duplication episodes
simultaneously. These models can be further combined
with more general models of valid mappings, which allow
the introduction of more duplication events than the
minimum obtained by the lca-mapping [4]. The combina-
tion of these models can provide a more comprehensive
approach to inferring gene-species mappings and identi-
fying the minimum number of duplication episodes.

Abbreviations
EC Episode clustering
DP Dynamic programming
WGD Whole genome duplication
CV Coefficient of variation
MSA Multiple sequence alignment
ME Minimum episodes

Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable
suggestions and comments.

Author contributions
PG developed and implemented the algorithms. NR and PG performed the
simulations and computational tests. AM performed the empirical evalua-
tion. NR contributed to the development of the software. JP contributed to
the simulated dataset WGD analysis and development of algorithms, and all
authors contributed to the writing. All authors reviewed and approved the
manuscript.

Funding
 The support was provided by National Science Centre grant nr #2017/27/B/
ST6/02720. JP was supported by National Science Centre Grant #2020/39/D/
ST6/03321. Publication costs were covered by the funds of National Science
Centre Grant #2020/39/D/ST6/03321.

Availability of data and materials
 The software package metaEC, which is partially based on the embretnet
repository, has been written in Python and is available with all datasets, includ-
ing the commands to generate them and the output files, at https:// bitbu cket.
org/ pgor17/ metaEC.

Declarations

 Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 15 November 2023 Accepted: 4 January 2024

References
 1. Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G.

Fitting the gene lineage into its species lineage, a parsimony strategy
illustrated by cladograms constructed from globin sequences. Syst Zool.
1979;28(2):132–63.

 2. Page RDM. Maps between trees and cladistic analysis of historical asso-
ciations among genes, organisms, and areas. Syst Biol. 1994;43(1):58–77.

 3. Ma B, Li M, Zhang L. From gene trees to species trees. SIAM J Comput.
2000;30(3):729–52.

 4. Górecki P, Tiuryn J. DLS-trees: a model of evolutionary scenarios. Theoret
Comput Sci. 2006;359(1–3):378–99.

 5. Kuzmin E, VanderSluis B, Ba ANN, Wang W, Koch EN, Usaj M, Khmelinskii A,
Usaj MM, Leeuwen J, Kraus O, Tresenrider A, Pryszlak M, Hu M-C, Varriano
B, Costanzo M, Knop M, Moses A, Myers CL, Andrews BJ, Boone C. Explor-
ing whole-genome duplicate gene retention with complex genetic
interaction analysis. Science. 2020;368(6498):5667.

 6. Ohno S. Evolution by gene duplication. Berlin: Springer; 1970.
 7. Salman-Minkov A, Sabath N, Mayrose I. Whole-genome duplication as a

key factor in crop domestication. Nat Plants. 2016;2:16115.
 8. Wu S, Lau KH, Cao Q, Hamilton JP, Sun H, Zhou C, Eserman L, Gemenet

DC, Olukolu BA, Wang H, Crisovan E, Godden GT, Jiao C, Wang X, Kitavi
M, Manrique-Carpintero N, Vaillancourt B, Wiegert-Rininger K, Yang
X, Bao K, Schaff J, Kreuze J, Gruneberg W, Khan A, Ghislain M, Ma D,
Jiang J, Mwanga ROM, Leebens-Mack J, Coin LJM, Yencho GC, Buell CR,
Fei Z. Genome sequences of two diploid wild relatives of cultivated
sweetpotato reveal targets for genetic improvement. Nat Commun.
2018;9(1):4580.

 9. Wolfe KH, Shields DC. Molecular evidence for an ancient duplication of
the entire yeast genome. Nature. 1997;387(6634):708–13.

 10. López S, Lim EL, Horswell S, Haase K, Huebner A, Dietzen M, Mourikis
TP, Watkins TBK, Rowan A, Dewhurst SM, Birkbak NJ, Wilson GA, Loo PV,
Jamal-Hanjani M, Consortium T, Swanton C, McGranahan N. Interplay
between whole-genome doubling and the accumulation of deleterious
alterations in cancer evolution. Nat Genet. 2020;52(3):283–93.

 11. Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W, Armenia J,
Chang MT, Schram AM, Jonsson P, Bandlamudi C, Razavi P, Iyer G, Robson
ME, Stadler ZK, Schultz N, Baselga J, Solit DB, Hyman DM, Berger MF,
Taylor BS. Genome doubling shapes the evolution and prognosis of
advanced cancers. Nat Genet. 2018;50(8):1189–95.

 12. Quinton RJ, DiDomizio A, Vittoria MA, Kotýnková K, Ticas CJ, Patel S,
Koga Y, Vakhshoorzadeh J, Hermance N, Kuroda TS, Parulekar N, Taylor
AM, Manning AL, Campbell JD, Ganem NJ. Whole-genome dou-
bling confers unique genetic vulnerabilities on tumour cells. Nature.
2021;590(7846):492–7.

 13. Guigó R, Muchnik IB, Smith TF. Reconstruction of ancient molecular
phylogeny. Mol Phylogenet Evol. 1996;6(2):189–213.

 14. Page RDM, Cotton JA. Vertebrate phylogenomics: reconciled trees and
gene duplications. Pacific Symposium on Biocomputing. 2002:536–47.

 15. Fellows M, Hallet M, Stege U. On the multiple gene duplication problem.
In: 9th International Symposium on Algorithms and Computation
(ISAAC’98), Lecture Notes in Computer Science 1533, Taejon, Korea,
1998:347–356.

https://bitbucket.org/pgor17/metaEC
https://bitbucket.org/pgor17/metaEC

Page 20 of 20Górecki et al. Algorithms for Molecular Biology (2024) 19:7

 16. Bansal MS, Eulenstein O. The multiple gene duplication problem revisited.
Bioinformatics. 2008;24(13):132–8.

 17. Burleigh JG, Bansal MS, Wehe A, Eulenstein O. Locating multiple gene
duplications through reconciled trees. In: Research in Computational
Molecular Biology: 12th Annual International Conference, RECOMB
2008, Singapore, March 30-April 2, 2008. Proceedings 12, 2008:273–284.
Springer

 18. Luo C-W, Chen M-C, Chen Y-C, Yang RWL, Liu H-F, Chao K-M. Linear-time
algorithms for the multiple gene duplication problems. IEEE/ACM Trans
Comput Biol Bioinf. 2011;8(1):260–5.

 19. Mettanant V, Fakcharoenphol J. A linear-time algorithm for the multiple
gene duplication problem. In: The 12th National Computer Science and
Engineering Conference (NCSEC), 2008:198–203.

 20. Paszek J, Górecki P. Efficient algorithms for genomic duplication models.
IEEE/ACM Trans Comput Biol Bioinf. 2018;15(5):1515–24.

 21. Paszek J, Górecki P. Genomic duplication problems for unrooted gene
trees. BMC Genomics. 2016;17(1):165–75.

 22. Paszek J, Górecki P. Inferring duplication episodes from unrooted gene
trees. BMC Genomics. 2018;19(S5).

 23. Iersel LV, Janssen R, Jones M, Murakami Y, Zeh N. Polynomial-Time Algo-
rithms for Phylogenetic Inference Problems involving duplication and
reticulation. IEEE/ACM Trans Comput Biol Bioinf. 2019

 24. Paszek J, Tiuryn J, Górecki P. Minimizing genomic duplication episodes.
Comput Biol Chem. 2020;89: 107260.

 25. Paszek J, Markin A, Górecki P, Eulenstein O. Taming the duplication-loss-
coalescence model with integer linear programming. J Comput Biol.
2021;28(8):758–73.

 26. Dondi R, Lafond M, Scornavacca C. Reconciling multiple genes trees via
segmental duplications and losses. Algorithms Mol Biol. 2019;14:7.

 27. Royo-Llonch M, Sánchez P, Ruiz-González C, Salazar G, Pedrós-Alió C,
Sebastián M, Labadie K, Paoli L, Ibarbalz FM, Zinger L, Churcheward B,
Coordinators TO, Chaffron S, Eveillard D, Karsenti E, Sunagawa S, Wincker
P, Karp-Boss L, Bowler C, Acinas SG. Compendium of 530 metagenome-
assembled bacterial and archaeal genomes from the polar Arctic Ocean.
Nat Microbiol. 2021;6(12):1561–74.

 28. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY,
Palleja A, Ponnudurai R, Sunagawa S, Coelho LP, Schrotz-King P, Vogtmann
E, Habermann N, Niméus E, Thomas AM, Manghi P, Gandini S, Serrano D,
Mizutani S, Shiroma H, Shiba S, Shibata T, Yachida S, Yamada T, Waldron
L, Naccarati A, Segata N, Sinha R, Ulrich CM, Brenner H, Arumugam M,
Bork P, Zeller G. Meta-analysis of fecal metagenomes reveals global
microbial signatures that are specific for colorectal cancer. Nat Med.
2019;25(4):679–89.

 29. Betkier A, Szczęsny P, Górecki P. Fast algorithms for inferring gene-species
associations. In: Bioinformatics Research and Applications: 11th Interna-
tional Symposium, ISBRA 2015 Norfolk, USA, June 7–10, 2015 Proceed-
ings 11, 2015:36–47. Springer.

 30. Zhang L, Cui Y. An efficient method for dna-based species assignment via
gene tree and species tree reconciliation. In: Algorithms in Bioinformatics:
10th International Workshop, WABI 2010, Liverpool, UK, September 6–8,
2010. Proceedings 10, 2010:300–311. Springer.

 31. Mykowiecka A, Szczęsny P, Górecki P. Inferring gene-species assignments
in the presence of horizontal gene transfer. IEEE/ACM Trans Comput Biol
Bioinf. 2017;15(5):1571–8.

 32. Łukasiewicz J. Selected Works, vol. 1. Amsterdam: North-Holland Publish-
ing Company; 1970.

 33. Mallo D, De Oliveira Martins L, Posada D. Simphy: phylogenomic simula-
tion of gene, locus, and species trees. Syst Biol. 2016;65(2):334–44.

 34. Molloy EK, Warnow T. FastMulRFS: fast and accurate species tree estima-
tion under generic gene duplication and loss models. Bioinformatics.
2020;36(Supplement-1):57–65.

 35. Rasmussen MD, Kellis M. Unified modeling of gene duplication, loss, and
coalescence using a locus tree. Genome Res. 2012;22(4):755–65.

 36. Cheng F, Wu J, Cai X, Liang J, Freeling M, Wang X. Gene retention,
fractionation and subgenome differences in polyploid plants. Nat Plants.
2018;4:258–68.

 37. Fletcher W, Yang Z. Indelible: a flexible simulator of biological sequence
evolution. Mol Biol Evol. 2009;26(8):1879–88.

 38. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum
evolution trees with profiles instead of a distance matrix. Mol Biol Evol.
2009;26(7):1641–50.

 39. Górecki P, Tiuryn J. Urec: a system for unrooted reconciliation. Bioinfor-
matics. 2007;23(4):511–2.

 40. Górecki P, Rutecka N, Mykowiecka A, Paszek J. Simultaneous Reconstruc-
tion of Duplication Episodes and Gene-Species Mappings. In: Belazzougui
D, Ouangraoua A, editors. 23rd International Workshop on Algorithms in
Bioinformatics (WABI 2023), vol. 273. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl—Leibniz-
Zentrum für Informatik; 2023. p. 6–1618.

 41. Yilmaz B, Elibol E, Shangpliang HNJ, Ozogul F, Tamang JP. Microbial com-
munities in home-made and commercial kefir and their hypoglycemic
properties. Fermentation. 2022;8(11):590.

 42. Feng B, Lin Y, Zhou L, Guo Y, Friedman R, Xia R, Hu F, Liu C, Tang J. Recon-
structing yeasts phylogenies and ancestors from whole genome data. Sci
Rep. 2017;7(1):1–12.

 43. Marcet-Houben M, Gabaldón T. Beyond the whole-genome duplication:
phylogenetic evidence for an ancient interspecies hybridization in the
baker’s yeast lineage. PLoS Biol. 2015;13(8):1002220.

 44. Consortium TU. Uniprot: the universal protein knowledgebase in 2023.
Nucleic Acids Res. 2023;51(D1):523–31.

 45. Van Dongen S. Graph clustering via a discrete uncoupling process. SIAM J
Matrix Anal Appl. 2008;30(1):121–41.

 46. Edgar RC. Muscle: a multiple sequence alignment method with reduced
time and space complexity. BMC Bioinf. 2004;5(1):1–19.

 47. Guindon S, Dufayard J-F, Vincent L, Anisimova M, Hordijk W, Gascuel
O. New algorithms and methods to estimate maximum-likelihood
phylogenies: assessing the performance of phyml 3.0. Syst Biol.
2010;59(3):307–21.

 48. Zhang Y, Zheng C, Sankoff D. Pinning down ploidy in paleopolyploid
plants. BMC Genomics. 2018;19(Suppl 5):287.

 49. Davín AA, Tricou T, Tannier E, Vienne DM, Szöllősi GJ. Zombi: a phyloge-
netic simulator of trees, genomes and sequences that accounts for dead
linages. Bioinformatics. 2020;36(4):1286–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Unifying duplication episode clustering and gene-species mapping inference
	Abstract
	Introduction
	Basic definitions
	Gene trees, species trees, and the duplication cost
	Episode clustering problems
	Gene-species mappings
	Inferring labelings by minimizing episodes

	Methods
	Episode feasibility problem
	Solving MetaEC for a single partial gene tree
	Distributions of gene-species mappings
	Extensions

	MetaEC in the general case

	Experiments
	Simulated dataset
	A species tree
	Gene trees
	WGD detection
	Gene-species distributions

	Empirical evaluation
	Data preparation
	Results

	Conclusions and future outlook
	Acknowledgements
	References

