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Abstract 

Problem:  We study the problem of identifying differentially mutated subnetworks of a large gene–gene interaction 
network, that is, subnetworks that display a significant difference in mutation frequency in two sets of cancer samples. 
We formally define the associated computational problem and show that the problem is NP-hard.

Algorithm:  We propose a novel and efficient algorithm, called DAMOKLE, to identify differentially mutated subnet-
works given genome-wide mutation data for two sets of cancer samples. We prove that DAMOKLE identifies subnet-
works with statistically significant difference in mutation frequency when the data comes from a reasonable genera-
tive model, provided enough samples are available.

Experimental results:  We test DAMOKLE on simulated and real data, showing that DAMOKLE does indeed find 
subnetworks with significant differences in mutation frequency and that it provides novel insights into the molecular 
mechanisms of the disease not revealed by standard methods.
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Introduction
The analysis of molecular measurements from large col-
lections of cancer samples has revolutionized our under-
standing of the processes leading to a tumour through 
somatic mutations, changes of the DNA appearing dur-
ing the lifetime of an individual [1]. One of the most 
important aspects of cancer revealed by recent large 
cancer studies is inter-tumour genetic heterogeneity: each 
tumour presents hundreds-thousands mutations and no 
two tumours harbour the same set of DNA mutations [2].

One of the fundamental problems in the analysis of 
somatic mutations is the identification of the handful of 
driver mutations (i.e., mutations related to the disease) 
of each tumour, detecting them among the thousands 
or tens of thousands that are present in each tumour 
genome [3]. Inter-tumour heterogeneity renders the 
identification of driver mutations, or of driver genes 
(genes containing driver mutations), extremely difficult, 
since only few genes are mutated in a relatively large 

fraction of samples while most genes are mutated in a 
low fraction of samples in a cancer cohort [4].

Recently, several analyses (e.g, [5, 6]) have shown that 
interaction networks provide useful information to dis-
cover driver genes by identifying groups of interacting 
genes, called pathways, in which each gene is mutated 
at relatively low frequency while the entire group has 
one or more mutations in a significantly large fraction 
of all samples. Several network-based methods have 
been developed to identify groups of interacting genes 
mutated in a significant fraction of tumours of a given 
type and have been shown to improve the detection of 
driver genes compared to methods that analyze genes in 
isolation [5, 7–9].

The availability of molecular measurements in a large 
number of samples for different cancer types have also 
allowed comparative analyses of mutations in cancer [5, 
10, 11]. Such analyses usually analyze large cohorts of dif-
ferent cancer types as a whole employing methods to find 
genes or subnetworks mutated in a significant fraction of 
tumours in one cohort, and also analyze each cancer type 
individually, with the goal to identify:
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1.	 pathways that are common to various cancer types;
2.	 pathways that are specific to a given cancer type.

For example, [5] analyzed 12 cancer types and identified 
subnetworks (e.g., a TP53 subnetwork) mutated in most 
cancer types as well as subnetworks (e.g., a MHC sub-
network) enriched for mutations in one cancer type.  In 
addition, comparative analyses may also be used for the 
identification of mutations of clinical relevance [12]. 
For example: comparing mutations in a patients that 
responded to a given therapy with mutations in patients 
(of the same cancer type) that did not respond to the 
same therapy may identify genes and subnetworks asso-
ciated with response to therapy; comparing mutations in 
patients whose tumours metastasized with mutations in 
patients whose tumours did not metastasize may identify 
mutations associated with the insurgence of metastases.

Pathways that are significantly mutated only in a 
specific cancer type may not be identified by analyz-
ing one cancer type at the time or all samples together 
(Fig.  1), but, interestingly, to the best of our knowledge 
no method has been designed to directly identify sets of 
interacting genes that are significantly more mutated in 
a set of samples compared to another. The task of finding 
such sets is more complex than the identification of sub-
networks significantly mutated in a set of samples, since 
subnetworks that have a significant difference in muta-
tions in two sets may display relatively modest frequency 
of mutation in both set of samples, whose difference can 

be assessed as significant only by the joint analysis of 
both sets of samples. 

Related work
Several methods have been designed to analyze different 
aspects of somatic mutations in a large cohort of can-
cer samples in the context of networks. Some methods 
analyze mutations in the context of known pathways to 
identify the ones significantly enriched in mutations (e.g., 
[13]). Other methods combine mutations and large inter-
action networks to identify cancer subnetworks [5, 14, 
15]. Networks and somatic mutations have also been 
used to prioritarize mutated genes in cancer [7, 8, 16–
18] and for patients stratification [6, 19]. Some of these 
methods have been used for the identification of com-
mon mutation patterns or subnetworks in several cancer 
types [5, 10], but to the best of our knowledge no method 
has been designed to identify mutated subnetworks with 
a significant difference in two cohorts of cancer samples.

Few methods studied the problem of identifying sub-
networks with significant differences in two sets of can-
cer samples using data other than mutations. [20] studied 
the problem of identifying optimally discriminative 
subnetworks of a large interaction network using gene 
expression data. Mall et al. [21] developed a procedure to 
identify statistically significant changes in the topology 
of biological networks. Such methods cannot be readily 
applied to find subnetworks with significant difference in 
mutation frequency in two sets of samples. Other related 
work use gene expression to characterize different cancer 
types: [22] defined a pathway-based score that clusters 
samples by cancer type, while [23] defined pathway-
based features used for classification in various settings, 
and several methods [24–28] have been designed for 
finding subnetworks with differential gene expression.

Our contribution
In this work we study the problem of finding subnet-
works with frequency of mutation that is significantly 
different in two sets of samples. In particular, our con-
tributions are fourfold. First, we propose a combinato-
rial formulation for the problem of finding subnetworks 
significantly more mutated in one set of samples than in 
another and prove that such problem is NP-hard. Sec-
ond, we propose DifferentiAlly Mutated subnetwOrKs 
anaLysis in cancEr (DAMOKLE), a simple and efficient 
algorithm for the identification of subnetworks with a 
significant difference of mutation in two sets of samples, 
and analyze DAMOKLE proving that it identifies sub-
networks significantly more mutated in one of two sets 
of samples under reasonable assumptions for the data. 
Third, we test DAMOKLE on simulated data, verifying 

Fig. 1  Identification of subnetworks with significant difference in 
mutation frequency in two set of samples C ,D . The blue subnetwork 
is significantly more mutated in D than in C , but it is not detected by 
methods that look for the most significantly mutated subnetworks 
in C or in D or in C ∪D , since the orange subnetwork is in each case 
mutated at much higher frequency
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experimental that DAMOKLE correctly identifies sub-
networks significantly more mutated in a set of samples 
when enough samples are provided in input. Fourth, 
we test DAMOKLE on large cancer datasets compris-
ing two cancer types, and show that DAMOKLE identi-
fies subnetworks significantly associated with one of the 
two types which cannot be identified by state-of-the-art 
methods designed for the analysis of one set of samples.

Methods and algorithms
This section presents the problem we study, the algo-
rithm we propose for its solution, and the analysis of our 
algorithm. In particular, "Computational problem" section 
formalizes the computational problem we consider; "Algo-
rithm" section presents DifferentiAlly Mutated subnet-
wOrKs anaLysis in cancEr (DAMOKLE), our algorithm 
for the solution of the computational problem; "Analysis of 
DAMOKLE" section describes the analysis of our algo-
rithm under a reasonable generative model for mutations; 
"Statistical significance of the results" section presents a 
formal analysis of the statistical significance of subnetworks 
obtained by DAMOKLE; and "Permutation testing" section 
describes two permutation tests to assess the significance 
of the results of DAMOKLE for limited sample sizes.

Computational problem
We are given measurements on muta-
tions in m genes G = {1, . . . ,m} on two sets 
C = {c1, . . . , cnC },D = {d1, . . . , dnD } of samples. Such 
measurements are represented by two matrices C and D, 
of dimension m× nC and m× nD , respectively, where nC 
(resp., nD ) is the number of samples in C (resp., D ). C(i, j) = 1 
(resp., D(i, j) = 1 ) if gene i is mutated in the j-th sample of C 
(resp., D ) and C(i, j) = 0 (resp., D(i, j) = 0 ) otherwise. We 
are also given an (undirected) graph G = (V ,E) , where ver-
tices V = {1, . . . ,m} are genes and (i, j) ∈ E if gene i inter-
acts with gene j (e.g., the corresponding proteins interact).

Given a set of genes S ⊂ G , we define the indicator 
function cS(ci) with cS(ci) = 1 if at least one of the genes 
of S is mutated in sample ci , and cS(ci) = 0 otherwise. We 
define cS(di) analogously. We define the coverage cS(C) of 
S in C as the fraction of samples in C for which at least 
one of the genes in S is mutated in the sample, that is

and, analogously, define the coverage cS(D) of  S in D as 
cS(D) =

∑nD
i=1 cS(di)

nD
.

We are interested in identifying sets of genes S, with 
|S| ≤ k , corresponding to connected subgraphs in G and 
displaying a significant difference in coverage between 
C and D , i.e., with a high value of |cS(C)− cS(D)| . 

cS(C) =

∑nC
i=1 cS(ci)

nC

We define the differential coverage dcS(C,D) as 
dcS(C,D) = cS(C)− cS(D).

In particular, we study the following computational 
problem.

The differentially mutated subnetworks discovery 
problem: given a value θ with θ ∈ [0, 1] , find all connected 
subgraphs S of G of size ≤ k such that dcS(C,D) ≥ θ.

Note that by finding sets that maximize dcS(C,D) we 
identify sets with significantly more mutations in C than 
in D , while to identify sets with significantly more muta-
tions in D than in C we need to find sets maximizing 
dcS(D, C) . In addition, note that a subgraph S in the solu-
tion may contain genes that are not mutated in C ∪D but 
that are needed for the connectivity of S.

We have the following.

Theorem 1  The differentially mutated subnetworks dis-
covery problem is NP-hard.

Proof  The proof is by reduction from the connected 
maximum coverage problem [14]. In the connected 
maximum coverage problem we are given a graph G 
defined on a set V = {v1, . . . , vn} of n vertices, a family 
P = {P1, . . . ,Pn} of subsets of a universe I (i.e., Pi ∈ 2I ), 
with Pi being the subset of I covered by vi ∈ V  and value 
k, and we want to find the subgraph C∗

= {vi1 , . . . , vik } 
with k nodes of G that maximizes | ∪k

j=1 Pij |.
Given an instance of the connected maximum cover-

age problem, we define an instance of the differentially 
mutated subnetworks discovery problem as follows: the 
set G of genes corresponds to the set V of vertices of G 
in the connected maximum coverage problem, and the 
graph G is the same as in the instance of the maximum 
coverage instance; the set C is given by the set I and the 
matrix C is defined as Ci,j = 1 if i ∈ Pj , while D = ∅.

Note that for any subgraph S of G, the differen-
tial coverage dcD(C,D) = cS(C)− cS(D) = cS(C) and 
cS(C) = | ∪g∈S Pg |/|I | . Since |I| is the same for all solu-
tions, the optimal solution of the differentially mutated 
subnetworks discovery instance corresponds to the 
optimal solution to the connected maximum coverage 
instance, and viceversa. � �

Algorithm
We now describe DifferentiAlly Mutated subnetwOrKs 
anaLysis in cancEr (DAMOKLE), an algorithm to solve 
the differentially mutated subnetworks discovery prob-
lem. DAMOKLE takes in input mutation matrices C and 
D for two sets C , D of samples, a (gene–gene) interaction 
graph G, an integer k > 0 , and a real value θ ∈ [0, 1] , and 
returns subnetworks S of G with ≤ k vertices and differ-
ential coverage dcS(C,D) ≥ θ . Subnetworks reported by 
DAMOKLE are also maximal (no vertex can be added to 



Page 4 of 11Hajkarim et al. Algorithms Mol Biol           (2019) 14:10 

S while maintaining the connectivity of the subnetwork, 
|S| ≤ k and dcS(C,D) ≥ θ ). DAMOKLE is described 
in Algorithm  1. DAMOKLE starts by considering each 
edge e = {u, v} ∈ E of G with differential coverage 
dc{u,v}(C,D) ≥ θ/(k − 1) , and for each such e identifies 
subnetworks including e to be reported in output using 
Algorithm 2. 

Algorithm 1: DAMOKLE
Input: mutation matrices C,D; gene-gene interaction graph G = (V,E); integer k > 0;

θ ∈ [0, 1]
Output: maximal connected subgraphs with dcS(C,D) ≥ θ

1 solutions ← ∅;
2 foreach {u, v} ∈ E do
3 if dc{u,v}(C,D) ≥ θ/(k − 1) then
4 solutions ← solutions ∪ GetSolutions(E,{u, v});
5 end
6 end
7 return solutions;

GetSolutions, described in Algorithm  2, is a recur-
sive algorithm that, give a current subgraph S, identifies 
all maximal connected subgraphs S′, |S′| ≤ k , containing 
S and with dcS′(C,D) ≥ θ . This is obtained by expanding 
S one edge at the time and stopping when the number of 
vertices in the current solution is k or when the addition 
of no vertex leads to an increase in differential coverage 
dcS(C,D) for the current solution S. In Algorithm 2, N(S) 
refers to the set of edges with exactly one vertex in the 
set S. 

Algorithm 2: GetSolutions
Input: set E of edges of the graph; current subgraph (solution) S
Output: maximal connected subgraphs containing S with dcS(C,D) ≥ θ

1 nextEdges ← ∅;
2 foreach e ∈ N(S) do
3 if dcS∪{e}(C,D) ≥ dcS(C,D) then nextEdges ← nextEdges ∪{e};
4 end
5 if |nextEdges| = 0 OR |S| = k then
6 if dcS(C,D) ≥ θ then return S;
7 end
8 newSols ← ∅;
9 foreach e ∈ nextEdges do newSols ← newSols ∪ GetSolutions(E,S ∪ {e}) ;

10 return newSols;

Model
For each gene i ∈ G = {1, 2, ...,m} there is an a-priori 
probability pi of observing a mutation in gene i. Let 
H ⊂ G be the connected subnetwork of up to k genes that 
is differentially mutated in samples of C w.r.t. samples of 
D . Mutations in our samples are taken from two related 
distributions. In the “control” distribution F a mutation 

in gene i is observed with probability pi independent of 
other genes’ mutations. The second distribution FH is 
analogous to the distribution F but we condition on the 
event E(H) =“at least one gene in H is mutated in the 
sample”.

For genes not in H, all mutations come from distribu-
tion F. For genes in H, in a perfect experiment with no 
noise we would assume that samples in C are taken from 
FH and samples from D are taken from F. However, to 

The motivation for design choices of DAMOKLE are 
provided by the results in the next section.

Analysis of DAMOKLE
The design and analysis of DAMOKLE are based on the 
following generative model for the underlying biological 
process.

model realistic, noisy data we assume that with some 
probability q the “true” signal for a sample is lost, that is 
the sample from C is taken from F. In particular, samples 
in C are taken with probability 1− q from FH and with 
probability q from F.
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Let p be the probability that H has at least one 
mutation in samples from the control model F, 
p = 1−

∏

j∈H (1− pj) ≈
∑

j∈H pj . Clearly, we are only 
interested in sets H ⊂ G with p ≪ 1.

If we focus on individual genes, the probability gene i is 
mutated in a sample from D is pi , while the probability 
that it is mutated in a sample from C is (1−q)pi

1−
∏

j∈H (1−pj)
+ qpi. 

Such a gap may be hard to detect with a small number of 
samples. On the other hand, the probability of E(H) (i.e., 
of at least one mutation in the set H) in a sample from C 
is (1− q)+ q(1−

∏

j∈H (1− pj)) = 1− q + qp , while the 
probability of E(H) in a sample from D is 
1−

∏

j∈H (1− pj) = p which is a more significant gap, 
when p ≪ 1.

The efficiency of DAMOKLE is based on two funda-
mental results. First we show that it is sufficient to start 
the search only in edges with relatively high differential 
coverage.

Proposition 1  If dcS(C,D) ≥ θ , then, in the above 
generating model, with high probability (asymp-
totic in nC and nD )there exist an edge e ∈ S such that 
dc{e}(C,D) ≥ (θ − ǫ)/(k − 1), for any ǫ > 0.

Proof  For a set of genes S′ ⊂ G and a sample z ∈ C ∪D , 
let Count(S′, z) be the number of genes in S′ mutated 
in sample z. Clearly, if for all z ∈ C ∪D , we have 
Count(S, z) = 1 , i.e. each sample has no more than one 
mutation in S, then

Thus, there is a vertex j∗ = arg maxj∈S
(

∑nC
i=1

Count({j},ci)

nC
−

∑nD
i=1

Count({j},di)

nD

)

 such that 

dc{j∗}(C,D) =

∑nC
i=1 Count({j

∗
},ci)

nC
−

∑nD
i=1 Count({j

∗
},di)

nD
≥ θ/k .

Since the set of genes S is connected, there is an edge 
e = (j∗, ℓ) for some ℓ ∈ S . For that edge,

For the case when the assumption Count(S, z) = 1 for all 
z ∈ C ∪D does not hold, let

dcS(C,D) = cS(C)− cS(D) =

∑nC
i=1

cS(ci)

nC
−

∑nD
i=1

cS(di)

nD

=

∑nC
i=1

∑

j∈S Count({j}, ci)

nC
−

∑nD
i=1

∑

j∈S Count({j}, di)

nD

=

∑

j∈S

(
∑nC

i=1
Count({j}, ci)

nC
−

∑nD
i=1

Count({j}, di)

nD

)

≥θ .

dc{e}(C,D) ≥
θ − dc{ℓ}(C,D)

k − 1
+ dc{ℓ}(C,D) ≥

θ

k − 1
.

Then

and

Since the probability of having more than one mutation 
in S in a sample from C is at least as high as from a sample 
from D , we can normalize (similar to the proof of Theo-
rem 2 below) and apply Hoeffding bound (Theorem 4.14 
in [29]) to prove that

� �

The second result motivates the choice, in Algorithm 2, 
of adding only edges that increase the score of the cur-
rent solution (and to stop if there is no such edge).

Proposition 2  If subgraph S can be partitioned as 
S = S′ ∪ {j} ∪ S′′, and dcS ′∪{j}(C,D) < dcS ′(C,D)− ppj , 
then with high probability (asymptotic in nD )dcS\{j}
(C,D) > dcS(C,D).

Proof  We first observe that if each sample in D has no 
more than 1 mutation in S then dcS ′∪{j}(C,D) < dcS ′(C,D) 
implies that dc{j}(C,D) < 0 , and therefore, under this 
assumption, dcS\{j}(C,D) > dcS(C,D).

To remove the assumption that a sample has no more 
than one mutation in S, we need to correct for the frac-
tion of samples in D with mutations both in j and S′′ . 
With high probability (asymptotic in nD ) this fraction is 
bounded by ppj + ǫ for any ǫ > 0 . � �

Statistical significance of the results
To compute a threshold that guarantees statistical con-
fidence of our finding, we first compute a bound on the 
gap in a non significant set.

Mul(S, C,D) =

∑nC
i=1

∑

j∈S Count({j}, ci)

nC
−

∑nC
i=1 cS(ci)

nC

+

∑nD
i=1 Count({j}, di)

nD
−

∑nD
i=1 cS(di)

nD
.

∑

j∈S

(
∑nC

i=1
Count({j}, ci)

nC
−

∑nD
i=1

Count({j}, di)

nD

)

−Mul(S, C,D) ≥ θ

dc{e}(C,D) ≥
θ +Mul(S, C,D)

k − 1
.

Prob(Mul(S, C,D) < −ǫ) ≤ 2e−2ǫ2nCnD/(nC+nD).
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Theorem 2  Assume that S is not a significant set, i.e., C 
and D have the same distribution on S, then

Proof  Let X1, . . . ,XnC be independent random variables 
such that Xi = 1/nC if sample ci in C has a mutation in S, 
otherwise Xi = 0 . Similarly, let Y1, . . . ,YnD be independ-
ent random variables such that Yi = −1/nD if sample di 
in D has a mutation in S, otherwise Yi = 0.

Clearly dcS(C,D) =
∑nC

i=1 Xi +
∑nD

i=1 Yi , and since S is 
not significant E

[
∑nC

i=1 Xi +
∑nD

i=1 Yi
]

= 0.
To apply Hoeffding bound (Theorem  4.14 in [29]), 

we note that the sum 
∑nC

i=1 Xi +
∑nD

i=1 Yi has nC vari-
ables in the range [0, 1/nC ] , and nD variables in the range 
[−1/nD, 0] . Thus,

� �

Let Nk be the set of subnetworks under consideration, 
or the set of all connected components of size ≤ k . We 
use Theorem  2 to obtain guarantees on the statistical 
significance of the results of DAMOKLE  in terms of the 
Family-Wise Error Rate (FWER) or of the False Discov-
ery Rate (FDR) as follows:

•	 FWER: if we want to find just the subnetwork with 
significant maximum differential coverage, to bound 
the FWER of our method by α we use the maximum 
ǫ such that Nk2e

−2ǫ2nCnD/(nC+nD)
≤ α.

•	 FDR: if we want to find several significant subnet-
works with high differential coverage, to bound 
the FDR by α we use the maximum ǫ such that 
Nk2e

−2ǫ2nCnD/(nC+nD)/n(α) ≤ α , where n(α) is the 
number of sets with differential coverage ≥ ǫ.

Permutation testing
While Theorem 2 shows how to obtain guarantees on the 
statistical significance of the results of DAMOKLE by 
appropriately setting θ , in practice, due to relatively small 
sample sizes and to inevitable looseness in the theoretical 
guarantees, a permutation testing approach may be more 
effective in estimating the statistical significance of the 
results of DAMOKLE and provide more power for the 
identification of differentially mutated subnetworks.

We consider two permutation tests to assess the asso-
ciation of mutations in the subnetwork with the high-
est differential coverage found by DAMOKLE. The first 

Prob(dcS(C,D) > ǫ) ≤ 2e−2ǫ2nCnD/(nC+nD).

Prob(dcS(C,D) > ǫ) ≤ 2e
(−2ǫ2)/(nc/n

2
c+nd/n

2
D
)

= 2e
−2ǫ2nCnD/(nC+nD)

.

test assesses whether the observed differential coverage 
can be obtained under the independence of mutations 
in genes by considering the null distribution in which 
each gene is mutated in a random subset (of the same 
cardinality as observed in the data) of all samples, inde-
pendently of all other events. The second test assesses 
whether, under the observed marginal distributions for 
mutations in sets of genes, the observed differential cov-
erage of a subnetwork can be obtained under the inde-
pendence between mutations and samples’ memberships 
(i.e., being a sample of C or a sample of D ), by randomly 
permuting the samples memberships.

Let dcS(C,D) be the differential coverage observed on 
real data for the solution S with highest differential cov-
erage found by DAMOKLE (for some input parameters). 
For both tests we estimate the p-value as follow:

1.	 generate N (permuted) datasets from the null distri-
bution;

2.	 run DAMOKLE (with the same input parameters 
used on real data) on each of the N permuted data-
sets;

3.	 let x be the number of permuted datasets in which 
DAMOKLE reports a solution with differen-
tial coverage ≥ dcS(C,D) : then the p-value of S is 
(x + 1)/(N + 1).

Results
We implemented DAMOKLE in Python1 and tested 
it on simulated and on cancer data. Our experiments 
have been conducted on a Linux machine with 16 cores 
and 256 GB of RAM. For all our experiments we used 
as interaction graph G the HINT+HI2012 network2, a 
combination of the HINT network [30] and the HI-2012  
[31] set of protein–protein interactions, previously used 
in [5]. In all cases we considered only the subnetwork 
with the highest differential coverage among the ones 
returned by DAMOKLE. We first present the results on 
simulated data ("Simulated data" section) and then pre-
sent the results on cancer data ("Cancer data" section).

Simulated data
We tested DAMOKLE on simulated data generated as 
follows. We assume there is a subnetwork S of k genes 
with differential coverage dcS(C,D) = c . In our simu-
lations we set |C| = |D| = n . For each sample in D , 
each gene g in G (including genes in S) is mutated with 

1  The implementation is available at https​://githu​b.com/Vandi​nLab/DAMOK​
LE.
2  http://compb​io-resea​rch.cs.brown​.edu/panca​ncer/hotne​t2/.

https://github.com/VandinLab/DAMOKLE
https://github.com/VandinLab/DAMOKLE
http://compbio-research.cs.brown.edu/pancancer/hotnet2/
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probability pg , independently of all other events. For sam-
ples in C , we first mutated each gene g with probability 
pg independently of all other events. We then considered 
the samples of C without mutations in S, and for each 
such sample we mutated, with probability c, one gene of 
S, chosen uniformly at random. In this way c is the expec-
tation of the differential coverage dcS(C,D) . For genes in 
G \ S we used mutation probabilities pg estimated from 
oesophageal cancer data [32]. We considered only value 
of n ≥ 100 , consistent with sample sizes in most recent 
cancer sequencing studies. (The latest ICGC data release3 
from April 30th , 2018 has data for ≥ 500 samples for 81% 
of the primary sites).

The goal of our investigation using simulated data is 
to evaluate the impact of various parameters on ability 

of DAMOKLE to recover S or part of it. In particular, 
we studied the impact of three parameters: the differen-
tial coverage dcS(C,D) of the planted subnetwork S; the 
number k of genes in S; and the number n of samples in 
each class. To evaluate the impact of such parameters, for 
each combination of parameters in our experiments we 
generated 10 simulated datasets and run DAMOKLE on 
each dataset with θ = 0.01 , recording

1.	 the fraction of times that DAMOKLE reported S as 
the solution with the highest differential coverage, 
and

2.	 the fraction of genes of S that are in the solution with 
highest differential coverage found by DAMOKLE.

We first investigated the impact of the differen-
tial coverage c = dcS(C,D) . We analyzed simulated 

a b

c

Fig. 2  a Performance of DAMOKLE as a function of the differential coverage dcS(C ,D) of subnetwork S. The figure shows (red) the fraction of 
times, out of 10 experiments, that the best solution corresponds to S and (blue) the fraction of genes in S that are reported in the best solution by 
DAMOKLE. For the latter, error bars show the standard deviation on the 10 experiments. n = 100 and k = 5 for all experiments. b Performance of 
DAMOKLE as a function of the number k of genes in subnetwork S. n = 100 and dcS(C ,D) = 0.46 for all experiments. c Performance of DAMOKLE 
as a function of the number n of samples in C ,D . k = 10 and dcS(C ,D) = 0.46 for all experiments

3  https​://dcc.icgc.org/.

https://dcc.icgc.org/
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datasets with n = 100 samples in each class, where 
k = 5 genes are part of the subnetwork S, for values of 
c = 0.1, 0.22, 0.33, 0.46, 0.6, 0.8 ,. We run DAMOKLE on 
each dataset with k = 5 . The results are shown in Fig. 2a. 
For low values of the differential coverage c, with n = 100 
samples DAMOKLE never reports S as the best solu-
tion found and only a small fraction of the genes in S are 
part of the solution reported by DAMOKLE. However, 
as soon as the differential coverage is ≥ 0.45 , even with 
n = 100 samples in each class DAMOKLE identifies the 
entire planted solution S most of the times, and even 
when the best solution does not entirely corresponds to 
S, more than 80% of the genes of S are reported in the 
best solution. For values of c ≥ 0.6 , DAMOKLE always 
reports the whole subnetwork S as the best solution. 
Given that many recent large cancer sequencing studies 
consider at least 200 samples, DAMOKLE will be useful 
to identify differentially mutated subnetworks in such 
studies. 

We then tested the performance of DAMOKLE as a 
function of the number of genes k in S. We tested the abil-
ity of DAMOKLE to identify a subnetwork S with differ-
ential coverage dcS(C,D) = 0.46 in a dataset with n = 100 
samples in both C and D , when the number k of genes in 
S varies as k = 5, 7, 9 . The results are shown in Fig. 2b. As 
expected, when the number of genes in S increases, the 
fraction of times S is the best solution as well as the frac-
tion of genes reported in the best solution by S decreases, 
and for k = 9 the best solution found by DAMOKLE cor-
responds to S only 10% of the times. However, even for 
k = 9 , on average most of the genes of S are reported in 
the best solution by DAMOKLE. Therefore DAMOKLE 
can be used to identify relatively large subnetworks 
mutated in a significantly different number of samples 
even when the number of samples is relatively low.

Finally, we tested the performance of DAMOKLE as 
the number of samples n in each set C,D increases. In 
particular, we tested the ability of DAMOKLE to iden-
tify a relatively large subnetwork S of k = 10 genes with 
differential coverage dcS(C,D) = 0.46 as the number 
of samples n increases. We analyzed simulated datasets 
for n = 100, 250, 500 . The results are shown in Fig.  2. 
For n = 100 , when k = 10 , DAMOKLE never reports S 
as the best solution and only a small fraction of all genes 
in S are reported in the solution. However, for n = 250 , 
while DAMOKLE still reports S as the best solution only 
10% of the times, on average 70% of the genes of S are 
reported in the best solution. More interestingly, already 
for n = 500 , DAMOKLE always reports S as the best 
solution. These results show that DAMOKLE can reliably 
identify relatively large differentially mutated subnet-
works from currently available datasets of large cancer 
sequencing studies.

Cancer data
We use DAMOKLE to analyze somatic mutations from 
The Cancer Genome Atlas. We first compared two sim-
ilar cancer types and two very different cancer types to 
test whether DAMOKLE behaves as expected on these 
types. We then analyzed two pairs of cancer types where 
differences in alterations are unclear. In all cases we run 
DAMOKLE with θ = 0.1 and obtained p-values with the 
permutation tests described in "Permutation testing" 
section.

Lung cancer
We used DAMOKLE to analyze 188 samples of lung 
squamous cell carcinoma (LUSC) and 183 samples of 
lung adenocarcinoma (LUAD). We only considered single 
nucleotide variants (SNVs)4 and use k = 5 . DAMOKLE 
did not report any significant subnetwork, in agreement 
with previous work showing that these two cancer types 
have known differences in gene expression [33] but are 
much more similar with respect to SNVs [34].

Colorectal vs ovarian cancer
We used DAMOKLE to analyze 456 samples of colorectal 
adenocarcinoma (COADREAD) and 496 samples of ovar-
ian serous cystadenocarcinoma (OV) using only SNVs.5 
For k = 5 , DAMOKLE identifies the significant ( p < 0.01 
according to both tests in "Permutation testing" section) 
subnetwork APC, CTNNB1, FBXO30, SMAD4, SYNE1 
with differential coverage 0.81 in COADREAD w.r.t. OV. 
APC, CTNNB1, and SMAD4 are members of the WNT 
signaling and TFG-β signaling pathways. The WNT 
signaling pathway is one of the cascades that regulates 
stemness and development, with a role in carcinogenesis 
that has been described mostly for colorectal cancer [35], 
but altered Wnt signaling is observed in many other can-
cer types [36]. The TFG-β signaling pathway is involved 
in several processes including cell growth and apoptosis, 
that is deregulated in many diseases, including COAD-
READ [35]. The high differential coverage of the subnet-
work is in accordance with COADREAD being altered 
mostly by SNVs and OV being altered mostly by copy 
number aberrations (CNAs) [37].

Esophagus‑stomach cancer
We analyzed SNVs and CNAs in 171 samples of esopha-
gus cancer and in 347 samples of stomach cancer [32].6 
The number of mutations in the two sets is not sig-
nificantly different (t-test p = 0.16). We first considered 

4  http://cbio.mskcc​.org/cance​rgeno​mics/panca​n_tcga/.
5  http://cbio.mskcc​.org/cance​rgeno​mics/panca​n_tcga/.
6  http://www.cbiop​ortal​.org/study​?id=stes_tcga_pub#summa​ry.

http://cbio.mskcc.org/cancergenomics/pancan_tcga/
http://cbio.mskcc.org/cancergenomics/pancan_tcga/
http://www.cbioportal.org/study?id=stes_tcga_pub#summary
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single genes, identifying TP53 with high ( > 0.5 ) differ-
ential coverage between the two cancer types. Altera-
tions in TP53 have then be removed for the subsequent 
DAMOKLE analysis. We run DAMOKLE with k = 4 
with C being the set of stomach tumours and D being 
the set of esophagus tumours. DAMOKLE identifies the 
significant ( p < 0.01 for both tests in "Permutation test-
ing" section) subnetwork S = {ACTL6A, ARID1A, BRD8, 
SMARCB1} with differential coverage 0.26 (Fig.  3a, b). 
Interestingly, all four genes in the subnetwork identified 
by DAMOKLE are members of the chromatin organiza-
tion machinery recently associated with cancer [38, 39]. 
Such subnetwork is not reported as differentially mutated 
in the TCGA publication comparing the two cancer types 
[32]. BRD8 is only the top-16 gene by differential cover-
age, while ACTL6 and SMARCB1 are not among the top-
2000 genes by differential coverage. We compared the 
results obtained by DAMOKLE with the results obtained 
by HotNet2 [5], a method to identify significantly 
mutated subnetworks, using the same mutation data and 
the same interaction network as input: none of the genes 
in S appeared in significant subnetworks reported by 
HotNet2. 

Diffuse gliomas
We analyzed single nucleotide variants (SNVs) and copy 
number aberrations (CNAs) in 509 samples of lower 
grade glioma (LGG) and in 303 samples of glioblastoma 
multiforme (GBM).7 We considered nonsilent SNVs, 

short indels, and CNAs. We removed from the analysis 
genes with < 6 mutations in both classes. By single gene 
analysis we identified IDH1 with high ( > 0.5 ) differen-
tial coverage, and removed alterations in such gene for 
the DAMOKLE analysis. We run DAMOKLE with k = 5 
with C being the set of GBM samples and D being the set 
of LGG samples. The number of mutations in C and in D 
is not significantly different (t-test p = 0.1). DAMOKLE 
identifies the significant ( p < 0.01 for both tests in "Per-
mutation testing" section) subnetwork S = {CDKN2A, 
CDK4, MDM2, MDM4, RB1} (Fig. 3c, d). All genes in S 
are members of the p53 pathway or of the RB pathway. 
The p53 pathway has a key role in cell death as well as in 
cell division, and the RB pathway plays a crucial role in 
cell cycle control. Both pathways are well known glioma 
cancer pathways [40]. Interestingly, [41] did not report 
any subnetwork with significant difference in muta-
tions between LGG and GBM samples. CDK4, MDM2, 
MDM4, and RB1 do not appear among the top-45 
genes by differential coverage. We compared the results 
obtained by DAMOKLE with the results obtained by 
HotNet2. Of the genes in our subnetwork, only CDK4 
and CDKN2A are reported in a significantly mutated 
subnetwork ( p < 0.05 ) obtained by HotNet2 analyzing D 
but not analyzing C , while MDM2, MDM4, and RB1 are 
not reported in any significant subnetwork obtained by 
HotNet2.

Conclusion
In this work we study the problem of finding subnetworks 
of a large interaction network with significant difference 
in mutation frequency in two sets of cancer samples. 
This problem is extremely important to identify mutated 

a b c d

Fig. 3  Results of DAMOKLE analysis of esophagus tumours and stomach tumours and of diffuse gliomas. a Subnetwork S with significant ( p < 0.01 ) 
differential coverage in esophagus tumours vs stomach tumours (interactions from HINT+HI2012 network). b Fractions of samples with mutations 
in genes of S in esophagus tumours and in stomach tumours. c Subnetwork S with significant ( p < 0.01 ) differential coverage in LGG samples vs 
GBM samples (interactions from HINT+HI2012 network). d Fractions of samples with mutations in genes of S in LGG samples and GBM samples

7  https​://media​.githu​buser​conte​nt.com/media​/cBioP​ortal​/datah​ub/maste​r/
publi​c/lgggb​m_tcga_pub.tar.gz.

https://media.githubusercontent.com/media/cBioPortal/datahub/master/public/lgggbm_tcga_pub.tar.gz
https://media.githubusercontent.com/media/cBioPortal/datahub/master/public/lgggbm_tcga_pub.tar.gz
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mechanisms that are specific to a cancer (sub)type as well 
as for the identification of mechanisms related to clinical 
features (e.g., response to therapy). We provide a formal 
definition of the problem and show that the associated 
computational problem is NP-hard. We design, analyze, 
implement, and test a simple and efficient algorithm, 
DAMOKLE, which we prove identifies significant sub-
networks when enough data from a reasonable genera-
tive model for cancer mutations is provided. Our results 
also show that the subnetworks identified by DAMOKLE 
cannot be identified by methods not designed for the 
comparative analysis of mutations in two sets of samples. 
We tested DAMOKLE on simulated and real data. The 
results on simulated data show that DAMOKLE identi-
fies significant subnetworks with currently available sam-
ple sizes. The results on two large cancer datasets, each 
comprising genome-wide measurements of DNA muta-
tions in two cancer subtypes, shows that DAMOKLE 
identifies subnetworks that are not found by methods not 
designed for the comparative analysis of mutations in two 
sets of samples.

While we provide a first method for the differential 
analysis of cohorts of cancer samples, several research 
directions remain. First, differences in the frequency of 
mutation of a subnetwork in two sets of cancer cohorts 
may be due to external (or hidden) variables, as for 
example the mutation rate of each cohort. While at the 
moment we ensure before running the analysis that no 
significant difference in mutation rate is present between 
the two sets, performing the analysis while correcting 
for possible differences in such confounding variable or 
in others would greatly expand the applicability of our 
method. Second, for some interaction networks (e.g., 
functional ones) that are relatively more dense than the 
protein–protein interaction network we consider, requir-
ing a minimum connectivity (e.g., in the form of fraction 
of all possible edges) in the subnetwork may be benefi-
cial, and the design of efficient algorithms considering 
such requirement is an interesting direction of research. 
Third, different types of mutation patterns (e.g., mutual 
exclusivity) among two set of samples could be explored 
(e.g., extending the method proposed in [42]). Fourth, 
the inclusion of additional types of measurements, as for 
example gene expression, may improve the power of our 
method. Fifth, the inclusion of noncoding variants in the 
analysis may provide additional information to be lever-
aged to assess the significance of subnetworks.
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