
Alanko et al. Algorithms Mol Biol (2020) 15:2
https://doi.org/10.1186/s13015-020-0163-6

RESEARCH

Finding all maximal perfect haplotype
blocks in linear time
Jarno Alanko1, Hideo Bannai2, Bastien Cazaux1, Pierre Peterlongo3 and Jens Stoye4* 

Abstract 

Recent large-scale community sequencing efforts allow at an unprecedented level of detail the identification of
genomic regions that show signatures of natural selection. Traditional methods for identifying such regions from
individuals’ haplotype data, however, require excessive computing times and therefore are not applicable to cur-
rent datasets. In 2019, Cunha et al. (Advances in bioinformatics and computational biology: 11th Brazilian sympo-
sium on bioinformatics, BSB 2018, Niterói, Brazil, October 30 - November 1, 2018, Proceedings, 2018. https​://doi.
org/10.1007/978-3-030-01722​-4_3) suggested the maximal perfect haplotype block as a very simple combinatorial
pattern, forming the basis of a new method to perform rapid genome-wide selection scans. The algorithm they pre-
sented for identifying these blocks, however, had a worst-case running time quadratic in the genome length. It was
posed as an open problem whether an optimal, linear-time algorithm exists. In this paper we give two algorithms that
achieve this time bound, one conceptually very simple one using suffix trees and a second one using the positional
Burrows–Wheeler Transform, that is very efficient also in practice.

Keywords:  Population genomics, Selection coefficient, Haplotype block, Positional Burrows–Wheeler Transform

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction and background
As a result of the technological advances that went
hand in hand with the genomics efforts of the last dec-
ades, today it is possible to experimentally obtain and
study the genomes of large numbers of individuals, or
even multiple samples from an individual. For instance,
the National Human Genome Research Institute and the
European Bioinformatics Institute have collected more
than 3500 genome-wide association study publications in
their GWAS Catalog [1].

Probably the most prominent example of large-scale
sequencing projects is the 1000 Genomes Project (now
International Genome Sample Resource, IGSR), initi-
ated with the goal of sequencing the genomes of more
than one thousand human individuals to identify 95%
of all genomic variants in the population with allele

frequency of at least 1% (down toward 0.1% in coding
regions). The final publications from phase 3 of the pro-
ject report about genetic variations from more than 2500
genomes [2, 3].

Recently, several countries announced large-scale
national research programs to capture the diversity of
their populations, while some of these efforts started
already more than 20 years ago. Since 1996 Iceland’s
deCODE company is mining Icelanders’ genetic and
medical data for disease genes. In 2015, deCODE pub-
lished insights gained from sequencing the whole
genomes of 2636 Icelanders [4]. Genome of the Nether-
lands (GoNL) is a whole genome sequencing project aim-
ing to characterize DNA sequence variation in the Dutch
population using a representative sample consisting of
250 trio families from all provinces in the Netherlands.
In 2016, GoNL analysed whole genome sequencing data
of 769 individuals and published a haplotype-resolved
map of 1.9 million genome variants [5]. Similar projects
have been established in larger scale in the UK: Following
the UK10K project for identifying rare genetic variants

Open Access

Algorithms for
Molecular Biology

*Correspondence: jens.stoye@uni‑bielefeld.de
4 Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld
University, Bielefeld, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4656-7155
https://doi.org/10.1007/978-3-030-01722-4_3
https://doi.org/10.1007/978-3-030-01722-4_3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-020-0163-6&domain=pdf

Page 2 of 7Alanko et al. Algorithms Mol Biol (2020) 15:2

in health and disease (2010–2013), Genomics England
was set up in late 2012 to deliver the 100,000 Genomes
Project [6]. This flagship project has by now sequenced
100,000 whole genomes from patients and their families,
focusing on rare diseases, some common types of cancer,
and infectious diseases. The scale of these projects is cul-
minating in the US federal Precision Medicine Initiative,
where the NIH is funding the All of Us research program1
to analyze genetic information from more than 1 million
American volunteers. Even more extreme suggestions go
as far as to propose “to sequence the DNA of all life on
Earth”2.

The main motivation for the collection of these large
and comprehensive data sets is the hope for a better
understanding of genomic variation and how variants
relate to health and disease, but basic research in evolu-
tion, population genetics, functional genomics and stud-
ies on demographic history can also profit enormously.

One important approach connecting evolution and
functional genomics is the search for genomic regions
under natural selection based on population data. The
selection coefficient [7] is an established parameter
quantifying the relative fitness of two genetic variants.
Unfortunately, haplotype-based methods for estimating
selection coefficients have not been designed with the
massive genome data sets available today in mind, and
may therefore take prohibitively long when applied to
large-scale population data. In view of the large popula-
tion sequencing efforts described above, methods are
needed that—at similar sensitivity—scale to much higher
dimensions.

Only recently a method for the fast computation of a
genome-wide selection scan has been proposed that
can be computed quickly even for large datasets [8]. The
method is based on a very simple combinatorial string
pattern, maximal perfect haplotype blocks. Although con-
siderably faster than previous methods, the running time
of the algorithm presented in that paper is not optimal,
as it takes O(kn2) time in order to find all maximal per-
fect haplotype blocks in k genomes of length n each. This
is sufficient to analyse individual human chromosomes
on a laptop computer, for datasets of the size of the 1000
Genomes Project (thousands of genomes and millions of
variations). However, with the larger datasets currently
underway and with higher resolution it will not scale
favourably. More efficient methods are therefore nec-
essary and it was phrased as an open question whether

there exists a linear-time algorithm to find all maximal
perfect haplotype blocks.

In this paper we settle this open problem affirmatively.
More specifically, after some basic definitions in “Basic
definitions” section we present in “Linear-time method I:
based on suffix trees” and “Linear-time method II: based
on the positional BWT” sections two new algorithms for
finding all maximal perfect haplotype blocks in optimal
time. The latter of these two algorithms is then experi-
mentally compared to the one from [8] in “Empirical
evaluation” section, proving its superiority in running
time by a factor of about 5 and memory usage by up to
two orders of magnitude for larger data sets. “Conclu-
sion” section concludes the paper.

This paper is an extended version of the preliminary
work presented in [9]. Source code and test data are
available from https​://gitla​b.com/bacaz​aux/haplo​block​s.

Basic definitions
The typical input to genome-wide selection studies is
a set of haplotype-resolved genomes, or haplotypes
for short. Clearly, for a given set of haplotypes only
those sites are of interest where there is variation in the
genomes. Therefore, formally, we consider as input to our
methods a k × n haplotype matrix where each of the k
rows corresponds to one haplotype and each of the n col-
umns corresponds to one variable genetic site.

Most methods distinguish only between ancestral and
derived allele, reflecting the fact that most sites are bial-
lelic. Therefore the entries in a haplotype matrix are often
considered binary where the ancestral allele is encoded
by 0 and the derived allele is encoded by 1. However, the
computational problem and its solutions considered in
this paper do not depend on this restriction and instead
are applicable to any type of sequence over a constant-
size alphabet �.

The concept of a maximal perfect haplotype block as
defined in [8] is the following, where s[i, j] denotes the
substring of a string s from position i to position j and
S|K denotes the elements of an ordered set S restricted to
index set K:

Definition 1  Given k sequences S = (s1, . . . , sk) of
the same length n (representing the rows of a haplotype
matrix), a maximal perfect haplotype block is a triple
(K, i, j) with K ⊆ {1, . . . , k} , |K | ≥ 2 and 1 ≤ i ≤ j ≤ n
such that

1	 s[i, j] = t[i, j] for all s, t ∈ S|K (equality),
2	 i = 1 or s[i − 1] �= t[i − 1] for some s, t ∈ S|K (left-

maximality),
3	 j = n or s[j + 1] �= t[j + 1] for some s, t ∈ S|K (right-

maximality), and

1  http://www.allof​us.nih.gov.
2  Biologists propose to sequence the DNA of all life on Earth, by Elizabeth
Pennisi. Science News, Feb. 24, 2017. https​://doi.org/10.1126/scien​ce.aal08​
24.

https://gitlab.com/bacazaux/haploblocks
http://www.allofus.nih.gov
https://doi.org/10.1126/science.aal0824
https://doi.org/10.1126/science.aal0824

Page 3 of 7Alanko et al. Algorithms Mol Biol (2020) 15:2 	

4	 ∃K ′ ⊆ {1, . . . , k} with K ⊂ K ′ such that s[i, j] = t[i, j]
for all s, t ∈ S|K ′ (row-maximality).

Definition 1 is illustrated in Fig. 1.
In Cunha et al. [8] it was shown that the number of

maximal perfect haplotype blocks is O(kn), while the
algorithm presented there takes O(kn2) time to find all
blocks. It is based on the observation that branching ver-
tices in the trie Tp of the suffixes of the input sequences
starting at position p correspond to right-maximal and
row-maximal blocks, while left-maximality can be tested
by comparing Tp and Tp−1 . In the next two sections we
show how this running time can be improved.

Linear‑time method I: based on suffix trees
In this section, we present our first algorithm to find all
maximal perfect haplotype blocks in linear time. This
solution is purely theoretical, it would likely require
large amounts of memory while being slow in practice.
However, it demonstrates the connection to the concept
of maximal repeats in strings. We recall from [10, Sec-
tion 7.12] that a maximal repeat is a substring occurring
at least twice in a string or a set of strings and such that it
cannot be extended to the left or to the right without los-
ing occurrences.

Let S = s1$1s2$2 . . . sk$k , with the $i being k different
characters absent from the original alphabet � . The key
point is that any maximal perfect haplotype block in S
is a maximal repeat in S . The opposite is not true: In a
maximal perfect haplotype block, all occurrences of the
repeat are located at the same position of each sequence
of S (equality condition in Definition 1), while this con-
straint does not exist for maximal repeats in S.

Nevertheless, finding all maximal perfect haplotype
blocks in S can be performed by computing all maximal
repeats in S , while keeping only those whose occurrences
are located at the same positions over all si in which they
occur. This can be done by performing the following
procedure3:

1	 “Decorate” each sequence si ∈ S to create
s+i = α0si[1]α1si[2]α2 . . . si[n]αn , where the index
characters α0,α1, . . . ,αn are n+ 1 symbols from an
alphabet �′ , disjoint from the original alphabet �.

2	 Find in S+ = s+1 $1s
+
2 $2 . . . s

+
k $k all maximal repeats.

3	 Any maximal repeat r = αpr1αp+1r2αp+2 . . . rℓαp+ℓ
in S+ with ℓ ≥ 1 corresponds to a maximal perfect
haplotype block of length ℓ , starting at position p+ 1
in the input sequences from S.

The key idea here is that the index characters impose that
each maximal repeat occurrence starts at the same posi-
tion in all sequences and, as a consequence, ensure that
all occurrences occur in distinct sequences from S.

Hence any maximal repeat r = αpr1αp+1 . . . rℓαp+ℓ
defines a unique maximal perfect haplotype block
(K , p+ 1, p+ ℓ) . The value |K| is the number of occur-
rences of r. Also the set K can be derived from occurrence
positions of r in S+ , as any position in r corresponds to a
unique position in S . We prefer to omit useless technical
details here.

The maximal repeat occurrences in S+ may be found
using a suffix tree, constructed in time linear with respect
to the size of the input data O(kn), even for large inte-
ger alphabets [12], as we have here. The maximal repeat
detection is also linear with the size of the input data [10,
Section 7.12.1]. Therefore the overall time complexity is
O(kn).

Linear‑time method II: based on the positional
BWT
Here we present our second algorithm to find all maxi-
mal perfect haplotype blocks in linear time. It works by
scanning the haplotype matrix column by column while
maintaining the positional Burrows–Wheeler Trans-
form (pBWT) [13] of the current column. For simplicity
of presentation we assume that all rows of the haplotype
matrix S are distinct. Recall that the pBWT of S con-
sists of a pair of arrays for each column of S: For each l,
1 ≤ l ≤ n , we have arrays al and dl of length k such that
the array al is a permutation of the elements in the set
{1, 2, . . . , k} with S[al[1]][1, l] ≤ · · · ≤ S[al[k]][1, l]
colexicographically (i.e. right-to-left lexicographi-
cally) sorted, and the array dl indicates the index from
which the current and the previous rows coincide. For-
mally, dl[1] = l + 1 and for all r, 1 < r ≤ k , we have
dl[r] = 1+max{j ∈ [1, l] : S[al[r]][j] �= S[al[r − 1]][j]}.  Fur-
ther let us denote by a−1

l the inverse permutation of al .
For readers familiar with string processing terminology,
the arrays al and a−1

l are analogous to the suffix array and
the inverse suffix array, respectively, while the arrays dl
are analogous to the LCP array.

0 1 0 1 0 1 0 0
1 0 1 1 1 1 0 1
0 1 0 1 1 1 0 0

Fig. 1  Illustration of Definition 1. A binary 3× 8 haplotype matrix
with three maximal perfect haplotype blocks ({1, 3}, 1, 4) , ({2, 3}, 4, 7)
and ({1, 2, 3}, 6, 7) highlighted. (The example contains additional
maximal perfect haplotype blocks that are not shown.)

3  Note that a similar procedure has been described by Lunter [11], where also
a connection to the positional Burrows–Wheeler Transform is mentioned.

Page 4 of 7Alanko et al. Algorithms Mol Biol (2020) 15:2

Conditions 1, 2 and 4 (equality, left-maximality and
row-maximality) of Definition 1 can be stated in terms of
the arrays al and dl as follows.

Definition 2  A quadruple (i, j; x, y) with 1 ≤ i ≤ j ≤ n
and 1 ≤ x < y ≤ k is called an available block if the fol-
lowing holds:

•	 dj[r] ≤ i for all r ∈ [x + 1, y] (equality),
•	 there exists at least one r ∈ [x + 1, y] such that

dj[r] = i (left-maximality), and
•	 (x = 1 or dj[x] > i ) and ( y = k or dj[y+ 1] > i )

(row-maximality).

The interval [x, y] of an available block (i, j; x, y) is called
the colexicographic range of the block.

Lemma 1  Suppose we have a maximal perfect haplo-
type block (K, i, j), then the set {a−1

j [r] | r ∈ K } must be a
contiguous range [x, y] of indices such that (i, j; x, y) is an
available block.

Proof  This necessary condition follows immediately
from Definitions 1 and 2 and the definition of the pBWT
(arrays al and dl ). � �

Let us consider the set Bl of available blocks ending at
column l. We have that |Bl | ≤ k because each available
block corresponds to a distinct branching node in the trie
of the reverses of {S[1][1, l], . . . , S[k][1, l]} , and the num-
ber of branching nodes in the trie is bounded from above
by the number of leaves k. The branching nodes of the
trie can be enumerated in O(k) time by using a standard
algorithm [14] for enumerating LCP intervals of the LCP
array of the trie, LCPl[r] = l − dl[r] + 1 . This gives us the

colexicographic ranges [x, y] of all available blocks in Bl .
An example is shown in Fig. 2.

The only thing left is to show how to check the right-
maximality property of an available block. The following
lemma gives the sufficient condition for this:

Lemma 2  An available block (i, j; x, y) corresponds to
a maximal haplotype block (K, i, j) if and only if j = n or
|{S[a[r]][j + 1] : r ∈ [x, y]}| > 1.

Proof  If j = n , right-maximality according to Definition 1
holds trivially. If j < n , right-maximality requires that there
are two rows s, t ∈ S|K for which s[j + 1] �= t[j + 1] . Since
all rows s, t qualifying for this condition are within the
colexicographic range [x, y] of our available block, the state-
ment follows immediately. � �

To check the condition of Lemma 2 in con-
stant time for j = n , we build a bit vector Vj
such that Vj[1] = 1 and Vj[r] = 1 if and only if
S[aj[r]][j + 1] �= S[aj[r − 1]][j + 1] . Now the block is
right-maximal if and only if Vj[x + 1, y] contains at least
one 1-bit. We can build a vector of prefix sums of Vj to
answer this question in constant time.

Time and space complexity
We assume the column stream model, where we can
stream the haplotype matrix column by column. We can
thus build the arrays dl , al and a−1

l on the fly column by
column [13], and also easily build the required prefix
sums of arrays Vl from these. The time is O(nk), since
each of the n columns takes O(k) time to process. The
algorithm needs to keep in memory only the data for two
adjacent columns at a time, so in space O(k) we can report
the colexicographic ranges of all maximal blocks ending
in each column l ∈ [1, n] . If the colexicographic range of

1 2 3 4 5 6 a6 a−1
6

1 0 0 1 0 0 2 3

1 0 0 0 0 0 4 1

0 0 0 1 1 0 1 5

0 1 0 0 0 0 5 2

0 0 1 1 0 0 3 4

1 2 3 4 5 6 d6

1 0 0 0 0 0 7

0 1 0 0 0 0 3

1 0 0 1 0 0 5

0 0 1 1 0 0 4

0 0 0 1 1 0 6

0

0

0

0

0

1

1

0

1

0

0

1

1

0

0

1

1

0

0

0
Fig. 2  Available blocks. Left: an example of a haplotype matrix up to column 6 with the two arrays a6 and a−1

6 on the right. Center: the
colexicographically sorted rows and the array d6 listed on the right. Right: the trie of the reverses of the rows of the matrix. For example, the block
({1, 2, 4, 5}, 5, 6) is available because a−1

6 (1) = 3 , a−1
6 (2) = 1 , a−1

6 (4) = 2 , a−1
6 (5) = 4 is the consecutive range [x , y] = [1, 4] , we have d6[r] ≤ 5 for all

r ∈ [1+ 1, 4] with d6[3] = 5 , and we have x = 1 and d6[4+ 1] = 6 > 5 . The repeat in the block is 00, and we see it is a branching node in the trie
on the right

Page 5 of 7Alanko et al. Algorithms Mol Biol (2020) 15:2 	

a block at column l is [x, y], then the rows in the origi-
nal haplotype matrix are al[x], al[x + 1], . . . , al[y] . There
are O(nk) blocks and O(k) rows per block, so the time
to report all rows explicitly is O(nk2) . In fact, a sharper
bound that can also easily be achieved is O(nk + z) where
z ∈ O(nk2) is the size of the output. Alternatively, we
can store a complete representation of the answer taking
O(nk) space by storing all the al arrays and the colexico-
graphic ranges of the maximal perfect blocks for each
column, from which we can readily report all rows in any
maximal perfect block in constant time per row.

Empirical evaluation
Since the algorithm of “Linear-time method I: based on
suffix trees” section is mostly of theoretical interest, we
evaluate only the pBWT-based algorithm presented in
“Linear-time method II: based on the positional BWT”
section. The source code is available from https​://gitla​
b.com/bacaz​aux/haplo​block​s. As a baseline for com-
parison we use the implementation of the trie-based
algorithm by Cunha et al. [8], available from the same
gitlab site. The experiments were run on a machine with
an Intel Xeon E5-2680 v4 2.4 GHz CPU, which has a 35
MB Intel SmartCache. The machine has 256 gigabytes of
memory at a speed of 2400MT/s. The code was compiled
with g++ using the -Ofast optimization flag.

Our test data consists of chromosomes 2, 6 and 22
from phase three of the 1000 Genomes Project [2], which
provides whole-genome sequences of 2504 individuals
from multiple populations worldwide. We preprocessed
the data by extracting all biallelic SNPs from the provided
VCF files4 and converting them to a binary haplotype

matrix using our own program vcf2bm, also available
from https​://gitla​b.com/bacaz​aux/haplo​block​s.

Our implementation has a user-defined parameter
allowing to adjust the minimum size of a reported maxi-
mal perfect haplotype block (K, i, j), where size is defined
as the width ( j − i + 1 ) times the number of rows (|K|) in
the block. Table 1 shows the running times and memory
usage of our implementation on the different chromo-
somes and for different settings of the minimum block
size parameter. The larger the minimum block size, the
faster the algorithm is, because there are less blocks to
report. In general, it takes only a few minutes to process a
complete human chromosome. Locating all 323,163,970
blocks of minimum size 106 in all 22 human autosomes
(non-sex chromosomes) took in total 4 h and 26 min
with a memory peak of 12.8 MB (data not shown).

Table 2 shows a comparison of our implementation
to the trie-based implementation from [8]. Our imple-
mentation is about 5 times faster on all datasets, and the
memory consumption is up to 93 times smaller.

It is now easy to apply the method for estimating a
local selection coefficient from the size of maximal per-
fect haplotype blocks covering a certain genomic region

Table 1  Running times and memory usage of our pBWT-based implementation

Note that in our streaming implementation the memory usage is dominated by the number of haplotypes times the buffer size, and therefore is essentially constant
in this study

Data set #lines #columns Min block size Time Memory (MB) #blocks

chr. 22 5008 1,055,454 4 min 54 s 12.8 148,613,645

chr. 22 5008 1,055,454 500,000 3 min 50 s 12.8 16,076,453

chr. 22 5008 1,055,454 1,000,000 3 min 40 s 12.8 2,228,762

chr. 22 5008 1,055,454 2,000,000 3 min 43 s 12.8 4779

chr. 6 5008 4,800,101 19 min 42 s 12.8 624,689,548

chr. 6 5008 4,800,101 500,000 17 min 20 s 12.8 89,840,467

chr. 6 5008 4,800,101 1,000,000 16 min 30 s 12.8 11,388,982

chr. 6 5008 4,800,101 2,000,000 16 min 36 s 12.8 5585

chr. 2 5008 6,786,300 31 min 57 s 12.8 946,717,897

chr. 2 5008 6,786,300 500,000 25 min 06 s 12.8 160,094,115

chr. 2 5008 6,786,300 1,000,000 23 min 24 s 12.8 25,533,314

chr. 2 5008 6,786,300 2,000,000 23 min 18 s 12.8 120,243

Table 2  Comparison of the trie-based implementation
from [8] and our pBWT-based implementation
with minimum block size 106

Data set trie pBWT

Time Memory Time Memory (MB)

chr. 22 17 min 08 s 927.8 MB 3 min 40 s 12.8

chr. 6 1 h 34 min 34 s 3.23 GB 16 min 30 s 12.8

chr. 2 2 h 07 min 21 s 4.46 GB 23 min 24 s 12.8

4  ftp://ftp.1000g​enome​s.ebi.ac.uk/vol1/ftp/relea​se/20130​502/.

https://gitlab.com/bacazaux/haploblocks
https://gitlab.com/bacazaux/haploblocks
https://gitlab.com/bacazaux/haploblocks
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

Page 6 of 7Alanko et al. Algorithms Mol Biol (2020) 15:2

presented in [8]. This method estimates the likelihood of
observing a haplotype block for a given selection coeffi-
cient s and the time t since the onset of selection follow-
ing an approach presented by Chen et al. [15]. Therefore,
chromosome-wide selection scans indicating the loci of
maximum selection, as shown in Fig. 3 for the complete
human chromosome 2 (size parameter 106 ), can now be
generated in less than half an hour.

Conclusion
In this paper we presented two algorithms that are able to
find all maximal perfect haplotype blocks in a haplotype
matrix of size k × n in linear time O(kn). In particular
the second method, based on the positional Burrows–
Wheeler Transform, performs also extremely well in
practice, as it allows for a streaming implementation with
extremely low memory footprint.

While an initial implementation of the method is
available from https​://gitla​b.com/bacaz​aux/haplo​block​
s, a user-friendly software combining the algorithm pre-
sented here with the computation of the selection coef-
ficient suggested in [8] remains to be developed.

Acknowledgements
We thank the organizers of DSB 2019 (http://www.dsb20​19.gitla​b.io) for giving
us the opportunity to present earlier work in this area and start a discussion
from which the present results originated. We would also like to thank Michel
T. Henrichs for providing a script to convert VCF files to haplotype matrices
and for assisting with the production of Fig. 3.

Authors’ contributions
All authors contributed equally. All authors read and approved the final
manuscript.

Funding
The work presented in this article and the publication cost were funded from
the authors’ home institutions.
This funding was supported by JSPS KASKENHI (Grant No JP16H02783); ANR
Hydrogen (Grant No ANR-14-CE23-0001).

Availability of data and materials
Source code and test data are available from https​://gitla​b.com/bacaz​aux/
haplo​block​s.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science, University of Helsinki, Helsinki, Finland.
2 Department of Informatics, Kyushu University, Fukuoka, Japan. 3 Inria, CNRS,
Irisa, Univ. Rennes, Rennes, France. 4 Faculty of Technology and Center for Bio-
technology (CeBiTec), Bielefeld University, Bielefeld, Germany.

Received: 18 October 2019 Accepted: 28 January 2020

References
	1.	 Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone

C, McMahon A, Morales J, Mountjoy E, Sollis E, Suveges D, Vrousgou O,
Whetzel PL, Amode R, Guillen JA, Riat HS, Trevanion SJ, Hall P, Junkins H,
Flicek P, Burdett T, Hindorff LA, Cunningham F, Parkinson H. The NHGRI-EBI
GWAS catalog of published genome-wide association studies, targeted
arrays and summary statistics 2019. Nucl Acids Res. 2018;47(D1):1005–12.
https​://doi.org/10.1093/nar/gky11​20.

	2.	 Auton A, Brooks LD, Durbin RM, Garrison EP, Min Kang H, Korbel JO,
Marchini JL, McCarthy S, McVean GA, Abecasis GR, 1000 Genomes Project
Consortium. A global reference for human genetic variation. Nature.
2015;526(7571):68–74. https​://doi.org/10.1038/natur​e1539​3.

	3.	 Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston
J, Zhang Y, Ye K, Jun G, Hsi-Yang Fritz M, Konkel MK, Malhotra A, Stütz AM,
Shi X, Paolo Casale F, Chen J, Hormozdiari F, Dayama G, Chen K, Malig
M, Chaisson MJP, Walter K, Meiers S, Kashin S, Garrison E, Auton A, Lam
HYK, Jasmine MuX, Alkan C, Antaki D, Bae T, Cerveira E, Chines P, Chong
Z, Clarke L, Dal E, Ding L, Emery S, Fan X, Gujral M, Kahveci F, Kidd JM,
Kong Y, Lameijer E-W, McCarthy S, Flicek P, Gibbs RA, Marth G, Mason
CE, Menelaou A, Muzny DM, Nelson BJ, Noor A, Parrish NF, Pendleton M,
Quitadamo A, Raeder B, Schadt EE, Romanovitch M, Schlattl A, Sebra R,
Shabalin AA, Untergasser A, Walker JA, Wang M, Yu F, Zhang C, Zhang J,
Zheng-Bradley X, Zhou W, Zichner T, Sebat J, Batzer MA, McCarroll SA,
Mills RE, Gerstein MB, Bashir A, Stegle O, Devine SE, Lee C, Eichler EE,
Korbel JO, The 1000 Genomes Project Consortium. An integrated map of
structural variation in 2504 human genomes. Nature. 2015;526(7571):75–
81. https​://doi.org/10.1038/natur​e1539​4.

	4.	 Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason
A, Besenbacher S, Magnusson G, Halldorsson BV, Hjartarson E, Sigurds-
son GT, Stacey SN, Frigge ML, Holm H, Saemundsdottir J, Helgadottir HT,
Johannsdottir H, Sigfusson G, Thorgeirsson G, Sverrisson JT, Gretars-
dottir S, Walters GB, Rafnar T, Thjodleifsson B, Bjornsson ES, Olafsson S,

Fig. 3  Selection scan for human chromosome 2. Shown is for each position of the chromosome the largest maximum likelihood estimate derived
from any maximal perfect haplotype block overlapping that locus. It is easy to spot potential regions of high selection. The centromere, located
around 93 Mbp, shows no signal as sequencing coverage is low here and no SNPs could be called

https://gitlab.com/bacazaux/haploblocks
https://gitlab.com/bacazaux/haploblocks
http://www.dsb2019.gitlab.io
https://gitlab.com/bacazaux/haploblocks
https://gitlab.com/bacazaux/haploblocks
https://doi.org/10.1093/nar/gky1120
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15394

Page 7 of 7Alanko et al. Algorithms Mol Biol (2020) 15:2 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

Thorarinsdottir H, Steingrimsdottir T, Gudmundsdottir TS, Theodors A,
Jonasson JG, Sigurdsson A, Bjornsdottir G, Jonsson JJ, Thorarensen O,
Ludvigsson P, Gudbjartsson H, Eyjolfsson GI, Sigurdardottir O, Olafsson
I, Arnar DO, Magnusson OT, Kong A, Masson G, Thorsteinsdottir U, Hel-
gason A, Sulem P, Stefansson K. Large-scale whole-genome sequencing
of the Icelandic population. Nat Genet. 2015;47:435–44. https​://doi.
org/10.1038/ng.3247.

	5.	 Hehir-Kwa JY, Marschall T, Kloosterman WP, Francioli LC, Baaijens JA,
Dijkstra LJ, Abdellaoui A, Koval V, Thung DT, Wardenaar R, Renkens I, Coe
BP, Deelen P, de Ligt J, Lameijer E-W, van Dijk F, Hormozdiari F, Consortium
TGotN, Bovenberg JA, de Craen AJM, Beekman M, Hofman A, Willemsen
G, Wolffenbuttel B, Platteel M, Du Y, Chen R, Cao H, Cao R, Sun Y, Cao JS,
Neerincx PBT, Dijkstra M, Byelas G, Kanterakis A, Bot J, Vermaat M, Laros
JFJ, den Dunnen JT, de Knijff P, Karssen LC, van Leeuwen EM, Amin N,
Rivadeneira F, Estrada K, Hottenga J-J, Kattenberg VM, van Enckevort D,
Mei H, Santcroos M, van Schaik BDC, Handsaker RE, McCarroll SA, Ko A,
Sudmant P, Nijman IJ, Uitterlinden AG, van Duijn CM, Eichler EE, de Bakker
PIW, Swertz MA, Wijmenga C, van Ommen G-JB, Slagboom PE, Boomsma
DI, Schönhuth A, Ye K, Guryev V. A high-quality human reference panel
reveals the complexity and distribution of genomic structural variants.
Nat Commun. 2016;7:12989. https​://doi.org/10.1038/ncomm​s1298​9.

	6.	 Turnbull C, Scott RH, Thomas E, Jones L, Murugaesu N, Pretty FB, Halai D,
Baple E, Craig C, Hamblin A, Henderson S, Patch C, O’Neill A, Devereau
A, Smith K, Martin AR, Sosinsky A, McDonagh EM, Sultana R, Mueller M,
Smedley D, Toms A, Dinh L, Fowler T, Bale M, Hubbard TJP, Rendon A, Hill
S, Caulfield MJ. 100 000 Genomes Project: the 100 000 genomes project:
bringing whole genome sequencing to the NHS. BMJ. 2018;361:1687.
https​://doi.org/10.1136/bmj.k1687​.

	7.	 Gillespie JH. Population genetics—a concise guide. Baltimore: The Johns
Hopkins University Press; 1998.

	8.	 Cunha L, Diekmann Y, Kowada LAB, Stoye J Identifying maximal perfect
haplotype blocks. In: Advances in bioinformatics and computational biol-
ogy: 11th Brazilian symposium on bioinformatics, BSB 2018, Niterói, Brazil,

October 30 - November 1, 2018, Proceedings; 2018. p. 26–37. https​://doi.
org/10.1007/978-3-030-01722​-4_3.

	9.	 Alanko J, Bannai H, Cazaux B, Peterlongo P, Stoye J Finding all maximal
perfect haplotype blocks in linear time. In: Huber, K.T., Gusfield, D. (eds.)
19th International Workshop on Algorithms in Bioinformatics (WABI
2019). LIPIcs, vol. 143:8, p. 1–9 (2019). https​://doi.org/10.4230/LIPIc​
s.WABI.2019.8

	10.	 Gusfield D. Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge: Cambridge University
Press; 1997.

	11.	 Lunter G. Haplotype matching in large cohorts using the Li and Stephens
model. Bioinformatics. 2019;35(5):798–806. https​://doi.org/10.1093/bioin​
forma​tics/bty73​5.

	12.	 Farach M Optimal suffix tree construction with large alphabets. In: Pro-
ceedings 38th annual symposium on foundations of computer science.
New York: IEEE; 1997. p. 137–143.

	13.	 Durbin R. Efficient haplotype matching and storage using the positional
Burrows–Wheeler transform (PBWT). Bioinformatics. 2014;30(9):1266–72.
https​://doi.org/10.1093/bioin​forma​tics/btu01​4.

	14.	 Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with
enhanced suffix arrays. J Discret Algorithms. 2004;2(1):53–86. https​://doi.
org/10.1016/S1570​-8667(03)00065​-0.

	15.	 Chen H, Hey J, Slatkin M. A hidden Markov model for investigating
recent positive selection through haplotype structure. Theor Popul Biol.
2015;99:18–30. https​://doi.org/10.1016/j.tpb.2014.11.001.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1038/ng.3247
https://doi.org/10.1038/ng.3247
https://doi.org/10.1038/ncomms12989
https://doi.org/10.1136/bmj.k1687
https://doi.org/10.1007/978-3-030-01722-4_3
https://doi.org/10.1007/978-3-030-01722-4_3
https://doi.org/10.4230/LIPIcs.WABI.2019.8
https://doi.org/10.4230/LIPIcs.WABI.2019.8
https://doi.org/10.1093/bioinformatics/bty735
https://doi.org/10.1093/bioinformatics/bty735
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/j.tpb.2014.11.001

	Finding all maximal perfect haplotype blocks in linear time
	Abstract
	Introduction and background
	Basic definitions
	Linear-time method I: based on suffix trees
	Linear-time method II: based on the positional BWT
	Time and space complexity

	Empirical evaluation
	Conclusion
	Acknowledgements
	References

