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Abstract 

Recent large-scale community sequencing efforts allow at an unprecedented level of detail the identification of 
genomic regions that show signatures of natural selection. Traditional methods for identifying such regions from 
individuals’ haplotype data, however, require excessive computing times and therefore are not applicable to cur-
rent datasets. In 2019, Cunha et al. (Advances in bioinformatics and computational biology: 11th Brazilian sympo-
sium on bioinformatics, BSB 2018, Niterói, Brazil, October 30 - November 1, 2018, Proceedings, 2018. https​://doi.
org/10.1007/978-3-030-01722​-4_3) suggested the maximal perfect haplotype block as a very simple combinatorial 
pattern, forming the basis of a new method to perform rapid genome-wide selection scans. The algorithm they pre-
sented for identifying these blocks, however, had a worst-case running time quadratic in the genome length. It was 
posed as an open problem whether an optimal, linear-time algorithm exists. In this paper we give two algorithms that 
achieve this time bound, one conceptually very simple one using suffix trees and a second one using the positional 
Burrows–Wheeler Transform, that is very efficient also in practice.
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Introduction and background
As a result of the technological advances that went 
hand in hand with the genomics efforts of the last dec-
ades, today it is possible to experimentally obtain and 
study the genomes of large numbers of individuals, or 
even multiple samples from an individual. For instance, 
the National Human Genome Research Institute and the 
European Bioinformatics Institute have collected more 
than 3500 genome-wide association study publications in 
their GWAS Catalog [1].

Probably the most prominent example of large-scale 
sequencing projects is the 1000 Genomes Project (now 
International Genome Sample Resource, IGSR), initi-
ated with the goal of sequencing the genomes of more 
than one thousand human individuals to identify 95% 
of all genomic variants in the population with allele 

frequency of at least 1% (down toward 0.1% in coding 
regions). The final publications from phase 3 of the pro-
ject report about genetic variations from more than 2500 
genomes [2, 3].

Recently, several countries announced large-scale 
national research programs to capture the diversity of 
their populations, while some of these efforts started 
already more than 20 years ago. Since 1996 Iceland’s 
deCODE company is mining Icelanders’ genetic and 
medical data for disease genes. In 2015, deCODE pub-
lished insights gained from sequencing the whole 
genomes of 2636 Icelanders  [4]. Genome of the Nether-
lands (GoNL) is a whole genome sequencing project aim-
ing to characterize DNA sequence variation in the Dutch 
population using a representative sample consisting of 
250 trio families from all provinces in the Netherlands. 
In 2016, GoNL analysed whole genome sequencing data 
of 769 individuals and published a haplotype-resolved 
map of 1.9 million genome variants [5]. Similar projects 
have been established in larger scale in the UK: Following 
the UK10K project for identifying rare genetic variants 
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in health and disease (2010–2013), Genomics England 
was set up in late 2012 to deliver the 100,000 Genomes 
Project  [6]. This flagship project has by now sequenced 
100,000 whole genomes from patients and their families, 
focusing on rare diseases, some common types of cancer, 
and infectious diseases. The scale of these projects is cul-
minating in the US federal Precision Medicine Initiative, 
where the NIH is funding the All of Us research program1 
to analyze genetic information from more than 1 million 
American volunteers. Even more extreme suggestions go 
as far as to propose “to sequence the DNA of all life on 
Earth”2.

The main motivation for the collection of these large 
and comprehensive data sets is the hope for a better 
understanding of genomic variation and how variants 
relate to health and disease, but basic research in evolu-
tion, population genetics, functional genomics and stud-
ies on demographic history can also profit enormously.

One important approach connecting evolution and 
functional genomics is the search for genomic regions 
under natural selection based on population data. The 
selection coefficient  [7] is an established parameter 
quantifying the relative fitness of two genetic variants. 
Unfortunately, haplotype-based methods for estimating 
selection coefficients have not been designed with the 
massive genome data sets available today in mind, and 
may therefore take prohibitively long when applied to 
large-scale population data. In view of the large popula-
tion sequencing efforts described above, methods are 
needed that—at similar sensitivity—scale to much higher 
dimensions.

Only recently a method for the fast computation of a 
genome-wide selection scan has been proposed that 
can be computed quickly even for large datasets [8]. The 
method is based on a very simple combinatorial string 
pattern, maximal perfect haplotype blocks. Although con-
siderably faster than previous methods, the running time 
of the algorithm presented in that paper is not optimal, 
as it takes O(kn2) time in order to find all maximal per-
fect haplotype blocks in k genomes of length n each. This 
is sufficient to analyse individual human chromosomes 
on a laptop computer, for datasets of the size of the 1000 
Genomes Project (thousands of genomes and millions of 
variations). However, with the larger datasets currently 
underway and with higher resolution it will not scale 
favourably. More efficient methods are therefore nec-
essary and it was phrased as an open question whether 

there exists a linear-time algorithm to find all maximal 
perfect haplotype blocks.

In this paper we settle this open problem affirmatively. 
More specifically, after some basic definitions in “Basic 
definitions” section we present in “Linear-time method I: 
based on suffix trees” and “Linear-time method II: based 
on the positional BWT” sections two new algorithms for 
finding all maximal perfect haplotype blocks in optimal 
time. The latter of these two algorithms is then experi-
mentally compared to the one from  [8] in “Empirical 
evaluation” section, proving its superiority in running 
time by a factor of about 5 and memory usage by up to 
two orders of magnitude for larger data sets. “Conclu-
sion” section concludes the paper.

This paper is an extended version of the preliminary 
work presented in  [9]. Source code and test data are 
available from https​://gitla​b.com/bacaz​aux/haplo​block​s.

Basic definitions
The typical input to genome-wide selection studies is 
a set of haplotype-resolved genomes, or haplotypes 
for short. Clearly, for a given set of haplotypes only 
those sites are of interest where there is variation in the 
genomes. Therefore, formally, we consider as input to our 
methods a k ×  n haplotype matrix where each of the k 
rows corresponds to one haplotype and each of the n col-
umns corresponds to one variable genetic site.

Most methods distinguish only between ancestral and 
derived allele, reflecting the fact that most sites are bial-
lelic. Therefore the entries in a haplotype matrix are often 
considered binary where the ancestral allele is encoded 
by 0 and the derived allele is encoded by 1. However, the 
computational problem and its solutions considered in 
this paper do not depend on this restriction and instead 
are applicable to any type of sequence over a constant-
size alphabet �.

The concept of a maximal perfect haplotype block as 
defined in  [8] is the following, where s[i,  j] denotes the 
substring of a string s from position i to position j and 
S|K  denotes the elements of an ordered set S restricted to 
index set K:

Definition 1  Given k sequences S = (s1, . . . , sk) of 
the same length n (representing the rows of a haplotype 
matrix), a maximal perfect haplotype block is a triple 
(K,  i,  j) with K ⊆ {1, . . . , k} , |K | ≥ 2 and 1 ≤ i ≤ j ≤ n 
such that 

1	 s[i, j] = t[i, j] for all s, t ∈ S|K  (equality),
2	 i = 1 or s[i − 1] �= t[i − 1] for some s, t ∈ S|K  (left-

maximality),
3	 j = n or s[j + 1] �= t[j + 1] for some s, t ∈ S|K  (right-

maximality), and

1  http://www.allof​us.nih.gov.
2  Biologists propose to sequence the DNA of all life on Earth, by Elizabeth 
Pennisi. Science News, Feb. 24, 2017. https​://doi.org/10.1126/scien​ce.aal08​
24.

https://gitlab.com/bacazaux/haploblocks
http://www.allofus.nih.gov
https://doi.org/10.1126/science.aal0824
https://doi.org/10.1126/science.aal0824
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4	  ∃K ′ ⊆ {1, . . . , k} with K ⊂ K ′ such that s[i, j] = t[i, j] 
for all s, t ∈ S|K ′ (row-maximality).

Definition 1 is illustrated in Fig. 1.
In  Cunha et  al. [8] it was shown that the number of 

maximal perfect haplotype blocks is O(kn), while the 
algorithm presented there takes O(kn2) time to find all 
blocks. It is based on the observation that branching ver-
tices in the trie Tp of the suffixes of the input sequences 
starting at position p correspond to right-maximal and 
row-maximal blocks, while left-maximality can be tested 
by comparing Tp and Tp−1 . In the next two sections we 
show how this running time can be improved.

Linear‑time method I: based on suffix trees
In this section, we present our first algorithm to find all 
maximal perfect haplotype blocks in linear time. This 
solution is purely theoretical, it would likely require 
large amounts of memory while being slow in practice. 
However, it demonstrates the connection to the concept 
of maximal repeats in strings. We recall from  [10, Sec-
tion 7.12] that a maximal repeat is a substring occurring 
at least twice in a string or a set of strings and such that it 
cannot be extended to the left or to the right without los-
ing occurrences.

Let S = s1$1s2$2 . . . sk$k , with the $i being k different 
characters absent from the original alphabet � . The key 
point is that any maximal perfect haplotype block in S 
is a maximal repeat in S . The opposite is not true: In a 
maximal perfect haplotype block, all occurrences of the 
repeat are located at the same position of each sequence 
of S (equality condition in Definition 1), while this con-
straint does not exist for maximal repeats in S.

Nevertheless, finding all maximal perfect haplotype 
blocks in S can be performed by computing all maximal 
repeats in S , while keeping only those whose occurrences 
are located at the same positions over all si in which they 
occur. This can be done by performing the following 
procedure3: 

1	 “Decorate” each sequence si ∈ S to create 
s+i = α0si[1]α1si[2]α2 . . . si[n]αn , where the index 
characters α0,α1, . . . ,αn are n+ 1 symbols from an 
alphabet �′ , disjoint from the original alphabet �.

2	 Find in S+ = s+1 $1s
+
2 $2 . . . s

+
k $k all maximal repeats.

3	 Any maximal repeat r = αpr1αp+1r2αp+2 . . . rℓαp+ℓ 
in S+ with ℓ ≥ 1 corresponds to a maximal perfect 
haplotype block of length ℓ , starting at position p+ 1 
in the input sequences from S.

The key idea here is that the index characters impose that 
each maximal repeat occurrence starts at the same posi-
tion in all sequences and, as a consequence, ensure that 
all occurrences occur in distinct sequences from S.

Hence any maximal repeat r = αpr1αp+1 . . . rℓαp+ℓ 
defines a unique maximal perfect haplotype block 
(K , p+ 1, p+ ℓ) . The value |K| is the number of occur-
rences of r. Also the set K can be derived from occurrence 
positions of r in S+ , as any position in r corresponds to a 
unique position in S . We prefer to omit useless technical 
details here.

The maximal repeat occurrences in S+ may be found 
using a suffix tree, constructed in time linear with respect 
to the size of the input data O(kn), even for large inte-
ger alphabets [12], as we have here. The maximal repeat 
detection is also linear with the size of the input data [10, 
Section 7.12.1]. Therefore the overall time complexity is 
O(kn).

Linear‑time method II: based on the positional 
BWT
Here we present our second algorithm to find all maxi-
mal perfect haplotype blocks in linear time. It works by 
scanning the haplotype matrix column by column while 
maintaining the positional Burrows–Wheeler Trans-
form (pBWT) [13] of the current column. For simplicity 
of presentation we assume that all rows of the haplotype 
matrix S are distinct. Recall that the pBWT of S con-
sists of a pair of arrays for each column of S: For each l, 
1 ≤ l ≤ n , we have arrays al and dl of length k such that 
the array al is a permutation of the elements in the set 
{1, 2, . . . , k} with S[al[1]][1, l] ≤ · · · ≤ S[al[k]][1, l] 
colexicographically (i.e. right-to-left lexicographi-
cally) sorted, and the array dl indicates the index from 
which the current and the previous rows coincide. For-
mally, dl[1] = l + 1 and for all r, 1 < r ≤ k , we have 
dl[r] = 1+max{j ∈ [1, l] : S[al[r]][j] �= S[al[r − 1]][j]}.  Fur-
ther let us denote by a−1

l  the inverse permutation of al . 
For readers familiar with string processing terminology, 
the arrays al and a−1

l  are analogous to the suffix array and 
the inverse suffix array, respectively, while the arrays dl 
are analogous to the LCP array.

0 1 0 1 0 1 0 0
1 0 1 1 1 1 0 1
0 1 0 1 1 1 0 0

Fig. 1  Illustration of Definition 1. A binary 3× 8 haplotype matrix 
with three maximal perfect haplotype blocks ({1, 3}, 1, 4) , ({2, 3}, 4, 7) 
and ({1, 2, 3}, 6, 7) highlighted. (The example contains additional 
maximal perfect haplotype blocks that are not shown.)

3  Note that a similar procedure has been described by Lunter [11], where also 
a connection to the positional Burrows–Wheeler Transform is mentioned.
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Conditions 1, 2 and 4 (equality, left-maximality and 
row-maximality) of Definition 1 can be stated in terms of 
the arrays al and dl as follows.

Definition 2  A quadruple (i,  j; x, y) with 1 ≤ i ≤ j ≤ n 
and 1 ≤ x < y ≤ k is called an available block if the fol-
lowing holds:

•	 dj[r] ≤ i for all r ∈ [x + 1, y] (equality),
•	 there exists at least one r ∈ [x + 1, y] such that 

dj[r] = i (left-maximality), and
•	 (x = 1 or dj[x] > i ) and ( y = k or dj[y+ 1] > i ) 

(row-maximality).

The interval [x, y] of an available block (i, j; x, y) is called 
the colexicographic range of the block.

Lemma 1  Suppose we have a maximal perfect haplo-
type block (K, i, j), then the set {a−1

j [r] | r ∈ K } must be a 
contiguous range [x, y] of indices such that (i, j; x, y) is an 
available block.

Proof  This necessary condition follows immediately 
from Definitions 1 and 2 and the definition of the pBWT 
(arrays al and dl ). � �

Let us consider the set Bl of available blocks ending at 
column l. We have that |Bl | ≤ k because each available 
block corresponds to a distinct branching node in the trie 
of the reverses of {S[1][1, l], . . . , S[k][1, l]} , and the num-
ber of branching nodes in the trie is bounded from above 
by the number of leaves k. The branching nodes of the 
trie can be enumerated in O(k) time by using a standard 
algorithm [14] for enumerating LCP intervals of the LCP 
array of the trie, LCPl[r] = l − dl[r] + 1 . This gives us the 

colexicographic ranges [x, y] of all available blocks in Bl . 
An example is shown in Fig. 2.

The only thing left is to show how to check the right-
maximality property of an available block. The following 
lemma gives the sufficient condition for this:

Lemma 2  An available block (i,  j;  x,  y) corresponds to 
a maximal haplotype block (K, i, j) if and only if j = n or 
|{S[a[r]][j + 1] : r ∈ [x, y]}| > 1.

Proof  If j = n , right-maximality according to Definition 1 
holds trivially. If j < n , right-maximality requires that there 
are two rows s, t ∈ S|K for which s[j + 1] �= t[j + 1] . Since 
all rows s,  t qualifying for this condition are within the 
colexicographic range [x, y] of our available block, the state-
ment follows immediately. � �

To check the condition of Lemma  2 in con-
stant time for j  = n , we build a bit vector Vj 
such that Vj[1] = 1 and Vj[r] = 1 if and only if 
S[aj[r]][j + 1] �= S[aj[r − 1]][j + 1] . Now the block is 
right-maximal if and only if Vj[x + 1, y] contains at least 
one 1-bit. We can build a vector of prefix sums of Vj to 
answer this question in constant time.

Time and space complexity
We assume the column stream model, where we can 
stream the haplotype matrix column by column. We can 
thus build the arrays dl , al and a−1

l  on the fly column by 
column  [13], and also easily build the required prefix 
sums of arrays Vl from these. The time is O(nk), since 
each of the n columns takes O(k) time to process. The 
algorithm needs to keep in memory only the data for two 
adjacent columns at a time, so in space O(k) we can report 
the colexicographic ranges of all maximal blocks ending 
in each column l ∈ [1, n] . If the colexicographic range of 

1 2 3 4 5 6 a6 a−1
6

1 0 0 1 0 0 2 3

1 0 0 0 0 0 4 1

0 0 0 1 1 0 1 5

0 1 0 0 0 0 5 2

0 0 1 1 0 0 3 4

1 2 3 4 5 6 d6

1 0 0 0 0 0 7

0 1 0 0 0 0 3

1 0 0 1 0 0 5

0 0 1 1 0 0 4

0 0 0 1 1 0 6

0

0

0

0

0

1

1

0

1

0

0

1

1

0

0

1

1

0

0

0
Fig. 2  Available blocks. Left: an example of a haplotype matrix up to column 6 with the two arrays a6 and a−1

6  on the right. Center: the 
colexicographically sorted rows and the array d6 listed on the right. Right: the trie of the reverses of the rows of the matrix. For example, the block 
({1, 2, 4, 5}, 5, 6) is available because a−1

6 (1) = 3 , a−1
6 (2) = 1 , a−1

6 (4) = 2 , a−1
6 (5) = 4 is the consecutive range [x , y] = [1, 4] , we have d6[r] ≤ 5 for all 

r ∈ [1+ 1, 4] with d6[3] = 5 , and we have x = 1 and d6[4+ 1] = 6 > 5 . The repeat in the block is 00, and we see it is a branching node in the trie 
on the right
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a block at column l is [x, y], then the rows in the origi-
nal haplotype matrix are al[x], al[x + 1], . . . , al[y] . There 
are O(nk) blocks and O(k) rows per block, so the time 
to report all rows explicitly is O(nk2) . In fact, a sharper 
bound that can also easily be achieved is O(nk + z) where 
z ∈ O(nk2) is the size of the output. Alternatively, we 
can store a complete representation of the answer taking 
O(nk) space by storing all the al arrays and the colexico-
graphic ranges of the maximal perfect blocks for each 
column, from which we can readily report all rows in any 
maximal perfect block in constant time per row.

Empirical evaluation
Since the algorithm of “Linear-time method I: based on 
suffix trees” section is mostly of theoretical interest, we 
evaluate only the pBWT-based algorithm presented in 
“Linear-time method II: based on the positional BWT” 
section. The source code is available from  https​://gitla​
b.com/bacaz​aux/haplo​block​s. As a baseline for com-
parison we use the implementation of the trie-based 
algorithm by Cunha et  al.  [8], available from the same 
gitlab site. The experiments were run on a machine with 
an Intel Xeon E5-2680 v4 2.4 GHz CPU, which has a 35 
MB Intel SmartCache. The machine has 256 gigabytes of 
memory at a speed of 2400MT/s. The code was compiled 
with g++ using the -Ofast optimization flag.

Our test data consists of chromosomes 2, 6 and 22 
from phase three of the 1000 Genomes Project [2], which 
provides whole-genome sequences of 2504 individuals 
from multiple populations worldwide. We preprocessed 
the data by extracting all biallelic SNPs from the provided 
VCF files4 and converting them to a binary haplotype 

matrix using our own program vcf2bm, also available 
from https​://gitla​b.com/bacaz​aux/haplo​block​s.

Our implementation has a user-defined parameter 
allowing to adjust the minimum size of a reported maxi-
mal perfect haplotype block (K, i, j), where size is defined 
as the width ( j − i + 1 ) times the number of rows (|K|) in 
the block. Table 1 shows the running times and memory 
usage of our implementation on the different chromo-
somes and for different settings of the minimum block 
size parameter. The larger the minimum block size, the 
faster the algorithm is, because there are less blocks to 
report. In general, it takes only a few minutes to process a 
complete human chromosome. Locating all 323,163,970 
blocks of minimum size 106 in all 22 human autosomes 
(non-sex chromosomes) took in total 4  h and 26  min 
with a memory peak of 12.8 MB (data not shown).

Table  2 shows a comparison of our implementation 
to the trie-based implementation from  [8]. Our imple-
mentation is about 5 times faster on all datasets, and the 
memory consumption is up to 93 times smaller.

It is now easy to apply the method for estimating a 
local selection coefficient from the size of maximal per-
fect haplotype blocks covering a certain genomic region 

Table 1  Running times and memory usage of our pBWT-based implementation

Note that in our streaming implementation the memory usage is dominated by the number of haplotypes times the buffer size, and therefore is essentially constant 
in this study

Data set #lines #columns Min block size Time Memory (MB) #blocks

chr. 22 5008 1,055,454 4 min 54 s 12.8 148,613,645

chr. 22 5008 1,055,454 500,000 3 min 50 s 12.8 16,076,453

chr. 22 5008 1,055,454 1,000,000 3 min 40 s 12.8 2,228,762

chr. 22 5008 1,055,454 2,000,000 3 min 43 s 12.8 4779

chr. 6 5008 4,800,101 19 min 42 s 12.8 624,689,548

chr. 6 5008 4,800,101 500,000 17 min 20 s 12.8 89,840,467

chr. 6 5008 4,800,101 1,000,000 16 min 30 s 12.8 11,388,982

chr. 6 5008 4,800,101 2,000,000 16 min 36 s 12.8 5585

chr. 2 5008 6,786,300 31 min 57 s 12.8 946,717,897

chr. 2 5008 6,786,300 500,000 25 min 06 s 12.8 160,094,115

chr. 2 5008 6,786,300 1,000,000 23 min 24 s 12.8 25,533,314

chr. 2 5008 6,786,300 2,000,000 23 min 18 s 12.8 120,243

Table 2  Comparison of  the  trie-based implementation 
from  [8] and  our pBWT-based implementation 
with minimum block size 106

Data set trie pBWT

Time Memory Time Memory (MB)

chr. 22 17 min 08 s 927.8 MB 3 min 40 s 12.8

chr. 6 1 h 34 min 34 s 3.23 GB 16 min 30 s 12.8

chr. 2 2 h 07 min 21 s 4.46 GB 23 min 24 s 12.8

4  ftp://ftp.1000g​enome​s.ebi.ac.uk/vol1/ftp/relea​se/20130​502/.

https://gitlab.com/bacazaux/haploblocks
https://gitlab.com/bacazaux/haploblocks
https://gitlab.com/bacazaux/haploblocks
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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presented in [8]. This method estimates the likelihood of 
observing a haplotype block for a given selection coeffi-
cient s and the time t since the onset of selection follow-
ing an approach presented by Chen et al. [15]. Therefore, 
chromosome-wide selection scans indicating the loci of 
maximum selection, as shown in Fig. 3 for the complete 
human chromosome 2 (size parameter 106 ), can now be 
generated in less than half an hour.

Conclusion
In this paper we presented two algorithms that are able to 
find all maximal perfect haplotype blocks in a haplotype 
matrix of size k × n in linear time O(kn). In particular 
the second method, based on the positional Burrows–
Wheeler Transform, performs also extremely well in 
practice, as it allows for a streaming implementation with 
extremely low memory footprint.

While an initial implementation of the method is 
available from https​://gitla​b.com/bacaz​aux/haplo​block​
s, a user-friendly software combining the algorithm pre-
sented here with the computation of the selection coef-
ficient suggested in [8] remains to be developed.
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